1
|
Carrillo-Lopez LM, Villanueva-Verduzco C, Villanueva-Sánchez E, Fajardo-Franco ML, Aguilar-Tlatelpa M, Ventura-Aguilar RI, Soto-Hernández RM. Nanomaterials for Plant Disease Diagnosis and Treatment: A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2634. [PMID: 39339607 PMCID: PMC11434773 DOI: 10.3390/plants13182634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/06/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Currently, the excessive use of pesticides has generated environmental pollution and harmful effects on human health. The controlled release of active ingredients through the use of nanomaterials (NMs) appears to reduce human exposure and ecosystem alteration. Although the use of NMs can offer an alternative to traditional methods of disease diagnosis and control, it is necessary to review the current approach to the application of these NMs. This review describes the most recent and significant advances in using NMs for diagnosing and treating plant diseases (bacteria, phytopathogenic fungi, viruses, and phytopathogenic nematodes) in cultivated plants. Most studies have focused on reducing, delaying, or eliminating bacteria, fungi, viruses, and nematodes in plants. Both metallic (including metal oxides) and organic nanoparticles (NPs) and composites are widely used in diagnosing and controlling plant diseases due to their biocompatibility and ease of synthesis. Few studies have been carried out with regard to carbon-based NPs due to their toxicity, so future studies should address the development of detection tools, ecological and economic impacts, and human health. The synergistic effect of NMs as fertilizers and pesticides opens new areas of knowledge on the mechanisms of action (plant-pathogen-NMs interaction), the interaction of NMs with nutrients, the effects on plant metabolism, and the traceability of NMs to implement sustainable approaches. More studies are needed involving in vivo models under international regulations to ensure their safety. There is still controversy in the release of NMs into the environment because they could threaten the stability and functioning of biological systems, so research in this area needs to be improved.
Collapse
Affiliation(s)
- Luis M Carrillo-Lopez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Botánica, Colegio de Postgraduados Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Clemente Villanueva-Verduzco
- Departamento de Fitotecnia, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Evert Villanueva-Sánchez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías-Laboratorio Nacional de Investigación y Servicio Agroalimentario y Forestal, Universidad Autónoma Chapingo, Carretera México-Texcoco Km. 38.5, Chapingo 56230, Estado de México, Mexico
| | - Marja L Fajardo-Franco
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Martín Aguilar-Tlatelpa
- Posgrado en Manejo Sustentable de Recursos Naturales, Universidad Intercultural del Estado de Puebla, Calle Principal a Lipuntlahuaca, Huehuetla 73475, Puebla, Mexico
| | - Rosa I Ventura-Aguilar
- CONAHCYT-Recursos Genéticos y Productividad-Fruticultura, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| | - Ramón Marcos Soto-Hernández
- Botánica, Colegio de Postgraduados, Campus Montecillo, Carretera Mexico-Texcoco Km. 36.5, Texcoco 56230, Mexico
| |
Collapse
|
2
|
Fernández Blanco A, Hernández Pérez M, Moreno Trigos Y, García-Hernández J. Development of Optical Label-Free Biosensor Method in Detection of Listeria monocytogenes from Food. SENSORS (BASEL, SWITZERLAND) 2023; 23:5570. [PMID: 37420736 DOI: 10.3390/s23125570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
The present work describes an alternative method for detecting and identifying Listeria monocytogenes in food samples by developing a nanophotonic biosensor containing bioreceptors and optical transducers. The development of photonic sensors for the detection of pathogens in the food industry involves the implementation of procedures for selecting probes against the antigens of interest and the functionalization of the sensor surfaces on which the said bioreceptors are located. As a previous step to functionalizing the biosensor, an immobilization control of these antibodies on silicon nitride surfaces was carried out to check the effectiveness of in plane immobilization. On the one hand, it was observed that a Listeria monocytogenes-specific polyclonal antibody has a greater binding capacity to the antigen at a wide range of concentrations. A Listeria monocytogenes monoclonal antibody is more specific and has a greater binding capacity only at low concentrations. An assay for evaluating selected antibodies against particular antigens of Listeria monocytogenes bacteria was designed to determine the binding specificity of each probe using the indirect ELISA detection technique. In addition, a validation method was established against the reference method for many replicates belonging to different batches of meat-detectable samples, with a medium and pre-enrichment time that allowed optimal recovery of the target microorganism. Moreover, no cross-reactivity with other nontarget bacteria was observed. Thus, this system is a simple, highly sensitive, and accurate platform for L. monocytogenes detection.
Collapse
Affiliation(s)
| | - Manuel Hernández Pérez
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Yolanda Moreno Trigos
- Instituto de Ingeniería de Agua y del Medioambiente, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jorge García-Hernández
- Centro Avanzado de Microbiología de Alimentos, Biotechnology Department, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
3
|
Ahmed FK, Alghuthaymi MA, Abd-Elsalam KA, Ravichandran M, Kalia A. Nano-Based Robotic Technologies for Plant Disease Diagnosis. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:327-359. [DOI: 10.1007/978-3-031-16084-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8688584. [PMID: 36225980 PMCID: PMC9550482 DOI: 10.1155/2022/8688584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Collapse
|
5
|
Dutta P, Kumari A, Mahanta M, Biswas KK, Dudkiewicz A, Thakuria D, Abdelrhim AS, Singh SB, Muthukrishnan G, Sabarinathan KG, Mandal MK, Mazumdar N. Advances in Nanotechnology as a Potential Alternative for Plant Viral Disease Management. Front Microbiol 2022; 13:935193. [PMID: 35847105 PMCID: PMC9279558 DOI: 10.3389/fmicb.2022.935193] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Plant viruses cause enormous losses in agricultural production accounting for about 47% of the total overall crop losses caused by plant pathogens. More than 50% of the emerging plant diseases are reported to be caused by viruses, which are inevitable or unmanageable. Therefore, it is essential to devise novel and effective management strategies to combat the losses caused by the plant virus in economically important crops. Nanotechnology presents a new tendency against the increasing challenges in the diagnosis and management of plant viruses as well as plant health. The application of nanotechnology in plant virology, known as nanophytovirology, includes disease diagnostics, drug delivery, genetic transformation, therapeutants, plant defense induction, and bio-stimulation; however, it is still in the nascent stage. The unique physicochemical properties of particles in the nanoscale allow greater interaction and it may knock out the virus particles. Thus, it opens up a novel arena for the management of plant viral diseases. The main objective of this review is to focus on the mounting collection of tools and techniques involved in the viral disease diagnosis and management and to elucidate their mode of action along with toxicological concerns.
Collapse
|
6
|
Polat EO, Cetin MM, Tabak AF, Bilget Güven E, Uysal BÖ, Arsan T, Kabbani A, Hamed H, Gül SB. Transducer Technologies for Biosensors and Their Wearable Applications. BIOSENSORS 2022; 12:385. [PMID: 35735533 PMCID: PMC9221076 DOI: 10.3390/bios12060385] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 05/17/2023]
Abstract
The development of new biosensor technologies and their active use as wearable devices have offered mobility and flexibility to conventional western medicine and personal fitness tracking. In the development of biosensors, transducers stand out as the main elements converting the signals sourced from a biological event into a detectable output. Combined with the suitable bio-receptors and the miniaturization of readout electronics, the functionality and design of the transducers play a key role in the construction of wearable devices for personal health control. Ever-growing research and industrial interest in new transducer technologies for point-of-care (POC) and wearable bio-detection have gained tremendous acceleration by the pandemic-induced digital health transformation. In this article, we provide a comprehensive review of transducers for biosensors and their wearable applications that empower users for the active tracking of biomarkers and personal health parameters.
Collapse
Affiliation(s)
- Emre Ozan Polat
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul 34083, Turkey; (M.M.C.); (A.F.T.); (E.B.G.); (B.Ö.U.); (T.A.); (A.K.); (H.H.); (S.B.G.)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kumar A, Choudhary A, Kaur H, Guha S, Mehta S, Husen A. Potential Applications of Engineered Nanoparticles in Plant Disease Management: A Critical Update. CHEMOSPHERE 2022; 295:133798. [PMID: 35122813 DOI: 10.1016/j.chemosphere.2022.133798] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Plant diseases caused by pathogenic entities pose severe issues to global food security. Effective sensory applications and tools for the effective determination of plant diseases become crucial to the assurance of food supply and agricultural sustainability. Antibody-mediated molecular assays and nucleic acid are gold-standard approaches for plant disease diagnosis, but the evaluating methodologies are liable, complex, and laborious. With the rise in global food demand, escalating the food production in threats of diverse pathogen ranges, and climate change is a major challenge. Engineered nanoparticles (NPs) have been inserted into conventional laboratory sequence technologies or molecular assays that provide a remarkable increment in selectivity and sensitivity. In the present scenario, they are useful in plant disease management as well as in plant health monitoring. The use of NPs could sustainably mitigate numerous food security issues and or threats in disease management by decreasing the risk of chemical inputs and alleviating supra detection of pathogens. Overall, this review paper discusses the role of NPs in plant diseases management, available commercial products. Additionally, the future directions and their regulatory laws in the usage of the nano-diagnostic approach for plant health monitoring have been explained.
Collapse
Affiliation(s)
- Antul Kumar
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Anuj Choudhary
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Harmanjot Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Satyakam Guha
- Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | - Sahil Mehta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India; School of Agricultural Sciences, K.R. Mangalam University, Sohna Rural, Haryana, 122103, India
| | - Azamal Husen
- Wolaita Sodo University, P.O. Box: 138, Wolaita, Ethiopia.
| |
Collapse
|
8
|
Buja I, Sabella E, Monteduro AG, Rizzato S, Bellis LD, Elicio V, Formica L, Luvisi A, Maruccio G. Detection of Ampelovirus and Nepovirus by Lab-on-a-Chip: A Promising Alternative to ELISA Test for Large Scale Health Screening of Grapevine. BIOSENSORS 2022; 12:bios12030147. [PMID: 35323417 PMCID: PMC8945899 DOI: 10.3390/bios12030147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022]
Abstract
The Ampelovirus Grapevine leafroll-associated virus 3 (GLRaV-3) and the Nepovirus Grapevine fanleaf virus (GFLV) are pathogens reported in many grapevine-growing areas all over the world, main causal agents of grapevine leafroll disease and grapevine fanleaf disease, respectively. Prevention of virus spread thanks to rapid diagnosis of infected plants is a key factor for control of both diseases. Although serological (e.g., enzyme-linked immunosorbent assay-ELISA test) and molecular methods are available to reveal the presence of the viruses, they turn out to be quite expensive, time-consuming and laborious, especially for large-scale health screening. Here we report the optimization of a lab-on-a-chip (LOC) for GLRaV-3 and GFLV detection, based on an electrochemical transduction and a microfluidic multichamber design for measurements in quadruplicate and simultaneous detection of both targets. The LOC detect GLRaV-3 and GFLV at dilution factors more than 15 times higher than ELISA, providing a higher sensitivity in the detection of both viruses. Furthermore, the platform offers several advantages as easy-to-use, rapid-test, portability and low costs, favoring its potential application for large-scale monitoring programs. Compared to other grapevine virus biosensors, our sensing platform is the first one to provide a dose-dependent calibration curve combined with a microfluidic module for sample analysis and a portable electronics providing an operator-independent read-out scheme.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Vito Elicio
- Agritest s.r.l., Tecnopolis Casamassima, Km. 3, Strada Provinciale Ceglie Valenzano, 70010 Valenzano, Italy; (V.E.); (L.F.)
| | - Lilia Formica
- Agritest s.r.l., Tecnopolis Casamassima, Km. 3, Strada Provinciale Ceglie Valenzano, 70010 Valenzano, Italy; (V.E.); (L.F.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics, University of Salento, CNR-Institute of Nanotechnology, INFN Sezione di Lecce, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (S.R.); (G.M.)
| |
Collapse
|
9
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
11
|
Dyussembayev K, Sambasivam P, Bar I, Brownlie JC, Shiddiky MJA, Ford R. Biosensor Technologies for Early Detection and Quantification of Plant Pathogens. Front Chem 2021; 9:636245. [PMID: 34150716 PMCID: PMC8207201 DOI: 10.3389/fchem.2021.636245] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 11/13/2022] Open
Abstract
Plant pathogens are a major reason of reduced crop productivity and may lead to a shortage of food for both human and animal consumption. Although chemical control remains the main method to reduce foliar fungal disease incidence, frequent use can lead to loss of susceptibility in the fungal population. Furthermore, over-spraying can cause environmental contamination and poses a heavy financial burden on growers. To prevent or control disease epidemics, it is important for growers to be able to detect causal pathogen accurately, sensitively, and rapidly, so that the best practice disease management strategies can be chosen and enacted. To reach this goal, many culture-dependent, biochemical, and molecular methods have been developed for plant pathogen detection. However, these methods lack accuracy, specificity, reliability, and rapidity, and they are generally not suitable for in-situ analysis. Accordingly, there is strong interest in developing biosensing systems for early and accurate pathogen detection. There is also great scope to translate innovative nanoparticle-based biosensor approaches developed initially for human disease diagnostics for early detection of plant disease-causing pathogens. In this review, we compare conventional methods used in plant disease diagnostics with new sensing technologies in particular with deeper focus on electrochemical and optical biosensors that may be applied for plant pathogen detection and management. In addition, we discuss challenges facing biosensors and new capability the technology provides to informing disease management strategies.
Collapse
Affiliation(s)
- Kazbek Dyussembayev
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Prabhakaran Sambasivam
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Jeremy C. Brownlie
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Muhammad J. A. Shiddiky
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, QLD, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
- School of Environment and Science, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
12
|
Buja I, Sabella E, Monteduro AG, Chiriacò MS, De Bellis L, Luvisi A, Maruccio G. Advances in Plant Disease Detection and Monitoring: From Traditional Assays to In-Field Diagnostics. SENSORS 2021; 21:s21062129. [PMID: 33803614 PMCID: PMC8003093 DOI: 10.3390/s21062129] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 12/20/2022]
Abstract
Human activities significantly contribute to worldwide spread of phytopathological adversities. Pathogen-related food losses are today responsible for a reduction in quantity and quality of yield and decrease value and financial returns. As a result, “early detection” in combination with “fast, accurate, and cheap” diagnostics have also become the new mantra in plant pathology, especially for emerging diseases or challenging pathogens that spread thanks to asymptomatic individuals with subtle initial symptoms but are then difficult to face. Furthermore, in a globalized market sensitive to epidemics, innovative tools suitable for field-use represent the new frontier with respect to diagnostic laboratories, ensuring that the instruments and techniques used are suitable for the operational contexts. In this framework, portable systems and interconnection with Internet of Things (IoT) play a pivotal role. Here we review innovative diagnostic methods based on nanotechnologies and new perspectives concerning information and communication technology (ICT) in agriculture, resulting in an improvement in agricultural and rural development and in the ability to revolutionize the concept of “preventive actions”, making the difference in fighting against phytopathogens, all over the world.
Collapse
Affiliation(s)
- Ilaria Buja
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| | | | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, 73100 Lecce, Italy; (E.S.); (L.D.B.)
- Correspondence:
| | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, Via per Monteroni, 73100 Lecce, Italy; (I.B.); (A.G.M.); (G.M.)
- Institute of Nanotechnology, CNR NANOTEC, Via per Monteroni, 73100 Lecce, Italy;
| |
Collapse
|
13
|
Khan MZH, Hasan MR, Hossain SI, Ahommed MS, Daizy M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens Bioelectron 2020; 166:112431. [PMID: 32862842 PMCID: PMC7363606 DOI: 10.1016/j.bios.2020.112431] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Last few decades, viruses are a real menace to human safety. Therefore, the rapid identification of viruses should be one of the best ways to prevent an outbreak and important implications for medical healthcare. The recent outbreak of coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus which belongs to the single-stranded, positive-strand RNA viruses. The pandemic dimension spread of COVID-19 poses a severe threat to the health and lives of seven billion people worldwide. There is a growing urgency worldwide to establish a point-of-care device for the rapid detection of COVID-19 to prevent subsequent secondary spread. Therefore, the need for sensitive, selective, and rapid diagnostic devices plays a vital role in selecting appropriate treatments and to prevent the epidemics. During the last decade, electrochemical biosensors have emerged as reliable analytical devices and represent a new promising tool for the detection of different pathogenic viruses. This review summarizes the state of the art of different virus detection with currently available electrochemical detection methods. Moreover, this review discusses different fabrication techniques, detection principles, and applications of various virus biosensors. Future research also looks at the use of electrochemical biosensors regarding a potential detection kit for the rapid identification of the COVID-19.
Collapse
Affiliation(s)
- M Z H Khan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - M R Hasan
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Institute of Nanoscience of Aragon, Department of Chemical Engineering and Environmental Technology, University of Zaragoza, Aragon, Spain
| | - S I Hossain
- Chemistry Department, University of Bari "Aldo Moro", Via E. Orabona 4 - 70126 Bari, Italy
| | - M S Ahommed
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan
| | - M Daizy
- Dept. of Chemical Engineering, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Laboratory of Nano-bio and Advanced Materials Engineering (NAME), Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
14
|
Ekrami E, Pouresmaieli M, Barati F, Asghari S, Ziarani FR, Shariati P, Mamoudifard M. Potential Diagnostic Systems for Coronavirus Detection: a Critical Review. Biol Proced Online 2020; 22:21. [PMID: 32884452 PMCID: PMC7462115 DOI: 10.1186/s12575-020-00134-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract Currently there are no effective anti-viral drugs for SARS-CoV-2, so the primary line of defense is to detect infected cases as soon as possible. The high rate of contagion for this virus and the highly nonspecific symptoms of the disease (Coronovirus disease 2019, (Covid-19)) that it causes, such as respiratory symptoms, cough, dyspnea, fever, and viral pneumonia, require the urgent establishment of precise and fast diagnostic tests to verify suspected cases, screen patients, and conduct virus surveillance. Nowadays, several virus detection methods are available for viral diseases, which act on specific properties of each virus or virus family, therefore, further investigations and trials are needed to find a highly efficient and accurate detection method to detect and prevent the outcomes of the disease. Hence, there is an urgent need for more and precise studies in this field. In this review, we discussed the properties of a new generation of coronaviruses (SARS-CoV-2) following routine virus detection methods and proposed new strategies and the use of potential samples for SARS-CoV-2 detection. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Elena Ekrami
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mahdi Pouresmaieli
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Farzad Ramezani Ziarani
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Parvin Shariati
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Matin Mamoudifard
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
15
|
Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol 2020; 209:343-362. [PMID: 32246198 PMCID: PMC7248053 DOI: 10.1007/s00430-020-00668-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
Since the discovery of antibiotics in the first quarter of the twentieth century, their use has been the principal approach to treat bacterial infection. Modernized medicine such as cancer therapy, organ transplantation or advanced major surgeries require effective antibiotics to manage bacterial infections. However, the irresponsible use of antibiotics along with the lack of development has led to the emergence of antimicrobial resistance which is considered a serious global threat due to the rise of multidrug-resistant bacteria (Wang et al. in Antibiotic resistance: a rundown of a global crisis, pp. 1645-1658, 2018). Currently employed diagnostics techniques are microscopy, colony counting, ELISA, PCR, RT-PCR, surface-enhanced Raman scattering and others. These techniques provide satisfactory selectivity and sensitivity (Joung et al. in Sens Actuators B Chem 161:824-831, 2012). Nevertheless, they demand specialized personnel and expensive and sophisticated machinery which can be labour-intensive and time-consuming, (Malvano et al. in Sensors (Switzerland) 18:1-11, 2018; Mantzila et al. in Anal Chem 80:1169-1175, 2008). To get around these problems, new technologies such as biosensing and lab-on-a-chip devices have emerged in the last two decades. Impedimetric immunosensors function by applying electrochemical impedance spectroscopy to a biosensor platform using antibodies or other affinity proteins such as Affimers (Tiede et al. in Elife 6(c):1-35, 2017) or other binding proteins (Weiss et al. in Electrochim Acta 50:4248-4256, 2005) as bioreceptors, which provide excellent sensitivity and selectivity. Pre-enrichment steps are not required and this allows miniaturization and low-cost. In this review different types of impedimetric immunosensors are reported according to the type of electrode and their base layer materials, either self-assembled monolayers or polymeric layers, composition and functionalization for different types of bacteria, viruses, fungi and disease biomarkers. Additionally, novel protein scaffolds, both antibody derived and non-antibody derived, used to specifically target the analyte are considered.
Collapse
Affiliation(s)
- J. Leva-Bueno
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| | - Sally A. Peyman
- Molecular and Nanoscale Physics Group, Department of Physics and Astronomy, University of Leeds, Leeds, LS2 9JS England, UK
| | - P. A. Millner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT England, UK
| |
Collapse
|
16
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
17
|
Della Bartola M, Byrne S, Mullins E. Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses 2020; 12:E478. [PMID: 32340210 PMCID: PMC7232445 DOI: 10.3390/v12040478] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
Potato virus Y (PVY) is the most economically important virus infecting cultivated potato (Solanum tuberosum L.). Accurate diagnosis is crucial to regulate the trade of tubers and for the sanitary selection of plant material for propagation. However, high genetic diversity of PVY represents a challenge for the detection and classification of isolates. Here, the diversity of Irish PVY isolates from a germplasm collection and commercial sites was investigated using conventional molecular and serological techniques. Recombinant PVY isolates were prevalent, with PVYNTNa being the predominant genotype. In addition, we evaluated Nanopore sequencing to detect and reconstruct the whole genome sequence of four viruses (PVY, PVX, PVS, PLRV) and five PVY genotypes in a subset of eight potato plants. De novo assembly of Nanopore sequencing reads produced single contigs covering greater than 90% of the viral genome and sharing greater than 99.5% identity to the consensus sequences obtained with Illumina sequencing. Interestingly, single near full genome contigs were obtained for different isolates of PVY co-infecting the same plant. Mapping reads to available reference viral genomes enabled us to generate near complete genome sequences sharing greater than 99.90% identity to the Illumina-derived consensus. This is the first report describing the use of Oxford Nanopore's MinION to detect and genotype potato viruses. We reconstructed the genome of PVY and other RNA viruses; indicating the technologies potential for virus detection in potato production systems, and for the study of genetic diversity of highly heterogeneous viruses such as PVY.
Collapse
Affiliation(s)
| | | | - Ewen Mullins
- Crop Science Department, Teagasc, Oak Park, R93XE12 Carlow, Ireland; (M.D.B.); (S.B.)
| |
Collapse
|
18
|
Cassedy A, Mullins E, O'Kennedy R. Sowing seeds for the future: The need for on-site plant diagnostics. Biotechnol Adv 2020; 39:107358. [DOI: 10.1016/j.biotechadv.2019.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
|
19
|
Abstract
Infectious diseases are caused from pathogens, which need a reliable and fast diagnosis. Today, expert personnel and centralized laboratories are needed to afford much time in diagnosing diseases caused from pathogens. Recent progress in electrochemical studies shows that biosensors are very simple, accurate, precise, and cheap at virus detection, for which researchers find great interest in this field. The clinical levels of these pathogens can be easily analyzed with proposed biosensors. Their working principle is based on affinity between antibody and antigen in body fluids. The progress still continues on these biosensors for accurate, rapid, reliable sensors in future.
Collapse
|
20
|
Early Detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. SENSORS 2019; 19:s19030465. [PMID: 30678119 PMCID: PMC6387398 DOI: 10.3390/s19030465] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 01/17/2023]
Abstract
Black Sigatoka is a disease that occurs in banana plantations worldwide. This disease is caused by the hemibiotrophic fungus Pseudocercospora fijiensis, whose infection results in a significant reduction in both product quality and yield. Therefore, detection and identification in the early stages of this pathogen in plants could help minimize losses, as well as prevent the spread of the disease to neighboring cultures. To achieve this, a highly sensitive SPR immunosensor was developed to detect P. fijiensis in real samples of leaf extracts in early stages of the disease. A polyclonal antibody (anti-HF1), produced against HF1 (cell wall protein of P. fijiensis) was covalently immobilized on a gold-coated chip via a mixed self-assembled monolayer (SAM) of alkanethiols using the EDC/NHS method. The analytical parameters of the biosensor were established, obtaining a limit of detection of 11.7 µg mL−1, a sensitivity of 0.0021 units of reflectance per ng mL−1 and a linear response range for the antigen from 39.1 to 122 µg mL−1. No matrix effects were observed during the measurements of real leaf banana extracts by the immunosensor. To the best of our knowledge, this is the first research into the development of an SPR biosensor for the detection of P. fijiensis, which demonstrates its potential as an alternative analytical tool for in-field monitoring of black Sigatoka disease.
Collapse
|
21
|
Impedance Sensing Platform for Detection of the Food Pathogen Listeria monocytogenes. ELECTRONICS 2018. [DOI: 10.3390/electronics7120347] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A great improvement in food safety and quality controls worldwide has been achieved through the development of biosensing platforms. Foodborne pathogens continue to cause serious outbreaks, due to the ingestion of contaminated food. The development of new, sensitive, portable, high-throughput, and automated platforms is a primary objective to allow detection of pathogens and their toxins in foods. Listeria monocytogenes is one common foodborne pathogen. Major outbreaks of listeriosis have been caused by a variety of foods, including milk, soft cheeses, meat, fermented sausages, poultry, seafood and vegetable products. Due to its high sensitivity and easy setup, electrochemical impedance spectroscopy (EIS) has been extensively applied for biosensor fabrication and in particular in the field of microbiology as a mean to detect and quantify foodborne bacteria. Here we describe a miniaturized, portable EIS platform consisting of a microfluidic device with EIS sensors for the detection of L. monocytogenes in milk samples, connected to a portable impedance analyzer for on-field application in clinical and food diagnostics, but also for biosecurity purposes. To achieve this goal microelectrodes were functionalized with antibodies specific for L. monocytogenes. The binding and detection of L. monocytogenes was achieved in the range 2.2 × 103 cfu/mL to 1 × 102 with a Limit of Detection (LoD) of 5.5 cfu/mL.
Collapse
|
22
|
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer's Biomarker. SENSORS (BASEL, SWITZERLAND) 2018; 18:E308. [PMID: 29361679 PMCID: PMC5795331 DOI: 10.3390/s18010308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Clusterin (CLU) has been associated with the clinical progression of Alzheimer's disease (AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE) modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection down to 1 pg/mL and a linear concentration range of 1-100 pg/mL with good sensitivity. Detection of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that of the calibration data. The proposed method facilitates the cost-effective and viable production of label-free point-of-care devices for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kamrul Islam
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Ahmed Suhail
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Genhua Pan
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
23
|
Radhakrishnan R, Poltronieri P. Fluorescence-Free Biosensor Methods in Detection of Food Pathogens with a Special Focus on Listeria monocytogenes. BIOSENSORS 2017; 7:E63. [PMID: 29261134 PMCID: PMC5746786 DOI: 10.3390/bios7040063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Abstract
Food pathogens contaminate food products that allow their growth on the shelf and also under refrigerated conditions. Therefore, it is of utmost importance to lower the limit of detection (LOD) of the method used and to obtain the results within hours to few days. Biosensor methods exploit the available technologies to individuate and provide an approximate quantification of the bacteria present in a sample. The main bottleneck of these methods depends on the aspecific binding to the surfaces and on a change in sensitivity when bacteria are in a complex food matrix with respect to bacteria in a liquid food sample. In this review, we introduce surface plasmon resonance (SPR), new advancements in SPR techniques, and electrochemical impedance spectroscopy (EIS), as fluorescence-free biosensing technologies for detection of L. monocytogenes in foods. The application of the two methods has facilitated L. monocytogenes detection with LOD of 1 log CFU/mL. Further advancements are envisaged through the combination of biosensor methods with immunoseparation of bacteria from larger volumes, application of lab-on-chip technologies, and EIS sensing methods for multiplex pathogen detection. Validation efforts are being conducted to demonstrate the robustness of detection, reproducibility and variability in multi-site installations.
Collapse
|
24
|
Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron 2016; 93:72-86. [PMID: 27818053 DOI: 10.1016/j.bios.2016.09.091] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; On leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
25
|
Malecka K, Michalczuk L, Radecka H, Radecki J. Ion-channel genosensor for the detection of specific DNA sequences derived from Plum Pox Virus in plant extracts. SENSORS 2014; 14:18611-24. [PMID: 25302809 PMCID: PMC4239951 DOI: 10.3390/s141018611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/17/2014] [Accepted: 09/26/2014] [Indexed: 12/12/2022]
Abstract
A DNA biosensor for detection of specific oligonucleotides sequences of Plum Pox Virus (PPV) in plant extracts and buffer is proposed. The working principles of a genosensor are based on the ion-channel mechanism. The NH2-ssDNA probe was deposited onto a glassy carbon electrode surface to form an amide bond between the carboxyl group of oxidized electrode surface and amino group from ssDNA probe. The analytical signals generated as a result of hybridization were registered in Osteryoung square wave voltammetry in the presence of [Fe(CN)6]3-/4- as a redox marker. The 22-mer and 42-mer complementary ssDNA sequences derived from PPV and DNA samples from plants infected with PPV were used as targets. Similar detection limits of 2.4 pM (31.0 pg/mL) and 2.3 pM (29.5 pg/mL) in the concentration range 1-8 pM were observed in the presence of the 22-mer ssDNA and 42-mer complementary ssDNA sequences of PPV, respectively. The genosensor was capable of discriminating between samples consisting of extracts from healthy plants and leaf extracts from infected plants in the concentration range 10-50 pg/mL. The detection limit was 12.8 pg/mL. The genosensor displayed good selectivity and sensitivity. The 20-mer partially complementary DNA sequences with four complementary bases and DNA samples from healthy plants used as negative controls generated low signal.
Collapse
Affiliation(s)
- Kamila Malecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Lech Michalczuk
- Research Institute of Horticulture, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
26
|
Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H. An immunosensor based on antibody binding fragments attached to gold nanoparticles for the detection of peptides derived from avian influenza hemagglutinin H5. SENSORS (BASEL, SWITZERLAND) 2014; 14:15714-28. [PMID: 25157550 PMCID: PMC4208141 DOI: 10.3390/s140915714] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/10/2014] [Accepted: 08/11/2014] [Indexed: 01/07/2023]
Abstract
This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i) modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii) immobilization of antibody-binding fragments (Fab') of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii) covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab' fragments and hemagglutinin (HA) variants have been explored with electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)6](3-/4-) as an electroactive marker. The immunosensor was able to recognize three different His-tagged variants of recombinant hemagglutinin from H5N1 viruses: H1 subunit (17-340 residues) of A/swan/Poland/305-135V08/2006, the long HA (17-530 residues) A/Bar-headed Goose/Qinghai/12/2005 and H1 subunit (1-345 residues) of A/Vietnam/1194/2004. The strongest response has been observed for the long variant with detection limit of 2.2 pg/mL and dynamic range from 4.0 to 20.0 pg/mL.
Collapse
Affiliation(s)
- Urszula Jarocka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Róża Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Włodzimierz Zagórski-Ostoja
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland.
| | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
27
|
Zborowska M, Sulima M, Marszałek I, Wysłouch-Cieszyńska A, Radecka H, Radecki J. Nitrilotriacetic Acid–Copper(II) Monolayer Deposited on a Gold Electrode for the Immobilization of Histidine Tagged V Domain of Receptor for Advanced Glycation End Products–The Basis of Amyloid–Beta Peptide Sensing. ANAL LETT 2014. [DOI: 10.1080/00032719.2013.867501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Jarocka U, Sawicka R, Góra-Sochacka A, Sirko A, Zagórski-Ostoja W, Radecki J, Radecka H. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens Bioelectron 2013; 55:301-6. [PMID: 24412426 DOI: 10.1016/j.bios.2013.12.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/11/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022]
Abstract
This paper describes the development of an immunosensor for detection of anti-hemagglutinin antibodies. Its preparation consists of successive modification steps of glassy carbon electrodes: (i) creation of COOH groups, (ii) covalent immobilization of protein A with EDC/NHS coupling reaction, (iii) covering with anti-His IgG monoclonal antibody, (iv) immobilization of the recombinant His-tagged hemagglutinin (His6-H5 HA), (v) filling free space with BSA. The interactions between two variants of recombinant HA (short and long) from highly pathogenic avian influenza virus H5N1 and the anti-H5 HA monoclonal antibody (Mab 6-9-1) have been explored with electrochemical impedance spectroscopy (EIS). The impedimetric immunosensor displayed a very good detection limit (LOD) of 2.1 pg/mL, the quantification limit (LOQ) of 6.3 pg/mL and a dynamic range from 4 pg/mL to 20 pg/mL. In addition, this analytical device was applied for detection of antibodies against His6-H5 HA in serum of vaccinated hen using serial 10-fold dilutions of serum. The immunosensor proposed was able to detect antibody in hen serum diluted up to 7 × 10(7)-fold. The sensitivity of immunosensor was about four orders of magnitude much better than ELISA.
Collapse
Affiliation(s)
- Urszula Jarocka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Róża Sawicka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Jerzy Radecki
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland
| | - Hanna Radecka
- Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
29
|
Josypčuk B, Fojta M, Yosypchuk O. Thiolate monolayers formed on different amalgam electrodes. Part II: Properties and application. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Mielecki M, Wojtasik J, Zborowska M, Kurzątkowska K, Grzelak K, Dehaen W, Radecki J, Radecka H. Oriented immobilization of His-tagged kinase RIO1 protein on redox active N-(IDA-like)-Cu(II) monolayer deposited on gold electrode—The base of electrochemical biosensor. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.02.085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Jarocka U, Radecka H, Malinowski T, Michalczuk L, Radecki J. Detection of Prunus Necrotic Ringspot Virus in Plant Extracts with Impedimetric Immunosensor based on Glassy Carbon Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201200470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Sochor J, Babula P, Adam V, Krska B, Kizek R. Sharka: the past, the present and the future. Viruses 2012; 4:2853-901. [PMID: 23202508 PMCID: PMC3509676 DOI: 10.3390/v4112853] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 10/25/2012] [Accepted: 10/30/2012] [Indexed: 12/16/2022] Open
Abstract
Members the Potyviridae family belong to a group of plant viruses that are causing devastating plant diseases with a significant impact on agronomy and economics. Plum pox virus (PPV), as a causative agent of sharka disease, is widely discussed. The understanding of the molecular biology of potyviruses including PPV and the function of individual proteins as products of genome expression are quite necessary for the proposal the new antiviral strategies. This review brings to view the members of Potyviridae family with respect to plum pox virus. The genome of potyviruses is discussed with respect to protein products of its expression and their function. Plum pox virus distribution, genome organization, transmission and biochemical changes in infected plants are introduced. In addition, techniques used in PPV detection are accentuated and discussed, especially with respect to new modern techniques of nucleic acids isolation, based on the nanotechnological approach. Finally, perspectives on the future of possibilities for nanotechnology application in PPV determination/identification are outlined.
Collapse
Affiliation(s)
- Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Petr Babula
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, CZ-612 42, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | - Boris Krska
- Department of Fruit Growing, Faculty of Horticulture, Mendel University in Brno, Valticka 337, CZ-691 44 Lednice, Czech Republic;
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; (J.S.); (P.B.); (V.A.); (R.K.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| |
Collapse
|