1
|
Hernández-Rodríguez JF, López MÁ, Rojas D, Escarpa A. Digital manufacturing for accelerating organ-on-a-chip dissemination and electrochemical biosensing integration. LAB ON A CHIP 2022; 22:4805-4821. [PMID: 36342332 DOI: 10.1039/d2lc00499b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organ on-a-chip (OoC) is a promising technology that aims to recapitulate human body pathophysiology in a more precise way to advance in drug development and complex disease understanding. However, the presence of OoC in biological laboratories is still limited and mainly restricted to laboratories with access to cleanroom facilities. Besides, the current analytical methods employed to extract information from the organ models are endpoint and post facto assays which makes it difficult to ensure that during the biological experiment the cell microenvironment, cellular functionality and behaviour are controlled. Hence, the integration of real-time biosensors is highly needed and requested by the OoC end-user community to provide insight into organ function and responses to stimuli. In this context, electrochemical sensors stand out due to their advantageous features like miniaturization capabilities, ease of use, automatization and high sensitivity and selectivity. Electrochemical sensors have been already successfully miniaturized and employed in other fields such as wearables and point-of-care devices. We have identified that the explanation for this issue may be, to a large extent, the accessibility to microfabrication technologies. These fields employ preferably digital manufacturing (DM), which is a more accessible microfabrication approach regardless of funding and facilities. Therefore, we envision that a paradigm shift in microfabrication that adopts DM instead of the dominating soft lithography for the in-lab microfabrication of OoC devices will contribute to the dissemination of the field and integration of the promising real-time sensing.
Collapse
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcalá, Madrid, Spain.
- Chemical Engineering and Chemical Research Institute "Andres M. Del Río", University of Alcalá, Madrid, Spain
| |
Collapse
|
2
|
Schilly KM, Gunawardhana SM, Wijesinghe MB, Lunte SM. Biological applications of microchip electrophoresis with amperometric detection: in vivo monitoring and cell analysis. Anal Bioanal Chem 2020; 412:6101-6119. [PMID: 32347360 PMCID: PMC8130646 DOI: 10.1007/s00216-020-02647-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
Microchip electrophoresis with amperometric detection (ME-EC) is a useful tool for the determination of redox active compounds in complex biological samples. In this review, a brief background on the principles of ME-EC is provided, including substrate types, electrode materials, and electrode configurations. Several different detection approaches are described, including dual-channel systems for dual-electrode detection and electrochemistry coupled with fluorescence and chemiluminescence. The application of ME-EC to the determination of catecholamines, adenosine and its metabolites, and reactive nitrogen and oxygen species in microdialysis samples and cell lysates is also detailed. Lastly, approaches for coupling of ME-EC with microdialysis sampling to create separation-based sensors that can be used for near real-time monitoring of drug metabolism and neurotransmitters in freely roaming animals are provided. Graphical abstract.
Collapse
Affiliation(s)
- Kelci M Schilly
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Shamal M Gunawardhana
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Manjula B Wijesinghe
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Susan M Lunte
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, KS, 66045, USA.
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
- Department of Pharmaceutical Chemistry, University of Kansas, 2010 Becker Drive, Lawrence, KS, 66045, USA.
| |
Collapse
|
3
|
Lobo-Júnior EO, L S Chagas C, Coltro WKT. Determination of inorganic cations in biological fluids using a hybrid capillary electrophoresis device coupled with contactless conductivity detection. J Sep Sci 2018; 41:3310-3317. [PMID: 29956462 DOI: 10.1002/jssc.201800403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/22/2022]
Abstract
We describe the assembly of a hybrid electrophoresis device that contains fused silica capillaries interconnected to a microfabricated interface in a cross format for the determination of inorganic cations in biological samples. The sample transport in the proposed hybrid device was performed under gated injection mode and the separations were monitored with a capacitively coupled contactless conductivity detector. The capillary extremities were inserted into polypropylene tubes to create solution reservoirs. Sensing electrodes were produced using stainless-steel hypodermic needles previously cut with 2.0 mm length. The running composition and injection time were optimized and the best results were found using 50 mmol/L lactic acid, 20 mmol/L histidine and 3 mmol/L 18-crown-6 ether, and an electrokinetic injection time of 15 s. The separation of six inorganic cations was achieved with baseline resolution, and efficiencies were between 9.1 × 103 and 5.4 × 104 plates/m. The proposed hybrid device was explored for determining the concentration levels of inorganic cations in urine, saliva, and tear samples, employing Li+ as an internal standard. The achieved results were in good agreement with the data reported in the literature. The reliability of the proposed method ranged from 93 to 98%, thus suggesting satisfactory accuracy for bioanalytical applications.
Collapse
Affiliation(s)
| | - Cyro L S Chagas
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Wendell K T Coltro
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto Nacional de Ciência e Tecnologia de Bioanalítica, Campinas, SP, Brazil
| |
Collapse
|
4
|
A Low-Cost Palmtop High-Speed Capillary Electrophoresis Bioanalyzer with Laser Induced Fluorescence Detection. Sci Rep 2018; 8:1791. [PMID: 29379053 PMCID: PMC5789010 DOI: 10.1038/s41598-018-20058-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 01/12/2018] [Indexed: 12/28/2022] Open
Abstract
In this work, we developed a miniaturized palmtop high-speed capillary electrophoresis (CE) system integrating whole modules, including picoliter-scale sample injection, short capillary-based fast CE, high-voltage power supply, orthogonal laser induced fluorescence (LIF) detection, battery, system control, on-line data acquisition, processing, storage, and display modules. A strategy of minimalist miniaturization combining minimal system design and low-cost system construction was adopted to achieve the instrument miniaturization with extremely low cost, which is differing from the current microfabrication strategy used in most reported miniaturized CE systems. With such a strategy, the total size of the bioanalyzer was minimized to 90 × 75 × 77 mm (length × width × height) and the instrument cost was reduced to ca. $500, which demonstrated the smallest and lowest-cost CE instrument with LIF detection in so far reported systems. The present bioanalyzer also exhibited comparable analytical performances to previously-reported high-speed CE systems. A limit of detection of 1.02 nM sodium fluorescein was obtained. Fast separations were achieved for multiple types of samples as amino acids, amino acid enantiomers, DNA fragments, and proteins with high efficiency. We applied this instrument in colorectal cancer diagnosis for detecting KRAS mutation status by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method.
Collapse
|
5
|
Ramos-Payán M, Ocaña-Gonzalez JA, Fernández-Torres RM, Llobera A, Bello-López MÁ. Recent trends in capillary electrophoresis for complex samples analysis: A review. Electrophoresis 2017; 39:111-125. [PMID: 28791719 DOI: 10.1002/elps.201700269] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 01/21/2023]
Abstract
CE has been a continuously evolving analytical methodology since its first introduction in the 1980s of the last century. The development of new CE separation procedures, the coupling of these systems to more sensitive and versatile detection systems, and the advances in miniaturization technology have allowed the application of CE to the resolution of new and complex analytical problems, overcoming the traditional disadvantages associated with this method. In the present work, different recent trends in CE and their application to the determination of high complexity samples (as biological fluids, individual cells, etc.) will be reviewed: capillary modification by different types of coatings, microfluidic CE, and online microextraction CE. The main advantages and disadvantages of the different proposed approaches will be discussed with examples of most recent applications.
Collapse
Affiliation(s)
- María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | - Juan A Ocaña-Gonzalez
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, Seville, Spain
| | | | - Andreu Llobera
- Carl Zeiss Vision GmbH, Technology & Innovation, Aalen, Germany
| | | |
Collapse
|
6
|
Liu J, Mahony JB, Selvaganapathy PR. Low-cost and versatile integration of microwire electrodes and optical waveguides into silicone elastomeric devices using modified xurographic methods. MICROSYSTEMS & NANOENGINEERING 2017; 3:17040. [PMID: 31057875 PMCID: PMC6445004 DOI: 10.1038/micronano.2017.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/25/2017] [Indexed: 06/09/2023]
Abstract
Microelectrodes are used in microfluidic devices for a variety of purposes such as heating, applying electric fields, and electrochemical sensing. However, they are still manufactured by expensive deposition techniques such as sputtering or evaporation and patterned using photolithography methods. More recently, alternate methods including nanoparticle sintering and use of liquid metal flowing through microchannels have been used to fabricate microelectrodes. These methods are limited in the material choices or require post processing to be integrated into microchannels. Here we developed a low-cost and versatile method to integrate high-quality metal microwires into polydimethylsiloxane (PDMS) using xurography. The microwire integration process includes cutting slit pattern on PDMS substrate and subsequent writing metal microwires into the slit pattern using a specialized tip. Then the microwire-integrated PDMS was sealed/bonded using uncured PDMS prepolymer. This method enables integration of metal microwires of diameter as small as 15 μm into PDMS devices. Integration of multiple microwires with minimum spacing of 150 μm has also been demonstrated. The versatility of this method is demonstrated by the fabrication of metal microwire suspended in the middle of the microchannel, which is difficult to achieve using conventional electrode fabrication methods. This low-cost method avoids expensive clean room fabrication yet producing high-quality electrodes and can be used in a variety of microfluidic and MEMS applications.
Collapse
Affiliation(s)
- Juncong Liu
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| | - James B Mahony
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Ponnambalam Ravi Selvaganapathy
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S4K1, Canada
| |
Collapse
|
7
|
Caxico de Abreu F, Costa EEM. Electrochemical Detection Using an Engraved Microchip - Capillary Electrophoresis Platform. ELECTROANAL 2016. [DOI: 10.1002/elan.201600033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiane Caxico de Abreu
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
- Department of Chemistry; The University of Texas at San Antonio; UTSA Circle San Antonio TX 78249 USA
| | - Elton Elias M. Costa
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
| |
Collapse
|
8
|
Moreira Gabriel EF, Tomazelli Coltro WK, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 2015; 35:2325-32. [PMID: 25113407 DOI: 10.1002/elps.201470140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper describes the effects of different modes and engraving parameters on the dimensions of microfluidic structures produced in PMMA using laser engraving. The engraving modes included raster and vector, while the explored engraving parameters included power, speed, frequency, resolution, line-width, and number of passes. Under the optimum conditions, the technique was applied to produce channels suitable for CE separations. Taking advantage of the possibility to cut-through the substrates, the laser was also used to define solution reservoirs (buffer, sample, and waste) and a PDMS-based decoupler. The final device was used to perform the analysis of a model mixture of phenolic compounds within 200 s with baseline resolution.
Collapse
|
9
|
Yang YA, Lin CH. Multiple enzyme-doped thread-based microfluidic system for blood urea nitrogen and glucose detection in human whole blood. BIOMICROFLUIDICS 2015; 9:022402. [PMID: 25825613 PMCID: PMC4368581 DOI: 10.1063/1.4915616] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/18/2015] [Indexed: 05/04/2023]
Affiliation(s)
- Yu-An Yang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| | - Che-Hsin Lin
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University , Kaohsiung 804, Taiwan
| |
Collapse
|
10
|
Gabriel EFM, Coltro WKT, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 2014. [DOI: 10.1002/elps.201300511] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ellen Flávia Moreira Gabriel
- Instituto de Química; Universidade Federal de Goiás; Goiânia Goias Brazil
- Department of Chemistry; The University of Texas at San Antonio; San Antonio TX USA
| | | | - Carlos D. Garcia
- Department of Chemistry; The University of Texas at San Antonio; San Antonio TX USA
| |
Collapse
|
11
|
Segato TP, Bhakta SA, Gordon M, Carrilho E, Willis PA, Jiao H, Garcia CD. Microfab-less Microfluidic Capillary Electrophoresis Devices. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2013; 5:1652-1657. [PMID: 23585815 PMCID: PMC3622270 DOI: 10.1039/c3ay26392d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Compared to conventional bench-top instruments, microfluidic devices possess advantageous characteristics including great portability potential, reduced analysis time (minutes), and relatively inexpensive production, putting them on the forefront of modern analytical chemistry. Fabrication of these devices, however, often involves polymeric materials with less-than-ideal surface properties, specific instrumentation, and cumbersome fabrication procedures. In order to overcome such drawbacks, a new hybrid platform is proposed. The platform is centered on the use of 5 interconnecting microfluidic components that serve as the injector or reservoirs. These plastic units are interconnected using standard capillary tubing, enabling in-channel detection by a wide variety of standard techniques, including capacitively-coupled contactless conductivity detection (C4D). Due to the minimum impact on the separation efficiency, the plastic microfluidic components used for the experiments discussed herein were fabricated using an inexpensive engraving tool and standard Plexiglas. The presented approach (named 52-platform) offers a previously unseen versatility: enabling the assembly of the platform within minutes using capillary tubing that differs in length, diameter, or material. The advantages of the proposed design are demonstrated by performing the analysis of inorganic cations by capillary electrophoresis on soil samples from the Atacama Desert.
Collapse
Affiliation(s)
- Thiago P. Segato
- Instituto de Quimica de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Samir A. Bhakta
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Matthew Gordon
- Department of Chemistry, UT San Antonio, San Antonio, TX, USA
| | - Emanuel Carrilho
- Instituto de Quimica de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Hong Jiao
- HJ Science & Technology, Santa Clara, CA, USA
| | | |
Collapse
|
12
|
Godoy-Caballero MDP, Acedo-Valenzuela MI, Galeano-Díaz T, Costa-García A, Fernández-Abedul MT. Microchip electrophoresis with amperometric detection for a novel determination of phenolic compounds in olive oil. Analyst 2012; 137:5153-60. [DOI: 10.1039/c2an35844a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Kuo JS, Chiu DT. Disposable microfluidic substrates: transitioning from the research laboratory into the clinic. LAB ON A CHIP 2011; 11:2656-65. [PMID: 21727966 DOI: 10.1039/c1lc20125e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
As more microfluidic applications emerge for clinical diagnostics, the choice of substrate and production method must be considered for eventual regulatory approval. In this review, we survey recent developments in disposable microfluidic substrates and their fabrication methods. We note regulatory approval for disposable microfluidic substrates will be more forthcoming if the substrates are developed with the United States Pharmacopeia's biocompatibility compliance guidelines in mind. We also review the recent trend in microfluidic devices constructed from a hybrid of substrates that takes advantage of each material's attributes.
Collapse
Affiliation(s)
- Jason S Kuo
- Department of Chemistry, University of Washington, Seattle, WA 98195-1700, USA
| | | |
Collapse
|
14
|
Chumbimuni-Torres KY, Coronado RE, Mfuh AM, Castro-Guerrero C, Silva MF, Negrete GR, Bizios R, Garcia CD. Adsorption of Proteins to Thin-Films of PDMS and Its Effect on the Adhesion of Human Endothelial Cells. RSC Adv 2011; 1:706-714. [PMID: 25068038 DOI: 10.1039/c1ra00198a] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper describes a simple and inexpensive procedure to produce thin-films of poly(dimethylsiloxane). Such films were characterized by a variety of techniques (ellipsometry, nuclear magnetic resonance, atomic force microscopy, and goniometry) and used to investigate the adsorption kinetics of three model proteins (fibrinogen, collagen type-I, and bovine serum albumin) under different conditions. The information collected from the protein adsorption studies was then used to investigate the adhesion of human dermal microvascular endothelial cells. The results of these studies suggest that these films can be used to model the surface properties of microdevices fabricated with commercial PDMS. Moreover, the paper provides guidelines to efficiently attach cells in BioMEMS devices.
Collapse
Affiliation(s)
| | - Ramon E Coronado
- Department of Biomedical Engineering, The University of Texas at San Antonio
| | - Adelphe M Mfuh
- Department of Chemistry, The University of Texas at San Antonio
| | | | - Maria Fernanda Silva
- School of Agronomic Sciences - IBAM-CONICET, National University of Cuyo, Mendoza, Argentina
| | | | - Rena Bizios
- Department of Biomedical Engineering, The University of Texas at San Antonio
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio
| |
Collapse
|
15
|
Chantiwas R, Hupert ML, Pullagurla SR, Balamurugan S, Tamarit-López J, Park S, Datta P, Goettert J, Cho YK, Soper SA. Simple replication methods for producing nanoslits in thermoplastics and the transport dynamics of double-stranded DNA through these slits. LAB ON A CHIP 2010; 10:3255-64. [PMID: 20938506 DOI: 10.1039/c0lc00096e] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Mixed-scale nano- and microfluidic networks were fabricated in thermoplastics using simple and robust methods that did not require the use of sophisticated equipment to produce the nanostructures. High-precision micromilling (HPMM) and photolithography were used to generate mixed-scale molding tools that were subsequently used for producing fluidic networks into thermoplastics such as poly(methyl methacrylate), PMMA, cyclic olefin copolymer, COC, and polycarbonate, PC. Nanoslit arrays were imprinted into the polymer using a nanoimprinting tool, which was composed of an optical mask with patterns that were 2-7 µm in width and a depth defined by the Cr layer (100 nm), which was deposited onto glass. The device also contained a microchannel network that was hot embossed into the polymer substrate using a metal molding tool prepared via HPMM. The mixed-scale device could also be used as a master to produce a polymer stamp, which was made from polydimethylsiloxane, PDMS, and used to generate the mixed-scale fluidic network in a single step. Thermal fusion bonding of the cover plate to the substrate at a temperature below their respective T(g) was accomplished by oxygen plasma treatment of both the substrate and cover plate, which significantly reduced thermally induced structural deformation during assembly: ∼6% for PMMA and ∼9% for COC nanoslits. The electrokinetic transport properties of double-stranded DNA (dsDNA) through the polymeric nanoslits (PMMA and COC) were carried out. In these polymer devices, the dsDNA demonstrated a field-dependent electrophoretic mobility with intermittent transport dynamics. DNA mobilities were found to be 8.2 ± 0.7 × 10(-4) cm(2) V(-1) s(-1) and 7.6 ± 0.6 × 10(-4) cm(2) V(-1) s(-1) for PMMA and COC, respectively, at a field strength of 25 V cm(-1). The extension factors for λ-DNA were 0.46 in PMMA and 0.53 in COC for the nanoslits (2-6% standard deviation).
Collapse
Affiliation(s)
- Rattikan Chantiwas
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fernández-la-Villa A, Pozo-Ayuso DF, Castaño-Álvarez M. New analytical portable instrument for microchip electrophoresis with electrochemical detection. Electrophoresis 2010; 31:2641-9. [DOI: 10.1002/elps.201000100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Illa X, Ordeig O, Snakenborg D, Romano-Rodríguez A, Compton RG, Kutter JP. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. LAB ON A CHIP 2010; 10:1254-1261. [PMID: 20445877 DOI: 10.1039/b926737a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This paper presents an entirely polymeric microfluidic system, made of cyclo olefin polymer (COP), with integrated gold microband electrodes for electrochemical applications in organic media. In the present work, we take advantage of the COP's high chemical stability to polar organic solvents in two different ways: (i) to fabricate gold microelectrodes using COP as a substrate by standard lithographic and lift-off techniques; and (ii) to perform electrochemical experiments in organic media. In particular, fourteen parallel gold microelectrodes with a width of 14 microm and separated from their closest neighbour by 16 microm were fabricated by lithographic and lift-off techniques on a 188 microm thick COP sheet. A closed channel configuration was obtained by pressure-assisted thermal bonding between the COP sheet containing the microelectrodes and a microstructured COP sheet, where a 3 cm long, 50 microm wide and 24 microm deep channel was fabricated via hot embossing. Cyclic voltammetric measurements were carried out in aqueous and organic media, using a solution consisting of 5 mM ferrocyanide/ferricyanide in 0.5 M KNO(3) and 5 mM ferrocene in 0.1 M TBAP/acetonitrile, respectively. Experimental currents obtained for different flow rates ranging from 1 to 10 microL min(-1) were compared to the theoretical steady state currents calculated by the Levich equation for a band electrode (R. G. Compton, A. C. Fisher, R. G. Wellington, P. J. Dobson and P. A. Leigh, J. Phys. Chem., 1993, 97, 10410-10415). In both cases, the difference between the experimental and the predicted data is less than 5%, thus validating the behaviour of the fabricated device. This result opens the possibility to use a microfluidic system made entirely from COP with integrated microband electrodes in organic electroanalysis and in electrosynthesis.
Collapse
Affiliation(s)
- Xavi Illa
- Universitat de Barcelona, MIND-IN(2)UB Department of Electronics, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Castaño‐Álvarez M, Fernández‐la‐Villa A, Fernández‐Abedul MT, Costa‐García A. MCE-electrochemical detection for following interactions of ssDNA and dsDNA with methylene blue. Electrophoresis 2009; 30:1943-8. [PMID: 19517445 PMCID: PMC7163665 DOI: 10.1002/elps.200800711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/23/2008] [Accepted: 01/12/2009] [Indexed: 01/03/2023]
Abstract
The interaction between the organic dye, methylene blue and DNA has been studied by MCE with electrochemical detection. Interaction produces two different signals, one corresponding to free methylene blue and other, for the complex methylene blue-DNA. The hybridization between a ssDNA and a complementary sequence, specific to the severe acute respiratory syndrome virus, has been performed and studied in a thermoplastic olefin polymer of amorphous structure CE-microchip with an end-channel gold wire detector. Moreover, studies with a longer dsDNA, an expression vector involved in the transitory or stable expression in mammals cells, pFLAG-CMV4, has also been performed.
Collapse
Affiliation(s)
| | | | | | - Agustín Costa‐García
- Departamento de Química Física y Analítica, Universidad de Oviedo, Asturias, Spain
| |
Collapse
|
19
|
Coltro WKT, Lunte SM, Carrilho E. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. Electrophoresis 2008; 29:4928-37. [PMID: 19025869 PMCID: PMC2672913 DOI: 10.1002/elps.200700897] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 microm/12 microm). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.
Collapse
Affiliation(s)
- Wendell Karlos Tomazelli Coltro
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
20
|
Castaño-Alvarez M, Fernández-Abedul MT, Costa-García A. Electroactive intercalators for DNA analysis on microchip electrophoresis. Electrophoresis 2008; 28:4679-89. [PMID: 18004710 PMCID: PMC7163684 DOI: 10.1002/elps.200700160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Miniaturized analytical systems, especially microchip CE (MCE), are becoming a promising tool for analytical purposes including DNA analysis. These microdevices require a sensitive and miniaturizable detection system such as electrochemical detection (ED). Several electroactive DNA intercalators, including the organic dye methylene blue (MB), anthraquinone derivatives, and the metal complexes Fe(phen)3 2+ and Ru(phen)3 2+, have been tested for using in combination with thermoplastic olefin polymer of amorphous structure (Topas) CE-microchips and ED. Two end-channel approaches for integration of gold wire electrodes in CE-ED microchip were used. A 250 microm diameter gold wire was manually aligned at the outlet of the separation channel. A new approach based on a guide channel for integration of 100 and 50 microm diameter gold wire has been also developed in order to reduce the background current and the baseline noise level. Modification of gold wire electrodes has been also tested to improve the detector performance. Application of MCE-ED for ssDNA detection has been studied and demonstrated for the first time using the electroactive dye MB. Electrostatic interaction between cationic MB and anionic ssDNA was used for monitoring the DNA on microchips. Thus, reproducible calibration curves for ssDNA were obtained. This study advances the feasibility of direct DNA analysis using CE-microchip with ED.
Collapse
|
21
|
Pozo-Ayuso DF, Castaño-Álvarez M, Fernández-la-Villa A, García-Granda M, Fernández-Abedul MT, Costa-García A, Rodríguez-García J. Fabrication and evaluation of single- and dual-channel (Π-design) microchip electrophoresis with electrochemical detection. J Chromatogr A 2008; 1180:193-202. [DOI: 10.1016/j.chroma.2007.12.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 12/11/2007] [Indexed: 01/17/2023]
|
22
|
Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 2007; 390:89-111. [DOI: 10.1007/s00216-007-1692-2] [Citation(s) in RCA: 467] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/05/2007] [Accepted: 10/09/2007] [Indexed: 01/11/2023]
|
23
|
Piccin E, Coltro WKT, Fracassi da Silva JA, Neto SC, Mazo LH, Carrilho E. Polyurethane from biosource as a new material for fabrication of microfluidic devices by rapid prototyping. J Chromatogr A 2007; 1173:151-8. [PMID: 17964580 DOI: 10.1016/j.chroma.2007.09.081] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/15/2022]
Abstract
This paper presents the use of elastomeric polyurethane (PU), derived from castor oil (CO) biosource, as a new material for fabrication of microfluidic devices by rapid prototyping. Including the irreversible sealing step, PU microchips were fabricated in less than 1h by casting PU resin directly on the positive high-relief molds fabricated by standard photolithography and nickel electrodeposition. Physical characterization of microchannels was performed by scanning electron microscopy (SEM) and profilometry. Polymer surface was characterized using contact angle measurements and the results showed that the hydrophilicity of the PU surface increases after oxygen plasma treatment. The polymer surface demonstrated the capability of generating an electroosmotic flow (EOF) of 2.6 x 10(-4)cm(2)V(-1)s(-1) at pH 7 in the cathode direction, which was characterized by current monitoring method at different pH values. The compatibility of PU with a wide range of solvents and electrolytes was tested by determining its degree of swelling over a 24h period of contact. The performance of microfluidic systems fabricated using this new material was evaluated by fabricating miniaturized capillary electrophoresis systems. Epinephrine and l-DOPA, as model analytes, were separated in aqueous solutions and detected with end-channel amperometric detection.
Collapse
Affiliation(s)
- Evandro Piccin
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Chen R, Cheng H, Wu W, Ai X, Huang W, Wang Z, Cheng J. Analysis of inorganic and small organic ions by CE with amperometric detection. Electrophoresis 2007; 28:3347-61. [PMID: 17847134 DOI: 10.1002/elps.200700249] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Capillary electrophoresis has become a widely useful analytical technology. Amperometric detection is extensively employed in capillary electrophoresis for its many inherent virtues, such as rapid response, remarkable sensitivity, and low cost of both detectors and instrumentations. Analysis of inorganic and small organic ions by capillary electrophoresis is an important research field. This review focuses on the recent developments of capillary electrophoresis coupled with amperometric detection for analysis of inorganic and small organic ions. Advancements in electrophoresis separation modes, amperometric detection modes, working electrodes, and applications of inorganic ions, amino acids, phenols, and amines are discussed.
Collapse
Affiliation(s)
- Rongsheng Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
25
|
Liu J, Sun X, Lee ML. Adsorption-Resistant Acrylic Copolymer for Prototyping of Microfluidic Devices for Proteins and Peptides. Anal Chem 2007; 79:1926-31. [PMID: 17249641 DOI: 10.1021/ac0617621] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A poly(ethylene glycol)-functionalized acrylic copolymer was developed for fabrication of microfluidic devices that are resistant to protein and peptide adsorption. Planar microcapillary electrophoresis (microCE) devices were fabricated from this copolymer with the typical cross pattern to facilitate sample introduction. In contrast to most methods used to fabricate polymeric microchips, the photopolymerization-based method used with the copolymer reported in this work was of the soft lithography type, and both patterning and bonding could be completed within 10 min. In a finished microdevice, the cover plate and patterned substrate were bonded together through strong covalent bonds. Additionally, because of the resistance of the copolymer to adsorption, fabricated microfluidic devices could be used without surface modification to separate proteins and peptides. Separations of fluorescein isothiocyanate-labeled protein and peptide samples were accomplished using these new polymeric microCE microchips. Separation efficiencies as high as 4.7 x 10(4) plates were obtained in less than 40 s with a 3.5-cm separation channel, yielding peptide and protein peaks that were symmetrical.
Collapse
Affiliation(s)
- Jikun Liu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-5700, USA
| | | | | |
Collapse
|
26
|
Chapter 34 Miniaturised devices: electrochemical capillary electrophoresis microchips for clinical application. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0166-526x(06)49034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
27
|
Ding Y, Mora MF, Merrill GN, Garcia CD. The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection. Analyst 2007; 132:997-1004. [PMID: 17893803 DOI: 10.1039/b704364c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of different surfactants (sodium 2-ethylhexyl sulfate, sodium decyl sulfate, sodium dodecyl sulfate and sodium tetradecyl sulfate) on the analysis of phenolic compounds by microchip-CE with pulsed amperometric detection were investigated. Using sodium decyl sulfate as a model surfactant, the effects of concentration and pH were examined. Under the optimized conditions, the analysis of six phenolic compounds was performed and compared with control runs performed without surfactant. When these surfactants were present in the run buffer, decreases in the migration time and increases in the run-to-run reproducibility were observed. Systematic improvements in the electrochemical response for the phenolic compounds were also obtained. According to the results presented, surfactants enhance the analyte-electrode interaction and facilitate the electron transfer process. These results should allow a more rational selection of the surfactants based on their electrophoretic and electrochemical effects.
Collapse
Affiliation(s)
- Yongsheng Ding
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
28
|
Liu J, Lee ML. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 2006; 27:3533-46. [PMID: 16927422 DOI: 10.1002/elps.200600082] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Because of their surface heterogeneity, proteins readily adsorb on polymeric substrates via various interactions, which adversely affects the performance of polymeric microfluidic devices in electrophoresis-based protein/peptide analysis. Therefore, it is necessary to use surface modification techniques such as dynamic coating or more complicated permanent surface modification, which has broader application and better performance, to render the polymeric microchannels protein-resistant. This manuscript is a review of the surface chemistry of microfluidic devices used for electrophoretic separations of proteins and peptides. The structural complexity of proteins as it relates to adsorption is described, followed by a review of the mechanisms and structural characteristics of protein-resistant surfaces. Permanent surface modification techniques used in grafting protein-resistant materials onto the surfaces of electrophoresis microchannels fabricated from polymer substrates are summarized and successful examples are presented.
Collapse
Affiliation(s)
- Jikun Liu
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | | |
Collapse
|
29
|
Weng X, Bi H, Liu B, Kong J. On-chip chiral separation based on bovine serum albumin-conjugated carbon nanotubes as stationary phase in a microchannel. Electrophoresis 2006; 27:3129-35. [PMID: 16807934 DOI: 10.1002/elps.200500840] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A novel method of chiral separation based on protein-stationary phase immobilized in a poly(methyl methacrylate) microfluidic chip was developed. BSA conjugated with the shortened carboxylic single-walled carbon nanotubes (SWNTs) was employed as the chiral selector. Successful separation of tryptophan enantiomers was achieved in less than 70 s with a resolution factor of 1.35 utilizing a separation length of 32 mm. This is the first example of chiral separation based on SWNTs-BSA conjugates as stationary phase immobilized in microchip channel. The stability of the stationary phase in the channel was examined by microchip electrophoresis with laser-induced fluorescence detection. Factors that influenced the chiral separation resolution were examined. Under the optimized conditions, the proposed modified chip revealed adequate repeatability concerning run-to-run. These results show that the use of SWNTs-BSA conjugates within microfluidic channels hold great promise for a variety of analytical schemes.
Collapse
Affiliation(s)
- Xuexiang Weng
- Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
| | | | | | | |
Collapse
|
30
|
Castaño-Alvarez M, Fernández-Abedul MT, Costa-García A. Amperometric detector designs for capillary electrophoresis microchips. J Chromatogr A 2006; 1109:291-9. [PMID: 16472530 DOI: 10.1016/j.chroma.2006.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Revised: 12/21/2005] [Accepted: 01/10/2006] [Indexed: 11/22/2022]
Abstract
Electrochemical (EC) detection is a sensitive and miniaturisable detection mode for capillary electrophoresis (CE) microchips. Detection cell design is very important in order to ensure electrical isolation from the high separation voltage. Amperometric detectors with different designs have been developed for coupling EC detection to CE-microchips. Different working electrode alignment: in-channel or end-channel has been tested in conjunction with several materials: gold, platinum or carbon. The end-channel detector was based on a platinum or gold wire manually aligned at the exit of the separation channel. Thick- (screen-printed carbon electrode) and thin-film (sputtered gold film) electrodes have also been employed with this configuration, but with a different design that allowed the rapid replacement of the electrode. The in-channel detector was based on a gold film within the separation channel. A gold-based dual electrode detector, which combined for the first time in- and end-channel detection, has been also tested. These amperometric detectors have been evaluated in combination to poly(methylmethacrylate) (PMMA) and Topas (thermoplastic olefin polymer of amorphous structure) CE-microchips. Topas is a new and promising cyclic olefin copolymer with high chemical resistance. Relevant parameters of the polymer microchip separation such as precision, efficiency or resolution and amperometric detection were studied with the different detector designs using p-aminophenol and L-ascorbic acid as model analytes in Tris-based buffer pH 9.0.
Collapse
|