1
|
Clarke S, Bosman G, du Toit W, Aleixandre‐Tudo JL. White wine phenolics: current methods of analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7-25. [PMID: 35821577 PMCID: PMC9796155 DOI: 10.1002/jsfa.12120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
White wine phenolic analyses are less common in the literature than analyses of red wine phenolics. Analytical techniques for white wine phenolic analyses using spectrophotometric, chromatographic, spectroscopic, and electrochemical methods are reported. The interest of research in this area combined with the advances in technology aimed at the winemaking industry are promoting the establishment of novel approaches for identifying, quantifying, and classifying phenolic compounds in white wine. This review article provides an overview of the current research into white wine phenolics through a critical discussion of the analytical methods employed. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Sarah Clarke
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
| | - Gurthwin Bosman
- Department of PhysicsStellenbosch UniversityStellenboschSouth Africa
| | - Wessel du Toit
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
| | - Jose Luis Aleixandre‐Tudo
- South African Grape and Wine Research Institute (SAGWRI), Department of Viticulture and OenologyStellenbosch UniversityStellenboschSouth Africa
- Instituto de Ingeniería de Alimentos para el Desarrollo (IIAD), Departamento de Tecnología de AlimentosUniversidad Politécnica de ValenciaValenciaSpain
| |
Collapse
|
2
|
Michalke B, Willkommen D, Venkataramani V. Iron Redox Speciation Analysis Using Capillary Electrophoresis Coupled to Inductively Coupled Plasma Mass Spectrometry (CE-ICP-MS). Front Chem 2019; 7:136. [PMID: 30931301 PMCID: PMC6426946 DOI: 10.3389/fchem.2019.00136] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Neuronal iron dyshomeostasis occurs in multiple neurodegenerative diseases. Changes in the Fe(II)/Fe(III) ratio toward Fe(II) is closely related to oxidative stress, lipid peroxidation, and represents a hallmark feature of ferroptosis. In particular for body fluids, like cerebrospinal fluid (CSF), reliable quantitative methods for Fe(II)/(III) redox-speciation analysis are needed to better assess the risk of Fe(II)-mediated damage in brain tissue. Currently in the field of metallomics, the most direct method to analyze both iron species is via LC-ICP-MS. However, this Fe(II)/(III) speciation analysis method suffers from several limitations. Here, we describe a unique method using capillary electrophoresis (CE)-ICP-MS for quantitative Fe(II)/(III) speciation analysis that can be applied for cell lysates and biofluid samples. Compared to LC, CE offers various advantages: (1) Capillaries have no stationary phase and do not depend on batch identity of stationary phases; (2) Replacement of aged or blocked capillaries is quick with no performance change; (3) Purge steps are effective and short; (4) Short sample analysis time. The final method employed 20 mM HCl as background electrolyte and a separation voltage of +25 kV. In contrary to the LC-method, no complexation of Fe-species with pyridine dicarboxylic acid (PDCA) was applied, since it hampered separation. Peak shapes and concentration detection limits were improved by combined conductivity-pH-stacking achieving 3 μg/L detection limit (3σ) at 13 nL injection volume. Calibrations from LOD—150 μg/L were linear [r2[Fe(II)] = 0.9999, r2[Fe(III)] = 0.9951]. At higher concentrations Fe(II) curve flattened significantly. Measurement precision was 3.5% [Fe(II) at 62 μg/L] or 2.2% [Fe(III) at 112 μg/L] and migration time precision was 2% for Fe(III) and 3% for Fe(II), each determined in 1:2 diluted lysates of human neuroblastoma cells. Concentration determination accuracy was checked by parallel measurements of SH-SY5Y cell lysates with validated LC-ICP-MS method and by recovery experiments after standard addition. Accuracy (n = 6) was 97.6 ± 3.7% Fe(III) and 105 ± 6.6%Fe(II). Recovery [(a) +33 μg/L or (b) +500 μg/L, addition per species] was (a): 97.2 ± 13% [Fe(II)], 108 ± 15% [Fe(III)], 102.5 ± 7% (sum of species), and (b) 99±4% [Fe(II)], 101 ± 6% [Fe(III)], 100 ± 5% (sum of species). Migration time shifts in CSF samples were due to high salinity, but both Fe-species were identified by standard addition.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Desiree Willkommen
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Department of Hematology and Medical Oncology, University Medical Center Göttingen (UMG), Göttingen, Germany.,Institute of Pathology, University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
3
|
Breadmore MC, Grochocki W, Kalsoom U, Alves MN, Phung SC, Rokh MT, Cabot JM, Ghiasvand A, Li F, Shallan AI, Keyon ASA, Alhusban AA, See HH, Wuethrich A, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016-2018). Electrophoresis 2018; 40:17-39. [PMID: 30362581 DOI: 10.1002/elps.201800384] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
One of the most cited limitations of capillary and microchip electrophoresis is the poor sensitivity. This review continues to update this series of biannual reviews, first published in Electrophoresis in 2007, on developments in the field of online/in-line concentration methods in capillaries and microchips, covering the period July 2016-June 2018. It includes developments in the field of stacking, covering all methods from field-amplified sample stacking and large-volume sample stacking, through to isotachophoresis, dynamic pH junction, and sweeping. Attention is also given to online or in-line extraction methods that have been used for electrophoresis.
Collapse
Affiliation(s)
- Michael C Breadmore
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Wojciech Grochocki
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Umme Kalsoom
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Mónica N Alves
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sui Ching Phung
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Joan M Cabot
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,ARC Centre of Excellence for Electromaterials Science (ACES), School of Natural Sciences, College of Science and Technology, University of Tasmania, Hobart, Australia
| | - Alireza Ghiasvand
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia.,Department of Chemistry, Lorestan University, Khoramabad, Iran
| | - Feng Li
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Aliaa I Shallan
- Future Industries Institute (FII), University of South Australia, Mawson Lakes, Australia.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Aemi S Abdul Keyon
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Hong Heng See
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia.,Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, Australia
| | - Mohamed Dawod
- Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Joselito P Quirino
- Australian Centre for Research on Separation Science, Chemistry, School of Natural Science, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
4
|
Tůma P, Bursová M, Sommerová B, Horsley R, Čabala R, Hložek T. Novel electrophoretic acetonitrile-based stacking for sensitive monitoring of the antiepileptic drug perampanel in human serum. J Pharm Biomed Anal 2018; 160:368-373. [DOI: 10.1016/j.jpba.2018.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022]
|
5
|
Šlampová A, Malá Z, Gebauer P. Recent progress of sample stacking in capillary electrophoresis (2016-2018). Electrophoresis 2018; 40:40-54. [PMID: 30073675 DOI: 10.1002/elps.201800261] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 07/31/2018] [Indexed: 01/03/2023]
Abstract
Electrophoretic sample stacking comprises a group of capillary electrophoretic techniques where trace analytes from the sample are concentrated into a short zone (stack). This paper is a continuation of our previous reviews on the topic and brings a survey of more than 120 papers published approximately since the second quarter of 2016 till the first quarter of 2018. It is organized according to the particular stacking principles and includes chapters on concentration adjustment (Kohlrausch) stacking, on stacking techniques based on pH changes, on stacking in electrokinetic chromatography and on other stacking techniques. Where available, explicit information is given about the procedure, electrolyte(s) used, detector employed and sensitivity reached. Not reviewed are papers on transient isotachophoresis which are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
6
|
Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, Tehranirokh M, Shallan AI, Abdul Keyon AS, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 2016; 38:33-59. [DOI: 10.1002/elps.201600331] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Michael C. Breadmore
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Alain Wuethrich
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Feng Li
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Sui Ching Phung
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Umme Kalsoom
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Joan M. Cabot
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Masoomeh Tehranirokh
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University Cairo Egypt
| | - Aemi S. Abdul Keyon
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Hong Heng See
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry University of Michigan Ann Arbor MI USA
| | - Joselito P. Quirino
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
7
|
Sydes D, Kler PA, Hermans M, Huhn C. Zero-dead-volume interfaces for two-dimensional electrophoretic separations. Electrophoresis 2016; 37:3020-3024. [DOI: 10.1002/elps.201600262] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/08/2016] [Accepted: 08/14/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel Sydes
- Institute for Physical and Theoretical Chemistry; Eberhard Karls Universität Tübingen; Tübingen Germany
| | - Pablo A. Kler
- CIMEC; Centro de Investigación de Métodos Computacionales (UNL-CONICET); Santa Fe Argentina
| | | | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry; Eberhard Karls Universität Tübingen; Tübingen Germany
| |
Collapse
|
8
|
Šlampová A, Malá Z, Gebauer P, Boček P. Recent progress of sample stacking in capillary electrophoresis (2014-2016). Electrophoresis 2016; 38:20-32. [PMID: 27456212 DOI: 10.1002/elps.201600292] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 12/27/2022]
Abstract
The term "sample stacking" comprises a relatively broad spectrum of techniques that already form an almost inherent part of the methodology of CZE. Their principles are different but the effect is the same: concentration of a diluted analyte into a narrow zone and considerable increase of the method sensitivity. This review brings a survey of papers on electrophoretic sample stacking published approximately since the second quarter of 2014 till the first quarter of 2016. It is organized according to the principles of the stacking methods and includes chapters aimed at the concentration adjustment principle (Kohlrausch stacking), techniques based on pH changes, micellar methods, and other stacking techniques. Not reviewed are papers on transient ITP that are covered by another review in this issue.
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Zdena Malá
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Abdul Karim N’I, Wan Ibrahim WA, Sanagi MM, Abdul Keyon AS. Online preconcentration by electrokinetic supercharging for separation of endocrine disrupting chemical and phenolic pollutants in water samples. Electrophoresis 2016; 37:2649-2656. [DOI: 10.1002/elps.201600207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/22/2016] [Accepted: 07/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nurul ’I. Abdul Karim
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Wan A. Wan Ibrahim
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Mohd M. Sanagi
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| | - Aemi S. Abdul Keyon
- Department of Chemistry, Faculty of Science; Universiti Teknologi Malaysia; Johor Bahru Malaysia
| |
Collapse
|
10
|
El-Hady DA, Albishri HM, Wätzig H. Ionic liquids in enhancing the sensitivity of capillary electrophoresis: Off-line and on-line sample preconcentration techniques. Electrophoresis 2016; 37:1609-23. [DOI: 10.1002/elps.201600069] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Deia Abd El-Hady
- Department of Chemistry, Faculty of Science; University of Jeddah; Jeddah Saudi Arabia
- Department of Chemistry, Faculty of Science; Assiut University; Assiut Egypt
| | - Hassan M. Albishri
- Department of Chemistry, Faculty of Science; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry; TU Braunschweig; Braunschweig Germany
| |
Collapse
|
11
|
The use of polarity switching for the sensitive determination of nitrate in human cerebrospinal fluid by capillary electrophoresis with contactless conductivity detection. J Chromatogr A 2016; 1447:148-54. [DOI: 10.1016/j.chroma.2016.04.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023]
|
12
|
Zhang Z, Sun L, Zhu G, Yan X, Dovichi NJ. Integrated strong cation-exchange hybrid monolith coupled with capillary zone electrophoresis and simultaneous dynamic pH junction for large-volume proteomic analysis by mass spectrometry. Talanta 2015; 138:117-122. [PMID: 25863379 PMCID: PMC4394190 DOI: 10.1016/j.talanta.2015.01.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
A sulfonate-silica hybrid strong cation-exchange (SCX) monolith was synthesized at the proximal end of a capillary zone electrophoresis column and used for on-line solid-phase extraction (SPE) sample preconcentration. Sample was prepared in an acidic buffer and deposited onto the SCX-SPE monolith and eluted using a basic buffer. Electrophoresis was performed in an acidic buffer. This combination of buffers results in formation of a dynamic pH junction, which allows use of relatively large elution buffer volume while maintaining peak efficiency and resolution. All experiments were performed with a 50 µm ID capillary, a 1cm long SCX-SPE monolith, a 60cm long separation capillary, and a electrokinetically pumped nanospray interface. The volume of the capillary is 1.1 µL. By loading 21 µL of a 1×10(-7) M angiotensin II solution, an enrichment factor of 3000 compared to standard electrokinetic injection was achieved on this platform while retaining efficient electrophoretic performance (N=44,000 plates). The loading capacity of the sulfonate SCX hybrid monolith was determined to be ~15 pmol by frontal analysis with 10(-5) M angiotensin II. The system was also applied to the analysis of a 10(-4) mg/mL bovine serum albumin tryptic digest; the protein coverage was 12% and 11 peptides were identified. Finally, by loading 5.5 µL of a 10(-3) mg/mL E. coli digest, 109 proteins and 271 peptides were identified in a 20 min separation; the median separation efficiency generated by these peptides was 25,000 theoretical plates.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 USA.
| |
Collapse
|
13
|
Zhang Z, Yan X, Sun L, Zhu G, Dovichi NJ. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes. Anal Chem 2015; 87:4572-7. [PMID: 25822566 DOI: 10.1021/acs.analchem.5b00789] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A detachable sulfonate-silica hybrid strong cation-exchange monolith was synthesized in a fused silica capillary, and used for solid phase extraction with online pH gradient elution during capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) proteomic analysis. Tryptic digests were prepared in 50 mM formic acid and loaded onto the strong cation-exchange monolith. Fractions were eluted using a series of buffers with lower concentration but higher pH values than the 50 mM formic acid background electrolyte. This combination of elution and background electrolytes results in both sample stacking and formation of a dynamic pH junction and allows use of relatively large elution buffer volumes while maintaining reasonable peak efficiency and resolution. A series of five pH bumps were applied to elute E. coli tryptic peptides from the monolith, followed by analysis using CZE coupled to an LTQ-Orbitrap Velos mass spectrometer; 799 protein groups and 3381 peptides were identified from 50 ng of the digest in a 2.5 h analysis, which approaches the identification rate for this organism that was obtained with an Orbitrap Fusion. We attribute the improved numbers of peptide and protein identifications to the efficient fractionation by the online pH gradient elution, which decreased the complexity of the sample in each elution step and improved the signal intensity of low abundance peptides. We also performed a comparative analysis using a nanoACQUITY UltraPerformance LCH system. Similar numbers of protein and peptide identifications were produced by the two methods. Protein identifications showed significant overlap between the two methods, whereas peptide identifications were complementary.
Collapse
Affiliation(s)
- Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Xiaojing Yan
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Guijie Zhu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
15
|
Liu JX, Aerts JT, Rubakhin SS, Zhang XX, Sweedler JV. Analysis of endogenous nucleotides by single cell capillary electrophoresis-mass spectrometry. Analyst 2014; 139:5835-42. [PMID: 25212237 PMCID: PMC4329915 DOI: 10.1039/c4an01133c] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical technologies that enable investigations at the single cell level facilitate a range of studies; here a lab-fabricated capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) platform was used to analyze anionic metabolites from individual Aplysia californica neurons. The system employs a customized coaxial sheath-flow nanospray interface connected to a separation capillary, with the sheath liquid and separation buffer optimized to ensure a stable spray. The method provided good repeatability of separation and reliable detection sensitivity for 16 mono-, di- and triphosphate nucleosides. For a range of anionic analytes, including cyclic adenosine monophosphate (cAMP), adenosine diphosphate (ADP) and adenosine triphosphate (ATP), the detection limits were in the low nanomolar range (<22 nM). A large Aplysia R2 neuron was used to demonstrate the ability of CE-ESI-MS to quantitatively characterize anionic metabolites within individual cells, with 15 nucleotides and derivatives detected. Following the method validation process, we probed smaller, 60 μm diameter Aplysia sensory neurons where sample stacking was used as a simple on-line analyte preconcentration approach. The calculated energy balance ([ATP] + 0.5 × [ADP])/([AMP] + [ADP] + [ATP]) of these cells was comparable with the value obtained from bulk samples.
Collapse
Affiliation(s)
- Jing-Xin Liu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois,USA
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry, College of Chemistry, Peking University, Beijing, China
| | - Jordan T. Aerts
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois,USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois,USA
| | - Stanislav S. Rubakhin
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois,USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois,USA
| | - Xin-Xiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education; Institute of Analytical Chemistry, College of Chemistry, Peking University, Beijing, China
| | - Jonathan V. Sweedler
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois,USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois,USA
| |
Collapse
|
16
|
Malá Z, Šlampová A, Křivánková L, Gebauer P, Boček P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2014; 36:15-35. [DOI: 10.1002/elps.201400313] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Andrea Šlampová
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Ludmila Křivánková
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
17
|
Li H, Kong Y, Chang L, Feng Z, Chang N, Liu J, Long J. Determination of Lipoic Acid in Biological Samples with Acetonitrile–Salt Stacking Method in CE. Chromatographia 2013. [DOI: 10.1007/s10337-013-2560-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Kwon JY, Chang SB, Jang YO, Dawod M, Chung DS. Highly sensitive analysis of catecholamines by counter-flow electrokinetic supercharging in the constant voltage mode. J Sep Sci 2013; 36:1973-9. [DOI: 10.1002/jssc.201201154] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/31/2013] [Accepted: 04/01/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Joon Yub Kwon
- Department of Chemistry; Seoul National University; Seoul Korea
| | - Seo Bong Chang
- Department of Chemistry; Seoul National University; Seoul Korea
| | - Yong Oh Jang
- Department of Chemistry; Seoul National University; Seoul Korea
| | - Mohamed Dawod
- Department of Chemistry; Seoul National University; Seoul Korea
- Department of Pharmaceutical Chemistry; Salman Bin Abdulaziz University; Al-Kharj Saudi Arabia
- Department of Analytical Chemistry; Al-Azhar University; Cairo Egypt
| | - Doo Soo Chung
- Department of Chemistry; Seoul National University; Seoul Korea
| |
Collapse
|
19
|
Zhang Z, Zhang F, Liu Y. Recent Advances in Enhancing the Sensitivity and Resolution of Capillary Electrophoresis. J Chromatogr Sci 2013; 51:666-83. [DOI: 10.1093/chromsci/bmt012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
20
|
Bizzotto CS, Meinhart AD, Ballus CA, Ghiselli G, Godoy HT. Comparison of capillary electrophoresis and high performance liquid chromatography methods for caffeine determination in decaffeinated coffee. FOOD SCIENCE AND TECHNOLOGY 2013. [DOI: 10.1590/s0101-20612013005000013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Decaffeinated coffee accounts for 10 percent of coffee sales in the world; it is preferred by consumers that do not wish or are sensitive to caffeine effects. This article presents an analytical comparison of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) methods for residual caffeine quantification in decaffeinated coffee in terms of validation parameters, costs, analysis time, composition and treatment of the residues generated, and caffeine quantification in 20 commercial samples. Both methods showed suitable validation parameters. Caffeine content did not differ statistically in the two different methods of analysis. The main advantage of the high performance liquid chromatography (HPLC) method was the 42-fold lower detection limit. Nevertheless, the capillary electrophoresis (CE) detection limit was 115-fold lower than the allowable limit by the Brazilian law. The capillary electrophoresis (CE) analyses were 30% faster, the reagent costs were 76.5-fold, and the volume of the residues generated was 33-fold lower. Therefore, the capillary electrophoresis (CE) method proved to be a valuable analytical tool for this type of analysis.
Collapse
|
21
|
Malá Z, Pantůčková P, Gebauer P, Boček P. Advanced electrolyte tuning and selectivity enhancement for highly sensitive analysis of cations by capillary ITP-ESI MS. Electrophoresis 2013; 34:777-84. [DOI: 10.1002/elps.201200533] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/22/2012] [Accepted: 12/02/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Zdena Malá
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Pavla Pantůčková
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Petr Gebauer
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic; Brno; Czech Republic
| |
Collapse
|
22
|
Kubalczyk P, Bald E. Methods of Analyte Concentration in a Capillary. SPRINGER SERIES IN CHEMICAL PHYSICS 2013. [DOI: 10.1007/978-3-642-35043-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Šlampová A, Malá Z, Pantůčková P, Gebauer P, Boček P. Contemporary sample stacking in analytical electrophoresis. Electrophoresis 2012; 34:3-18. [PMID: 23161176 DOI: 10.1002/elps.201200346] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 07/20/2012] [Accepted: 07/20/2012] [Indexed: 12/29/2022]
Abstract
Sample stacking is a term denoting a multifarious class of methods and their names that are used daily in CE for online concentration of diluted samples to enhance separation efficiency and sensitivity of analyses. The essence of these methods is that analytes present at low concentrations in a large injected sample zone are concentrated into a short and sharp zone (stack) in the separation capillary. Then the stacked analytes are separated and detected. Regardless of the diversity of the stacking electromigration methods, one can distinguish four main principles that form the bases of nearly all of them: (i) Kohlrausch adjustment of concentrations, (ii) pH step, (iii) micellar methods, and (iv) transient ITP. This contribution is a continuation of our previous reviews on the topic and brings an overview of papers published during 2010-2012 and relevant to the mentioned principles (except the last one which is covered by another review in this issue).
Collapse
Affiliation(s)
- Andrea Šlampová
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | | | | | | | | |
Collapse
|
24
|
Lee SY, Lévesque SA, Sévigny J, Müller CE. A highly sensitive capillary electrophoresis method using p-nitrophenyl 5'-thymidine monophosphate as a substrate for the monitoring of nucleotide pyrophosphatase/phosphodiesterase activities. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:162-9. [PMID: 23217320 DOI: 10.1016/j.jchromb.2012.10.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 10/14/2012] [Accepted: 10/26/2012] [Indexed: 12/23/2022]
Abstract
A highly sensitive capillary electrophoresis method has been developed to monitor the activity of nucleotide pyrophosphatases/phosphodiesterases (NPPs) and screen for NPP inhibitors. In this method, p-nitrophenyl 5'-thymidine monophosphate (p-Nph-5'-TMP) was used as an artificial substrate, and separation of reaction products was performed on a dynamically coated capillary. We found that the optimal capillary electrophoresis (CE) conditions were as follows: fused-silica capillary (20cm effective length×75.5μm (id)), electrokinetic injection for 60s, 70mM phosphate buffer containing polybrene 0.002%, pH 9.2, constant current of -80μA, constant capillary temperature of 15°C and detection at 400nm. To allow precise quantification, 2-methyl-4,6-dinitrophenol (dinitrocresol) was applied as an internal standard. The limit of detection (LOD) and the limit of quantification (LOQ) were 137 and 415nM, respectively. This new method was shown to be over 8-fold more sensitive than the conventional spectrophotometric assays and 16-fold more than the previously reported CE procedure, and the results (K(m) values for NPP1 and NPP3, K(i) values for standard inhibitors) obtained were in accordance with previous literature data. Therefore, this new method is an improvement of actual techniques and could be used as a quick and standard analytical technique for the identification and characterization of NPP inhibitors.
Collapse
Affiliation(s)
- Sang-Yong Lee
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
25
|
Wen Y, Li J, Ma J, Chen L. Recent advances in enrichment techniques for trace analysis in capillary electrophoresis. Electrophoresis 2012; 33:2933-52. [PMID: 23019127 DOI: 10.1002/elps.201200240] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 06/06/2012] [Accepted: 06/28/2012] [Indexed: 01/25/2023]
Abstract
CE is gaining great popularity as a well-established separation technique for many fields such as pharmaceutical research, clinical application, environmental monitoring, and food analysis, owing to its high resolving power, rapidity, and small amount of samples and reagents required. However, the sensitivity in CE analysis is still considered as being inferior to that in HPLC analysis. Diverse enrichment methods and techniques have been increasingly developed for overcoming this issue. In this review, we summarize the recent advances in enrichment techniques containing off-line preconcentration (sample preparation) and on-line concentration (sample stacking) to enhancing sensitivity in CE for trace analysis over the last 5 years. Some relatively new cleanup and preconcentration methods involving the use of dispersive liquid-liquid microextraction, supercritical fluid extraction, matrix solid-phase dispersion, etc., and the continued use and improvement of conventional SPE, have been comprehensively reviewed and proved effective preconcentration alternatives for liquid, semisolid, and solid samples. As for CE on-line stacking, we give an overview of field amplication, sweeping, pH regulation, and transient isotachophoresis, and the coupling of multiple modes. Moreover, some limitations and comparisons related to such methods/techniques are also discussed. Finally, the combined use of various enrichment techniques and some significant attempts are proposed to further promote analytical merits in CE.
Collapse
Affiliation(s)
- Yingying Wen
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research-YIC, Chinese Academy of Sciences-CAS, Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, P. R. China
| | | | | | | |
Collapse
|
26
|
Single-drop microextraction as a powerful pretreatment tool for capillary electrophoresis: A review. Anal Chim Acta 2012; 739:14-24. [DOI: 10.1016/j.aca.2012.06.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/02/2012] [Accepted: 06/02/2012] [Indexed: 01/16/2023]
|
27
|
Quirino JP, Aranas AT. Simultaneous electrokinetic and hydrodynamic injection with on-line sample concentration via micelle to solvent stacking in micellar electrokinetic chromatography. Anal Chim Acta 2012; 733:84-9. [DOI: 10.1016/j.aca.2012.04.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 01/25/2023]
|
28
|
Extraction and on-line concentration of flavonoids in Brassica oleracea by capillary electrophoresis using large volume sample stacking. Food Chem 2012. [DOI: 10.1016/j.foodchem.2012.01.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Guijarro-Díez M, Paniagua G, Fernández P, Crego AL, Marina ML. Molecularly imprinted SPE and MEKC with in-capillary sample preconcentration for the determination of digoxin in human urine. Electrophoresis 2012; 33:1582-8. [DOI: 10.1002/elps.201100588] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miguel Guijarro-Díez
- Departamento de Química Analítica; Facultad de Química; Universidad de Alcalá; Madrid; Spain
| | - Gema Paniagua
- Departamento de Ciencias Analíticas; Facultad de Ciencias; Universidad Nacional de Educación a Distancia (UNED); Madrid; Spain
| | - Pilar Fernández
- Departamento de Ciencias Analíticas; Facultad de Ciencias; Universidad Nacional de Educación a Distancia (UNED); Madrid; Spain
| | - Antonio Luis Crego
- Departamento de Química Analítica; Facultad de Química; Universidad de Alcalá; Madrid; Spain
| | - María Luisa Marina
- Departamento de Química Analítica; Facultad de Química; Universidad de Alcalá; Madrid; Spain
| |
Collapse
|
30
|
Botello I, Borrull F, Aguilar C, Calull M. Investigation of in-line solid-phase extraction capillary electrophoresis for the analysis of drugs of abuse and their metabolites in water samples. Electrophoresis 2012; 33:528-35. [PMID: 22287181 DOI: 10.1002/elps.201100199] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this study, in-line solid-phase extraction (SPE) was used as an enrichment technique in combination with CE for the preconcentration and separation of 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), cocaine (COC), codeine (COD) and 6-acetylmorphine (6AM). The separation buffer (BGE) used was 80 mM disodium phosphate anhydrous and 6 mM of HCl (final BGE pH of 3). The SPE extractor consists of a small segment of capillary filled with Oasis HLB sorbent and inserted into the inlet section of the electrophoretic capillary. Different parameters affecting preconcentration were evaluated, such as sample pH, the volume of the elution plug and sample injection time. The detection limits (LODs) reached for standard samples by in-line SPE-CE-UV ranged between 50 and 200 ng/L, with sensitivity enhancement factors ranging from 2300 to 5300. Reproducibility values (expressed in terms of relative standard deviation) were below 7.6% for standard samples. This is a simple and an effective method for the determination of the studied drugs of abuse and their metabolites. The applicability of the developed method was demonstrated in tap and river water samples which were directly analyzed without any off-line pretreatment. Analytical parameters were evaluated and LODs were between 70 and 270 ng/L with relative recoveries between 85 and 97%.
Collapse
Affiliation(s)
- Igor Botello
- Departament de Química Analítica i Química Orgànica, Faculty of Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo, Tarragona, Spain
| | | | | | | |
Collapse
|
31
|
Ballus CA, Meinhart AD, de Oliveira RG, Godoy HT. Optimization of capillary zone electrophoresis separation and on-line preconcentration of 16 phenolic compounds from wines produced in South America. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.09.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Li T, Booker CJ, Yeung KKC. Migration behaviour of discontinuous buffers in capillary electrophoresis during protein enrichment. Analyst 2012; 137:4766-73. [DOI: 10.1039/c2an35548e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Huang SW, Tzeng HF. Simultaneous determination of deoxycytidine diphosphate and deoxycytidine triphosphate by capillary electrophoresis with transient isotachophoretic stacking: a sensitive monitoring method for ribonucleotide reductase activity. Electrophoresis 2011; 33:536-42. [PMID: 22212996 DOI: 10.1002/elps.201100474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 09/28/2011] [Accepted: 10/07/2011] [Indexed: 01/12/2023]
Abstract
A simple and rapid capillary electrophoretic method was developed for simultaneous determination of sub-micromolar 2'-deoxycytidine 5'-diphosphate (dCDP) and 2'-deoxycytidine 5'-triphosphate (dCTP) levels in enzyme assays without using radioactively labeled substrates. The separation was performed at 25°C using MES in the BGE as the terminating ion, the chloride ions in the sample buffer as the leading ion, and PEG 4000 in the BGE as the EOF suppressor for sample stacking by transient isotachophoresis (tITP). Several parameters affecting the separation were investigated, including the pH of the BGE, the concentration of sodium chloride in the sample buffer, and the concentrations of MES and PEG 4000 in the running buffer. Good separation with high separation efficiency was achieved within 6 min under optimal conditions. In comparison with the simple CZE method, the present tITP-CZE method enabled a 150-fold increase in the injection time without any decrease in resolution and the sensitivity was enhanced up to two orders of magnitude with the new method. The linear range of the method was 0.1-10 μM for dCDP and dCTP. The limits of detection of dCDP and dCTP were 85 and 73 nM, respectively. The proposed method was successfully applied for the activity assay of ribonucleotide reductase from Hep G2 and Sf9 cells.
Collapse
Affiliation(s)
- Shi-Wei Huang
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou County, Taiwan
| | | |
Collapse
|
34
|
Kašička V. Recent developments in CE and CEC of peptides (2009-2011). Electrophoresis 2011; 33:48-73. [DOI: 10.1002/elps.201100419] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
|
35
|
Kubáň P, Timerbaev AR. CE of inorganic species - A review of methodological advancements over 2009-2010. Electrophoresis 2011; 33:196-210. [DOI: 10.1002/elps.201100357] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 07/30/2011] [Accepted: 07/30/2011] [Indexed: 01/13/2023]
|
36
|
Optimization of dynamic pH junction for the sensitive determination of amino acids in urine by capillary electrophoresis. Anal Bioanal Chem 2011; 401:3275-81. [DOI: 10.1007/s00216-011-5445-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 01/11/2023]
|
37
|
Ye H, Xia S, Yu L, Xu X, Zheng C, Xu H, Wang L, Liu X, Cai Z, Chen G. Solid-phase extraction-field-amplified sample injection coupled with CE-ESI-MS for online pre-concentration and quantitative analysis of brain-gut peptides. Electrophoresis 2011; 32:2823-9. [DOI: 10.1002/elps.201000591] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Bachmann S, Bakry R, Huck CW, Polato F, Corradini D, Bonn GK. Peptide mapping using capillary electrophoresis offline coupled to matrix-assisted laser desorption ionization time of flight mass spectrometry. Electrophoresis 2011; 32:2830-9. [PMID: 21953317 DOI: 10.1002/elps.201000653] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/14/2011] [Accepted: 03/14/2011] [Indexed: 01/20/2023]
Abstract
This article reports the results of a study carried out to evaluate the offline hyphenation of capillary zone electrophoresis with matrix-assisted lased desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) for the analysis of low-abundant complex samples, represented by the tryptic phosphorylated peptides of phosphoproteins, such as α-casein, β-casein, and fetuin. The proposed method employs a latex-coated capillary and consists in the online preconcentration of the tryptic peptides by a pH-mediated stacking method, their separation by capillary zone electrophoresis, and subsequent deposition of the separated analytes onto a MALDI target for their MS analysis. The online preconcentration method allows loading a large sample volume (∼150 nL), which is introduced into the capillary after the hydrodynamic injection of a short plug of 1.0 M ammonium hydroxide solution and is sandwiched between two plugs of the acidic background electrolyte solution (BGE) filling the capillary. The sample spotting of the separated analytes onto the MALDI target is performed either during or postseparation using an automatic spotting device connected to the exit of the separation capillary. The proposed method allows the separation and identification of multiphosphorylated peptides from other peptides and enables their identification at femtomole level with improved efficiency compared with LC approaches hyphenated to MS.
Collapse
Affiliation(s)
- Stefan Bachmann
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
39
|
Faserl K, Sarg B, Kremser L, Lindner H. Optimization and Evaluation of a Sheathless Capillary Electrophoresis–Electrospray Ionization Mass Spectrometry Platform for Peptide Analysis: Comparison to Liquid Chromatography–Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:7297-305. [DOI: 10.1021/ac2010372] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Klaus Faserl
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Bettina Sarg
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| | - Herbert Lindner
- Division of Clinical Biochemistry, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, A-6020 Innsbruck, Austria
| |
Collapse
|
40
|
Removal of sample background buffering ions and myoglobin enrichment via a pH junction created by discontinuous buffers in capillary electrophoresis. J Chromatogr A 2011; 1218:5705-11. [DOI: 10.1016/j.chroma.2011.06.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 06/01/2011] [Accepted: 06/13/2011] [Indexed: 01/04/2023]
|
41
|
Potential of long chain ionic liquids for on-line sample concentration techniques: Application to micelle to solvent stacking. J Chromatogr A 2011; 1218:5718-24. [DOI: 10.1016/j.chroma.2011.06.071] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/16/2011] [Accepted: 06/18/2011] [Indexed: 12/30/2022]
|
42
|
Dawod M, Chung DS. High-sensitivity capillary and microchip electrophoresis using electrokinetic supercharging. J Sep Sci 2011; 34:2790-9. [DOI: 10.1002/jssc.201100384] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/01/2011] [Accepted: 06/01/2011] [Indexed: 12/22/2022]
|
43
|
Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:1290-307. [DOI: 10.1016/j.jchromb.2010.10.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/20/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022]
|
44
|
Xu Z, Kawahito K, Ye X, Timerbaev AR, Hirokawa T. Electrokinetic supercharging with a system-induced terminator and an optimized capillary versus electrode configuration for parts-per-trillion detection of rare-earth elements in CZE. Electrophoresis 2011; 32:1195-200. [DOI: 10.1002/elps.201000582] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/19/2010] [Accepted: 01/10/2011] [Indexed: 12/29/2022]
|
45
|
Wang Z, Liu C, Kang J. A highly sensitive method for enantioseparation of fenoprofen and amino acid derivatives by capillary electrophoresis with on-line sample preconcentration. J Chromatogr A 2011; 1218:1775-9. [DOI: 10.1016/j.chroma.2011.01.081] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/21/2022]
|
46
|
Breadmore MC, Quirino JP, Thormann W. Insight into the mechanism of transient trapping in micellar electrokinetic chromatography. Electrophoresis 2011; 32:542-9. [DOI: 10.1002/elps.201000547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Liu Y, Fu X, Bai Y, Zhai M, Liao Y, Liao J, Liu H. Improvement of reproducibility and sensitivity of CE analysis by using the capillary coated dynamically with carboxymethyl chitosan. Anal Bioanal Chem 2011; 399:2821-9. [DOI: 10.1007/s00216-011-4659-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 01/01/2011] [Accepted: 01/02/2011] [Indexed: 11/29/2022]
|
48
|
Li X, Hu J, Han H. Determination of cypromazine and its metabolite melamine in milk by cation-selective exhaustive injection and sweeping-capillary micellar electrokinetic chromatography. J Sep Sci 2011; 34:323-30. [DOI: 10.1002/jssc.201000559] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/16/2010] [Accepted: 11/16/2010] [Indexed: 11/11/2022]
|
49
|
Ballus CA, Meinhart AD, Bruns RE, Godoy HT. Use of multivariate statistical techniques to optimize the simultaneous separation of 13 phenolic compounds from extra-virgin olive oil by capillary electrophoresis. Talanta 2011; 83:1181-7. [DOI: 10.1016/j.talanta.2010.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/01/2010] [Accepted: 07/05/2010] [Indexed: 01/13/2023]
|
50
|
Xu Z, Nakamura K, Timerbaev AR, Hirokawa T. Another Approach Toward over 100 000-Fold Sensitivity Increase in Capillary Electrophoresis: Electrokinetic Supercharging with Optimized Sample Injection. Anal Chem 2010; 83:398-401. [DOI: 10.1021/ac102661b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zhongqi Xu
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Kentaro Nakamura
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrei R. Timerbaev
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Takeshi Hirokawa
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-hiroshima 739-8527, Japan, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China, and Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|