1
|
Pilloni O, Madou M, Oropeza-Ramos L. Beyond two dimensions: Exploring 3D dielectrophoresis for microparticle control using carbon electrodes. PLoS One 2024; 19:e0310978. [PMID: 39325809 PMCID: PMC11426537 DOI: 10.1371/journal.pone.0310978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
This study explores the frontiers of microparticle manipulation by introducing an actuator platform for the three-dimensional positioning of microparticles using dielectrophoresis (DEP), a technique known for its selectivity and ease of integration with microtechnology. Leveraging advancements in carbon-based devices due to their biocompatibility and electrochemical stability, our work extends the application of DEP from two-dimensional constraints to precise 3D positioning within microvolumes, employing a photolithography-based fabrication process known as Carbon-MEMS technology (C-MEMS). We present the design, finite element simulation, fabrication, and testing of this platform, which utilizes a unique combination of planar and 3D carbon microelectrodes individually addressable on a transparent substrate. This setup enables the application of DEP forces, allowing for high-throughput manipulation of multiple microparticles simultaneously, as well as displacement of individual microparticles in any desired direction. Demonstrated with spherical 1μm and 10μm diameter polystyrene microparticles, this platform features straightforward fabrication and is suitable for batch industrial production. The study concludes with a discussion of the platform's advantages and limitations, marking a significant step toward a valuable tool for studying complex biological systems.
Collapse
Affiliation(s)
- Oscar Pilloni
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Marc Madou
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo León, México
| | - Laura Oropeza-Ramos
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
2
|
Yao J, Zhao K, Lou J, Zhang K. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. BIOSENSORS 2024; 14:417. [PMID: 39329792 PMCID: PMC11429840 DOI: 10.3390/bios14090417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications.
Collapse
Affiliation(s)
- Junzhu Yao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Jia Lou
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
3
|
de Los Santos-Ramirez JM, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. Analyst 2024; 149:3839-3849. [PMID: 38855835 DOI: 10.1039/d4an00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Insulator-based electrokinetically driven microfluidic devices stimulated with direct current (DC) voltages are an attractive solution for particle separation, concentration, or isolation. However, to design successful particle manipulation protocols, it is mandatory to know the mobilities of electroosmosis, and linear and nonlinear electrophoresis of the microchannel/liquid/particle system. Several techniques exist to characterize the mobilities of electroosmosis and linear electrophoresis. However, only one method to characterize the mobility of nonlinear electrophoresis has been thoroughly assessed, which generally requires DC voltages larger than 1000 V and measuring particle velocity in a straight microchannel. Under such conditions, Joule heating, electrolysis, and the DC power source cost become a concern. Also, measuring particle velocity at high voltages is noisy, limiting characterization quality. Here we present a protocol-tested on 2 μm polystyrene particles-for characterizing the mobility of nonlinear electrophoresis of the liquid/particle system using a DC voltage of only 30 V and visual inspection of particle dynamics in a microchannel featuring insulating obstacles. Multiphysics numerical modelling was used to guide microchannel design and to correlate particle location during an experiment with electric field intensity. The method was validated against the conventional characterization protocol, exhibiting excellent agreement while significantly reducing measurement noise and experimental complexity.
Collapse
Affiliation(s)
- J Martin de Los Santos-Ramirez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Carlos A Mendiola-Escobedo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| |
Collapse
|
4
|
Lin SH, Su TC, Huang SJ, Jen CP. Enhancing the efficiency of lung cancer cell capture using microfluidic dielectrophoresis and aptamer-based surface modification. Electrophoresis 2024; 45:1088-1098. [PMID: 38175846 DOI: 10.1002/elps.202300206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/19/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Metastasis remains a significant cause to cancer-related mortality, underscoring the critical need for early detection and analysis of circulating tumor cells (CTCs). This study presents a novel microfluidic chip designed to efficiently capture A549 lung cancer cells by combining dielectrophoresis (DEP) and aptamer-based binding, thereby enhancing capture efficiency and specificity. The microchip features interdigitated electrodes made of indium-tin-oxide that generate a nonuniform electric field to manipulate CTCs. Following three chip design, scenarios were investigated: (A) bare glass surface, (B) glass modified with gold nanoparticles (AuNPs) only, and (C) glass modified with both AuNPs and aptamers. Experimental results demonstrate that AuNPs significantly enhance capture efficiency under DEP, with scenarios (B) and (C) exhibiting similar performance. Notably, scenario (C) stands out as aptamer-functionalized surfaces resisting fluid shear forces, achieving CTCs retention even after electric field deactivation. Additionally, an innovative reverse pumping method mitigates inlet clogging, enhancing experimental efficiency. This research offers valuable insights into optimizing surface modifications and understanding key factors influencing cell capture, contributing to the development of efficient cell manipulation techniques with potential applications in cancer research and personalized treatment options.
Collapse
Affiliation(s)
- Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Tzu-Cheng Su
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan, ROC
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | - Shuo Jie Huang
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
| | - Chun-Ping Jen
- Department of Mechanical Engineering and Advanced Institute of Manufacturing for High-Tech Innovations, National Chung Cheng University, Chia-Yi, Taiwan, ROC
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
5
|
Julius LAN, Akgül D, Krishnan G, Falk F, Korvink J, Badilita V. Portable dielectrophoresis for biology: ADEPT facilitates cell trapping, separation, and interactions. MICROSYSTEMS & NANOENGINEERING 2024; 10:29. [PMID: 38434587 PMCID: PMC10907756 DOI: 10.1038/s41378-024-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/04/2023] [Accepted: 01/12/2024] [Indexed: 03/05/2024]
Abstract
Dielectrophoresis is a powerful and well-established technique that allows label-free, non-invasive manipulation of cells and particles by leveraging their electrical properties. The practical implementation of the associated electronics and user interface in a biology laboratory, however, requires an engineering background, thus hindering the broader adoption of the technique. In order to address these challenges and to bridge the gap between biologists and the engineering skills required for the implementation of DEP platforms, we report here a custom-built, compact, universal electronic platform termed ADEPT (adaptable dielectrophoresis embedded platform tool) for use with a simple microfluidic chip containing six microelectrodes. The versatility of the open-source platform is ensured by a custom-developed graphical user interface that permits simple reconfiguration of the control signals to address a wide-range of specific applications: (i) precision positioning of the single bacterium/cell/particle in the micrometer range; (ii) viability-based separation by achieving a 94% efficiency in separating live and dead yeast; (iii) phenotype-based separation by achieving a 96% efficiency in separating yeast and Bacillus subtilis; (iv) cell-cell interactions by steering a phagocytosis process where a granulocyte engulfs E. coli RGB-S bacterium. Together, the set of experiments and the platform form a complete basis for a wide range of possible applications addressing various biological questions exploiting the plug-and-play design and the intuitive GUI of ADEPT.
Collapse
Affiliation(s)
- Lourdes Albina Nirupa Julius
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Dora Akgül
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Gowri Krishnan
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Fabian Falk
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Jan Korvink
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| | - Vlad Badilita
- Department, Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344 Baden-Württemberg Germany
| |
Collapse
|
6
|
Abdulhameed A, Halim MM, Halin IA. Dielectrophoretic alignment of carbon nanotubes: theory, applications, and future. NANOTECHNOLOGY 2023; 34:242001. [PMID: 36921341 DOI: 10.1088/1361-6528/acc46c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Carbon nanotubes (CNTs) are nominated to be the successor of several semiconductors and metals due to their unique physical and chemical properties. It has been concerning that the anisotropic and low controllability of CNTs impedes their adoption in commercial applications. Dielectrophoresis (DEP) is known as the electrokinetics motion of polarizable nanoparticles under the influence of nonuniform electric fields. The uniqueness of this phenomenon allows DEP to be employed as a novel method to align, assemble, separate, and manipulate CNTs suspended in liquid mediums. This article begins with a brief overview of CNT structure and production, with the emphasize on their electrical properties and response to electric fields. The DEP phenomenon as a CNT alignment method is demonstrated and graphically discussed, along with its theory, procedure, and parameters. We also discussed the side forces that arise in DEP systems and how they negatively or positively affect the CNT alignment. The article concludes with a brief review of CNT-based devices fabricated using DEP, as well as the method's limitations and future prospects.
Collapse
Affiliation(s)
| | - Mohd Mahadi Halim
- School of Physics, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| |
Collapse
|
7
|
Dos-Reis-Delgado AA, Carmona-Dominguez A, Sosa-Avalos G, Jimenez-Saaib IH, Villegas-Cantu KE, Gallo-Villanueva RC, Perez-Gonzalez VH. Recent advances and challenges in temperature monitoring and control in microfluidic devices. Electrophoresis 2023; 44:268-297. [PMID: 36205631 PMCID: PMC10092670 DOI: 10.1002/elps.202200162] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.
Collapse
Affiliation(s)
| | | | - Gerardo Sosa-Avalos
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Ivan H Jimenez-Saaib
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | - Karen E Villegas-Cantu
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| | | | - Víctor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo, León, Mexico
| |
Collapse
|
8
|
Liu J, Jin Q, Geng J, Xia J, Wu Y, Chen H. Fast Capture and Efficient Removal of Bloom Algae Based on Improved Dielectrophoresis Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:832. [PMID: 36613154 PMCID: PMC9819516 DOI: 10.3390/ijerph20010832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/27/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
A dielectrophoresis (DEP) method for direct capture and fast removal of Anabaena was established in this work. The factors affecting the removal efficiency of Anabaena were investigated systematically, leading to optimized experimental conditions and improved DEP process equipment. The experimental results showed that our improved DEP method could directly capture Anabaena in eutrophic water with much enhanced removal efficiency of Anabaena from high-concentration algal bloom-eutrophication-simulated solution. The removal rate could increase by more than 20% after applying DEP at 15 V compared with a pure filtration process. Moreover, the removal rate could increase from 38.76% to 80.18% in optimized experimental conditions (the initial concentration of 615 μg/L, a flow rate of 0.168 L/h, an AC voltage of 15 V, and frequency of 100 kHz). Optical microscopic images showed that the structure of the captured algae cells was intact, indicating that the DEP method could avoid the secondary pollution caused by the addition of reagents and the release of phycotoxins, providing a new practical method for emergent treatment of water bloom outbreaks.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Qinghao Jin
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Junfeng Geng
- Institute for Materials Research and Innovation, Institute for Renewable Energy and Environmental Technologies, University of Bolton, Deane Road, Bolton BL3 5AB, UK
| | - Jianxin Xia
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Yanhong Wu
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| | - Huiying Chen
- Department of Environmental Science, College of Life and Environmental Science, Minzu University of China, Beijing 100081, China
| |
Collapse
|
9
|
Martinez-Duarte R, Mager D, Korvink JG, Islam M. Evaluating carbon-electrode dielectrophoresis under the ASSURED criteria. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:922737. [PMID: 35958120 PMCID: PMC9360481 DOI: 10.3389/fmedt.2022.922737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
Extreme point-of-care refers to medical testing in unfavorable conditions characterized by a lack of primary resources or infrastructure. As witnessed in the recent past, considerable interest in developing devices and technologies exists for extreme point-of-care applications, for which the World Health Organization has introduced a set of encouraging and regulating guidelines. These are referred to as the ASSURED criteria, an acronym for Affordable (A), Sensitive (S), Specific (S), User friendly (U), Rapid and Robust (R), Equipment-free (E), and Delivered (D). However, the current extreme point of care devices may require an intermediate sample preparation step for performing complex biomedical analysis, including the diagnosis of rare-cell diseases and early-stage detection of sepsis. This article assesses the potential of carbon-electrode dielectrophoresis (CarbonDEP) for sample preparation competent in extreme point-of-care, following the ASSURED criteria. We first discuss the theory and utility of dielectrophoresis (DEP) and the advantages of using carbon microelectrodes for this purpose. We then critically review the literature relevant to the use of CarbonDEP for bioparticle manipulation under the scope of the ASSURED criteria. Lastly, we offer a perspective on the roadmap needed to strengthen the use of CarbonDEP in extreme point-of-care applications.
Collapse
Affiliation(s)
- Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Mechanical Engineering Department, Clemson University, Clemson, SC, United States
- *Correspondence: Rodrigo Martinez-Duarte
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Jan G. Korvink
| | - Monsur Islam
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Monsur Islam
| |
Collapse
|
10
|
Farasat M, Aalaei E, Kheirati Ronizi S, Bakhshi A, Mirhosseini S, Zhang J, Nguyen NT, Kashaninejad N. Signal-Based Methods in Dielectrophoresis for Cell and Particle Separation. BIOSENSORS 2022; 12:510. [PMID: 35884313 PMCID: PMC9313092 DOI: 10.3390/bios12070510] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Separation and detection of cells and particles in a suspension are essential for various applications, including biomedical investigations and clinical diagnostics. Microfluidics realizes the miniaturization of analytical devices by controlling the motion of a small volume of fluids in microchannels and microchambers. Accordingly, microfluidic devices have been widely used in particle/cell manipulation processes. Different microfluidic methods for particle separation include dielectrophoretic, magnetic, optical, acoustic, hydrodynamic, and chemical techniques. Dielectrophoresis (DEP) is a method for manipulating polarizable particles' trajectories in non-uniform electric fields using unique dielectric characteristics. It provides several advantages for dealing with neutral bioparticles owing to its sensitivity, selectivity, and noninvasive nature. This review provides a detailed study on the signal-based DEP methods that use the applied signal parameters, including frequency, amplitude, phase, and shape for cell/particle separation and manipulation. Rather than employing complex channels or time-consuming fabrication procedures, these methods realize sorting and detecting the cells/particles by modifying the signal parameters while using a relatively simple device. In addition, these methods can significantly impact clinical diagnostics by making low-cost and rapid separation possible. We conclude the review by discussing the technical and biological challenges of DEP techniques and providing future perspectives in this field.
Collapse
Affiliation(s)
- Malihe Farasat
- School of Electrical and Computer Engineering, College of Engineering, Tehran University, Tehran 14399-57131, Iran; (M.F.); (A.B.); (S.M.)
| | - Ehsan Aalaei
- School of Mechanical Engineering, Shiraz University, Shiraz 71936-16548, Iran; (E.A.); (S.K.R.)
| | - Saeed Kheirati Ronizi
- School of Mechanical Engineering, Shiraz University, Shiraz 71936-16548, Iran; (E.A.); (S.K.R.)
| | - Atin Bakhshi
- School of Electrical and Computer Engineering, College of Engineering, Tehran University, Tehran 14399-57131, Iran; (M.F.); (A.B.); (S.M.)
| | - Shaghayegh Mirhosseini
- School of Electrical and Computer Engineering, College of Engineering, Tehran University, Tehran 14399-57131, Iran; (M.F.); (A.B.); (S.M.)
| | - Jun Zhang
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (J.Z.); (N.-T.N.)
| | - Nam-Trung Nguyen
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (J.Z.); (N.-T.N.)
| | - Navid Kashaninejad
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia; (J.Z.); (N.-T.N.)
| |
Collapse
|
11
|
Shi L, Esfandiari L. Emerging on-chip electrokinetic based technologies for purification of circulating cancer biomarkers towards liquid biopsy: A review. Electrophoresis 2021; 43:288-308. [PMID: 34791687 DOI: 10.1002/elps.202100234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 12/11/2022]
Abstract
Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer-related biomarkers, including circulating tumor cells (CTCs), cell-free nucleic acids (cell-free DNA and cell-free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on-chip electrokinetic-based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label-free criteria. We have also discussed the existing challenges of current on-chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leyla Esfandiari
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA.,Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Molloy A, Harrison J, McGrath JS, Owen Z, Smith C, Liu X, Li X, Cox JAG. Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery. Microorganisms 2021; 9:microorganisms9112330. [PMID: 34835455 PMCID: PMC8618277 DOI: 10.3390/microorganisms9112330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB.
Collapse
Affiliation(s)
- Antonia Molloy
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - James Harrison
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
| | - John S. McGrath
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Zachary Owen
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Clive Smith
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Liu
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Xin Li
- Sphere Fluidics Limited, The McClintock Building, Suite 7, Granta Park, Great Abington, Cambridge CB21 6GP, UK; (J.S.M.); (Z.O.); (C.S.); (X.L.); (X.L.)
| | - Jonathan A. G. Cox
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; (A.M.); (J.H.)
- Correspondence: ; Tel.: +44-121-204-5011
| |
Collapse
|
13
|
Martinez-Duarte R. A critical review on the fabrication techniques that can enable higher throughput in dielectrophoresis devices. Electrophoresis 2021; 43:232-248. [PMID: 34523166 DOI: 10.1002/elps.202100179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 01/11/2023]
Abstract
The sorting of targeted cells in a sample is a cornerstone of healthcare diagnostics and therapeutics. This work focuses on the use of dielectrophoresis for the selective sorting of targeted bioparticles in a sample and how the lack of throughput has been one important practical challenge to its widespread practical implementation. Increasing the cross-sectional area of a channel can lead to higher flow rates and thus the capability to process a larger sample volume per unit of time. However, the required electric field gradient that is generated by polarized electrodes drastically decreases as one moves away from the electrodes. Hence, the scaling up of the channel cross section must be done asymmetrically. One desires a channel aspect ratio AR = height/width that is much smaller or much larger than 1. Since reducing footprint of the DEP device is important to ensure affordability, the use of channels with AR>>1 is desired. This creates the challenge to fabricate electrodes on the sidewalls of multiple channels with AR>>1, or a channel embedding an array of electrodes with a gap in between them with AR >>1. This critical review first details the motivation for using three-dimensional (3D) DEP devices to improve throughput and then describes selected techniques that have been used to fabricate them. Techniques include electrodeposition, deep etching, thick-film photolithography, and co-fabrication. Electrode materials addressed include metals, silicon, carbon, PDMS-based composites as well as conductive polymers and fluids.
Collapse
Affiliation(s)
- Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, 29634, USA
| |
Collapse
|
14
|
Orlov AP, Frolov AV, Lega PV, Kartsev A, Zybtsev SG, Pokrovskii VY, Koledov VV. Shape memory effect nanotools for nano-creation: examples of nanowire-based devices with charge density waves. NANOTECHNOLOGY 2021; 32:49LT01. [PMID: 34438379 DOI: 10.1088/1361-6528/ac2190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Nanotweezers based on the shape memory effect have been developed and tested. In combination with a commercial nanomanipulator, they allow 3D nanoscale operation controlled in a scanning electron microscope. Here we apply the tweezers for the fabrication of nanostructures based on whiskers of NbS3, a quasi one-dimensional compound with room-temperature charge density wave (CDW). The nanowhiskers were separated without damage from the growth batch, an entangled array, and safely transferred to a substrate with a preliminary deposited Au film. The contacts were fabricated with Pt sputtering on top of the whisker and the film. The high degree of synchronization of the sliding CDW under a RF field with a frequency up to 600 MHz confirms the high quality of the contacts and of the sample structure after the manipulations. The proposed technique paves the way to novel type micro- and nanostructures fabrication and their various applications.
Collapse
Affiliation(s)
- Andrey P Orlov
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
- Institute of Nanotechnology of Microelectronics of the RAS, Moscow, 115487, Russia
| | - Aleksei V Frolov
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
| | - Peter V Lega
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
| | - Alexey Kartsev
- Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 65 Kim Yu Chena Ulitsa, Khabarovsk, 680000, Russia
- Bauman Moscow State Technical University, Moscow, 105005, Russia
| | - Sergey G Zybtsev
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
| | - Vadim Ya Pokrovskii
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
| | - Victor V Koledov
- Kotelnikov Institute of Radioengineering and Electronics of RAS, Mokhovaya 11-7, Moscow, 125009, Russia
| |
Collapse
|
15
|
Ogawa U, Koyama K, Koseki S. Rapid detection and enumeration of aerobic mesophiles in raw foods using dielectrophoresis. J Microbiol Methods 2021; 186:106251. [PMID: 34038753 DOI: 10.1016/j.mimet.2021.106251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
The concept of dielectrophoresis (DEP), which involves the movement of neutral particles by induced polarization in nonuniform electric fields, has been exploited in various biological applications. However, only a few studies have investigated the use of DEP for detecting and enumerating microorganisms in foodstuffs. Therefore, we aimed to evaluate the accuracy and efficiency of a DEP-based method for enumerating viable bacteria in three raw foods: freshly cut lettuce, chicken breast, and minced pork. The DEP separation of bacterial cells was conducted at 20 V of output voltage and 6000 to 9000 kHZ of frequency with sample conductivity of 30-70 μS/cm. The accuracy and validity of the DEP method for enumerating viable bacteria were compared with those of the conventional culture method; no significant variation was observed. We found a high correlation between the data obtained using DEP and the conventional aerobic plate count culture method, with a high coefficient of determination (R2 > 0.90) regardless of the food product; the difference in cell count data between both methods was within 1.0 log CFU/mL. Moreover, we evaluated the efficiency of the DEP method for enumerating bacterial cells in chicken breasts subjected to either freezing or heat treatment. After thermal treatment at 55 °C and 60 °C, the viable cell counts determined via the DEP method were found to be lower than those obtained using the conventional culture method, which implies that the DEP method may not be suitable for the direct detection of injured cells. In addition to its high accuracy and efficiency, the DEP method enables the determination of viable cell counts within 30 min, compared to 48 h required for the conventional culture method. In conclusion, the DEP method may be a potential alternative tool for rapid determination of viable bacteria in a variety of foodstuffs.
Collapse
Affiliation(s)
- Umi Ogawa
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Kento Koyama
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan
| | - Shigenobu Koseki
- Graduate School of Agricultural Science, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-8589, Japan.
| |
Collapse
|
16
|
Perez‐Gonzalez VH. Particle trapping in electrically driven insulator-based microfluidics: Dielectrophoresis and induced-charge electrokinetics. Electrophoresis 2021; 42:2445-2464. [PMID: 34081787 PMCID: PMC9291494 DOI: 10.1002/elps.202100123] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/29/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022]
Abstract
Electrokinetically driven insulator‐based microfluidic devices represent an attractive option to manipulate particle suspensions. These devices can filtrate, concentrate, separate, or characterize micro and nanoparticles of interest. Two decades ago, inspired by electrode‐based dielectrophoresis, the concept of insulator‐based dielectrophoresis (iDEP) was born. In these microfluidic devices, insulating structures (i.e., posts, membranes, obstacles, or constrictions) built within the channel are used to deform the spatial distribution of an externally generated electric field. As a result, particles suspended in solution experience dielectrophoresis (DEP). Since then, it has been assumed that DEP is responsible for particle trapping in these devices, regardless of the type of voltage being applied to generate the electric field—direct current (DC) or alternating current. Recent findings challenge this assumption by demonstrating particle trapping and even particle flow reversal in devices that prevent DEP from occurring (i.e., unobstructed long straight channels stimulated with a DC voltage and featuring a uniform electric field). The theory introduced to explain those unexpected observations was then applied to conventional “DC‐iDEP” devices, demonstrating better prediction accuracy than that achieved with the conventional DEP‐centered theory. This contribution summarizes contributions made during the last two decades, comparing both theories to explain particle trapping and highlighting challenges to address in the near future.
Collapse
|
17
|
Xie Z, Pu H, Sun DW. Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis. Compr Rev Food Sci Food Saf 2021; 20:3818-3837. [PMID: 34056852 DOI: 10.1111/1541-4337.12766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 01/01/2023]
Abstract
In recent years, countries around the world have maintained a zero-tolerance attitude toward safety problems in the food industry. In order to ensure human health, a fast, sensitive, and high-throughput analysis of food contaminants is necessary to ensure safe food products on the market. Microfluidics, as a high-efficiency and sensitive detection technology, has many advantages in the detection of food contaminants, including foodborne pathogens, pesticides, heavy metal ions, toxic substances, and so forth, especially in conjunction with a variety of submicron fluid driving methods, making food detection and analysis more efficient and accurate. This review introduces the principle of submicron fluid driving modes and discusses the driving simulation of submicron fluid in microfluidic chips. In addition, the latest developments in the application of simulation in food analysis from 2006 to 2020 are discussed, and the computer simulation of submicron fluid flow in microfluidic chips and its application and development trend in food analysis are also highlighted. The review indicates that microfluidic technology, using numerical simulation as an auxiliary tool, combined with traditional methods has greatly improved the detection and analysis of food products. In addition, microfluidics combined with a variety of control methods embodies the ability of specific, multifunctional, and sensitive detection and analysis of food products. The development of high-sensitivity, high-throughput, portable, integrated microfluidic chips will enable the technology to be applied in practice.
Collapse
Affiliation(s)
- Zhaoda Xie
- School of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China
| | - Hongbin Pu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology, School of Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Dublin, Ireland
| |
Collapse
|
18
|
Padhy P, Zaman MA, Jensen MA, Hesselink L. Dynamically controlled dielectrophoresis using resonant tuning. Electrophoresis 2021; 42:1079-1092. [PMID: 33599974 PMCID: PMC8122061 DOI: 10.1002/elps.202000328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022]
Abstract
Electrically polarizable micro- and nanoparticles and droplets can be trapped using the gradient electric field of electrodes. But the spatial profile of the resultant dielectrophoretic force is fixed once the electrode structure is defined. To change the force profile, entire complex lab-on-a-chip systems must be re-fabricated with modified electrode structures. To overcome this problem, we propose an approach for the dynamic control of the spatial profile of the dielectrophoretic force by interfacing the trap electrodes with a resistor and an inductor to form a resonant resistor-inductor-capacitor (RLC) circuit. Using a dielectrophoretically trapped water droplet suspended in silicone oil, we show that the resonator amplitude, detuning, and linewidth can be continuously varied by changing the supply voltage, supply frequency, and the circuit resistance to obtain the desired trap depth, range, and stiffness. We show that by proper tuning of the resonator, the trap range can be extended without increasing the supply voltage, thus preventing sensitive samples from exposure to high electric fields at the stable trapping position. Such unprecedented dynamic control of dielectrophoretic forces opens avenues for the tunable active manipulation of sensitive biological and biochemical specimen in droplet microfluidic devices used for single-cell and biochemical reaction analysis.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | | | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
19
|
Huang X, Torres-Castro K, Varhue W, Salahi A, Rasin A, Honrado C, Brown A, Guler J, Swami NS. Self-aligned sequential lateral field non-uniformities over channel depth for high throughput dielectrophoretic cell deflection. LAB ON A CHIP 2021; 21:835-843. [PMID: 33532812 PMCID: PMC8019514 DOI: 10.1039/d0lc01211d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dielectrophoresis (DEP) enables the separation of cells based on subtle subcellular phenotypic differences by controlling the frequency of the applied field. However, current electrode-based geometries extend over a limited depth of the sample channel, thereby reducing the throughput of the manipulated sample (sub-μL min-1 flow rates and <105 cells per mL). We present a flow through device with self-aligned sequential field non-uniformities extending laterally across the sample channel width (100 μm) that are created by metal patterned over the entire depth (50 μm) of the sample channel sidewall using a single lithography step. This enables single-cell streamlines to undergo progressive DEP deflection with minimal dependence on the cell starting position, its orientation versus the field and intercellular interactions. Phenotype-specific cell separation is validated (>μL min-1 flow and >106 cells per mL) using heterogeneous samples of healthy and glutaraldehyde-fixed red blood cells, with single-cell impedance cytometry showing that the DEP collected fractions are intact and exhibit electrical opacity differences consistent with their capacitance-based DEP crossover frequency. This geometry can address the vision of an "all electric" selective cell isolation and cytometry system for quantifying phenotypic heterogeneity of cellular systems.
Collapse
Affiliation(s)
- XuHai Huang
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Karina Torres-Castro
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Walter Varhue
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Armita Salahi
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Ahmed Rasin
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Carlos Honrado
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA.
| | - Audrey Brown
- Biology, University of Virginia, Charlottesville, USA
| | | | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA. and Chemistry, University of Virginia, Charlottesville, USA
| |
Collapse
|
20
|
Characterization and Separation of Live and Dead Yeast Cells Using CMOS-Based DEP Microfluidics. MICROMACHINES 2021; 12:mi12030270. [PMID: 33800809 PMCID: PMC8001765 DOI: 10.3390/mi12030270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
This study aims at developing a miniaturized CMOS integrated silicon-based microfluidic system, compatible with a standard CMOS process, to enable the characterization, and separation of live and dead yeast cells (as model bio-particle organisms) in a cell mixture using the DEP technique. DEP offers excellent benefits in terms of cost, operational power, and especially easy electrode integration with the CMOS architecture, and requiring label-free sample preparation. This can increase the likeliness of using DEP in practical settings. In this work the DEP force was generated using an interdigitated electrode arrays (IDEs) placed on the bottom of a CMOS-based silicon microfluidic channel. This system was primarily used for the immobilization of yeast cells using DEP. This study validated the system for cell separation applications based on the distinct responses of live and dead cells and their surrounding media. The findings confirmed the device’s capability for efficient, rapid and selective cell separation. The viability of this CMOS embedded microfluidic for dielectrophoretic cell manipulation applications and compatibility of the dielectrophoretic structure with CMOS production line and electronics, enabling its future commercially mass production.
Collapse
|
21
|
Huang D, Man J, Jiang D, Zhao J, Xiang N. Inertial microfluidics: Recent advances. Electrophoresis 2020; 41:2166-2187. [PMID: 33027533 DOI: 10.1002/elps.202000134] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 02/24/2024]
Abstract
Inertial microfluidics has attracted significant attentions in last decade due to its superior advantages of high throughput, label- and external field-free operation, simplicity, and low cost. A wide variety of channel geometry designs were demonstrated for focusing, concentrating, isolating, or separating of various bioparticles such as blood components, circulating tumor cells, bacteria, and microalgae. In this review, we first briefly introduce the physics of inertial migration and Dean flow for allowing the readers with diverse backgrounds to have a better understanding of the fundamental mechanisms of inertial microfluidics. Then, we present a comprehensive review of the recent advances and applications of inertial microfluidic devices according to different channel geometries ranging from straight channels, curved channels to contraction-expansion-array channels. Finally, the challenges and future perspective of inertial microfluidics are discussed. Owing to its superior benefit for particle manipulation, the inertial microfluidics will play a more important role in biology and medicine applications.
Collapse
Affiliation(s)
- Di Huang
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Jiaxiang Man
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Di Jiang
- School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, P. R. China
| | - Jiyun Zhao
- College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, P. R. China
- Jiangsu Province and Education Ministry Co-sponsored Collaborative Innovation Center of Intelligent Mining Equipment, China University of Mining and Technology, Xuzhou, P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, P. R. China
| |
Collapse
|
22
|
Ramirez-Murillo CJ, de Los Santos-Ramirez JM, Perez-Gonzalez VH. Toward low-voltage dielectrophoresis-based microfluidic systems: A review. Electrophoresis 2020; 42:565-587. [PMID: 33166414 DOI: 10.1002/elps.202000213] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
Dielectrophoretically driven microfluidic devices have demonstrated great applicability in biomedical engineering, diagnostic medicine, and biological research. One of the potential fields of application for this technology is in point-of-care (POC) devices, ideally allowing for portable, fully integrated, easy to use, low-cost diagnostic platforms. Two main approaches exist to induce dielectrophoresis (DEP) on suspended particles, that is, electrode-based DEP and insulator-based DEP, each featuring different advantages and disadvantages. However, a shared concern lies in the input voltage used to generate the electric field necessary for DEP to take place. Therefore, input voltage can determine portability of a microfluidic device. This review outlines the recent advances in reducing stimulation voltage requirements in DEP-driven microfluidics.
Collapse
|
23
|
Çağlayan Z, Demircan Yalçın Y, Külah H. A Prominent Cell Manipulation Technique in BioMEMS: Dielectrophoresis. MICROMACHINES 2020; 11:E990. [PMID: 33153069 PMCID: PMC7693018 DOI: 10.3390/mi11110990] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
BioMEMS, the biological and biomedical applications of micro-electro-mechanical systems (MEMS), has attracted considerable attention in recent years and has found widespread applications in disease detection, advanced diagnosis, therapy, drug delivery, implantable devices, and tissue engineering. One of the most essential and leading goals of the BioMEMS and biosensor technologies is to develop point-of-care (POC) testing systems to perform rapid prognostic or diagnostic tests at a patient site with high accuracy. Manipulation of particles in the analyte of interest is a vital task for POC and biosensor platforms. Dielectrophoresis (DEP), the induced movement of particles in a non-uniform electrical field due to polarization effects, is an accurate, fast, low-cost, and marker-free manipulation technique. It has been indicated as a promising method to characterize, isolate, transport, and trap various particles. The aim of this review is to provide fundamental theory and principles of DEP technique, to explain its importance for the BioMEMS and biosensor fields with detailed references to readers, and to identify and exemplify the application areas in biosensors and POC devices. Finally, the challenges faced in DEP-based systems and the future prospects are discussed.
Collapse
Affiliation(s)
- Zeynep Çağlayan
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey; (Z.Ç.); (Y.D.Y.)
- METU MEMS Research and Application Center, Ankara 06800, Turkey
- Mikro Biyosistemler Electronics Inc., Ankara 06530, Turkey
| |
Collapse
|
24
|
Henslee EA. Review: Dielectrophoresis in cell characterization. Electrophoresis 2020; 41:1915-1930. [DOI: 10.1002/elps.202000034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/31/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Erin A. Henslee
- Department of Engineering Wake Forest University 455 Vine St. Winston‐Salem USA
| |
Collapse
|
25
|
Zhang Z, Luo Y, Nie X, Yu D, Xing X. A one-step molded microfluidic chip featuring a two-layer silver-PDMS microelectrode for dielectrophoretic cell separation. Analyst 2020; 145:5603-5614. [PMID: 32776070 DOI: 10.1039/d0an01085e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dielectrophoresis (DEP) is a powerful technique for label-free cell separation in microfluidics. Easily-fabricated DEP separators with low cost and short turnaround time are in extremely high demand in practical applications, especially clinical usage where disposable devices are needed. DEP separators exploiting microelectrodes made of conducting polydimethylsiloxane (PDMS) composites enable the construction of advantageous 3D volumetric electrodes with a simple soft-lithography process. Yet, existing devices incorporating microelectrodes in conducting PDMS generally have their fluidic sidewalls constructed using a different material, and consequently require extra lithography of a sacrificial layer on the semi-finished master for molding the electrode and fluidic sidewalls in separate steps. Here we demonstrate a novel microfluidic DEP separator with a 3D electrode and fluidic structure entirely integrated within silver-PDMS composites. We develop a further simplified one-step molding process with lower cost using a readily-available and reusable SU8 master, eliminating the need for the additional lithography step in existing techniques. The uniquely designed two-layer electrode exhibits a spatially non-uniform electric field that enables cell migration in the vertical direction. The electrode upper layer then offers a harbor-like region for the trapping of the target cells that have drifted upwards, which shelters them from being dragged away by the main flow streams in the lower layer, and thus allows higher operation flow rate. We also optimize the upper layer thickness as a critical dimension for protecting the trapped cells from high drag and show easy widening of our device by elongation of the digits. We demonstrate that the elongated digits involving more parallel flow paths maintain a high capture efficiency of 95.4% for live cells with 85.6% purity in the separation of live/dead HeLa cells. We also investigate the device feasibility in a viability assay for cells post anti-cancer drug treatment.
Collapse
Affiliation(s)
- Zhongle Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, No. 15 North 3rd Ring Rd., Beijing, 100029, China.
| | | | | | | | | |
Collapse
|
26
|
Highly Localized Enrichment of Trypanosoma brucei Parasites Using Dielectrophoresis. MICROMACHINES 2020; 11:mi11060625. [PMID: 32604888 PMCID: PMC7344920 DOI: 10.3390/mi11060625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023]
Abstract
Human African trypanosomiasis (HAT), also known as sleeping sickness, is a vector-borne neglected tropical disease endemic to rural sub-Saharan Africa. Current methods of early detection in the affected rural communities generally begin with general screening using the card agglutination test for trypanosomiasis (CATT), a serological test. However, the gold standard for confirmation of trypanosomiasis remains the direct observation of the causative parasite, Trypanosoma brucei. Here, we present the use of dielectrophoresis (DEP) to enrich T. brucei parasites in specific locations to facilitate their identification in a future diagnostic assay. DEP refers to physical movement that can be selectively induced on the parasites when exposing them to electric field gradients of specific magnitude, phase and frequency. The long-term goal of our work is to use DEP to selectively trap and enrich T. brucei in specific locations while eluting all other cells in a sample. This would allow for a diagnostic test that enables the user to characterize the presence of parasites in specific locations determined a priori instead of relying on scanning a sample. In the work presented here, we report the characterization of the conditions that lead to high enrichment, 780% in 50 s, of the parasite in specific locations using an array of titanium microelectrodes.
Collapse
|
27
|
Rabbani MT, Sonker M, Ros A. Carbon nanotube dielectrophoresis: Theory and applications. Electrophoresis 2020; 41:1893-1914. [PMID: 32474942 DOI: 10.1002/elps.202000049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
Abstract
Carbon nanotubes (CNTs) are one of the most extensively studied nanomaterials in the 21st century. Since their discovery in 1991, many studies have been reported advancing our knowledge in terms of their structure, properties, synthesis, and applications. CNTs exhibit unique electrothermal and conductive properties which, combined with their mechanical strength, have led to tremendous attention of CNTs as a nanoscale material in the past two decades. To introduce the various types of CNTs, we first provide basic information on their structure followed by some intriguing properties and a brief overview of synthesis methods. Although impressive advances have been demonstrated with CNTs, critical applications require purification, positioning, and separation to yield desired properties and functional elements. Here, we review a versatile technique to manipulate CNTs based on their dielectric properties, namely dielectrophoresis (DEP). A detailed discussion on the DEP aspects of CNTs including the theory and various technical microfluidic realizations is provided. Various advancements in DEP-based manipulations of single-walled and multiwalled CNTs are also discussed with special emphasis on applications involving separation, purification, sensing, and nanofabrication.
Collapse
Affiliation(s)
- Mohammad Towshif Rabbani
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.,Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
28
|
Advances and applications of isomotive dielectrophoresis for cell analysis. Anal Bioanal Chem 2020; 412:3813-3833. [DOI: 10.1007/s00216-020-02590-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 01/31/2023]
|
29
|
Zhang J, Song Z, Liu Q, Song Y. Recent advances in dielectrophoresis‐based cell viability assessment. Electrophoresis 2020; 41:917-932. [DOI: 10.1002/elps.201900340] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Junyan Zhang
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Zhenyu Song
- Department of RadiotherapyJiaozhou Central Hospital Qingdao P. R. China
| | - Qinxin Liu
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Yongxin Song
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| |
Collapse
|
30
|
Zhang T, Hong ZY, Tang SY, Li W, Inglis DW, Hosokawa Y, Yalikun Y, Li M. Focusing of sub-micrometer particles in microfluidic devices. LAB ON A CHIP 2020; 20:35-53. [PMID: 31720655 DOI: 10.1039/c9lc00785g] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sub-micrometer particles (0.10-1.0 μm) are of great significance to study, e.g., microvesicles and protein aggregates are targets for therapeutic intervention, and sub-micrometer fluorescent polystyrene (PS) particles are used as probes for diagnostic imaging. Focusing of sub-micrometer particles - precisely control over the position of sub-micrometer particles in a tightly focused stream - has a wide range of applications in the field of biology, chemistry and environment, by acting as a prerequisite step for downstream detection, manipulation and quantification. Microfluidic devices have been attracting great attention as desirable tools for sub-micrometer particle focusing, due to their small size, low reagent consumption, fast analysis and low cost. Recent advancements in fundamental knowledge and fabrication technologies have enabled microfluidic focusing of particles at sub-micrometer scale in a continuous, label-free and high-throughput manner. Microfluidic methods for the focusing of sub-micrometer particles can be classified into two main groups depending on whether an external field is applied: 1) passive methods, which utilize intrinsic fluidic properties without the need of external actuation, such as inertial, deterministic lateral displacement (DLD), viscoelastic and hydrophoretic focusing; and 2) active methods, where external fields are used, such as dielectrophoretic, thermophoretic, acoustophoretic and optical focusing. This article mainly reviews the studies on the focusing of sub-micrometer particles in microfluidic devices over the past 10 years. It aims to bridge the gap between the focusing of micrometer and nanometer scale (1.0-100 nm) particles and to improve the understanding of development progress, current advances and future prospects in microfluidic focusing techniques.
Collapse
Affiliation(s)
- Tianlong Zhang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan. and School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Zhen-Yi Hong
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong 2522, Australia
| | - David W Inglis
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| |
Collapse
|
31
|
Nielsen JB, Hanson RL, Almughamsi HM, Pang C, Fish TR, Woolley AT. Microfluidics: Innovations in Materials and Their Fabrication and Functionalization. Anal Chem 2020; 92:150-168. [PMID: 31721565 PMCID: PMC7034066 DOI: 10.1021/acs.analchem.9b04986] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jacob B. Nielsen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Robert L. Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Haifa M. Almughamsi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Chao Pang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Taylor R. Fish
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | - Adam T. Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| |
Collapse
|
32
|
Rashed MZ, Green NG, Williams SJ. Scaling law analysis of electrohydrodynamics and dielectrophoresis for isomotive dielectrophoresis microfluidic devices. Electrophoresis 2019; 41:148-155. [DOI: 10.1002/elps.201900311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/09/2019] [Accepted: 10/24/2019] [Indexed: 01/27/2023]
Affiliation(s)
| | - Nicolas G. Green
- Electronics and Computer Science University of Southampton Highfield Campus Southampton United Kingdom
| | | |
Collapse
|
33
|
Natu R, Islam M, Keck D, Martinez-Duarte R. Automated "pick and transfer" of targeted cells using dielectrophoresis. LAB ON A CHIP 2019; 19:2512-2525. [PMID: 31259984 DOI: 10.1039/c9lc00409b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Selective manipulation of single cells is an important step in sample preparation for biological analysis. A highly specific and automated device is desired for such an operation. An ideal device would be able to selectively pick several single cells in parallel from a heterogeneous population and transfer those to designated sites for further analysis without human intervention. The robotic manipulator developed here provides the basis for development of such a device. The device in this work is designed to selectively pick cells based on their inherent properties using dielectrophoresis (DEP) and automatically transfer and release those at a transfer site. Here we provide proof of concept of such a device and study the effect of different parameters on its operation. Successful experiments were conducted to separate Candida cells from a mixture with 10 μm latex particles and a viability assay was performed for separation of viable rat adipose stem cells (RASCs) from non-viable ones. The robotic DEP device was further used to pick and transfer single RASCs. This work also discusses the advantages and disadvantages of our current setup and illustrates the future steps required to improve the performance of this robotic DEP technology.
Collapse
Affiliation(s)
- Rucha Natu
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| | - Monsur Islam
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA. and Karlsruhe Institute of Technology, Institute of Microstructure Technology, Hermann-von-Helmholtz-Platz 1 76344, Eggenstein-Leopoldshafen, Germany
| | - Devin Keck
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, SC 29634, USA.
| |
Collapse
|
34
|
Keim K, Rashed MZ, Kilchenmann SC, Delattre A, Gonçalves AF, Éry P, Guiducci C. On-chip technology for single-cell arraying, electrorotation-based analysis and selective release. Electrophoresis 2019; 40:1830-1838. [PMID: 31111973 PMCID: PMC6771916 DOI: 10.1002/elps.201900097] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 01/14/2023]
Abstract
This paper reports a method for label-free single-cell biophysical analysis of multiple cells trapped in suspension by electrokinetic forces. Tri-dimensional pillar electrodes arranged along the width of a microfluidic chamber define actuators for single cell trapping and selective release by electrokinetic force. Moreover, a rotation can be induced on the cell in combination with a negative DEP force to retain the cell against the flow. The measurement of the rotation speed of the cell as a function of the electric field frequency define an electrorotation spectrum that allows to study the dielectric properties of the cell. The system presented here shows for the first time the simultaneous electrorotation analysis of multiple single cells in separate micro cages that can be selectively addressed to trap and/or release the cells. Chips with 39 micro-actuators of different interelectrode distance were fabricated to study cells with different sizes. The extracted dielectric properties of Henrietta Lacks, human embryonic kidney 293, and human immortalized T lymphocytes cells were found in agreements with previous findings. Moreover, the membrane capacitance of M17 neuroblastoma cells was investigated and found to fall in in the range of 7.49 ± 0.39 mF/m2 .
Collapse
Affiliation(s)
- Kevin Keim
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Mohamed Z. Rashed
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Samuel C. Kilchenmann
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Aurélien Delattre
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - António F. Gonçalves
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Paul Éry
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Carlotta Guiducci
- Laboratory of Life Sciences ElectronicsÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
35
|
Pudasaini S, Perera ATK, Das D, Ng SH, Yang C. Continuous flow microfluidic cell inactivation with the use of insulating micropillars for multiple electroporation zones. Electrophoresis 2019; 40:2522-2529. [DOI: 10.1002/elps.201900150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Sanam Pudasaini
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| | - A T K Perera
- Interdisciplinary Graduate SchoolNanyang Technological University Singapore
| | - Dhiman Das
- School of Chemical and Biomedical EngineeringNanyang Technological University Singapore
| | - Sum Huan Ng
- Singapore Institute of Manufacturing Technology (SIMTech) Singapore
| | - Chun Yang
- School of Mechanical and Aerospace EngineeringNanyang Technological University Singapore
| |
Collapse
|
36
|
Sonker M, Kim D, Egatz-Gomez A, Ros A. Separation Phenomena in Tailored Micro- and Nanofluidic Environments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:475-500. [PMID: 30699038 DOI: 10.1146/annurev-anchem-061417-125758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Separations of bioanalytes require robust, effective, and selective migration phenomena. However, due to the complexity of biological matrices such as body fluids or tissue, these requirements are difficult to achieve. The separations field is thus constantly evolving to develop suitable methods to separate biomarkers and fractionate biospecimens for further interrogation of biomolecular content. Advances in the field of microfabrication allow the tailored generation of micro- and nanofluidic environments. These can be exploited to induce interactions and dynamics of biological species with the corresponding geometrical features, which in turn can be capitalized for novel separation approaches. This review provides an overview of several unique separation applications demonstrated in recent years in tailored micro- and nanofluidic environments. These include electrokinetic methods such as dielectrophoresis and electrophoresis, but also rather nonintuitive ratchet separation mechanisms, continuous flow separations, and fractionations such as deterministic lateral displacement, as well as methods employing entropic forces for separation.
Collapse
Affiliation(s)
- Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Ana Egatz-Gomez
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA;
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
37
|
Hanson C, Barney JT, Bishop MM, Vargis E. Simultaneous isolation and label‐free identification of bacteria using contactless dielectrophoresis and Raman spectroscopy. Electrophoresis 2019; 40:1446-1456. [DOI: 10.1002/elps.201800389] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Cynthia Hanson
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Jacob T. Barney
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Morgan M. Bishop
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| | - Elizabeth Vargis
- Utah State UniversityDepartment of Biological Engineering Logan UT USA
| |
Collapse
|
38
|
Gallo-Villanueva RC, Perez-Gonzalez VH, Cardenas-Benitez B, Jind B, Martinez-Chapa SO, Lapizco-Encinas BH. Joule heating effects in optimized insulator-based dielectrophoretic devices: An interplay between post geometry and temperature rise. Electrophoresis 2019; 40:1408-1416. [PMID: 30883810 DOI: 10.1002/elps.201800490] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 01/25/2023]
Abstract
Insulator-based dielectrophoresis (iDEP) is the electrokinetic migration of polarized particles when subjected to a non-uniform electric field generated by the inclusion of insulating structures between two remote electrodes. Electrode spacing is considerable in iDEP systems when compared to electrode-based DEP systems, therefore, iDEP systems require high voltages to achieve efficient particle manipulation. A consequence of this is the temperature increase within the channel due to Joule heating effects, which, in some cases, can be detrimental when manipulating biological samples. This work presents an experimental and modeling study on the increase in temperature inside iDEP devices. For this, we studied seven distinct channel designs that mainly differ from each other in their post array characteristics: post shape, post size and spacing between posts. Experimental results obtained using a custom-built copper Resistance Temperature Detector, based on resistance changes, show that the influence of the insulators produces a difference in temperature rise of approximately 4°C between the designs studied. Furthermore, a 3D COMSOL model is also introduced to evaluate heat generation and dissipation, which is in good agreement with the experiments. The model allowed relating the difference in average temperature for the geometries under study to the electric resistance posed by the post array in each design.
Collapse
Affiliation(s)
- Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Braulio Cardenas-Benitez
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Binny Jind
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Sergio O Martinez-Chapa
- School of Engineering and Sciences, Nano- Sensors and Devices Research Group, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | | |
Collapse
|
39
|
Natu R, Islam M, Martinez-Duarte R. Nondimensional Streaming Dielectrophoresis Number for a System of Continuous Particle Separation. Anal Chem 2019; 91:4357-4367. [PMID: 30827100 DOI: 10.1021/acs.analchem.8b04599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cell sorting methods are required in numerous healthcare assays. Although flow cytometry and magnetically actuated sorting are widespread techniques for cell sorting, there is intense research on label-free techniques to reduce the cost and complexity of the process. Among label-free techniques, dielectrophoresis (DEP) offers the capability to separate cells not only on the basis of size but also on their membrane capacitance. This is important because it enables cell discrimination on the basis of specific traits such as viability, identity, fate, and age. StreamingDEP refers to the continuous sorting of cells thanks to the generation of streams of targeted particles by equilibrating the drag and DEP forces acting on targeted particles. In this work, we provide an analytical expression for a streamingDEP number toward enabling the a priori design of DEP devices to agglomerate targeted particles into streams. The nondimensional streamingDEP number (SDN) obtained in this analysis is applied to experiments with 1 μm polystyrene particles and Candida cells. On the basis of these experiments, three characteristic zones are mapped to different values of the SDN: (1) physical capture thanks to DEP for 0 < SDN < 0.6; (2) streaming due to DEP for 0.6 < SDN < 1; (3) elution without experiencing DEP for SDN > 1.
Collapse
Affiliation(s)
- Rucha Natu
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Monsur Islam
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| |
Collapse
|
40
|
Yin D, Zhang X, Han X, Yang J, Hu N. Multi-Stage Particle Separation based on Microstructure Filtration and Dielectrophoresis. MICROMACHINES 2019; 10:mi10020103. [PMID: 30708953 PMCID: PMC6412275 DOI: 10.3390/mi10020103] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 11/16/2022]
Abstract
Particle separation is important in chemical and biomedical analysis. Among all particle separation approaches, microstructure filtration which based particles size difference has turned into one of the most commonly methods. By controlling the movement of particles, dielectrophoresis has also been widely adopted in particle separation. This work presents a microfluidic device which combines the advantages of microfilters and dielectrophoresis to separate micro-particles and cells. A three-dimensional (3D) model was developed to calculate the distributions of the electric field gradient at the two filter stages. Polystyrene particles with three different sizes were separated by micropillar array structure by applying a 35-Vpp AC voltage at 10 KHz. The blocked particles were pushed off the filters under the negative dielectrophoretic force and drag force. A mixture of Haematococcus pluvialis cells and Bracteacoccus engadinensis cells with different sizes were also successfully separated by this device, which proved that the device can separate both biological samples and polystyrene particles.
Collapse
Affiliation(s)
- Danfen Yin
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Xianwei Han
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
41
|
S Iliescu F, Sim WJ, Heidari H, P Poenar D, Miao J, Taylor HK, Iliescu C. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells. Electrophoresis 2019; 40:1457-1477. [PMID: 30676660 DOI: 10.1002/elps.201800446] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/14/2022]
Abstract
Circulating tumor cells (CTCs) play an essential role in the metastasis of tumors, and thus can serve as a valuable prognostic factor for malignant diseases. As a result, the ability to isolate and characterize CTCs is essential. This review underlines the potential of dielectrophoresis for CTCs enrichment. It begins by summarizing the key performance parameters and challenges of CTCs isolation using microfluidics. The two main categories of CTCs enrichment-affinity-based and label-free methods-are analysed, emphasising the advantages and disadvantages of each as well as their clinical potential. While the main argument in favour of affinity-based methods is the strong specificity of CTCs isolation, the major advantage of the label-free technologies is in preserving the integrity of the cellular membrane, an essential requirement for downstream characterization. Moving forward, we try to answer the main question: "What makes dielectrophoresis a method of choice in CTCs isolation?" The uniqueness of dielectrophoretic CTCs enrichment resides in coupling the specificity of the isolation process with the conservation of the membrane surface. The specificity of the dielectrophoretic method stems from the differences in the dielectric properties between CTCs and other cells in the blood: the capacitances of the malignantly transformed cellular membranes of CTCs differ from those of other cells. Examples of dielectrophoretic devices are described and their performance evaluated. Critical requirements for using dielectrophoresis to isolate CTCs are highlighted. Finally, we consider that DEP has the potential of becoming a cytometric method for large-scale sorting and characterization of cells.
Collapse
Affiliation(s)
| | - Wen Jing Sim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore
| | - Hossein Heidari
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Daniel P Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, Nanyang Technological University, Singapore
| | - Jianmin Miao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Hayden K Taylor
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research & Technology (BIGHEART), National University of Singapore, Singapore
| |
Collapse
|
42
|
Shabaniverki S, Thorud S, Juárez JJ. Vibrationally directed assembly of micro- and nanoparticle-polymer composites. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.06.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Affiliation(s)
- Daihyun Kim
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
44
|
Pencil Lead as a Material for Microfluidic 3D-Electrode Assemblies. SENSORS 2018; 18:s18114037. [PMID: 30463263 PMCID: PMC6264025 DOI: 10.3390/s18114037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 01/09/2023]
Abstract
We present an electrochemical, microfluidic system with a working electrode based on an ordered 3D array of pencil leads. The electrode array was integrated into a plexiglass/PDMS channel. We tested the setup using a simple redox probe and compared the results with computer simulations. As a proof of concept application of the device we showed that the setup can be used for determination of dopamine concentration in physiological pH and ultrasensitive, although only qualitative, detection of p-nitrophenol with a limit of detection below 1 nmol L−1. The observed limit of detection for p-nitrophenol is not only much lower than achieved with similar methods but also sufficient for evaluation of exposure to pesticides such as methyl parathion through urinalysis. This low cost setup can be fabricated without the need for clean room facilities and in the future, due to the ordered structure of the electrode could be used to better understand the process of electroanalysis and electrode functionalization. To the best of our knowledge it is the first application of pencil leads as 3D electrochemical sensor in a microfluidic channel.
Collapse
|
45
|
Liu L, Chen K, Xiang N, Ni Z. Dielectrophoretic manipulation of nanomaterials: A review. Electrophoresis 2018; 40:873-889. [DOI: 10.1002/elps.201800342] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Linbo Liu
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Ke Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments; Southeast University; Nanjing P. R. China
| |
Collapse
|
46
|
Lapizco-Encinas BH. On the recent developments of insulator-based dielectrophoresis: A review. Electrophoresis 2018; 40:358-375. [PMID: 30112789 DOI: 10.1002/elps.201800285] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/26/2023]
Abstract
Insulator-based dielectrophoresis (iDEP), also known as electrodeless DEP, has become a well-known dielectrophoretic technique, no longer viewed as a new methodology. Significant advances on iDEP have been reported during the last 15 years. This review article aims to summarize some of the most important findings on iDEP organized by the type of dielectrophoretic mode: streaming and trapping iDEP. The former is primarily used for particle sorting, while the latter has great capability for particle enrichment. The characteristics of a wide array of devices are discussed for each type of dielectrophoretic mode in order to present an overview of the distinct designs and applications developed with iDEP. A short section on Joule heating effects and electrothermal flow is also included to highlight some of the challenges in the utilization of iDEP systems. The significant progress on iDEP illustrates its potential for a large number of applications, ranging from bioanalysis to clinical and biomedical assessments. The present article discusses the work on iDEP by numerous research groups around the world, with the aim of proving the reader with an overview of the state-of-the-art in iDEP microfluidic systems.
Collapse
|
47
|
Frusawa H. Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency. NANOSCALE RESEARCH LETTERS 2018; 13:169. [PMID: 29881976 PMCID: PMC5991112 DOI: 10.1186/s11671-018-2583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/24/2018] [Indexed: 05/25/2023]
Abstract
We have formulated the dielectrophoretic force exerted on micro/nanoparticles upon the application of frequency-modulated (FM) electric fields. By adjusting the frequency range of an FM wave to cover the crossover frequency f X in the real part of the Clausius-Mossotti factor, our theory predicts the reversal of the dielectrophoretic force each time the instantaneous frequency periodically traverses f X . In fact, we observed periodic U-turns of vesicles, leukemia cells, and red blood cells that undergo FM wave dielectrophoresis (FM-DEP). It is also suggested by our theory that the video tracking of the U-turns due to FM-DEP is available for the agile and accurate measurement of f X . The FM-DEP method requires a short duration, less than 30 s, while applying the FM wave to observe several U-turns, and the agility in measuring f X is of much use for not only salty cell suspensions but also nanoparticles because the electric-field-induced solvent flow is suppressed as much as possible. The accuracy of f X has been verified using two types of experiment. First, we measured the attractive force exerted on a single vesicle experiencing alternating-current dielectrophoresis (AC-DEP) at various frequencies of sinusoidal electric fields. The frequency dependence of the dielectrophoretic force yields f X as a characteristic frequency at which the force vanishes. Comparing the AC-DEP result of f X with that obtained from the FM-DEP method, both results of f X were found to coincide with each other. Second, we investigated the conductivity dependencies of f X for three kinds of cell by changing the surrounding electrolytes. From the experimental results, we evaluated simultaneously both of the cytoplasmic conductivities and the membrane capacitances using an elaborate theory on the single-shell model of biological cells. While the cytoplasmic conductivities, similar for these cells, were slightly lower than the range of previous reports, the membrane capacitances obtained were in good agreement with those previously reported in the literature.
Collapse
Affiliation(s)
- Hiroshi Frusawa
- School of Environmental Science & EngineeringKochi University of Technology, Tosa-Yamada, Kochi, 782-8502, Japan.
| |
Collapse
|
48
|
Abstract
We envision that electrodeformation of biological cells through dielectrophoresis as a new technique to elucidate the mechanistic details underlying membrane failure by electrical and mechanical stresses. Here we demonstrate the full control of cellular uniaxial deformation and tensile recovery in biological cells via amplitude-modified electric field at radio frequency by an interdigitated electrode array in microfluidics. Transient creep and cyclic experiments were performed on individually tracked human erythrocytes. Observations of the viscoelastic-to-viscoplastic deformation behavior and the localized plastic deformations in erythrocyte membranes suggest that electromechanical stress results in irreversible membrane failure. Examples of membrane failure can be separated into different groups according to the loading scenarios: mechanical stiffening, physical damage, morphological transformation from discocyte to echinocyte, and whole cell lysis. These results show that this technique can be potentially utilized to explore membrane failure in erythrocytes affected by other pathophysiological processes.
Collapse
Affiliation(s)
- E Du
- Correspondence: ; Tel.: +1-561-297-3441
| | | | | |
Collapse
|
49
|
|
50
|
Lewpiriyawong N, Xu G, Yang C. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads. Electrophoresis 2018; 39:878-886. [DOI: 10.1002/elps.201700395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 12/13/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Nuttawut Lewpiriyawong
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; Singapore
| | - Guolin Xu
- Institute of Bioengineering and Nanotechnology; Singapore
| | - Chun Yang
- School of Mechanical and Aerospace Engineering; Nanyang Technological University; Singapore
| |
Collapse
|