1
|
Galambos AR, Essmat N, Lakatos PP, Szücs E, Boldizsár I, Abbood SK, Karádi DÁ, Kirchlechner-Farkas JM, Király K, Benyhe S, Riba P, Tábi T, Harsing LG, Zádor F, Al-Khrasani M. Glycine Transporter 1 Inhibitors Minimize the Analgesic Tolerance to Morphine. Int J Mol Sci 2024; 25:11136. [PMID: 39456918 PMCID: PMC11508341 DOI: 10.3390/ijms252011136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Opioid analgesic tolerance (OAT), among other central side effects, limits opioids' indispensable clinical use for managing chronic pain. Therefore, there is an existing unmet medical need to prevent OAT. Extrasynaptic N-methyl D-aspartate receptors (NMDARs) containing GluN2B subunit blockers delay OAT, indicating the involvement of glutamate in OAT. Glycine acts as a co-agonist on NMDARs, and glycine transporters (GlyTs), particularly GlyT-1 inhibitors, could affect the NMDAR pathways related to OAT. Chronic subcutaneous treatments with morphine and NFPS, a GlyT-1 inhibitor, reduced morphine antinociceptive tolerance (MAT) in the rat tail-flick assay, a thermal pain model. In spinal tissues of rats treated with a morphine-NFPS combination, NFPS alone, or vehicle-comparable changes in µ-opioid receptor activation, protein and mRNA expressions were seen. Yet, no changes were observed in GluN2B mRNA levels. An increase was observed in glycine and glutamate contents of cerebrospinal fluids from animals treated with a morphine-NFPS combination and morphine, respectively. Finally, GlyT-1 inhibitors are likely to delay MAT by mechanisms relying on NMDARs functioning rather than an increase in opioid efficacy. This study, to the best of our knowledge, shows for the first time the impact of GlyT-1 inhibitors on MAT. Nevertheless, future studies are required to decipher the exact mechanisms.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Péter P. Lakatos
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Edina Szücs
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Judit Mária Kirchlechner-Farkas
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Sándor Benyhe
- HUN-REN Biological Research Centre, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Tamás Tábi
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1085 Budapest, Hungary; (A.R.G.); (N.E.); (I.B.J.); (S.K.A.); (D.Á.K.); (J.M.K.-F.); (K.K.); (P.R.); (L.G.H.J.)
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Üllői út 26., H-1085 Budapest, Hungary; (P.P.L.); (T.T.)
| |
Collapse
|
2
|
Essmat N, Galambos AR, Lakatos PP, Karádi DÁ, Mohammadzadeh A, Abbood SK, Geda O, Laufer R, Király K, Riba P, Zádori ZS, Szökő É, Tábi T, Al-Khrasani M. Pregabalin-Tolperisone Combination to Treat Neuropathic Pain: Improved Analgesia and Reduced Side Effects in Rats. Pharmaceuticals (Basel) 2023; 16:1115. [PMID: 37631030 PMCID: PMC10459435 DOI: 10.3390/ph16081115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
The current treatment of neuropathic pain (NP) is unsatisfactory; therefore, effective novel agents or combination-based analgesic therapies are needed. Herein, oral tolperisone, pregabalin, and duloxetine were tested for their antinociceptive effect against rat partial sciatic nerve ligation (pSNL)-induced tactile allodynia described by a decrease in the paw withdrawal threshold (PWT) measured by a dynamic plantar aesthesiometer. On day 7 after the operation, PWTs were assessed at 60, 120, and 180 min post-treatment. Chronic treatment was continued for 2 weeks, and again, PWTs were measured on day 14 and 21. None of the test compounds produced an acute antiallodynic effect. In contrast, after chronic treatment, tolperisone and pregabalin alleviated allodynia. In other experiments, on day 14, the acute antiallodynic effect of the tolperisone/pregabalin or duloxetine combination was measured. As a novel finding, a single dose of the tolperisone/pregabalin combination could remarkably alleviate allodynia acutely. It also restored the neuropathy-induced elevated CSF glutamate content. Furthermore, the combination is devoid of adverse effects related to motor and gastrointestinal transit functions. Tolperisone and pregabalin target voltage-gated sodium and calcium channels, respectively. The dual blockade effect of the combination might explain its advantageous acute analgesic effect in the present work.
Collapse
Affiliation(s)
- Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Péter P. Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Sarah Kadhim Abbood
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Rudolf Laufer
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (P.P.L.); (O.G.); (R.L.); (É.S.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary; (N.E.); (A.R.G.); (D.Á.K.); (A.M.); (S.K.A.); (K.K.); (P.R.); (Z.S.Z.)
| |
Collapse
|
3
|
Karádi DÁ, Galambos AR, Lakatos PP, Apenberg J, Abbood SK, Balogh M, Király K, Riba P, Essmat N, Szűcs E, Benyhe S, Varga ZV, Szökő É, Tábi T, Al-Khrasani M. Telmisartan Is a Promising Agent for Managing Neuropathic Pain and Delaying Opioid Analgesic Tolerance in Rats. Int J Mol Sci 2023; 24:7970. [PMID: 37175678 PMCID: PMC10178315 DOI: 10.3390/ijms24097970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the large arsenal of analgesic medications, neuropathic pain (NP) management is not solved yet. Angiotensin II receptor type 1 (AT1) has been identified as a potential target in NP therapy. Here, we investigate the antiallodynic effect of AT1 blockers telmisartan and losartan, and particularly their combination with morphine on rat mononeuropathic pain following acute or chronic oral administration. The impact of telmisartan on morphine analgesic tolerance was also assessed using the rat tail-flick assay. Morphine potency and efficacy in spinal cord samples of treated neuropathic animals were assessed by [35S]GTPγS-binding assay. Finally, the glutamate content of the cerebrospinal fluid (CSF) was measured by capillary electrophoresis. Oral telmisartan or losartan in higher doses showed an acute antiallodynic effect. In the chronic treatment study, the combination of subanalgesic doses of telmisartan and morphine ameliorated allodynia and resulted in a leftward shift in the dose-response curve of morphine in the [35S]GTPγS binding assay and increased CSF glutamate content. Telmisartan delayed morphine analgesic-tolerance development. Our study has identified a promising combination therapy composed of telmisartan and morphine for NP and opioid tolerance. Since telmisartan is an inhibitor of AT1 and activator of PPAR-γ, future studies are needed to analyze the effect of each component.
Collapse
Affiliation(s)
- David Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Péter P. Lakatos
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Joost Apenberg
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Sarah K. Abbood
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
- Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, University of Groningen, 9700 AD Groningen, The Netherlands
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Edina Szűcs
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Sándor Benyhe
- Biological Research Center, Institute of Biochemistry, Temesvári krt. 62, H-6726 Szeged, Hungary; (E.S.); (S.B.)
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (P.P.L.); (É.S.); (T.T.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (D.Á.K.); (A.R.G.); (J.A.); (S.K.A.); (M.B.); (K.K.); (P.R.); (N.E.); (Z.V.V.)
| |
Collapse
|
4
|
Lakatos PP, Karádi DÁ, Galambos AR, Essmat N, Király K, Laufer R, Geda O, Zádori ZS, Tábi T, Al-Khrasani M, Szökő É. The Acute Antiallodynic Effect of Tolperisone in Rat Neuropathic Pain and Evaluation of Its Mechanism of Action. Int J Mol Sci 2022; 23:ijms23179564. [PMID: 36076962 PMCID: PMC9455595 DOI: 10.3390/ijms23179564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Current treatment approaches to manage neuropathic pain have a slow onset and their use is largely hampered by side-effects, thus there is a significant need for finding new medications. Tolperisone, a centrally acting muscle relaxant with a favorable side effect profile, has been reported to affect ion channels, which are targets for current first-line medications in neuropathic pain. Our aim was to explore its antinociceptive potency in rats developing neuropathic pain evoked by partial sciatic nerve ligation and the mechanisms involved. Acute oral tolperisone restores both the decreased paw pressure threshold and the elevated glutamate level in cerebrospinal fluid in neuropathic rats. These effects were comparable to those of pregabalin, a first-line medication in neuropathy. Tolperisone also inhibits release of glutamate from rat brain synaptosomes primarily by blockade of voltage-dependent sodium channels, although inhibition of calcium channels may also be involved at higher concentrations. However, pregabalin fails to affect glutamate release under our present conditions, indicating a different mechanism of action. These results lay the foundation of the avenue for repurposing tolperisone as an analgesic drug to relieve neuropathic pain.
Collapse
Affiliation(s)
- Péter P. Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Dávid Árpád Karádi
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Nariman Essmat
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Kornél Király
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Rudolf Laufer
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Orsolya Geda
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
- Correspondence: (T.T.); (M.A.-K.); Tel.: +36-1-2104-411 (T.T.); +36-1-2104-416 (M.A.-K.)
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, H-1089 Budapest, Hungary
| |
Collapse
|
5
|
Qian X, Nie L, Dai Z, Ma S. Determination of Free Amino Acids in Banlangen Granule and its Fractions by Solid Phase Extraction Combined with Ion-pair Hig-h Perfor mance Liquid Chromatography using a Corona-charged Aerosol Detector (SPE-HPLC-CAD). CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200526120449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Banlangen granules are broad-spectrum effective antiviral drugs, and have a
large clinical demand in China. Free amino acid is one of the main antiviral active ingredients of Banlangen
granules. The pre-processing of samples by the existing pre-column derivatization reversed-
HPLC method is complicated. Therefore, the determination of free amino acids (AAs) by underivatized
ion-pair HPLC-CAD is advantageous for simplifying the preparation process and improving sensitivity.
Objective:
To better optimize AAs analysis methods, here a sensitive SPE-HPLC-CAD method with a
better resolution was established for the determination of underivatized AAs in Banlangen Granule for
the first time.
Method:
The analytes were separated only by HPLC using a Hypercarb column with gradient elution of solvent A (20
mM nonafluorovaleric Acid in water) and solvent B (0.3% trifluoroacetic acid in acetonitrile-0.3% trifluoroacetic acid
in water (1:9, v/v)) at a flow rate of 0.15 mL/min. N2 gas pressure and evaporation temperature of CAD were held at a
constant 58.6 psi and 60 ℃, respectively.
Results:
This method was linear over the respective concentration range of six amino acids. The precision, accuracy,
stability and recovery were satisfactory in all samples examined. And the method was successfully applied to
determination of free amino acids in Banlangen granules and its fractions. The total contents of six amino acids in 28
batches of Banlangen Granule were between 1.36 mg/g-11.62 mg/g.
Conclusion:
The proposed method could be a simple, accurate and sensitive alternative approach for the determination
of free AAs in Banlangen Granule.
Collapse
Affiliation(s)
- Xiuyu Qian
- Institute of Traditional Chinese Medicine, National Institutes for Food and Drug Control, Beijing 100050,China
| | - Lixing Nie
- Institute of Traditional Chinese Medicine, National Institutes for Food and Drug Control, Beijing 100050,China
| | - Zhong Dai
- Institute of Traditional Chinese Medicine, National Institutes for Food and Drug Control, Beijing 100050,China
| | - Shuangcheng Ma
- Institute of Traditional Chinese Medicine, National Institutes for Food and Drug Control, Beijing 100050,China
| |
Collapse
|
6
|
Pharmacological Evidence on Augmented Antiallodynia Following Systemic Co-Treatment with GlyT-1 and GlyT-2 Inhibitors in Rat Neuropathic Pain Model. Int J Mol Sci 2021; 22:ijms22052479. [PMID: 33804568 PMCID: PMC7957511 DOI: 10.3390/ijms22052479] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The limited effect of current medications on neuropathic pain (NP) has initiated large efforts to develop effective treatments. Animal studies showed that glycine transporter (GlyT) inhibitors are promising analgesics in NP, though concerns regarding adverse effects were raised. We aimed to study NFPS and Org-25543, GlyT-1 and GlyT-2 inhibitors, respectively and their combination in rat mononeuropathic pain evoked by partial sciatic nerve ligation. Cerebrospinal fluid (CSF) glycine content was also determined by capillary electrophoresis. Subcutaneous (s.c.) 4 mg/kg NFPS or Org-25543 showed analgesia following acute administration (30-60 min). Small doses of each compound failed to produce antiallodynia up to 180 min after the acute administration. However, NFPS (1 mg/kg) produced antiallodynia after four days of treatment. Co-treatment with subanalgesic doses of NFPS (1 mg/kg) and Org-25543 (2 mg/kg) produced analgesia at 60 min and thereafter meanwhile increased significantly the CSF glycine content. This combination alleviated NP without affecting motor function. Test compounds failed to activate G-proteins in spinal cord. To the best of our knowledge for the first time we demonstrated augmented analgesia by combining GlyT-1 and 2 inhibitors. Increased CSF glycine content supports involvement of glycinergic system. Combining selective GlyT inhibitors or developing non-selective GlyT inhibitors might have therapeutic value in NP.
Collapse
|
7
|
Xu W, Zhong C, Zou C, Wang B, Zhang N. Analytical methods for amino acid determination in organisms. Amino Acids 2020; 52:1071-1088. [PMID: 32857227 DOI: 10.1007/s00726-020-02884-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Amino acids are important metabolites for tissue metabolism, growth, maintenance, and repair, which are basic life necessities. Therefore, summarizing analytical methods for amino acid determination in organisms is important. In the past decades, analytical methods for amino acids have developed rapidly but have not been fully explored. Thus, this article provides reference to analytical methods for amino acids in organisms for food and human research. Present amino acid analysis methods include thin-layer chromatography, high-performance liquid chromatography, liquid chromatography-mass spectrometer, gas chromatography-mass spectrometry, capillary electrophoresis, nuclear magnetic resonance, and amino acid analyzer analysis.
Collapse
Affiliation(s)
- Weihua Xu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Anhui, 230013, China
| | - Congcong Zhong
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China
| | - Chunpu Zou
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bing Wang
- State Key Laboratory of Drug Research and Center for Pharmaceutics Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Hai-ke Rd, Shanghai, 201203, China.
| | - Ning Zhang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, 1200 Cai-lun Rd, Shanghai, 201203, China.
| |
Collapse
|
8
|
Characterization of a Cell Line Model for d-Serine Uptake. J Pharm Biomed Anal 2020; 187:113360. [PMID: 32447235 DOI: 10.1016/j.jpba.2020.113360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
d-Serine is an important co-agonist of the N-methyl-d-aspartate (NMDA) receptors in the brain and its altered activity was identified in various pathological conditions. Modification of the extracellular d-serine level is suggested to be able to modulate the receptor function. Its transporters may thus serve as potential drug targets. The aim of this work was to find an easily available human cell line model appropriate for screening molecules affecting d-serine transporters. Characteristics of d-serine transport into SH-SY5Y human neuroblastoma cell line were studied and compared to those in cultured primary astrocytes. Uptake was followed by measuring intracellular d-serine concentration by capillary electrophoresis with laser induced fluorescence detection method. We found that SH-SY5Y cells express functional ASCT-1 and ASCT-2 neutral amino acid transporters and show similar d-serine uptake kinetics to cultured astrocytes. Neutral amino acids inhibited d-serine uptake similarly in both cell types. Complete inhibition was achieved by l-alanine and l-threonine alike, while the two-step inhibition curve of trans-hydroxy-l-proline, a selective inhibitor of ASCT-1 supported the presence of functioning ASCT-1 and ASCT-2 transporters. Its higher affinity step corresponding to inhibition of ASCT-1 was responsible for about 30% of the total d-serine uptake. Based on our results human SH-SY5Y cell line shows similar uptake characteristics to primary astrocytes and thus can serve as a suitable model system for testing of compounds for influencing d-serine uptake into astrocytes.
Collapse
|
9
|
Gu SX, Wang HF, Zhu YY, Chen FE. Natural Occurrence, Biological Functions, and Analysis of D-Amino Acids. PHARMACEUTICAL FRONTS 2020. [DOI: 10.1055/s-0040-1713820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractThis review covers the recent development on the natural occurrence, functional elucidations, and analysis of amino acids of the D (dextro) configuration. In the pharmaceutical field, amino acids are not only used directly as clinical drugs and nutriments, but also widely applied as starting materials, catalysts, or chiral ligands for the synthesis of active pharmaceutical ingredients. Earler belief hold that only L-amino acids exist in nature and D-amino acids were artificial products. However, increasing evidence indicates that D-amino acids are naturally occurring in living organisms including human beings, plants, and microorganisms, playing important roles in biological processes. While D-amino acids have similar physical and chemical characteristics with their respective L-enantiomers in an achiral measurement, the biological functions of D-amino acids are remarkably different from those of L-ones. With the rapid development of chiral analytical techniques for D-amino acids, studies on the existence, formation mechanisms, biological functions as well as relevant physiology and pathology of D-amino acids have achieved great progress; however, they are far from being sufficiently explored.
Collapse
Affiliation(s)
- Shuang-Xi Gu
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Hai-Feng Wang
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Yuan-Yuan Zhu
- School of Chemistry & Environmental Engineering, Wuhan Institute of Technology, Wuhan, People's Republic of China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan, People's Republic of China
- Department of Chemistry, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Single isomer cyclodextrins as chiral selectors in capillary electrophoresis. J Chromatogr A 2020; 1627:461375. [PMID: 32823120 DOI: 10.1016/j.chroma.2020.461375] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/23/2022]
Abstract
Since decades, cyclodextrins are one of the most powerful selectors in chiral capillary electrophoresis for the enantioseparation of diverse organic compounds. This review concerns papers published over the last decade (from 2009 until nowadays), dealing with the capillary electrophoretic application of single isomer cyclodextrin derivatives in chiral separations. Following a brief overview of their synthetic approaches, the inventory of the neutral, negatively and positively charged (including both permanently ionic and pH-tunable ionizable substituents) and zwitterionic CD derivatives is presented, with insights to underlying structural aspects by NMR spectroscopy and molecular modeling. CE represents an ideal tool to study the weak, non-covalent supramolecular interactions. The published methods are reviewed in the light of enantioselectivity, enantiomer migration order and the fine-tuning of enantiodiscrimination by the substitution pattern of the single entity selector molecules, which is hardly possible for their randomly substituted counterparts. All the reviewed publications herein support that cyclodextrin-based chiral capillary electrophoresis seems to remain a popular choice in pharmaceutical and biomedical analysis.
Collapse
|
11
|
Lakatos PP, Vincze I, Nyariki N, Bagaméry F, Tábi T, Szökő É. The effect of L-theanine and S-ketamine on d-serine cellular uptake. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140473. [PMID: 32574765 DOI: 10.1016/j.bbapap.2020.140473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 06/13/2020] [Indexed: 11/30/2022]
Abstract
Decreased extracellular level of d-Serine (D-Ser), a co-agonist of the N-methyl-d-aspartate (NMDA) receptors was connected to receptor hypofunction in the brain and the related deficit of cognitive functions. Extracellular D-Ser concentration is modulated by ASCT neutral amino acid transporters. L-Theanine (L-Tea), a neutral amino acid component of green tea was reported to improve cognitive functions. We thus intended to investigate the possible inhibitory effect of L-Tea on the D-Ser uptake of SH-SY5Y neuroblastoma cells, which was previously found as a good model of D-Ser transport into astrocytes. Cells were incubated with D-Ser and various concentrations of L-Tea or the reference compound S-ketamine (S-Ket). The effect on the uptake was assessed by measuring the intracellular D-Ser concentration using a capillary electrophoresis - laser induced fluorescence detection method. L-Tea competitively inhibited D-Ser uptake into SH-SY5Y cells with an IC50 value of 9.68 mM. Having previously described as an inhibitor of ASCT-2 transporter, S-Ket was intended to be used as a positive control. However, no acute inhibition of D-Ser transport by S-Ket was observed. Its long-term effect on the transport was also examined. No significant difference in D-Ser uptake in control and S-Ket-treated cells was found after 72 h treatment, although the intracellular D-Ser content of the 50 μM S-Ket pre-treated cells was significantly higher. L-Tea was found to be a weak competitive inhibitor of the ASCT transporters, while S-Ket did not directly affect D-Ser uptake or modify the uptake kinetics after a long-term incubation period.
Collapse
Affiliation(s)
- Péter P Lakatos
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - István Vincze
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Noel Nyariki
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, 4 Nagyvárad tér, Budapest H-1089, Hungary.
| |
Collapse
|
12
|
Kumar R, Ghosh M, Kumar S, Prasad M. Single Cell Metabolomics: A Future Tool to Unmask Cellular Heterogeneity and Virus-Host Interaction in Context of Emerging Viral Diseases. Front Microbiol 2020; 11:1152. [PMID: 32582094 PMCID: PMC7286130 DOI: 10.3389/fmicb.2020.01152] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
Viral emergence is an unpredictable but obvious event, particularly in the era of climate change and globalization. Efficient management of viral outbreaks depends on pre-existing knowledge and alertness. The potential hotspots of viral emergence often remain neglected and the information related to them is insufficient, particularly for emerging viruses. Viral replication and transmission rely upon usurping the host metabolic machineries. So altered host metabolic pathways can be exploited for containment of these viruses. Metabolomics provides the insight for tracing out such checkpoints. Consequently introspection of metabolic alteration at virus-host interface has evolved as prime area in current virology research. Chromatographic separation followed by mass spectrometry has been used as the predominant analytical platform in bulk of the analyses followed by nuclear magnetic resonance (NMR) and fluorescence based techniques. Although valuable information regarding viral replication and modulation of host metabolic pathways have been extracted but ambiguity often superseded the real events due to population effect over the infected cells. Exploration of cellular heterogeneity and differentiation of infected cells from the nearby healthy ones has become essential. Single cell metabolomics (SCM) emerges as necessity to explore such minute details. Mass spectrometry imaging (MSI) coupled with several soft ionization techniques such as electrospray ionization (ESI), laser ablation electrospray ionization (LAESI), matrix assisted laser desorption/ionization (MALDI), matrix-free laser desorption ionization (LDI) have evolved as the best suited platforms for SCM analyses. The potential of SCM has already been exploited to resolve several biological conundrums. Thus SCM is knocking at the door of virus-host interface.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur, India
| | - Sandeep Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Minakshi Prasad
- Department of Animal Biotechnology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| |
Collapse
|
13
|
Fanali S, Chankvetadze B. Some thoughts about enantioseparations in capillary electrophoresis. Electrophoresis 2019; 40:2420-2437. [PMID: 31081552 DOI: 10.1002/elps.201900144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/20/2022]
Abstract
In this overview the goal of the authors was to analyze from the historical perspective the reasons of success and failure of chiral capillary electrophoresis. In addition, the current trends are analyzed, unique advantages of capillary electrophoresis are highlighted and some future directions are discussed.
Collapse
Affiliation(s)
- Salvatore Fanali
- School in Natural Science and Engineering, University of Verona, Verona, Italy
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| |
Collapse
|
14
|
Advances in capillary electrophoresis for the life sciences. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1118-1119:116-136. [PMID: 31035134 DOI: 10.1016/j.jchromb.2019.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/19/2022]
Abstract
Capillary electrophoresis (CE) played an important role in developments in the life sciences. The technique is nowadays used for the analysis of both large and small molecules in applications where it performs better than or is complementary to liquid chromatographic techniques. In this review, principles of different electromigration techniques, especially capillary isoelectric focusing (CIEF), capillary gel (CGE) and capillary zone electrophoresis (CZE), are described and recent developments in instrumentation, with an emphasis on mass spectrometry (MS) coupling and microchip CE, are discussed. The role of CE in the life sciences is shown with applications in which it had a high impact over the past few decades. In this context, current practice for the characterization of biopharmaceuticals (therapeutic proteins) is shown with CIEF, CGE and CZE using different detection techniques, including MS. Subsequently, the application of CGE and CZE, in combination with laser induced fluorescence detection and CZE-MS are demonstrated for the analysis of protein-released glycans in the characterization of biopharmaceuticals and glycan biomarker discovery in biological samples. Special attention is paid to developments in capillary coatings and derivatization strategies for glycans. Finally, routine CE analysis in clinical chemistry and latest developments in metabolomics approaches for the profiling of small molecules in biological samples are discussed. The large number of CE applications published for these topics in recent years clearly demonstrates the established role of CE in life sciences.
Collapse
|
15
|
Moldovan RC, Bodoki E, Servais AC, Chankvetadze B, Crommen J, Oprean R, Fillet M. Capillary electrophoresis-mass spectrometry of derivatized amino acids for targeted neurometabolomics - pH mediated reversal of diastereomer migration order. J Chromatogr A 2018; 1564:199-206. [PMID: 29910088 DOI: 10.1016/j.chroma.2018.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 01/08/2023]
Abstract
A targeted CE-MS approach was developed for the chiral analysis of biologically relevant amino acids in artificial cerebrospinal fluid (aCSF). In order to achieve chiral resolution, the five amino acids (Ser, Asn, Asp, Gln and Glu) were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate ((+)-FLEC). The diastereoselectivity was found to be highly dependent on pH for all analytes and the optimized background electrolyte (BGE) consisted of 150 mM acetic acid, adjusted to pH 3.7 with NH4OH. Furthermore, a reversal of the migration order of Asp derivatives was observed. This phenomenon seems to be caused by intra-molecular interactions affecting the pKa of the second ionizable group (the side chain carboxyl). The applicability of this method was evaluated using aCSF. A solid phase extraction (SPE) protocol was developed for the selective extraction of the FLEC derivatives. A full evaluation of the matrix effect and extraction yield was performed concluding that the matrix effect is marginal and the recoveries are between 46 and 92%. The method offers adequate sensitivity (limits of detection below 1 μM).
Collapse
Affiliation(s)
- Radu-Cristian Moldovan
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium; Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Ede Bodoki
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, Tbilisi, Georgia
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry and Instrumental Analysis, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy Cluj-Napoca, 4 Louis Pasteur street, 400349, Cluj-Napoca, Romania
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Department of Pharmacy, Faculty of Medicine, CIRM, University of Liege, Avenue Hippocrate 15, B36, +3, Tower 4, 4000, Liege, Belgium.
| |
Collapse
|
16
|
Enantioselective determination of aspartate and glutamate in biological samples by ultrasonic-assisted derivatization coupled with capillary electrophoresis and linked to Alzheimer’s disease progression. J Chromatogr A 2018; 1550:68-74. [DOI: 10.1016/j.chroma.2018.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
|
17
|
Szilágyi B, Kovács P, Ferenczy GG, Rácz A, Németh K, Visy J, Szabó P, Ilas J, Balogh GT, Monostory K, Vincze I, Tábi T, Szökő É, Keserű GM. Discovery of isatin and 1H-indazol-3-ol derivatives as d-amino acid oxidase (DAAO) inhibitors. Bioorg Med Chem 2018; 26:1579-1587. [DOI: 10.1016/j.bmc.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/27/2018] [Accepted: 02/03/2018] [Indexed: 01/23/2023]
|
18
|
Abstract
Metabolomics, the characterization of metabolites and their changes within biological systems, has seen great technological and methodological progress over the past decade. Most metabolomic experiments involve the characterization of the small-molecule content of fluids or tissue homogenates. While these microliter and larger volume metabolomic measurements can characterize hundreds to thousands of compounds, the coverage of molecular content decreases as sample sizes are reduced to the nanoliter and even to the picoliter volume range. Recent progress has enabled the ability to characterize the major molecules found within specific individual cells. Especially within the brain, a myriad of cell types are colocalized, and oftentimes only a subset of these cells undergo changes in both healthy and pathological states. Here we highlight recent progress in mass spectrometry-based approaches used for single cell metabolomics, emphasizing their application to neuroscience research. Single cell studies can be directed to measuring differences between members of populations of similar cells (e.g., oligodendrocytes), as well as characterizing differences between cell types (e.g., neurons and astrocytes), and are especially useful for measuring changes occurring during different behavior states, exposure to diets and drugs, neuronal activity, and disease. When combined with other omics approaches such as transcriptomics, and with morphological and physiological measurements, single cell metabolomics aids fundamental neurochemical studies, has great potential in pharmaceutical development, and should improve the diagnosis and treatment of brain diseases.
Collapse
Affiliation(s)
- Meng Qi
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Marina C Philip
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Ning Yang
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
19
|
Fontanarosa C, Pane F, Sepe N, Pinto G, Trifuoggi M, Squillace M, Errico F, Usiello A, Pucci P, Amoresano A. Quantitative determination of free D-Asp, L-Asp and N-methyl-D-aspartate in mouse brain tissues by chiral separation and Multiple Reaction Monitoring tandem mass spectrometry. PLoS One 2017; 12:e0179748. [PMID: 28662080 PMCID: PMC5491048 DOI: 10.1371/journal.pone.0179748] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/02/2017] [Indexed: 02/02/2023] Open
Abstract
Several studies have suggested that free d-Asp has a crucial role in N-methyl d-Asp receptor-mediated neurotransmission playing very important functions in physiological and pathological processes. This paper describes the development of an analytical procedure for the direct and simultaneous determination of free d-Asp, l-Asp and N-methyl d-Asp in specimens of different mouse brain tissues using chiral LC-MS/MS in Multiple Reaction Monitoring scan mode. After comparing three procedures and different buffers and extraction solvents, a simple preparation procedure was selected the analytes of extraction. The method was validated by analyzing l-Asp, d-Asp and N-methyl d-Asp recovery at different spiked concentrations (50, 100 and 200 pg/μl) yielding satisfactory recoveries (75–110%), and good repeatability. Limits of detection (LOD) resulted to be 0.52 pg/μl for d-Asp, 0.46 pg/μl for l-Asp and 0.54 pg/μl for NMDA, respectively. Limits of quantification (LOQ) were 1.57 pg/μl for d-Asp, 1.41 pg/μl for l-Asp and 1.64 pg/μl for NMDA, respectively. Different concentration levels were used for constructing the calibration curves which showed good linearity. The validated method was then successfully applied to the simultaneous detection of d-Asp, l-Asp and NMDA in mouse brain tissues. The concurrent, sensitive, fast, and reproducible measurement of these metabolites in brain tissues will be useful to correlate the amount of free d-Asp with relevant neurological processes, making the LC-MS/MS MRM method well suited, not only for research work but also for clinical analyses.
Collapse
Affiliation(s)
- Carolina Fontanarosa
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Francesca Pane
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
| | - Nunzio Sepe
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Marta Squillace
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Francesco Errico
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Alessandro Usiello
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Piero Pucci
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- CEINGE Advanced Biotechnology, University of Naples “Federico II”, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples “Federico II”, Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi, Roma, Italy
- * E-mail:
| |
Collapse
|
20
|
Stavrou IJ, Agathokleous EA, Kapnissi-Christodoulou CP. Chiral selectors in CE: Recent development and applications (mid-2014 to mid-2016). Electrophoresis 2017; 38:786-819. [DOI: 10.1002/elps.201600322] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 11/05/2022]
|
21
|
Chiral separations for d -amino acid analysis in biological samples. J Pharm Biomed Anal 2016; 130:100-109. [DOI: 10.1016/j.jpba.2016.06.054] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 11/20/2022]
|
22
|
Advances in the Use of Cyclodextrins as Chiral Selectors in Capillary Electrokinetic Chromatography: Fundamentals and Applications. Chromatographia 2016. [DOI: 10.1007/s10337-016-3167-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids. J Chromatogr A 2016; 1467:400-408. [PMID: 27554025 DOI: 10.1016/j.chroma.2016.08.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/12/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
Abstract
In the context of bioanalytical method development, process automatization is nowadays a necessity in order to save time, improve method reliability and reduce costs. For the first time, a fully automatized micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) method with in-capillary derivatization was developed for the chiral analysis of d- and l-amino acids using (-)-1-(9-fluorenyl) ethyl chloroformate (FLEC) as labeling reagent. The derivatization procedure was optimized using an experimental design approach leading to the following conditions: sample and FLEC plugs in a 2:1 ratio (15s, 30mbar: 7.5s, 30mbar) followed by 15min of mixing using a voltage of 0.1kV. The formed diastereomers were then separated using a background electrolyte (BGE) consisting of 150mM ammonium perfluorooctanoate (APFO) (pH=9.5) and detected by mass spectrometry (MS). Complete chiral resolution was obtained for 8 amino acids, while partial separation was achieved for 6 other amino acid pairs. The method showed good reproducibility and linearity in the low micromolar concentration range. The applicability of the method to biological samples was tested by analyzing artificial cerebrospinal fluid (aCSF) samples.
Collapse
|
24
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
25
|
Derivatisation for separation and detection in capillary electrophoresis (2012-2015). Electrophoresis 2015; 37:45-55. [DOI: 10.1002/elps.201500290] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 12/22/2022]
|
26
|
Poinsot V, Ong-Meang V, Gavard P, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods, 2013-2015. Electrophoresis 2015; 37:142-61. [DOI: 10.1002/elps.201500302] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Véréna Poinsot
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - Varravaddheay Ong-Meang
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - Pierre Gavard
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| | - François Couderc
- Université Paul Sabatier, Université de Toulouse, Laboratoire des IMRCP; Toulouse Cedex France
| |
Collapse
|
27
|
Sánchez-López E, Marina ML, Crego AL. Improving the sensitivity in chiral capillary electrophoresis. Electrophoresis 2015; 37:19-34. [PMID: 26434566 DOI: 10.1002/elps.201500315] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/14/2015] [Accepted: 09/26/2015] [Indexed: 12/16/2022]
Abstract
CE is known for being one of the most powerful analytical techniques when performing enantioseparations due to its numerous advantages such as excellent separation efficiency and extremely low solvents and reagents consumption, all of them derived from the capillary small dimensions. Moreover, it is worth highlighting that unlike in chromatographic techniques, in CE the chiral selector is generally within the separation medium instead of being attached to the separation column which makes the method optimization a more versatile task. Despite its numerous advantages, when using UV-Vis detection, CE lacks of sensitivity detection due to its short optical path length derived from the narrow separation capillary. This issue can be overcome by means of different approaches, either by sample treatment procedures or by in-capillary preconcentration techniques or even by employing detection systems more sensitive than UV-Vis, such as LIF or MS. The present review assembles the latest contributions regarding improvements of sensitivity in chiral CE published from June 2013 until May 2015, which follows the works included in a previous review reported by Sánchez-Hernández et al. [Electrophoresis 2014, 35, 12-27].
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - María Luisa Marina
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Antonio L Crego
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Biology, Environmental Sciences and Chemistry, University of Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
28
|
Zeng L, Zou Y, Kong L, Wang N, Wang Q, Wang L, Cao Y, Wang K, Chen Y, Mi S, Zhao W, Wu H, Cheng S, Xu W, Liang W. Can Chinese Herbal Medicine Adjunctive Therapy Improve Outcomes of Senile Vascular Dementia? Systematic Review with Meta-analysis of Clinical Trials. Phytother Res 2015; 29:1843-57. [PMID: 26443194 DOI: 10.1002/ptr.5481] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/09/2022]
Abstract
Many publications have reported the growing application of complementary and alternative medicine, particularly the use of Chinese herbal medicine (CHM) in combination with routine pharmacotherapy (RP) for senile vascular dementia (SVD), but its efficacy remains largely unexplored. The purpose of this study is to evaluate the efficacy of CHM adjunctive therapy (CHMAT), which is CHM combined with RP, in the treatment of SVD. Publications in seven electronic databases were searched extensively, and 27 trials with a total of 1961 patients were included for analysis. Compared with RP alone, CHMAT significantly increased the effective rate [odds ratio (OR) 2.98, 95% confidence interval (CI) 2.30, 3.86]. In addition, CHMAT showed benefits in detailed subgroups of the Mini-Mental State Exam (MMSE) score from time of onset to 4 weeks (WMD 3.01, 95% CI 2.15, 3.87), 8 weeks (weighted mean difference (WMD) 2.30, 95% CI 1.28, 3.32), 12 weeks (WMD 2.93, 95% CI 2.17, 3.69), and 24 weeks (WMD 3.25, 95% CI 2.61, 3.88), and in the activity of daily living scale score from time of onset to 4 weeks (WMD -4.64, 95% CI -6.12, -3.17), 8 weeks (WMD -4.30, 95% CI -6.04, -2.56), 12 weeks (WMD -3.89, 95% CI -4.68, -3.09), and 24 weeks (WMD -4.04, 95% CI -6.51, -1.57). Moreover, CHMAT had positive effects on changes in the Hasegawa dementia scale, National Institutes of Health Stroke Scale, Clinical Dementia Rating, and Montreal Cognitive Assessment scores, as well as blood fat levels (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and apolipoprotein E), platelet aggregation rate (1-min platelet aggregation rate, 5-min platelet aggregation rate, and maximal platelet aggregation rate), and blood rheology (whole-blood viscosity and hematocrit). No serious or frequently occurring adverse effects were reported. Weaknesses of methodological quality in most trials were assessed using the Cochrane risk of bias tool, while the quality level of Grades of Recommendations Assessment Development and Evaluation (GRADE) evidence classification indicated 'very low'. This systematic review suggests that CHM as an adjunctive therapy can improve cognitive impairment and enhance immediate response and quality of life in SVD patients. However, because of limitations of methodological quality in the included studies, further research of rigorous design is needed.
Collapse
Affiliation(s)
- Lingfeng Zeng
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yuanping Zou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lingshuo Kong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Ningsheng Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.,The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Lu Wang
- World Federation of Chinese Medicine Societies, Beijing, 100101, China
| | - Ye Cao
- Cancer Center of Sun Yat-sen University, Guangzhou, 510060, China
| | - Kezhu Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100094, China
| | - Yunbo Chen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Suiqing Mi
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wei Zhao
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haitao Wu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shuyi Cheng
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weihua Xu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Weixiong Liang
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| |
Collapse
|
29
|
Zeng LF, Wang NS, Wang Q, Zou YP, Liang ZH, Kong LS, Wu HT, Liao NY, Liang XW, Mo YS. Oral Chinese herbal medicine for kidney nourishment in Alzheimer's disease: A systematic review of the effect on MMSE index measures and safety. Complement Ther Med 2015; 23:283-97. [PMID: 25847567 DOI: 10.1016/j.ctim.2015.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/27/2015] [Accepted: 01/30/2015] [Indexed: 11/25/2022] Open
|
30
|
Zhou J, Tang J, Tang W. Recent development of cationic cyclodextrins for chiral separation. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|