1
|
Praveen A, Mawale KS, S N, Parvatam G, Chaudhari SR. Efficacy of silver nanoparticles (NPs) and fungal elicitors on the curcuminoid production in Curcuma longa L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109501. [PMID: 39862461 DOI: 10.1016/j.plaphy.2025.109501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/29/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025]
Abstract
This study investigates the effects of silver nanoparticles (Ag NPs), biogenic silver nanoparticles derived from Rhizopus spp. (R.Ag NPs), and Rhizopus (R) elicitors on the yield and bioactive compounds of turmeric (Curcuma longa) using foliar spray and rhizome dipping techniques. Elicitors applied at concentrations of 10, 50, and 100 ppm over 210 days significantly enhanced turmeric yield, phenolic, flavonoid, antioxidant, and curcuminoid content compared to control plants. Among the treatments, Rhizopus culture at 50 ppm applied via foliar spray resulted in a 3.5% increase in curcuminoid content, while rhizome dipping at the same concentration led to a 3.75% increase. These findings suggest that foliar spraying and rhizome dipping with Rhizopus elicitors can effectively enhance turmeric quality, offering potential for improving crop production and curcuminoid yield.
Collapse
Affiliation(s)
- Aishwarya Praveen
- Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kiran S Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nagarajan S
- Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Giridhar Parvatam
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sachin R Chaudhari
- Department of Plantation Products, Spices & Flavour Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Zhu Y, Hu X, Dong L, Yang H, Zhou D, Liu X, Dong C, Yue X, Zhao L. Green Synthesized Silver Nanoparticles Induced Accumulation of Biomass and Secondary Metabolites in Hairy Roots of Rehmannia glutinosa. Int J Mol Sci 2024; 25:13088. [PMID: 39684801 DOI: 10.3390/ijms252313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
The hairy roots of Rehmannia glutinosa (Gaertn.) Libosch. ex Fisch. & C. A. Mey. are capable of producing active compounds such as iridoid glycoside, and phenylethanoid glycosides, which have potential applications in the pharmaceutical industry. Silver nanoparticles (AgNPs) have been used as novel elicitors in the induced cultivation of hairy roots, but there is a lack of research regarding their effects on R. glutinosa hairy roots. In the present study, silver nanoparticles (Pp-AgNPs) synthesized by the endophytic fungus Penicillium polandii PG21 were adopted to elicit hairy roots of R. glutinosa, to investigate their influences on the biomass, color, secondary metabolites, antioxidant activity, sucrose metabolism, and phytohormone-related gene expression. The results revealed that the dry weight and fresh weight of R. glutinosa hairy roots were both higher in the treated group than in the control group after addition of 2 mg/L Pp-AgNPs for 20 d. The content of verbascoside, total phenylethanol glycosides and total cycloartenoid in the treatment group reached the highest level at 20 d, which were 1.75, 1.51, 1.44 times more than those in the control group, respectively. Pp-AgNPs significantly stimulated the enzyme activities of catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD). The growth-promoting effect of Pp-AgNPs may be accomplished by increasing sucrose metabolism, and regulating the synthesis and signal transduction of gibberellin (GA) and indoleacetic acid (IAA). Moreover, expressed sequence tags-simple sequence repeat (EST-SSR)-based genetic diversity analyses indicated that there was little possibility of genetic variation among samples under different treatment conditions. In conclusion, the appropriate concentration of Pp-AgNPs can be used as an effective elicitor to improve the biomass and secondary metabolites content in R. glutinosa hairy roots.
Collapse
Affiliation(s)
- Yunhao Zhu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiangxiang Hu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Le Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Han Yang
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Danning Zhou
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiangnan Liu
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Chengming Dong
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Xiule Yue
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Le Zhao
- School of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
3
|
Mirmazloum I, Slavov AK, Marchev AS. The Untapped Potential of Hairy Root Cultures and Their Multiple Applications. Int J Mol Sci 2024; 25:12682. [PMID: 39684394 DOI: 10.3390/ijms252312682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Plants are rich sources of specialized metabolites, such as alkaloids, terpenes, phenolic acids, flavonoids, coumarins, and volatile oils, which provide various health benefits including anticancer, anti-inflammatory, antiaging, skin-altering, and anti-diabetic properties. However, challenges such as low and inconsistent yields, environment and geographic factors, and species-specific production of some specialized metabolites limit the supply of raw plant material for the food, cosmetic, or pharmaceutical industries. Therefore, biotechnological approaches using plant in vitro systems offer an appealing alternative for the production of biologically active metabolites. Among these, hairy root cultures induced by Rhizobium rhizogenes have firmed up their position as "green cell factories" due to their genotypic and biosynthetic stability. Hairy roots are valuable platforms for producing high-value phytomolecules at a low cost, are amenable to pathway engineering, and can be scaled up in bioreactors, making them attractive for commercialization. This review explores the potential of hairy roots for specialized metabolites biosynthesis focusing on biotechnology tools to enhance their production. Aspects of morphological peculiarities of hairy roots, the diversity of bioreactors design, and process intensification technologies for maximizing biosynthetic capacity, as well as examples of patented plant-derived (green-labeled) products produced through hairy root cultivation at lab and industrial scales, are addressed and discussed.
Collapse
Affiliation(s)
- Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Aleksandar K Slavov
- Department of Ecological Engineering, University of Food Technologies Plovdiv, 26 Maritsa Blvd., 4002 Plovdiv, Bulgaria
| | - Andrey S Marchev
- Laboratory of Eukaryotic Cell Biology, Department of Biotechnology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000 Plovdiv, Bulgaria
| |
Collapse
|
4
|
Mohkami Z, Kheiry A, Sanikhani M, Razavi F, Tavakolizadeh M, Ghorbanpour M. Enhancing the medicinal properties and phytochemical content of bitter melon (Momordica charantia L.) through elicitation with brassinosteroid, ethrel, and carrageenan. BMC PLANT BIOLOGY 2024; 24:967. [PMID: 39407143 PMCID: PMC11481788 DOI: 10.1186/s12870-024-05688-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Bitter melon (Momordica charantia L.) is well-known for its high protein, steroid, alkaloid, mineral, lipid, triterpene, and phenolic compound content, as well as its medicinal properties, particularly its anti-diabetic effects. To investigate the impact of elicitors on the morphology and phytochemical characteristics of bitter melon (Jounpouri cultivar) over two consecutive years (2018 and 2019), we conducted a field experiment. The study aimed to determine the effects of Ethrel, brassinosteroids (BRs), and k-carrageenan on yield and the production of anti-diabetic agents in M. charantia farm crops. The elicitors included ten levels, ranging from a control group to Ethrel (100, 300, and 600 mg l- 1), brassinosteroids (BRs) (0.1, 0.5, and 1 mg l- 1), and k-carrageenan (200, 400, and 600 mg l- 1). These characteristics included leaf area, leaf length, leaf width, fruit parameters, carbohydrate content, total phenols and flavonoid accumulation, antioxidant activity, total acid, ascorbic acid, momordicine, and charantin. Across both years, we observed the highest flavonoid accumulation and antioxidant activity in the Ethrel treatment group. Specifically, applying 0.5 mg l- 1 BRs and 300 mg l- 1 Ethrel led to an 18.8% and 14.8% increase in momordicine content, respectively. All elicitor treatments, particularly at 0.1 mg l- 1 BRs, significantly increased leaf area, leaf length, and leaf width compared to the control group in both cropping years. Additionally, the application of all elicitors resulted in increased fruit weight, dimensions, and yield over the two consecutive years. Notably, in 2018, 600 mg l- 1 Ethrel contributed to enhanced fruit weight and yield, while in 2019, 0.5 mg l- 1 BRs exhibited the same effect. Metabolic and physiological changes in bitter squash induced by employed elicitors over two different years (2018-2019) are strongly dependent on a variety of environmental factors such as temperature and rainfall. In conclusion, using BRs as an elicitor has the potential to optimize the health benefits of bitter melon by increasing the content of two bioactive molecules, momordicine and charantin.
Collapse
Affiliation(s)
- Zeynab Mohkami
- Department of Agriculture and Plant Breeding, Agriculture Institute, Research Institute of Zabol, Zabol, Iran
| | - Azizollah Kheiry
- Depatment of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
| | - Mohsen Sanikhani
- Depatment of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Farhang Razavi
- Depatment of Horticultural Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Mahdi Tavakolizadeh
- Department of Pharmacognosy, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
5
|
Bansal Y, Mujib A, Mamgain J, Syeed R, Mohsin M, Nafees A, Dewir YH, Mendler-Drienyovszki N. Integrated GC-MS and UPLC-ESI-QTOF-MS based untargeted metabolomics analysis of in vitro raised tissues of Digitalis purpurea L. FRONTIERS IN PLANT SCIENCE 2024; 15:1433634. [PMID: 39239200 PMCID: PMC11374661 DOI: 10.3389/fpls.2024.1433634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/01/2024] [Indexed: 09/07/2024]
Abstract
Digitalis purpurea L. is one of the important plant species of Nilgiris, Kashmir and Darjeeling regions of India, belonging to the family Plantaginaceae, with well-known pharmacological applications. In the present investigation, an in vitro culture technique of indirect shoot organogenesis of D. purpurea is being explored; the biochemical attributes, the antioxidant activities and the metabolomic analyses were made by utilizing untargeted Gas Chromatography-Mass Spectrometry (GC-MS) and Ultra Performance Liquid Chromatography coupled with electronspray ionization/quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) approaches. Initially, the leaf explants were used for callus induction and proliferation and maximum callusing frequency (94.44%) and fresh biomass (4.9 g) were obtained on MS, fortified with 8.8 µM BAP (6-benzyl amino purine) + 0.9 µM 2,4-D (2,4-dichlorophenoxyacetic acid), subsequently shoot formation (indirect organogenesis) was noted on the same MS medium with a shoot induction frequency of 83.33%. Later on, the biochemical and antioxidant potential of in vivo-, in vitro grown leaf and leaf derived callus were assessed. Significantly higher total phenol, flavonoid, DPPH (2,2-diphenyl-1-picrylhydrazyl), POD (peroxidase) and SOD (superoxide dismutase) activities were noticed in in vitro grown callus and leaf tissues compared with field grown leaf. The GC-MS analysis of each methanolic extract (in vivo-, in vitro derived leaf and leaf derived callus) displayed the presence of more than 75 bioactive compounds viz loliolide, stigmasterin, alpha-tocopherol, squalene, palmitic acid, linoleic acid, beta-amyrin, campesterol etc. possessing immense therapeutic importance. The UPLC-MS based metabolite fingerprinting of each methanolic extracts were conducted in both positive and negative ionization mode. The obtained results revealed variation in phytochemical composition in field - and laboratory grown tissues, indicating the impact of in vitro culture conditions on plant tissues. The detected phytocompounds belongs to various classes such as flavonoids, steroids, terpenoids, carbohydrates, tannins, lignans etc. The medicinally important metabolites identified were 20, 22-dihydrodigoxigenin, digoxigenin monodigitoxoside, apigenin, luteolin, kaempferide, rosmarinic acid, nepitrin and others. The results of the present study suggest that in vitro culture of D. purpurea could successfully be utilized for the novel drug discovery by producing such important phytocompounds of commercial interest in shorter duration without harming the plants' natural population.
Collapse
Affiliation(s)
- Yashika Bansal
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - A Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Mohammad Mohsin
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Afeefa Nafees
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi, India
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nóra Mendler-Drienyovszki
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, Nyíregyháza, Hungary
| |
Collapse
|
6
|
Rezazadehfar P, Rezayian M, Niknam V, Mirmasoumi M. Elicitor-enhanced steroidal sapogenin accumulation in hairy root cultures of Trigonella foenum-graecum. Sci Rep 2024; 14:19106. [PMID: 39154043 PMCID: PMC11330440 DOI: 10.1038/s41598-024-69625-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
In current work, we studied hairy root induction in Trigonella foenum graecum, which is an important medicinal plant, and examined the impact of different elicitors on some phytochemical characteristics and metabolites production in hairy root cultures. Accordingly, some factors such as five strain types of Agrobacterium rhizogenes (1724, 15834, A4, A13 and MSU) and three different explants, namely leaf, cotyledon and hypocotyl were studied. The results showed that different A. rhizogenes strains exhibited different infection efficiency. MSU and 15834 had highest efficiency of hairy root induction than other strains. Also, hairy root induction frequency in leaf explants was higher than in other explants. Salicylic acid (SA), nitric oxide (NO), CaCl2 and penconazole (PEN) were used in elicitation process. Hairy roots were treated with SA (0.1 and 0.5 mM), NO (10 and 50 µM), CaCl2 (5 and 10 mM) and PEN (5 and 10 mg/L). Applied elicitors enhanced antioxidant enzymes activities and reduced oxidative stress markers; this observation might be ascribed to regulation of the oxidative status of the elicited cells. Significant increase of antioxidant metabolites (total phenol, flavonoid and anthocyanin) in PEN-treated hairy roots was associated to phenylalanine ammonia lyase activity, indicating an up-regulation of phenylpropanoid/flavonoid metabolism. PEN and CaCl2 treatment enhanced steroidal sapogenin in hairy root cultures. These results suggested that use of elicitors can enhance the production of secondary metabolites in transformed hairy roots. Among the elicitors applied, CaCl2 and PEN were the most effective in increasing secondary metabolite production in transformed hairy roots of T. foenum graecum.
Collapse
Affiliation(s)
- Poorak Rezazadehfar
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Maryam Rezayian
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| | - Vahid Niknam
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran.
- Center of Excellence in Medicinal Plant Metabolites, Tarbiat Modares University, Tehran, Iran.
| | - Masoud Mirmasoumi
- Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran, 14155, Iran
| |
Collapse
|
7
|
Ahmad Z, Shareen, Ganie IB, Firdaus F, Ramakrishnan M, Shahzad A, Ding Y. Enhancing Withanolide Production in the Withania Species: Advances in In Vitro Culture and Synthetic Biology Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:2171. [PMID: 39124289 PMCID: PMC11313931 DOI: 10.3390/plants13152171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Withanolides are naturally occurring steroidal lactones found in certain species of the Withania genus, especially Withania somnifera (commonly known as Ashwagandha). These compounds have gained considerable attention due to their wide range of therapeutic properties and potential applications in modern medicine. To meet the rapidly growing demand for withanolides, innovative approaches such as in vitro culture techniques and synthetic biology offer promising solutions. In recent years, synthetic biology has enabled the production of engineered withanolides using heterologous systems, such as yeast and bacteria. Additionally, in vitro methods like cell suspension culture and hairy root culture have been employed to enhance withanolide production. Nevertheless, one of the primary obstacles to increasing the production of withanolides using these techniques has been the intricacy of the biosynthetic pathways for withanolides. The present article examines new developments in withanolide production through in vitro culture. A comprehensive summary of viable traditional methods for producing withanolide is also provided. The development of withanolide production in heterologous systems is examined and emphasized. The use of machine learning as a potent tool to model and improve the bioprocesses involved in the generation of withanolide is then discussed. In addition, the control and modification of the withanolide biosynthesis pathway by metabolic engineering mediated by CRISPR are discussed.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Shareen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Irfan Bashir Ganie
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Fatima Firdaus
- Chemistry Department, Lucknow University, Lucknow 226007, India;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| | - Anwar Shahzad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (I.B.G.); (A.S.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Z.A.); (M.R.)
| |
Collapse
|
8
|
El-Naggar HM, Osman AR. Enhancing growth and bioactive metabolites characteristics in Mentha pulegium L. via silicon nanoparticles during in vitro drought stress. BMC PLANT BIOLOGY 2024; 24:657. [PMID: 38987699 PMCID: PMC11234791 DOI: 10.1186/s12870-024-05313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
The development and production of secondary metabolites from priceless medicinal plants are restricted by drought stress. Mentha pulegium L. belongs to the Lamiaceae family and is a significant plant grown in the Mediterranean region for its medicinal and aesthetic properties. This study investigated the effects of three polyethylene glycol (PEG) (0, 5, and 10%) as a drought stress inducer and four silicon nanoparticle (SiNP) (0, 25, 50, and 100 ppm) concentrations as an elicitor to overcome the adverse effect of drought stress, on the growth parameters and bioactive chemical composition of M. pulegium L. plants grown in vitro. The experiment was performed as a factorial experiment using a completely randomized design (CRD) consisting of 12 treatments with two factors (3 PEG × 4 SiNPs concentrations), 6 replicates were used for each treatment for a total of 72 experimental units.The percentage of shoot formation was inversely proportional to the PEG concentration; for the highest PEG concentration, the lowest percentage of shoot formation (70.26%) was achieved at 10% PEG. SiNPs at 50 ppm enhanced shoot formation, the number of shoots, shoot height, fresh and dry weight, rosmarinic acid, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity. The methanol extract from M. pulegium revealed the presence of significant secondary metabolites using gas chromatography‒mass spectrometry (GC-MS). The principal constituents of the extract were limonene (2.51, 2.99%), linalool (3.84, 4.64%), geraniol (6.49, 8.77%), menthol (59.73, 65.43%), pulegone (3.76, 2.76%) and hexadecanoic acid methyl ester or methyl palmitate (3.2, 4.71%) for the 0 ppm SiNPs, PEG 0% and 50 ppm SiNPs, and PEG 10%, respectively. Most of the chemical components identified by GC‒MS in the methanol extract were greater in the 50 ppm SiNP and 10% PEG treatment groups than in the control group. SiNP improves drought tolerance by regulating biosynthesis and accumulating some osmolytes and lessens the negative effects of polyethylene glycol-induced drought stress.Based on the results, the best treatment for most of the parameters was 50 ppm SiNPs combined with 10% PEG, the morphological and chemical characteristics were inversely proportional to the PEG concentration, as the highest PEG concentration (10%) had the lowest results. Most parameters decreased at the highest SiNP concentration (100 ppm), except for the DPPH scavenging percentage, as there was no significant difference between the 50 and 100 ppm SiNPs.
Collapse
Affiliation(s)
- Hany M El-Naggar
- Department of Floriculture, Faculty of Agriculture, Alexandria University (El-Shatby), Alexandria, 21545, Egypt.
| | - Amira R Osman
- Department of Horticulture, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Beheira, Egypt.
| |
Collapse
|
9
|
Amani S, Mohebodini M, Khademvatan S, Jafari M, Kumar V. Modifications in gene expression and phenolic compounds content by methyl jasmonate and fungal elicitors in Ficus carica. Cv. Siah hairy root cultures. BMC PLANT BIOLOGY 2024; 24:520. [PMID: 38853268 PMCID: PMC11163756 DOI: 10.1186/s12870-024-05178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.
Collapse
Affiliation(s)
- Shahla Amani
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Mehdi Mohebodini
- Department of Horticulture Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Shahram Khademvatan
- Cellular and Molecular Research Center, Department of Medical Parasitology and Mycology, Urmia University of Medical Sciences, Urmia, Iran
| | - Morad Jafari
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| |
Collapse
|
10
|
Halder T, Ghosh B. Withania somnifera (L.) Dunal: Enhanced production of withanolides and phenolic acids from hairy root culture after application of elicitors. J Biotechnol 2024; 388:59-71. [PMID: 38636845 DOI: 10.1016/j.jbiotec.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 03/22/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Withania somnifera (L.) Dunal is an important indigenous medicinal plant with extensive pharmaceutical potential. The root is the main source of major bioactive compounds of this plant species including withanolides, withanine, phenolic acids, etc. Hairy root culture (HRC) is a crucial method for low-cost production of active compounds on a large scale. Four different Agrobacterium rhizogenes strains have been used for the hairy root induction. Maximum transformation efficiency (87.34 ± 2.13%) was achieved with A4 bacterial strain-mediated transformed culture. The genetic transformation was confirmed by using specific primers of seven different genes. Seven HR (Hairy root) lines were selected after screening 29 HR lines based on their fast growth rate and high accumulation of withanolides and phenolic acids content. Two biotic and three abiotic elicitors were applied to the elite root line to trigger more accumulation of withanolides and phenolic acids. While all the elicitors effectively increased withanolides and phenolic acids production, among the five different elicitors, salicylic acid (4.14 mg l-1) induced 11.49 -fold increase in withanolides (89.07 ± 2.75 mg g-1 DW) and 5.34- fold increase in phenolic acids (83.69 ± 3.11 mg g- 1 DW) after 5 days of elicitation compared to the non-elicited culture (7.75 ± 0.63 mg g-1 DW of withanolides and 15.66 ± 0.92 mg g-1 DW of phenolic acids). These results suggest that elicitors can tremendously increase the biosynthesis of active compounds in this system; thus, the HRC of W. somnifera is cost-effective and can be efficiently used for the industrial production of withanolides and phenolic acids.
Collapse
Affiliation(s)
- Tarun Halder
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India.
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata 700118, India.
| |
Collapse
|
11
|
Peng T, Guo J, Tong X. Advances in biosynthesis and metabolic engineering strategies of cordycepin. Front Microbiol 2024; 15:1386855. [PMID: 38903790 PMCID: PMC11188397 DOI: 10.3389/fmicb.2024.1386855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Cordyceps militaris, also called as bei-chong-cao, is an insect-pathogenic fungus from the Ascomycota phylum and the Clavicipitaceae family. It is a valuable filamentous fungus with medicinal and edible properties that has been utilized in traditional Chinese medicine (TCM) and as a nutritious food. Cordycepin is the bioactive compound firstly isolated from C. militaris and has a variety of nutraceutical and health-promoting properties, making it widely employed in nutraceutical and pharmaceutical fields. Due to the low composition and paucity of wild resources, its availability from natural sources is limited. With the elucidation of the cordycepin biosynthetic pathway and the advent of synthetic biology, a green cordycepin biosynthesis in Saccharomyces cerevisiae and Metarhizium robertsii has been developed, indicating a potential sustainable production method of cordycepin. Given that, this review primarily focused on the metabolic engineering and heterologous biosynthesis strategies of cordycepin.
Collapse
Affiliation(s)
| | - Jinlin Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Wawrosch C, Oberhofer M, Steinbrecher S, Zotchev SB. Impact of Phylogenetically Diverse Bacterial Endophytes of Bergenia pacumbis on Bergenin Production in the Plant Cell Suspension Cultures. PLANTA MEDICA 2024; 90:651-657. [PMID: 37673090 DOI: 10.1055/a-2162-4018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Plant in vitro cultures are potential sources for secondary metabolites. However, low productivity is often a major drawback for industrial application. Elicitation is an important strategy to improve product formation in vitro. In this context, endophytes are of special interest as biotic elicitors due to their possible interaction with the metabolism of the host plant. A total of 128 bacterial endophytes were isolated from the medicinal plant Bergenia pacumbis and taxonomically classified using 16S rRNA gene sequencing. Five strains belonging to different genera were grown in lysogeny broth and tryptic soy broth medium and cells as well as spent media were used as elicitors in cell suspension cultures of B. pacumbis. Production of the main bioactive compound bergenin was enhanced 3-fold (964 µg/g) after treatment with cells of Moraxella sp. or spent tryptic soy broth medium of Micrococcus sp. These results indicate that elicitation of plant cell suspension cultures with endophytic bacteria is a promising strategy for enhancing the production of desired plant metabolites.
Collapse
Affiliation(s)
- Christoph Wawrosch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Martina Oberhofer
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Stefan Steinbrecher
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Sergey B Zotchev
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Senekovič J, Ciringer T, Ambrožič-Dolinšek J, Islamčević Razboršek M. The Effect of Combined Elicitation with Light and Temperature on the Chlorogenic Acid Content, Total Phenolic Content and Antioxidant Activity of Berula erecta in Tissue Culture. PLANTS (BASEL, SWITZERLAND) 2024; 13:1463. [PMID: 38891272 PMCID: PMC11174371 DOI: 10.3390/plants13111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Chlorogenic acid is one of the most prominent bioactive phenolic acids with great pharmacological, cosmetic and nutritional value. The potential of Berula erecta in tissue culture was investigated for the production of chlorogenic acid and its elicitation combined with light of different wavelengths and low temperature. The content of chlorogenic acid in the samples was determined by HPLC-UV, while the content of total phenolic compounds and the antioxidant activity of their ethanol extracts were evaluated spectrophotometrically. The highest fresh and dry biomasses were obtained in plants grown at 23 °C. This is the first study in which chlorogenic acid has been identified and quantified in Berula erecta. The highest chlorogenic acid content was 4.049 mg/g DW. It was determined in a culture grown for 28 days after the beginning of the experiment at 12 °C and under blue light. The latter also contained the highest content of total phenolic compounds, and its extracts showed the highest antioxidant activity. Berula erecta could, potentially, be suitable for the in vitro production of chlorogenic acid, although many other studies should be conducted before implementation on an industrial scale.
Collapse
Affiliation(s)
- Jan Senekovič
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
| | - Terezija Ciringer
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
| | - Jana Ambrožič-Dolinšek
- Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia;
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
| | - Maša Islamčević Razboršek
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
14
|
Salas-Arias K, Irías-Mata A, Sánchez-Calvo L, Brenes-Zárate MF, Abdelnour-Esquivel A, Villalta-Romero F, Calvo-Castro LA. Eliciting Polyphenols in Strawberry Leaves: Preliminary Experiments in Fragaria × ananassa cv. Festival. Molecules 2024; 29:2467. [PMID: 38893343 PMCID: PMC11173603 DOI: 10.3390/molecules29112467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Polyphenols are plant secondary metabolites that function mostly as a general stress-induced protective mechanism. Polyphenols have also gained interest due to their beneficial properties for human health. Strawberry leaves represent an agro-industrial waste material with relevant bioactive polyphenol content, which could be incorporated into circular economy strategies. However, due to the low quantities of polyphenols in plants, their production needs to be improved for cost-effective applications. The objective of this research was to compare polyphenol production in strawberry (Fragaria × ananassa cv. Festival) leaves in plants grown in greenhouse conditions and plants grown in vitro, using three possible elicitor treatments (UV irradiation, cold exposure, and cysteine). General vegetative effects were morphologically evaluated, and specific polyphenolic compounds were quantified by UHPLC-DAD-MS/MS. Gallic acid was the most abundant polyphenol found in the leaves, both in vivo and in vitro. The results showed higher amounts and faster accumulation of polyphenols in the in vitro regenerated plants, highlighting the relevance of in vitro tissue culture strategies for producing compounds such as polyphenols in this species and cultivar.
Collapse
Affiliation(s)
- Karla Salas-Arias
- Doctorado en Ciencias Naturales para el Desarrollo (DOCINADE), Instituto Tecnológico de Costa Rica, Universidad Nacional, Universidad Estatal a Distancia, Cartago P.O. Box 159-7050, Costa Rica;
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Andrea Irías-Mata
- Centro para Investigaciones en Granos y Semillas, Escuela de Agronomía, Universidad de Costa Rica, San José P.O. Box 2060, Costa Rica;
| | - Laura Sánchez-Calvo
- Escuela de Ciencias Exactas y Naturales, Universidad Estatal a Distancia, San José P.O. Box 474-2050, Costa Rica;
| | - María Fernanda Brenes-Zárate
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Ana Abdelnour-Esquivel
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Fabián Villalta-Romero
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| | - Laura A. Calvo-Castro
- Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago P.O. Box 159-7050, Costa Rica; (M.F.B.-Z.); (A.A.-E.); (F.V.-R.)
| |
Collapse
|
15
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
16
|
Adico MD, Bayala B, Zoure AA, Lagarde A, Bazie JT, Traore L, Buñay J, Yonli AT, Djigma F, Bambara HA, Baron S, Simporé J, Lobaccaro JMA. In vitro activities and mechanisms of action of anti-cancer molecules from African medicinal plants: a systematic review. Am J Cancer Res 2024; 14:1376-1401. [PMID: 38590420 PMCID: PMC10998760 DOI: 10.62347/auhb5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 04/10/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide. In recent years, African countries have been faced with a rapid increase in morbidity and mortality due to this pathology. Management is often complicated by the high treatment costs, side effects and the increasing occurrence of resistance to treatments. The identification of new active ingredients extracted from endemic medicinal plants is definitively an interesting approach for the implementation of new therapeutic strategies: their extraction is often lower cost; their identification is based on an ethnobotanical history and a tradipratic approach; their use by low-income populations is simpler; this can help in the development of new synthetic molecules that are more active, more effective and with fewer side effects. The objective of this review is to document the molecules derived from African medicinal plants whose in vitro anti-cancer activities and the mechanisms of molecular actions have been identified. From the scientific databases Science Direct, PubMed and Google Scholar, we searched for publications on compounds isolated from African medicinal plants and having activity on cancer cells in culture. The data were analyzed in particular with regard to the cytotoxicity of the compounds and their mode of action. A total of 90 compounds of these African medicinal plants were selected. They come from nine chemical groups: alkaloids, flavonoids, polyphenols, quinones, saponins, steroids, terpenoids, xanthones and organic sulfides. These compounds have been associated with several cellular effects: i) Cytotoxicity, including caspase activation, alteration of mitochondrial membrane potential, and/or induction of reactive oxygen species (ROS); ii) Anti-angiogenesis; iii) Anti-metastatic properties. This review points out that the cited African plants are rich in active ingredients with anticancer properties. It also stresses that screening of these anti-tumor active ingredients should be continued at the continental scale. Altogether, this work provides a rational basis for the selection of phytochemical compounds for use in clinical trials.
Collapse
Affiliation(s)
- Marc Dw Adico
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Bagora Bayala
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Ecole Normale Supérieure Koudougou, Burkina Faso
| | - Abdou A Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Laboratoire de recherches Biomédicales (LaReBio), Département de santé publique et biomédicale, Institut de Recherche en Sciences de la Santé (IRSS/CNRST) Ouagadougou, Burkina Faso
| | - Aurélie Lagarde
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Jean Tv Bazie
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Département des Substances Naturelles (DSN), Institut de Recherche en Sciences et Technologies Appliquées (IRSAT) Ouagadougou, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Julio Buñay
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Albert T Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Florencia Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Hierrhum A Bambara
- Service d'oncologie, Centre hospitalier universitaire BOGODOGO, Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
| | - Silvère Baron
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Jacques Simporé
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Faculté de médecine, Université Saint Thomas d'Aquin (USTA) Ouagadougou, Burkina Faso
| | - Jean-Marc A Lobaccaro
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| |
Collapse
|
17
|
Karami M, Naghavi MR, Nasiri J, Farzin N, Ignea C. Enhanced production of withaferin A from the hairy root culture of Withania somnifera via synergistic effect of Methyl jasmonate and β-cyclodextrin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108440. [PMID: 38412705 DOI: 10.1016/j.plaphy.2024.108440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Due to low amounts of withanolides produced in some plants and high demand for various applications, their biotechnological production is widely researched. The effects of two explant types (i.e., leaf and stem from the in vitro seedlings of three genotypes of Withania somnifera) and four Rhizobium strains (i.e., LBA 9402, A4, ATCC 15834, and C58C1) to improve hairy root formation efficiency was studied. Furthermore, the combined effects of β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) on withaferin A production after 48 h exposure time was examined. Four hairy roots having the maximum percentage of induced roots and mean number of induced roots to analyze their growth kinetics and identified G3/ATCC/LEAF culture having the maximum specific growth rate (μ = 0.036 day-1) and growth index (GI = 9.18), and the shortest doubling time (Td = 18.82 day) were selected. After 48 h exposure of G3/ATCC/LEAF culture to different elicitation conditions, maximum amounts of withaferin A were produced in samples co-treated with 0.5 mM β-CD + 100 μM MeJA (9.57 mg/g DW) and 5.0 mM β-CD + 100 μM MeJA (17.45 mg/g DW). These outcomes represented a 6.8-fold and 12.5-fold increase, respectively, compared to the control. Similarly, combined β-CD/MeJA elicitation increased gene expression levels of HMGR, SQS, SMT-1, and SDS/CYP710A involved in withanolides biosynthetic pathway, of which just SMT-1 had significant correlation with withaferin A production. These results demonstrated the superiority of G1-leaf explant and ATCC 15834 for hairy root induction, and revealed synergistic effect of MeJA and β-CD on withaferin A production.
Collapse
Affiliation(s)
- Mahbobeh Karami
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran.
| | - Mohammad Reza Naghavi
- Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Karaj, Iran; Department of Agrobiotechnology, Institute of Agriculture, RUDN University, 117198, Moscow, Russia.
| | - Jaber Nasiri
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute (NSTRI), Karaj, Iran.
| | - Narjes Farzin
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, Quebec, H3A 0E9, Canada.
| |
Collapse
|
18
|
Javed R, Khan B, Sharafat U, Bilal M, Galagedara L, Abbey L, Cheema M. Dynamic interplay of metal and metal oxide nanoparticles with plants: Influencing factors, action mechanisms, and assessment of stimulatory and inhibitory effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115992. [PMID: 38262092 DOI: 10.1016/j.ecoenv.2024.115992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/25/2024]
Abstract
Nanoparticles (NPs) of metals and metal oxides have received increasing attention regarding their characteristic behavior in plant systems. The fate and transport of metal NPs and metal oxide NPs in plants is of emerging concern for researchers because they ultimately become part of the food chain. The widespread use of metal-based NPs (MBNPs) in plants has revealed their beneficial and harmful effects. This review addresses the main factors affecting the uptake, translocation, absorption, bioavailability, toxicity, and accumulation of MBNPs in different plant species. It appraises the mechanism of nanoparticle-plant interaction in detail and provides understanding of the estimation strategies for the associated pros and cons with this interplay. Critical parameters of NPs include, but are not limited to, particle size and shape, surface chemistry, surface charge, concentration, solubility, and exposure route. On exposure to MBNPs, the molecular, physiological, and biochemical reactions of plants have been assessed. We have filled knowledge gaps and answered research questions regarding the positive and negative effects of metal and metal oxide NPs on seed germination, callus induction, growth and yield of plant, nutritional content, antioxidants, and enzymes. Besides, the phytotoxicity, cytotoxicity, genotoxicity, and detoxification studies of MBNPs in plants have been outlined. Furthermore, the recent developments and future perspectives of the two-way traffic of interplay of MBNPs and plants have been provided in this comprehensive review.
Collapse
Affiliation(s)
- Rabia Javed
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Bakhtawar Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Uzma Sharafat
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Muhammad Bilal
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 54320, Pakistan
| | - Lakshman Galagedara
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| | - Lord Abbey
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, NS, Canada.
| | - Mumtaz Cheema
- School of Science and the Environment, Memorial University of Newfoundland, NL, Canada.
| |
Collapse
|
19
|
Roshni PT, Rekha PD. Biotechnological interventions for the production of forskolin, an active compound from the medicinal plant, Coleus forskohlii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:213-226. [PMID: 38623169 PMCID: PMC11016037 DOI: 10.1007/s12298-024-01426-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024]
Abstract
Coleus forskohlii, an Indian-origin medicinal plant is the sole natural source of the labdane terpenoid forskolin (C22H34O7), with growing demand. Forskolin emerged as an industrially important bioactive compound, with many therapeutic applications in human health. It has established potential effects in the treatment of various diseases and conditions such as glaucoma, asthma, obesity, allergies, skin conditions and cardiovascular diseases. Moreover, clinical trials against different types of cancers are progressing. The mechanism of action of forskolin mainly involves activating adenylyl cyclase and elevating cAMP, thereby regulating different cellular processes. For the extraction of forskolin, tuberous roots of C. forskohlii are used as they contain the highest concentration of this metabolite. Approximately 2500 tonnes of the plant are cultivated annually to produce a yield of 2000-2200 kg ha-1 of dry tubers. The forskolin content of the root is distributed in the range of 0.01-1%, which cannot meet the increasing commercial demands from industries such as pharmaceuticals, cosmetics, dietary supplements, food and beverages. Hence, various aspects of micropropagation with different culture methods that employ precursors or elicitors to improve the forskolin content have been explored. Different extraction and analytical methods are also introduced to examine the yield and purity of forskolin. This review discusses the significance, clinical importance, mechanism of action and different approaches used for mass production including tissue culture for the lead compound forskolin to meet market needs.
Collapse
Affiliation(s)
- Pulukkunadu Thekkeveedu Roshni
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018 India
| |
Collapse
|
20
|
Wierzchowski K, Nowak B, Kawka M, Sykłowska-Baranek K, Pilarek M. Effect of Silica Xerogel Functionalization on Intensification of Rindera graeca Transgenic Roots Proliferation and Boosting Naphthoquinone Production. Life (Basel) 2024; 14:159. [PMID: 38276288 PMCID: PMC10817608 DOI: 10.3390/life14010159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
Secondary metabolites derived from plants are recognized as valuable products with several successful applications in the pharmaceutical, cosmetic, and food industries. The major limitation to the broader implementation of these compounds is their low manufacturing efficiency. Current efforts to overcome unprofitability depend mainly on biotechnological methods, especially through the application of plant in vitro cultures. This concept allows unprecedented bioengineering opportunities for culture system modifications with in situ product removal. The silica-based xerogels can be used as a novel, porous biomaterial characterized by a large surface area and high affinity to lipophilic secondary metabolites produced by plant tissue. This study aimed to investigate the influence of xerogel-based biomaterials functionalized with methyl, hydroxyl, carboxylic, and amine groups on Rindera graeca transgenic root growth and the production of naphthoquinone derivatives. The application of xerogel-based scaffolds functionalized with the methyl group resulted in more than 1.5 times higher biomass proliferation than for reference untreated culture. The naphthoquinone derivatives' production was noted exclusively in culture systems supplemented with xerogel functionalized with methyl and hydroxyl groups. Applying chemically functionalized xerogels as in situ adsorbents allowed for the enhanced growth and productivity of in vitro cultured R. graeca transgenic roots, facilitating product isolation due to their selective and efficient accumulation.
Collapse
Affiliation(s)
- Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| | - Bartosz Nowak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| | - Mateusz Kawka
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (K.S.-B.)
| | - Katarzyna Sykłowska-Baranek
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.K.); (K.S.-B.)
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland; (K.W.); (B.N.)
| |
Collapse
|
21
|
Kazemi B, Ranjbar M, Rezayatmand Z, Ahadi AM, Mahdavi SME, Nekonam MS. Exogenous methyl jasmonate affects genes involved in monoterpene biosynthetic pathway, phyto-biochemical accumulation, and enzymatic activity of Satureja hortensis L. Gene 2024; 892:147882. [PMID: 37806644 DOI: 10.1016/j.gene.2023.147882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
Satureja hortensis L. (SH) is a medicinal and aromatic herb utilized markedly in the food, pharmaceutical, and cosmetic industries because of its specific secondary metabolites (SMs), especially monoterpenoids. However, the impact of elicitors on the expression of monoterpene synthase genes in SH remains unexplored. Therefore, the supreme objective of this research was to elucidate the phyto-biochemical and targeted genes expression responses of SH to the exogenous application of methyl jasmonate (MeJA). Accordingly, having chosen four concentrations of MeJA, they sprayed at the five-leaf stage for two weeks, and then leaves were harvested at two exposure times of 24 and 48 hrs for further analysis, using spectrophotometric, real time-quantitative polymerase chain reaction (RT-qPCR), and gas chromatography-mass spectrometric (GC-MS) methods. The results highlight that not only were the highest contents of phenolic, flavonoids, peroxidase, superoxide dismutase, proline, and malondialdehyde in the elicited SHs but also the highest expression of β-farnesene synthase (BFS) and 1-deoxy-D-xylulose 5-phosphate reductase (DXR) genes together with the highest amount of carvacrol were up-regulated in them compared to their respective control. In conclusion, these findings demonstrate the great industrial potential of MeJA in improving the production of phytochemicals in medicinal plants, particularly in SH.
Collapse
Affiliation(s)
- Behnaz Kazemi
- Department of Biology, Islamic Azad University, Falavarjan Branch, Isfahan, Iran
| | - Monireh Ranjbar
- Department of Biology, Islamic Azad University, Falavarjan Branch, Isfahan, Iran.
| | - Zahra Rezayatmand
- Department of Biology, Islamic Azad University, Falavarjan Branch, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Molecular Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Biotechnology, Kara Pajhuhesh Pars Company, Isfahan Science and Technology Town, Isfahan University of Technology Blvd, Isfahan, Iran
| | - Marzieh Sabagh Nekonam
- Department of Biotechnology, Kara Pajhuhesh Pars Company, Isfahan Science and Technology Town, Isfahan University of Technology Blvd, Isfahan, Iran
| |
Collapse
|
22
|
Kochan E, Sienkiewicz M, Szmajda-Krygier D, Balcerczak E, Szymańska G. Carvacrol as a Stimulant of the Expression of Key Genes of the Ginsenoside Biosynthesis Pathway and Its Effect on the Production of Ginseng Saponins in Panax quinquefolium Hairy Root Cultures. Int J Mol Sci 2024; 25:909. [PMID: 38255986 PMCID: PMC10815547 DOI: 10.3390/ijms25020909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The accumulation of ginsenosides (triterpenic saponins) was determined in Panax quinquefolium hairy root cultures subjected to an elicitation process using carvacrol at 5, 10, 25, 50, 100, 250, and 500 μM concentrations during 24 and 72 h exposure. This study was the first one in which carvacrol was applied as an elicitor. The content of eight ginsenosides, Rb1, Rb2, Rb3, Rc, Rd, Rg1, Rg2, and Re, was determined using HPLC analysis. Moreover, the quantitative RT-PCR method was applied to assess the relative expression level of farnesyl diphosphate synthase, squalene synthase, and dammarenediol synthase genes in the studied cultures. The addition of carvacrol (100 μM) was an effective approach to increase the production of ginsenosides. The highest content and productivity of all detected saponins were, respectively, 20.01 mg∙g-1 d.w. and 5.74 mg∙L-1∙day-1 after 72 h elicitation. The production profile of individual metabolites in P. quinquefolium cultures changed under the influence of carvacrol. The biosynthesis of most examined protopanaxadiol derivatives was reduced under carvacrol treatment. In contrast, the levels of ginsenosides belonging to the Rg group increased. The strongest effect of carvacrol was noticed for Re metabolites, achieving a 7.72-fold increase in comparison to the control. Saponin Rg2, not detected in untreated samples, was accumulated after carvacrol stimulation, reaching its maximum concentration after 72 h exposure to 10 μM elicitor.
Collapse
Affiliation(s)
- Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Dagmara Szmajda-Krygier
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (D.S.-K.); (E.B.)
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
23
|
Jalota K, Sharma V, Agarwal C, Jindal S. Eco-friendly approaches to phytochemical production: elicitation and beyond. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:5. [PMID: 38195902 PMCID: PMC10776560 DOI: 10.1007/s13659-023-00419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/19/2023] [Indexed: 01/11/2024]
Abstract
Highly ameliorated phytochemicals from plants are recognized to have numerous beneficial effects on human health. However, obtaining secondary metabolites directly from wild plants is posing a great threat to endangered plant species due to their over exploitation. Moreover, due to complicated structure and stereospecificity chemical synthesis of these compounds is a troublesome procedure. As a result, sustainable and ecofriendly in vitro strategy has been adopted for phytochemicals production. But, lack of fully differentiated cells lowers down cultured cells productivity. Consequently, for enhancing yield of metabolites produced by cultured plant cells a variety of methodologies has been followed one such approach includes elicitation of culture medium that provoke stress responses in plants enhancing synthesis and storage of bioactive compounds. Nevertheless, for conclusive breakthrough in synthesizing bioactive compounds at commercial level in-depth knowledge regarding metabolic responses to elicitation in plant cell cultures is needed. However, technological advancement has led to development of molecular based approaches like metabolic engineering and synthetic biology which can serve as promising path for phytochemicals synthesis. This review article deals with classification, stimulating effect of elicitors on cultured cells, parameters of elicitors and action mechanism in plants, modern approaches like metabolic engineering for future advances.
Collapse
Affiliation(s)
- Kritika Jalota
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Vikas Sharma
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India
| | | | - Suruchi Jindal
- Division of Molecular Biology and Genetic Engineering, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, India.
| |
Collapse
|
24
|
Loyola-Vargas VM, Méndez-Hernández HA, Quintana-Escobar AO. The History of Agrobacterium Rhizogenes: From Pathogen to a Multitasking Platform for Biotechnology. Methods Mol Biol 2024; 2827:51-69. [PMID: 38985262 DOI: 10.1007/978-1-0716-3954-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Agrobacterium's journey has been a roller coaster, from being a pathogen to becoming a powerful biotechnological tool. While A. tumefaciens has provided the scientific community with a versatile tool for plant transformation, Agrobacterium rhizogenes has given researchers a Swiss army knife for developing many applications. These applications range from a methodology to regenerate plants, often recalcitrant, to establish bioremediation protocols to a valuable system to produce secondary metabolites. This chapter reviews its discovery, biology, controversies over its nomenclature, and some of the multiple applications developed using A. rhizogenes as a platform.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico.
| | - Hugo A Méndez-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| | - Ana O Quintana-Escobar
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| |
Collapse
|
25
|
Mamgain J, Mujib A, Bansal Y, Gulzar B, Zafar N, Syeed R, Alsughayyir A, Dewir YH. Elicitation Induced α-Amyrin Synthesis in Tylophora indica In Vitro Cultures and Comparative Phytochemical Analyses of In Vivo and Micropropagated Plants. PLANTS (BASEL, SWITZERLAND) 2023; 13:122. [PMID: 38202430 PMCID: PMC10780849 DOI: 10.3390/plants13010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Tylophora indica (Burm. f.) Merrill is an endangered medicinal plant that possesses various active agents, such as tylophorinine, kaempferol, quercetin, α-amyrin and beta-sitosterol, with multiple medicinal benefits. α-amyrin, a triterpenoid, is widely known for its antimicrobial, anti-inflammatory, gastroprotective and hepatoprotective properties. In this study, we investigated the metabolite profiling of tissues and the effects of cadmium chloride and chitosan on in vitro accumulation of alkaloids in T. indica. First, the callus was induced from the leaf in 2,4-D-, NAA- and/or BAP-fortified MS medium. Subsequent shoot formation through organogenesis and in vitro roots was later induced. Gas chromatography-mass spectrometry (GC-MS)-based phytochemical profiling of methanolic extracts of in vivo and in vitro regenerated plants was conducted, revealing the presence of the important phytocompounds α-amyrin, lupeol, beta-sitosterol, septicine, tocopherol and several others. Different in vitro grown tissues, like callus, leaf and root, were elicited with cadmium chloride (0.1-0.4 mg L-1) and chitosan (1-50 mg L-1) to evaluate the effect of elicitation on α-amyrin accumulation, measured with high-performance thin layer chromatography (HPTLC). CdCl2 and chitosan showed improved sugar (17.24 and 15.04 mg g-1 FW, respectively), protein (10.76 and 9.99 mg g-1 FW, respectively) and proline (7.46 and 7.12 mg g-1 FW), especially at T3 (0.3 and 25 mg L-1), in the leaf as compared to those of the control and other tissues. The antioxidant enzyme activities were also evaluated under an elicitated stress situation, wherein catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) displayed the highest activities in the leaf at T4 of both of the two elicitors. The α-amyrin yield was quantified with HPTLC in all tested tissues (leaf, callus and root) and had an Rf = 0.62 at 510 nm wavelength. Among all the concentrations tested, the T3 treatment (0.3 mg L-1 of cadmium chloride and 25 mg L-1 of chitosan) had the best influence on accumulation, irrespective of the tissues, with the maximum being in the leaf (2.72 and 2.64 μg g-1 DW, respectively), followed by the callus and root. Therefore, these results suggest future opportunities of elicitors in scaling up the production of important secondary metabolites to meet the requirements of the pharmaceutical industry.
Collapse
Affiliation(s)
- Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Yashika Bansal
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Basit Gulzar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Nadia Zafar
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (J.M.); (Y.B.); (B.G.); (N.Z.); (R.S.)
| | - Ali Alsughayyir
- Department of Plant and Soil Sciences, Mississippi State University, 75 B.S. Hood Rd, Starkville, MS 39762, USA;
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
26
|
Sale S, Subramaniam S, Mad’ Atari MF. Trends in the Tissue Culture Techniques and the Synthesis of Bioactive Compounds in Eurycoma longifolia Jack-Current Status and Future Perspectives. PLANTS (BASEL, SWITZERLAND) 2023; 13:107. [PMID: 38202415 PMCID: PMC10780575 DOI: 10.3390/plants13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Over the last two decades, there has been a concerted effort by researchers to mass propagate Eurycoma longifolia and improve the yield of its very important and sought-after anti-cancer and aphrodisiac bioactive compounds. To achieve this, various techniques have been used to mass propagate and improve the yield of these bioactive compounds in tissue cultures. These techniques include the optimization of media conditions and application of various types and combinations of plant growth regulators (PGRs). In addition, some elicitation techniques have been used to improve the synthesis of these bioactive compounds. However, in comparison with other herbal species with similar economic importance, many techniques have not been applied to E. longifolia. Adopting the most recent methodologies would ensure efficiency and sustainability in the in vitro production of bioactive compounds in E. longifolia. Therefore, in this review, we present an up-to-date record on the success stories in the tissue culture techniques and synthesis of bioactive compounds. In addition, we attempted to identify some of the missing links on the road to the effective and sustainable biotechnological utilization of this super important biological resource.
Collapse
Affiliation(s)
- Sani Sale
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Department of Botany, Gombe State University, P.M.B 127, Gombe 760214, Nigeria
| | - Sreeramanan Subramaniam
- School of Biological Sciences, Universiti Sains Malaysia (USM), Georgetown 11800, Penang, Malaysia
- Centre for Chemical Biology (CCB), Universiti Sains Malaysia (USM), Bayan Lepas 11900, Penang, Malaysia
- Department of Biology, Faculty of Science and Technology Universitas Airlangga, Surabaya 60115, Indonesia
| | | |
Collapse
|
27
|
Samadi S, Saharkhiz MJ, Azizi M, Samiei L, Ghorbanpour M. Exposure to single-walled carbon nanotubes differentially affect in vitro germination, biochemical and antioxidant properties of Thymus daenensis celak. seedlings. BMC PLANT BIOLOGY 2023; 23:579. [PMID: 37981681 PMCID: PMC10658928 DOI: 10.1186/s12870-023-04599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
Carbon nanomaterials such as single-walled carbon nanotubes (SWCNTs) offer a new possibility for phyto-nanotechnology and biotechnology to improve the quality and quantity of secondary metabolites in vitro. The current study aimed to determine the SWCNTs effects on Thyme (Thymus daenensis celak.) seed germination. The seedlings were further assessed in terms of morphological and phytochemical properties. Sterile seeds were cultured in vitro and treated with various concentrations of SWCNTs. Biochemical analyses were designed on seedling sample extracts for measuring antioxidant activities (AA), total flavonoids (TFC) and phenolic contents, and the main enzymes involved in oxidative reactions under experimental treatments. The results indicated that an increase in SWCNTs concentration can enhance the total percentage of seed germination. The improvement was observed in samples that received SWCNTs levels of up to 125 µg ml-1, even though seedling height and biomass accumulation decreased. Seedling growth parameters in the control samples were higher than those of grown in SWCNT-fortified media. This may have happened because of more oxidative damage as well as a rise in POD and PPO activities in tissues. Additionally, secondary metabolites and relevant enzyme activities showed that maximum amounts of TPC, TFC, AA and the highest PAL enzyme activity were detected in samples exposed to 62.5 µg ml-1 SWCNTs. Our findings reveal that SWCNTs in a concentration-dependent manner has different effects on T. daenensis morphological and phytochemical properties. Microscopic images analysis revealed that SWCNTs pierce cell walls, enter the plant cells and agglomerate in the cellular cytoplasm and cell walls. The findings provide insights into the regulatory mechanisms of SWCNTs on T. daenensis growth, germination and secondary metabolites production.
Collapse
Affiliation(s)
- Saba Samadi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad Jamal Saharkhiz
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Azizi
- Department of Horticulture, College of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Leila Samiei
- Department of Ornamental Plants, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
28
|
Zhang C, Guo X, Wang H, Dai X, Yan B, Wang S, Guo L. Induction and metabolomic analysis of hairy roots of Atractylodes lancea. Appl Microbiol Biotechnol 2023; 107:6655-6670. [PMID: 37688598 DOI: 10.1007/s00253-023-12735-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
Atractylodes lancea is an important source of traditional Chinese medicines. Sesquiterpenoids are the key active compounds in A. lancea, and their presence determines the quality of the material. Hairy hoot (HR) culture is a potential method to produce medicinally active compounds industrially; however, the induction and metabolic profiling of A. lancea HR have not been reported. We found that optimal induction of A. lancea HR was achieved by Agrobacterium rhizogenes strain C58C1 using the young leaves of tissue culture seedlings in the rooting stage as explants. Ultra-performance liquid chromatography-tandem mass spectrometric analyses of the chemical compositions of HR and normal root (NR) led to the annotation of 1046 metabolites. Over 200 differentially accumulated metabolites were identified, with 41 found to be up-regulated in HR relative to NR and 179 down-regulated in HR. Specifically, atractylodin levels were higher in HR, while the levels of β-eudesmol and hinesol were higher in NR. Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR. Five A. lancea compounds are potential biomarkers for evaluation of HR and NR quality. This study provides an important reference for the application of HR for the production of medicinally active compounds. KEY POINTS: • We established an efficient protocol for the induction of HR in A. lancea • HR was found to have a significantly higher amount of atractylodin than did NRs • Metabolic pathway analyses showed a significant difference in metabolites of the shikimate acid pathway between HR and NR.
Collapse
Affiliation(s)
- Chengcai Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiuzhi Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Hongyang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiaoyu Dai
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, 334220, People's Republic of China
| | - Binbin Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, 334220, People's Republic of China
| | - Sheng Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
- Dexing Research and Training Center of Chinese Medical Sciences, Dexing, 334220, People's Republic of China.
| | - Lanping Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China.
| |
Collapse
|
29
|
Setiawati T, Arofah AN, Nurzaman M, Annisa A, Mutaqin AZ, Hasan R. Effect of sucrose as an elicitor in increasing quercetin-3-O-rhamnoside (quercitrin) content of chrysanthemum ( Chrysanthemum morifolium Ramat) callus culture based on harvest time differences. BIOTECHNOLOGIA 2023; 104:289-300. [PMID: 37850113 PMCID: PMC10578125 DOI: 10.5114/bta.2023.130731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/19/2023] [Accepted: 05/18/2023] [Indexed: 10/19/2023] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) contains secondary metabolites, such as flavonoid compounds, especially luteolin-7-glucoside and quercetin-3-O-rhamnoside (quercitrin), in its tissues. Utilizing sucrose as an elicitor through callus culture presents an alternative method to enhance the production of secondary metabolites. This research aimed to determine the best sucrose concentration and harvest time for maximizing quercitrin content in chrysanthemum callus culture. The research employed a completely randomized design with four treatment groups: 0, 30, 45, and 60 g/l of sucrose added to MS medium containing 4 ppm 2,4-dichlorophenoxyacetic acid (2,4-D). Callus samples were harvested on the 15th and 30th days of culture. The observed parameters included callus morphology (color and texture), fresh weight, dry weight, the diameter of the callus, and quercitrin content analyzed using high-performance liquid chromatography. The results showed that all callus cultures exhibited intermediate textures and varied colors, predominantly shades of brown. The treatment involving 45 g/l of sucrose with a 30th-day harvest yielded the highest fresh weight, dry weight, and quercitrin content, namely 2.108 g, 0.051 g, and 0.437 mg/g DW, respectively. Notably, the quercitrin content exhibited a 63.67% increase compared to the control.
Collapse
Affiliation(s)
- Tia Setiawati
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa N. Arofah
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Mohamad Nurzaman
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Annisa Annisa
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Asep Z. Mutaqin
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| | - Rusdi Hasan
- Department of Biology, Faculty of Mathematics and Sciences, Universitas Padjadjaran, Indonesia
| |
Collapse
|
30
|
Tonk D, Mujib A, Maqsood M, Khusrau M, Alsughayyir A, Dewir YH. Fungal Elicitation Enhances Vincristine and Vinblastine Yield in the Embryogenic Tissues of Catharanthus roseus. PLANTS (BASEL, SWITZERLAND) 2023; 12:3373. [PMID: 37836112 PMCID: PMC10574240 DOI: 10.3390/plants12193373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Fungal elicitation could improve the secondary metabolite contents of in vitro cultures. Herein, we report the effect of Fusarium oxysporum on vinblastine and vincristine alkaloid yields in Catharanthus roseus embryos. The study revealed increased yields of vinblastine and vincristine in Catharanthus tissues. Different concentrations, i.e., 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4), of an F. oxysporum extract were applied to a solid MS medium in addition to a control (T0). Embryogenic calli were formed from the hypocotyl explants of germinating seedlings, and the tissues were exposed to Fusarium extract elicitation. The administration of the F. oxysporum extract improved the growth of the callus biomass, which later differentiated into embryos, and the maximum induction of somatic embryos was noted T2 concentration (102.69/callus mass). A biochemical analysis revealed extra accumulations of sugar, protein, and proline in the fungus-elicitated cultivating tissues. The somatic embryos germinated into plantlets on full-strength MS medium supplemented with 2.24 µM of BA. The germination rate of the embryos and the shoot and root lengths of the embryos were high at low doses of the Fusarium treatment. The yields of vinblastine and vincristine were measured in different treated tissues via high-pressure thin-layer chromatography (HPTLC). The yield of vinblastine was high in mature (45-day old) embryos (1.229 µg g-1 dry weight), which were further enriched (1.267 µg g-1 dry weight) via the F. oxysporum-elicitated treatment, especially at the T2 concentration. Compared to vinblastine, the vincristine content was low, with a maximum of 0.307 µg g-1 dry weight following the addition of the F. oxysporum treatment. The highest and increased yields of vinblastine and vincristine, 7.88 and 15.50%, were noted in F. oxysporum-amended tissues. The maturated and germinating somatic embryos had high levels of SOD activity, and upon the addition of the fungal extracts, the enzyme's activity was further elevated, indicating that the tissues experienced cellular stress which yielded increased levels of vinblastine and vincristine following the T2/T1 treatments. The improvement in the yields of these alkaloids could augment cancer healthcare treatments, making them easy, accessible, and inexpensive.
Collapse
Affiliation(s)
- Dipti Tonk
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Mehpara Maqsood
- Department of Botany, Government College for Women, M.A. Road, Srinagar 190001, India;
| | - Mir Khusrau
- Department of Botany, Government Degree College (Boys), Anantnag 231213, India;
| | - Ali Alsughayyir
- Department of Plant and Soil Sciences, Mississippi State University, 75 B.S. Hood Rd, Starkville, MS 39762, USA;
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
31
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
32
|
Wen Y, Liao Y, Tang Y, Zhang H, Zhang J, Liao Z. Metabolic Effects of Elicitors on the Biosynthesis of Tropane Alkaloids in Medicinal Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3050. [PMID: 37687296 PMCID: PMC10490125 DOI: 10.3390/plants12173050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
Tropane alkaloids (TAs) are large secondary metabolite alkaloids that find extensive applications in the synthesis of antidotes, anesthetics, antiemetics, motion sickness drugs, and antispasmodics. The current production method primarily depends on extraction from medicinal plants of the Solanaceae family. Elicitation, as a highly effective biotechnological approach, offers significant advantages in augmenting the synthesis of secondary metabolites. The advantages include its simplicity of operation, low cost, and reduced risk of contamination. This review focuses on the impact of elicitation on the biosynthesis of TAs from three aspects: single-elicitor treatment, multiple-elicitor treatment, and the combination of elicitation strategy with other strategies. Some potential reasons are also proposed. Plant hormones and growth regulators, such as jasmonic acid (JA), salicylic acid (SA), and their derivatives, have been extensively employed in the separate elicitation processes. In recent years, novel elicitors represented by magnetic nanoparticles have emerged as significant factors in the investigation of yield enhancement in TAs. This approach shows promising potential for further development. The current utilization of multi-elicitor treatment is constrained, primarily relying on the combination of only two elicitors for induction. Some of these combinations have been found to exhibit synergistic amplification effects. However, the underlying molecular mechanism responsible for this phenomenon remains largely unknown. The literature concerning the integration of elicitation strategy with other strategies is limited, and several research gaps require further investigation. In conclusion, the impact of various elicitors on the accumulation of TAs is well-documented. However, further research is necessary to effectively implement elicitation strategies in commercial production. This includes the development of stable bioreactors, the elucidation of regulatory mechanisms, and the identification of more potent elicitors.
Collapse
Affiliation(s)
- Yuru Wen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
| | - Yiran Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
| | - Yueli Tang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Hongbo Zhang
- Key Laboratory of Synthetic Biology of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China;
| | - Jiahui Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, School of Life Sciences, Southwest University, Chongqing 400715, China; (Y.W.); (Y.L.); (Y.T.)
- SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Malakar M, Paiva PDDO, Beruto M, da Cunha Neto AR. Review of recent advances in post-harvest techniques for tropical cut flowers and future prospects: Heliconia as a case-study. FRONTIERS IN PLANT SCIENCE 2023; 14:1221346. [PMID: 37575938 PMCID: PMC10419226 DOI: 10.3389/fpls.2023.1221346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/15/2023]
Abstract
Aesthetic attributes and easy-to-grow nature of tropical cut flowers (TCFs) have contributedto their potential for increased production. The dearth of information regarding agronomic practices and lack of planting materials are the key hindrances against their fast expansion. Unconventional high-temperature storage requirements and the anatomy of the peduncle contribute topoor vase life performance, while troublesome packaging and transport due to unusual size and structureprimarily cause post-harvest quality deterioration. Nonetheless, the exotic floral structuresconsequently increase market demand, particularly in temperate countries. This boosts studies aimed at overcoming post-harvest hindrances. While a few TCFs (Anthurium, Strelitzia, Alpinia, and a few orchids) are under the spotlight, many others remain behind the veil. Heliconia, an emerging specialty TCF (False Bird-of-Paradise, family Heliconiaceae), is one of them. The structural uniquenessand dazzling hues of Heliconia genotypes facilitate shifting its position from the back to the forefrontof the world floriculture trade. The unsatisfactory state-of-the-art of Heliconia research and the absence of any review exclusively on it are the key impetus for structuring this review. In addition to the aforementioned setbacks, impaired water uptake capacity after harvest, high chilling sensitivity, and the proneness of xylem ducts to microbial occlusion may be counted as a few additional factors that hinder its commercialization. This review demonstrates the state-of-the-art of post-harvest research while also conceptualizing the implementation of advanced biotechnological aid to alleviate the challenges, primarily focusing on Heliconia (the model crop here) along with some relevant literature on its other allied members. Standard harvesting indices, grading, and packaging are also part of the entire post-harvest operational chain, but since these phases are barely considered in Heliconia and the majority of tropical ornamentals except a few, a comprehensive account of these aspects has also been given. The hypothesized cues to nip chilling injury, resorting to different bio-chemical treatments, nano-based technology, and advanced packaging techniques, may help overcome preservation difficulties and propel its transition from niche to the commercial flower market. In a nutshell, readers will gain a comprehensive overview of how optimum post-harvest handling practices can rewardingly characterize this unique group of TCFs as the most remunerative component.
Collapse
Affiliation(s)
- Moumita Malakar
- Department of Horticulture & Floriculture, Central University of Tamil Nadu, Thiruvarur, India
| | | | - Margherita Beruto
- International Society for Horticultural Science (ISHS), Ornamental Plant Division, San Remo, Italy
| | | |
Collapse
|
34
|
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y. Production of secondary metabolites using tissue culture-based biotechnological applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1132555. [PMID: 37457343 PMCID: PMC10339834 DOI: 10.3389/fpls.2023.1132555] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/22/2023] [Indexed: 07/18/2023]
Abstract
Plants are the sources of many bioactive secondary metabolites which are present in plant organs including leaves, stems, roots, and flowers. Although they provide advantages to the plants in many cases, they are not necessary for metabolisms related to growth, development, and reproduction. They are specific to plant species and are precursor substances, which can be modified for generations of various compounds in different plant species. Secondary metabolites are used in many industries, including dye, food processing and cosmetic industries, and in agricultural control as well as being used as pharmaceutical raw materials by humans. For this reason, the demand is high; therefore, they are needed to be obtained in large volumes and the large productions can be achieved using biotechnological methods in addition to production, being done with classical methods. For this, plant biotechnology can be put in action through using different methods. The most important of these methods include tissue culture and gene transfer. The genetically modified plants are agriculturally more productive and are commercially more effective and are valuable tools for industrial and medical purposes as well as being the sources of many secondary metabolites of therapeutic importance. With plant tissue culture applications, which are also the first step in obtaining transgenic plants with having desirable characteristics, it is possible to produce specific secondary metabolites in large-scale through using whole plants or using specific tissues of these plants in laboratory conditions. Currently, many studies are going on this subject, and some of them receiving attention are found to be taken place in plant biotechnology and having promising applications. In this work, particularly benefits of secondary metabolites, and their productions through tissue culture-based biotechnological applications are discussed using literature with presence of current studies.
Collapse
Affiliation(s)
| | - Ilhan Dogan
- Department of Medical Services and Techniques, Akyazi Vocational School of Health Services, Sakarya University of Applied Science, Sakarya, Türkiye
| | - Asli Hocaoglu-Ozyigit
- Department of Biology, Faculty of Science, Marmara University, Istanbul, Türkiye
- Biology Program, Institute of Pure and Applied Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Bestenur Yalcin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Bahcesehir University, Istanbul, Türkiye
| | - Aysegul Erdogan
- Application and Research Centre for Testing and Analysis, EGE MATAL, Chromatography and Spectroscopy Laboratory, Ege University, Izmir, Türkiye
| | - Ibrahim Ertugrul Yalcin
- Department of Civil Engineering, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Türkiye
| | - Evren Cabi
- Department of Biology, Faculty of Arts and Sciences, Tekirdag Namık Kemal University, Tekirdag, Türkiye
| | - Yilmaz Kaya
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Türkiye
| |
Collapse
|
35
|
Kandoudi W, Tavaszi-Sárosi S, Németh-Zámboriné E. Inducing the Production of Secondary Metabolites by Foliar Application of Methyl Jasmonate in Peppermint. PLANTS (BASEL, SWITZERLAND) 2023; 12:2339. [PMID: 37375964 DOI: 10.3390/plants12122339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Mentha x piperita is a major source of secondary metabolites (SMs), and developing tools to enhance these compounds would be beneficial to meet the increasing demand in the industry. Elicitation by plant hormones became a new strategy to reach this goal. Three experiments in a climatic chamber and two experiments in an open field were conducted with peppermint to explore the effect of methyl jasmonate (MeJa) on the essential oil (EO) content, EO composition, and the total phenolic content (TPC). The treatment was applied for all experiments by spraying the aerial parts of the plants with a dosage of 2 mM MeJa twice. The treatment influenced all the parameters studied in the trials. The volatile content increased by 9-35%; however, in one trial it remained unchanged. The treatment also affected the main compounds of the EO. Menthone increased significantly in two trials while pulegone and menthofuran decreased. In the case of menthol, the change may also be influenced by the phenological and developmental stages of the plants. In the majority of cases, the TPC was also elevated considerably due to the treatments. MeJa treatments may have promising effects in influencing the accumulation of biologically active compounds and the quality of the drug; therefore, further systematic studies are needed to optimize the technology in vivo.
Collapse
Affiliation(s)
- Wafae Kandoudi
- Department of Medicinal and Aromatic Plants, Hungarian University of Agriculture and Life Sciences, Villányi St. 29-35, 1118 Budapest, Hungary
| | - Szilvia Tavaszi-Sárosi
- Department of Medicinal and Aromatic Plants, Hungarian University of Agriculture and Life Sciences, Villányi St. 29-35, 1118 Budapest, Hungary
| | - Eva Németh-Zámboriné
- Department of Medicinal and Aromatic Plants, Hungarian University of Agriculture and Life Sciences, Villányi St. 29-35, 1118 Budapest, Hungary
| |
Collapse
|
36
|
Bernabé-Antonio A, Castro-Rubio C, Rodríguez-Anda R, Silva-Guzmán JA, Manríquez-González R, Hurtado-Díaz I, Sánchez-Ramos M, Hinojosa-Ventura G, Romero-Estrada A. Jasmonic and Salicylic Acids Enhance Biomass, Total Phenolic Content, and Antioxidant Activity of Adventitious Roots of Acmella radicans (Jacq.) R.K. Jansen Cultured in Shake Flasks. Biomolecules 2023; 13:biom13050746. [PMID: 37238616 DOI: 10.3390/biom13050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Acmella radicans (Asteraceae) is a plant native to America. Despite it having medicinal attributes, studies on its phytochemical properties are scarce, and biotechnological studies do not exist for this species. In this study, we established an adventitious root culture from A. radicans internodal segments in shake flasks with indole-3-butyric acid (IBA), and then elicited it with jasmonic acid (JA) and salicylic acid (SA). The total phenolic content and antioxidant activity were evaluated, and a comparison was made using in vitro plantlets and wild plants. Internodal segments with 0.1 mg/L IBA showed 100% root induction and exhibited better growth after transfer to shake flasks with MS liquid culture medium. JA had a significant effect on biomass increase compared to unelicited roots, mainly with 50 µM JA (28%), while SA did not show significant results. Root elicited with 100 µM (SA and JA) showed a 0.34- and 3.9-fold increase, respectively, in total phenolic content (TPC) compared to the control. The antioxidant activity was also significant, and a lower half-maximal inhibitory concentration (IC50) was observed as the AJ concentration increased. Roots elicited with AJ (100 µM) exhibited high antioxidant activity with DPPH (IC50 = 9.4 µg/mL) and ABTS (IC50 = 3.3 µg/mL) assays; these values were close to those for vitamin C (IC50 = 2.0 µg/mL). The TPC and antioxidant activity of in vitro plants and root cultured in shake flasks showed the lowest values in most cases; even the root cultures without elicitation were better than those of a wild plant. In this study, we demonstrated that A. radicans root culture is capable of producing secondary metabolites, while its production and antioxidant activity can be enhanced using jasmonic acid.
Collapse
Affiliation(s)
- Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Clarisa Castro-Rubio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Raúl Rodríguez-Anda
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Ricardo Manríquez-González
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Israel Hurtado-Díaz
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| | - Mariana Sánchez-Ramos
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City 09310, Mexico
| | - Gabriela Hinojosa-Ventura
- Department of Chemical Engineering, University Center of Exact Sciences and Engineering, University of Guadalajara, Blvd. Marcelino García Barragán 1451, Col. Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Antonio Romero-Estrada
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, Zapopan 45200, Jalisco, Mexico
| |
Collapse
|
37
|
Davosir D, Šola I. Membrane permeabilizers enhance biofortification of Brassica microgreens by interspecific transfer of metabolites from tea (Camellia sinensis). Food Chem 2023; 420:136186. [PMID: 37087866 DOI: 10.1016/j.foodchem.2023.136186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/15/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Interspecific metabolite transfer (ISMT) is a novel approach for plants biofortification. In this study, the effect of tea (Camellia sinensis; Cs), with or without membrane permeabilizers EDTA and Tween, as a donor plant on broccoli, cauliflower and kale sprouts was investigated. As a result, caffeine- and catechin-enriched broccoli, cauliflower and kale microgreens were produced. Kale sprouts were most permeable for catechins from Cs, while cauliflower was most permeable for caffeine. Cs + EDTA significantly increased vitamin C in broccoli and kale. Among the tested enzymes activity, pancreatic lipase was the most affected by the treatment with broccoli and cauliflower biofortified with Cs or Cs combined with permeabilizers. Broccoli sprouts biofortified with Cs most significantly inhibited α-amylase, while those biofortified with Cs combined with permeabilizers most significantly inhibited α-glucosidase. Results point to ISMT combined with membrane permeabilizers as a promising and eco-friendly biofortification strategy to improve the biopotential of Brassica microgreens.
Collapse
Affiliation(s)
- Dino Davosir
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
38
|
Kim JH, Han JE, Murthy HN, Kim JY, Kim MJ, Jeong TK, Park SY. Production of Secondary Metabolites from Cell Cultures of Sageretia thea (Osbeck) M.C. Johnst. Using Balloon-Type Bubble Bioreactors. PLANTS (BASEL, SWITZERLAND) 2023; 12:1390. [PMID: 36987078 PMCID: PMC10054716 DOI: 10.3390/plants12061390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Sageretia thea is used in the preparation of herbal medicine in China and Korea; this plant is rich in various bioactive compounds, including phenolics and flavonoids. The objective of the current study was to enhance the production of phenolic compounds in plant cell suspension cultures of Sageretia thea. Optimum callus was induced from cotyledon explants on MS medium containing 2,4-dichlorophenoxyacetic acid (2,4-D; 0.5 mg L-1), naphthalene acetic acid (NAA, 0.5 mg L-1), kinetin (KN; 0.1 mg L-1) and sucrose (30 g L-1). Browning of callus was successfully avoided by using 200 mg L-1 ascorbic acid in the callus cultures. The elicitor effect of methyl jasmonate (MeJA), salicylic acid (SA), and sodium nitroprusside (SNP) was studied in cell suspension cultures, and the addition of 200 µM MeJA was found suitable for elicitation of phenolic accumulation in the cultured cells. Phenolic and flavonoid content and antioxidant activity were determined using 2,2 Diphenyl 1 picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethybenzothiazoline-6-sulphonic acid (ABTS), ferric reducing antioxidant power (FRAP) assays and results showed that cell cultures possessed highest phenolic and flavonoid content as well as highest DPPH, ABTS, and FRAP activities. Cell suspension cultures were established using 5 L capacity balloon-type bubble bioreactors using 2 L of MS medium 30 g L-1 sucrose and 0.5 mg L-1 2,4-D, 0.5 mg L-1 NAA, and 0.1 mg L-1 KN. The optimum yield of 230.81 g of fresh biomass and 16.48 g of dry biomass was evident after four weeks of cultures. High-pressure liquid chromatography (HPLC) analysis showed the cell biomass produced in bioreactors possessed higher concentrations of catechin hydrate, chlorogenic acid, naringenin, and other phenolic compounds.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Jong-Eun Han
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| | - Hosakatte Niranjana Murthy
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
- Department of Botany, Karnatak University, Dharwad 580003, India
| | - Ja-Young Kim
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - Mi-Jin Kim
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - Taek-Kyu Jeong
- Saimdang Cosmetics Co., Ltd., 143, Yangcheongsongdae-gil, Ochang-eup, Cheongwon-gu, Cheongju-si 28118, Republic of Korea (T.-K.J.)
| | - So-Young Park
- Department of Horticultural Science, Chungbuk National University, Cheongju-si 28644, Republic of Korea
| |
Collapse
|
39
|
Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, Ramesh M. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. PLANT CELL, TISSUE AND ORGAN CULTURE 2023; 153:447-458. [PMID: 37197003 PMCID: PMC10026785 DOI: 10.1007/s11240-023-02485-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023]
Abstract
Plant secondary metabolites are bioactive scaffolds that are crucial for plant survival in the environment and to maintain a defense mechanism from predators. These compounds are generally present in plants at a minimal level and interestingly, they are found to have a wide variety of therapeutic values for humans. Several medicinal plants are used for pharmaceutical purposes due to their affordability, fewer adverse effects, and vital role in traditional remedies. Owing to this reason, these plants are exploited at a high range worldwide and therefore many medicinal plants are on the threatened list. There is a need of the hour to tackle this major problem, one effective approach called elicitation can be used to enhance the level of existing and novel plant bioactive compounds using different types of elicitors namely biotic and abiotic. This process can be generally achieved by in vitro and in vivo experiments. The current comprehensive review provides an overview of biotic and abiotic elicitation strategies used in medicinal plants, as well as their effects on secondary metabolites enhancement. Further, this review mainly deals with the enhancement of biomass and biosynthesis of different bioactive compounds by methyl jasmonate (MeJA) and salicylic acid (SA) as elicitors of wide medicinal plants in in vitro by using different cultures. The present review was suggested as a significant groundwork for peers working with medicinal plants by applying elicitation strategies along with advanced biotechnological approaches.
Collapse
Affiliation(s)
- Rajendran Jeyasri
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Kannan Karthick
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Sung Hwan Choi
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725 South Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, Jinju, 52725 South Korea
| | - Manikandan Ramesh
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, Tamil Nadu 630 003 India
| |
Collapse
|
40
|
Kanthaliya B, Joshi A, Arora J, Alqahtani MD, Abd_Allah EF. Effect of Biotic Elicitors on the Growth, Antioxidant Activity and Metabolites Accumulation in In Vitro Propagated Shoots of Pueraria tuberosa. PLANTS (BASEL, SWITZERLAND) 2023; 12:1300. [PMID: 36986988 PMCID: PMC10053785 DOI: 10.3390/plants12061300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Pueraria tuberosa contains a wide range of bioactive compounds, including polyphenols, alkaloids, and phytosterols, which make it valuable to the pharmaceutical and food industries. Elicitor compounds trigger the defense mechanisms in plants and are widely used to increase the yield of bioactive molecules in in vitro cultures. The present study was conducted to evaluate the effects of different concentrations of biotic elicitors such as yeast extract (YE), pectin (PEC), and alginate (ALG) on growth, antioxidant activity, and metabolite accumulation in in vitro propagated shoots of P. tuberosa. The elicitors applied to shoot cultures of P. tuberosa significantly increased biomass (shoot number, fresh weight, and dry weight), and metabolites such as protein, carbohydrates, chlorophyll, total phenol (TP), and total flavonoid (TF) contents, as well as antioxidant activity compared to untreated control. Biomass, TP, and TF contents, as well as antioxidant activity, were most significant in cultures treated with 100 mg/L PEC. In contrast, chlorophyll, protein, and carbohydrate increased most in cultures treated with 200 mg/L ALG. Application of 100 mg/L of PEC led to the accumulation of high amounts of isoflavonoids including puerarin (220.69 μg/g), daidzin (2935.55 μg/g), genistin (5612 μg/g), daidzein (479.81 μg/g), and biochanin-A (111.511 μg/g) as analyzed by high-performance liquid chromatography (HPLC). Total isoflavonoids content of 100 mg/L PEC treated shoots was obtained as 9359.56 μg/g, 1.68-fold higher than in vitro propagated shoots without elicitors (5573.13 μg/g) and 2.77-fold higher than shoots of the mother plant (3380.17 μg/g). The elicitor concentrations were optimized as 200 mg/L YE, 100 mg/L PEC, and 200 mg/L ALG. Overall, this study showed that the application of different biotic elicitors resulted in better growth, antioxidant activity, and accumulation of metabolites in P. tuberosa, which could lead to obtaining phytopharmaceutical advantages in the future.
Collapse
Affiliation(s)
- Bhanupriya Kanthaliya
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Abhishek Joshi
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Jaya Arora
- Laboratory of Biomolecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
41
|
Bouzroud S, El Maaiden E, Sobeh M, Merghoub N, Boukcim H, Kouisni L, El Kharrassi Y. Biotechnological Approaches to Producing Natural Antioxidants: Anti-Ageing and Skin Longevity Prospects. Int J Mol Sci 2023; 24:ijms24021397. [PMID: 36674916 PMCID: PMC9867058 DOI: 10.3390/ijms24021397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Plants are the main source of bioactive compounds that can be used for the formulation of cosmetic products. Plant extracts have numerous proven health benefits, among which are anti-ageing and skin-care properties. However, with the increased demand for plant-derived cosmetic products, there is a crucial prerequisite for establishing alternative approaches to conventional methods to ensure sufficient biomass for sustainable production. Plant tissue culture techniques, such as in vitro root cultures, micropropagation, or callogenesis, offer the possibility to produce considerable amounts of bioactive compounds independent of external factors that may influence their production. This production can also be significantly increased with the implementation of other biotechnological approaches such as elicitation, metabolic engineering, precursor and/or nutrient feeding, immobilization, and permeabilization. This work aimed to evaluate the potential of biotechnological tools for producing bioactive compounds, with a focus on bioactive compounds with anti-ageing properties, which can be used for the development of green-label cosmeceutical products. In addition, some examples demonstrating the use of plant tissue culture techniques to produce high-value bioactive ingredients for cosmeceutical applications are also addressed, showing the importance of these tools and approaches for the sustainable production of plant-derived cosmetic products.
Collapse
Affiliation(s)
- Sarah Bouzroud
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Ezzouhra El Maaiden
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Mansour Sobeh
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - Nawal Merghoub
- AgroBioSciences Department (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation & Research (MAScIR), Rabat 10100, Morocco
| | - Hassan Boukcim
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
| | - Youssef El Kharrassi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laâyoune 70000, Morocco
- Correspondence:
| |
Collapse
|
42
|
Asadollahei MV, Tabatabaeian J, Yousefifard M, Mahdavi SME, Nekonam MS. Impact of elicitors on essential oil compositions and phytochemical constituents in Lavandula stoechas L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:722-730. [PMID: 36577196 DOI: 10.1016/j.plaphy.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Lavandula stoechas L. (LS) is an aromatic evergreen herb used broadly in the food, pharmaceutical, and perfume industries. However, the inducer effect of elicitors on secondary metabolites (SMs) biosynthesis in LS is nebulous. In addition, the precise mechanism of elicitors in cells remains unexplored. Hence, the primary objective of this study was to analyze the changes in phytochemical compositions of LSs treated with a biotic elicitor (chitin) and an abiotic one (copper nanoparticle) under in vitro and greenhouse conditions, with the aim of choosing an appropriate elicitor type, concentration, and exposure time for this species. In this study, the biochemical function of four chitin concentrations (i.e. 0, 50, 100 & 200 mg L-1) and four copper oxide nanoparticle concentrations (i.e. 0, 25, 50, & 100 mg L-1) at two exposure times (i.e. 5 & 10 days) was investigated in LS so as to compare with the un-elicited explants and the original plant materials. The analysis showed that the highest contents of the total phenolic (4.68 mg g-1 FW), flavonoids (0.68 mg g-1 FW), anthocyanins (36.51 mg g-1 FW), and flavonols (0.29 mg g-1 FW) compounds were observed in the elicited LSs. Besides, the role of elicitors in augmenting the percentage of SMs was intelligible, especially 'lavandulol', '1,8-cineole', 'germacrene D', and '(E)-nerolidol', which increased by 21.68%, 17.21%, 9.33%, and 8.11%, respectively. In conclusion, these findings indicate that utilizing elicitors at optimal concentrations and with timely durations of exposure can largely assist in improving the biotechnological production of SMs in LS, so that their potential for industrial use can be actualized.
Collapse
Affiliation(s)
- Majid Vakil Asadollahei
- Department of Agricultural Sciences, Islamic Azad University (IAU), Ardestan Branch, Ardestan, Iran
| | - Javad Tabatabaeian
- Department of Agricultural Sciences, Islamic Azad University (IAU), Ardestan Branch, Ardestan, Iran
| | - Maryam Yousefifard
- Department of Agricultural Engineering and Technology, Payame Noor University (PNU), Tehran, Iran.
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Biotechnology, Kara Pajhuhesh Pars Compony, Isfahan Science and Technology Town (ISTT), Isfahan University of Technology (IUT) Blvd, Isfahan, Iran
| | - Marzieh Sabagh Nekonam
- Department of Biotechnology, Kara Pajhuhesh Pars Compony, Isfahan Science and Technology Town (ISTT), Isfahan University of Technology (IUT) Blvd, Isfahan, Iran
| |
Collapse
|
43
|
de Carvalho LC, de Almeida Junior A, Ribeiro FS, Angolini CFF. Unveiling Microbial Chemical Interactions Based on Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:51-70. [PMID: 37843805 DOI: 10.1007/978-3-031-41741-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Microorganisms are ubiquitous in diverse habitats and studying their chemical interactions with the environment and comprehend its complex relations with both hosts and environment, are crucial for the development of strategies to control microbial diseases. This chapter discusses the importance of studying microorganisms with agricultural benefits, using specialized metabolites as examples. Herein we highlight the challenges and opportunities in utilizing microorganisms as alternatives to synthetic pesticides and fertilizers in agriculture. Genome-guided investigations and improved analytical methodologies are necessary to characterize diverse and complex biomolecules produced by microorganisms. Predicting and isolating bioproducts based on genetic information have become a focus for researchers, aided by tools like antiSMASH, BiG-SCAPE, PRISM, and others. However, translating genomic data into practical applications can be complex. Therefore, integrating genomics, transcriptomics, and metabolomics enhances chemical characterization, aiding in discovering new metabolic pathways and specialized metabolites. Additionally, elicitation is one promising strategy to enhance beneficial metabolite production. Finally, identify and characterize microbial secondary metabolites remain challenging due to their low production, complex chemical structure characterization and different environmental factors necessary for metabolite in vitro production.
Collapse
Affiliation(s)
- Laís Castro de Carvalho
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Arnaldo de Almeida Junior
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Fernanda Silva Ribeiro
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MC-CELL), Center for Natural and Human Sciences, University of ABC (UFABC), São Paulo, Brazil.
| |
Collapse
|
44
|
Current status and future prospects in cannabinoid production through in vitro culture and synthetic biology. Biotechnol Adv 2023; 62:108074. [PMID: 36481387 DOI: 10.1016/j.biotechadv.2022.108074] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
For centuries, cannabis has been a rich source of fibrous, pharmaceutical, and recreational ingredients. Phytocannabinoids are the most important and well-known class of cannabis-derived secondary metabolites and display a broad range of health-promoting and psychoactive effects. The unique characteristics of phytocannabinoids (e.g., metabolite likeness, multi-target spectrum, and safety profile) have resulted in the development and approval of several cannabis-derived drugs. While most work has focused on the two main cannabinoids produced in the plant, over 150 unique cannabinoids have been identified. To meet the rapidly growing phytocannabinoid demand, particularly many of the minor cannabinoids found in low amounts in planta, biotechnology offers promising alternatives for biosynthesis through in vitro culture and heterologous systems. In recent years, the engineered production of phytocannabinoids has been obtained through synthetic biology both in vitro (cell suspension culture and hairy root culture) and heterologous systems. However, there are still several bottlenecks (e.g., the complexity of the cannabinoid biosynthetic pathway and optimizing the bioprocess), hampering biosynthesis and scaling up the biotechnological process. The current study reviews recent advances related to in vitro culture-mediated cannabinoid production. Additionally, an integrated overview of promising conventional approaches to cannabinoid production is presented. Progress toward cannabinoid production in heterologous systems and possible avenues for avoiding autotoxicity are also reviewed and highlighted. Machine learning is then introduced as a powerful tool to model, and optimize bioprocesses related to cannabinoid production. Finally, regulation and manipulation of the cannabinoid biosynthetic pathway using CRISPR- mediated metabolic engineering is discussed.
Collapse
|
45
|
Goncharuk EA, Saibel OL, Zaitsev GP, Zagoskina NV. The Elicitor Effect of Yeast Extract on the Accumulation of Phenolic Compounds in Linum grandiflorum Cells Cultured In Vitro and Their Antiradical Activity. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
This paper examines the elicitor effect of yeast extract (YE) in various concentrations (200–1000 mg/L) on the accumulation of phenolic compounds (PC) in flowering flax (Linum grandiflorum Desf.) cells cultured in vitro and their antiradical activity. It is established that the total PС content and the content of phenylpropanoids increase in the cell culture, especially at high YE concentrations in the medium (500 and 1000 mg/L). The antiradical activity of flax culture extracts remains in most cases at the control level. Therefore, the elicitation of flowering flax in vitro cultures by YE activates the PC biosynthesis resulting in the accumulation of these secondary metabolites, while the antiradical activity of cell culture extracts does not decrease compared to the control level.
Collapse
|
46
|
Mohaddab M, El Goumi Y, Gallo M, Montesano D, Zengin G, Bouyahya A, Fakiri M. Biotechnology and In Vitro Culture as an Alternative System for Secondary Metabolite Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228093. [PMID: 36432194 PMCID: PMC9697480 DOI: 10.3390/molecules27228093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Medicinal plants are rich sources of bioactive compounds widely used as medicaments, food additives, perfumes, and agrochemicals. These secondary compounds are produced under stress conditions to carry out physiological tasks in plants. Secondary metabolites have a complex chemical structure with pharmacological properties. The widespread use of these metabolites in a lot of industrial sectors has raised the need to increase the production of secondary metabolites. Biotechnological methods of cell culture allow the conservation of plants, as well as the improvement of metabolite biosynthesis and the possibility to modify the synthesis pathways. The objective of this review is to outline the applications of different in vitro culture systems with previously reported relevant examples for the optimal production of plant-derived secondary metabolites.
Collapse
Affiliation(s)
- Marouane Mohaddab
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| | - Younes El Goumi
- Polyyvalent Team in R&D, Higher School of Technology of Fkih Ben Salah, Sultan Moulay Slimane University, USMS, Beni Mellal 23000, Morocco
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via Pansini, 5, 80131 Naples, Italy
- Correspondence: (M.G.); (A.B.)
| | - Domenico Montesano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Correspondence: (M.G.); (A.B.)
| | - Malika Fakiri
- Laboratory of Agrifood and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, BP 577, Settat 26000, Morocco
| |
Collapse
|
47
|
Prasad A, Patel P, Niranjan A, Mishra A, Saxena G, Singh SS, Chakrabarty D. Biotic elicitor-induced changes in growth, antioxidative defense, and metabolites in an improved prickleless Solanum viarum. Appl Microbiol Biotechnol 2022; 106:6455-6469. [PMID: 36069926 DOI: 10.1007/s00253-022-12159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
Solanum viarum serves as a raw material for the steroidal drug industry due to its alkaloid and glycoalkaloid content. Elicitation is well-known for measuring the increase in the yield of bioactive compounds in in vitro cultures. The current study was performed for the accumulation of metabolites viz. solasodine, solanidine, and α-solanine in S. viarum culture using microbial-based elicitors added in 1%, 3%, 5%, and 7% on 25th and 35th day of culture period and harvested on 45th and 50th days of culture cycle. The treatment of 3% Trichoderma reesei and Bacillus tequilensis culture filtrate (CF) significantly increased biomass, alkaloids/glycoalkaloid content, and yield in S. viarum. T. reesei was found to be the best treatment for enhanced growth (GI = 11.65) and glycoalkaloid yield (2.54 mg DW plant-1) after the 50th day of the culture cycle when added on the 25th day. The abundance of gene transcripts involved in the biosynthesis of alkaloids/glycoalkaloids, revealed by quantitative real-time PCR expression analysis correlates with the accumulation of their respective metabolites in elicited plants. Biochemical analysis shows that elicited plants inhibited oxidative damage caused by reactive oxygen species by activating enzymes (superoxide dismutase and ascorbate peroxidase) as well as non-enzymatic antioxidant mechanisms (alkaloids, total phenols, total flavonoids, carotenoids, and proline). The findings of this study clearly demonstrate that the application of T. reesei and B. tequilensis CF at a specific dose and time significantly improve biomass as well as upregulates the metabolite biosynthetic pathway in an important medicinal plant- S. viarum. KEY POINTS: • Biotic elicitors stimulated the alkaloids/glycoalkaloid content in S. viarum plant cultures. • T. reesei was found to be most efficient for enhancing the growth and alkaloids content. • Elicited plants activate ROS based-defense mechanism to overcome oxidative damage.
Collapse
Affiliation(s)
- Archana Prasad
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Preeti Patel
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Abhishek Niranjan
- Central Instrumentation Facility, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India
| | - Aradhana Mishra
- Division of Plant Microbe Interaction, Council of Scientific and Industrial Research- National Botanical ResearchInstitute, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, 226007, U.P., India
| | - Satya Shila Singh
- Department of Botany, Banaras Hindu University, Varanasi, 221005, U.P., India
| | - Debasis Chakrabarty
- Molecular Biology and Biotechnology Division, Council of Scientific & Industrial Research- National Botanical Research Institute, Lucknow, 226001, U.P., India.
| |
Collapse
|
48
|
Alcalde MA, Perez-Matas E, Escrich A, Cusido RM, Palazon J, Bonfill M. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules 2022; 27:molecules27165253. [PMID: 36014492 PMCID: PMC9416168 DOI: 10.3390/molecules27165253] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
One of the aims of plant in vitro culture is to produce secondary plant metabolites using plant cells and organ cultures, such as cell suspensions, adventitious, and hairy roots (among others). In cases where the biosynthesis of a compound in the plant is restricted to a specific organ, unorganized systems, such as plant cell cultures, are sometimes unsuitable for biosynthesis. Then, its production is based on the establishment of organ cultures such as roots or aerial shoots. To increase the production in these biotechnological systems, elicitors have been used for years as a useful tool since they activate secondary biosynthetic pathways that control the flow of carbon to obtain different plant compounds. One important biotechnological system for the production of plant secondary metabolites or phytochemicals is root culture. Plant roots have a very active metabolism and can biosynthesize a large number of secondary compounds in an exclusive way. Some of these compounds, such as tropane alkaloids, ajmalicine, ginsenosides, etc., can also be biosynthesized in undifferentiated systems, such as cell cultures. In some cases, cell differentiation and organ formation is necessary to produce the bioactive compounds. This review analyses the biotic elicitors most frequently used in adventitious and hairy root cultures from 2010 to 2022, focusing on the plant species, the target secondary metabolite, the elicitor and its concentration, and the yield/productivity of the target compounds obtained. With this overview, it may be easier to work with elicitors in in vitro root cultures and help understand why some are more effective than others.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Edgar Perez-Matas
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Ainoa Escrich
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Rosa M. Cusido
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Javier Palazon
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Mercedes Bonfill
- Laboratorio de Fisiologia Vegetal, Facultad de Farmacia, Universitat de Barcelona, Avda. Joan XXIII 27-31, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4020267; Fax: +34-93-4029043
| |
Collapse
|
49
|
Overcoming Metabolic Constraints in the MEP-Pathway Enrich Salvia sclarea Hairy Roots in Therapeutic Abietane Diterpenes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abietane diterpenoids (e.g., carnosic acid, aethiopinone, 1-oxoaethiopinone, salvipisone, and ferruginol) synthesized in the roots of several Salvia species have proved to have promising biological activities, but their use on a large scale is limited by the very low content extracted from in vivo roots. In this review, we summarized our efforts and the achieved results aimed at optimizing the synthesis of these diterpenes in Salvia sclarea hairy roots by either elicitation or by modifying the expression of genes encoding enzymes of the MEP-pathway, the biosynthetic route from which they derive. Stable S. sclarea hairy roots (HRs) were treated with methyl jasmonate or coronatine, or genetically engineered, by tuning the expression of genes controlling enzymatic rate-limiting steps (DXS, DXR, GGPPS, CPPS alone or in combination), by silencing of the Ent-CPPS gene, encoding an enzyme acting at gibberellin lateral competitive route or by coordinate up-regulation of biosynthetic genes mediated by transcription factors (WRKY and MYC2). Altogether, these different approaches successfully increased the amount of abietane diterpenes in S. sclarea HRs from to 2 to 30 times over the content found in the control HR line.
Collapse
|
50
|
Gutierrez-Valdes N, Häkkinen ST, Lemasson C, de Groot J, Ele-Ekouna JP, Guillet M, Cardon F, Ritala A. Improving yield of a recombinant biologic in a Brassica hairy root manufacturing process. Biotechnol Bioeng 2022; 119:2831-2841. [PMID: 35822204 PMCID: PMC9543041 DOI: 10.1002/bit.28178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022]
Abstract
Hairy root systems have proven to be a viable alternative for recombinant protein production. For recalcitrant proteins, maximizing the productivity of hairy root cultures is essential. The aim of this study was to optimize a Brassica rapa rapa hairy root process for secretion of alpha‐
l‐iduronidase (IDUA), a biologic of medical value. The process was first optimized with hairy roots expressing eGFP. For the biomass optimization, the highest biomass yields were achieved in modified Gamborg B5 culture medium. For the secretion induction, the optimized secretion media was obtained with additives (1.5 g/l PVP + 1 mg/l 2,4‐
d + 20.5 g/l KNO3) resulting in 3.4 fold eGFP secretion when compared to the non‐induced control. These optimized conditions were applied to the IDUA‐expressing hairy root clone, confirming that the highest yields of secreted IDUA occurred when using the defined additive combination. The functionality of the IDUA protein, secreted and intracellular, was confirmed with an enzymatic activity assay. A > 150‐fold increase of the IDUA activity was observed using an optimized secretion medium, compared with a non‐induced medium. We have proven that our B. rapa rapa hairy root system can be harnessed to secrete recalcitrant proteins, illustrating the high potential of hairy roots in plant molecular farming.
Collapse
Affiliation(s)
- Noemi Gutierrez-Valdes
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044 VTT, Espoo, Finland
| | - Suvi T Häkkinen
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Jonas de Groot
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044 VTT, Espoo, Finland
| | | | | | | | - Anneli Ritala
- VTT Technical Research Centre of Finland Ltd., P.O.Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|