1
|
Lee JM, Cho SW, Jo C, Yang SH, Kim J, Kim DY, Jo JW, Park JS, Kim YH, Park SK. Monolithically integrated neuromorphic electronic skin for biomimetic radiation shielding. SCIENCE ADVANCES 2024; 10:eadp9885. [PMID: 39365868 PMCID: PMC11451525 DOI: 10.1126/sciadv.adp9885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Melanogenesis, a natural responsive mechanism of human skin to harmful radiation, is a self-triggered defensive neural activity safeguarding the body from radiation exposure in advance. With the increasing significance of radiation shielding in diverse medical health care and wearable applications, a biomimetic neuromorphic optoelectronic system with adaptive radiation shielding capability is often needed. Here, we demonstrate a transparent and flexible metal oxide-based photovoltaic neuromorphic defensive system. By using a monolithically integrated ultraflexible optoelectronic circuitry and electrochromic device, seamless neural processing for ultraviolet (UV) radiation shielding including history-based sensing, memorizing, risk recognition, and blocking can be realized with piling the entire signal chain into the flexible devices. The UV shielding capability of the system can be evaluated as autonomous blocking up to 97% of UV radiation from 5 to 90 watts per square meter in less than 16.9 seconds, demonstrating autonomously modulated sensitivity and response time corresponding to UV environmental conditions and supplied bias.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sung Woon Cho
- Department of Advanced Components and Materials Engineering, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Chanho Jo
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong Hwan Yang
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehyun Kim
- Department of Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Do Yeon Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jeong-Wan Jo
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK
| | - Jong S. Park
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sung Kyu Park
- Department of Intelligent Semiconductor Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk-Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2403729. [PMID: 39246220 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbruecken, Germany
| | - Felipe P Perona Martínez
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Centre Groningen and University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Małgorzata K Włodarczyk-Biegun
- Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
- Biotechnology Centre, The Silesian University of Technology, Krzywoustego 8, Gliwice, 44-100, Poland
| |
Collapse
|
3
|
Shakel Z, Costa Lima SA, Reis S. Strategies to make human skin models based on cellular senescence for ageing research. Ageing Res Rev 2024; 100:102430. [PMID: 39032611 DOI: 10.1016/j.arr.2024.102430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Human skin ageing is closely related to the ageing of the whole organism, and it's a continuous multisided process that is influenced not only by genetic and physiological factors but also by the cumulative impact of environmental factors. Currently, there is a scientific community need for developing skin models representing ageing processes to (i) enhance understanding on the mechanisms of ageing, (ii) discover new drugs for the treatment of age-related diseases, and (iii) develop effective dermo-cosmetics. Bioengineers worldwide are trying to reproduce skin ageing in the laboratory aiming to better comprehend and mitigate the senescence process. This review provides details on the main ageing molecular mechanisms and procedures to obtain in vitro aged skin models.
Collapse
Affiliation(s)
- Zinaida Shakel
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, ICBAS, School of Medicine and Biomedical Sciences, University of Porto, Portugal.
| | - Salette Reis
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto, Portugal
| |
Collapse
|
4
|
Möller C, Virzi J, Chang YJ, Keidel A, Chao MR, Hu CW, Cooke MS. DNA modifications: Biomarkers for the exposome? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104449. [PMID: 38636743 DOI: 10.1016/j.etap.2024.104449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The concept of the exposome is the encompassing of all the environmental exposures, both exogenous and endogenous, across the life course. Many, if not all, of these exposures can result in the generation of reactive species, and/or the modulation of cellular processes, that can lead to a breadth of modifications of DNA, the nature of which may be used to infer their origin. Because of their role in cell function, such modifications have been associated with various major human diseases, including cancer, and so their assessment is crucial. Historically, most methods have been able to only measure one or a few DNA modifications at a time, limiting the information available. With the development of DNA adductomics, which aims to determine the totality of DNA modifications, a far more comprehensive picture of the DNA adduct burden can be gained. Importantly, DNA adductomics can facilitate a "top-down" investigative approach whereby patterns of adducts may be used to trace and identify the originating exposure source. This, together with other 'omic approaches, represents a major tool for unraveling the complexities of the exposome and hence allow a better a understanding of the environmental origins of disease.
Collapse
Affiliation(s)
- Carolina Möller
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA.
| | - Jazmine Virzi
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Alexandra Keidel
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620, USA; College of Public Health, University of South Florida, Tampa, FL 33620, USA; Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Chu TW, Ho CC, Hsu YJ, Lo YH, Wu NL, Cheng YB, Hong MX, Chang DC, Hung CF. Protective Effects of Pear Extract on Skin from In Vitro and In Vivo UVA-Induced Damage. Pharmaceuticals (Basel) 2024; 17:583. [PMID: 38794153 PMCID: PMC11124007 DOI: 10.3390/ph17050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The ancient Chinese medical book "Compendium of Materia Medica" records that pears can relieve symptoms of respiratory-related diseases. Previous research has shown that pear Pyrus Pyrifolia (Burm.f.) Nakai has antioxidant and anti-inflammatory properties. However, the anti-inflammatory, antioxidant, and anti-photoaging protective effects of Pyrus pyrifolia (Burm.f.) Nakai seed components have not been studied. Ultraviolet light (UV) causes skin inflammation, damages the skin barrier, and is an important cause of skin photoaging. Therefore, UV light with a wavelength of 365 nm was used to irradiate HaCaT and mice. Western blot, real-time quantitative polymerase chain reaction, and fluorescence imaging system were used to explore its anti-UVA mechanism. Dialysis membrane and nuclear magnetic resonance were used for the chemical constituent analysis of pear seed water extract (PSWE). We found that PSWE can significantly reduce UVA-induced skin cell death and mitogen-activated protein kinase phosphorylation and can inhibit the mRNA expression of UVA-induced cytokines (including IL-1β, IL-6, and TNF-α). In addition, PSWE can also reduce the generation of oxidative stress within skin cells. In vivo experimental studies found that PSWE pretreatment effectively reduced transepidermal water loss, inflammation, redness, and dryness in hairless mice. The molecular weight of the active part of pear water extract is approximately 384. Based on the above results, we first found that pear seeds can effectively inhibit oxidative stress and damage caused by UVA. It is a natural extract with antioxidant properties and anti-aging activity that protects skin cells and strengthens the skin barrier.
Collapse
Affiliation(s)
- Thomas W. Chu
- Department of Dermatology, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan;
- Department of Dermatology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ching-Chih Ho
- Department of Anesthesiology, Taoyuan Armed Forces General Hospital, Longtan, Taoyuan 325, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Yuan-Hsin Lo
- Department of Dermatology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Nan-Lin Wu
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan;
- Department of Dermatology, MacKay Memorial Hospital, Taipei 10491, Taiwan
| | - Yuan-Bin Cheng
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Mao-Xuan Hong
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804351, Taiwan; (Y.-B.C.); (M.-X.H.)
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
6
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
7
|
Gracia-Cazaña T, Aguilera J, Navarro-Bielsa A, González S, Lim HW, Gilaberte Y. New trends on personalized sunscreens. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12967. [PMID: 38616500 DOI: 10.1111/phpp.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND/PURPOSE Nowadays, there are emerging trends in customized and personalized photoprotection, focusing on the innovative approaches to enhance sun protection efficacy tailored to individual needs. METHODS We conducted an electronic search of the following databases: MEDLINE, EMBASE, Cochrane Database of Systematic Reviews, Cochrane Skin Group Specialised Skin Register, and TESEO. Specific search terms related to personalized photoprotection and the variables of age, genetic predisposition, skin phototype, photodermatosis, and physiological conditions such as pregnancy, as well as lifestyle habits were used. RESULTS/CONCLUSION The article highlights the challenges and opportunities in adopting personalized photoprotection strategies, aiming to promote skin health and prevent the harmful effects of UV radiation in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - José Aguilera
- Department of Dermatology and Medicine, Faculty of Medicine, Photobiological Dermatology Laboratory, Medical Research Center, University of Malaga, Malaga, Spain
| | - Alba Navarro-Bielsa
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | | | - Henry W Lim
- Department of Dermatology, Henry Ford Health Systems, Henry Ford Medical Center-New Center One, Detroit, Michigan, USA
| | - Yolanda Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, IIS Aragón, Zaragoza, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Dachani S, Kaleem M, Mujtaba MA, Mahajan N, Ali SA, Almutairy AF, Mahmood D, Anwer MK, Ali MD, Kumar S. A Comprehensive Review of Various Therapeutic Strategies for the Management of Skin Cancer. ACS OMEGA 2024; 9:10030-10048. [PMID: 38463249 PMCID: PMC10918819 DOI: 10.1021/acsomega.3c09780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024]
Abstract
Skin cancer (SC) poses a global threat to the healthcare system and is expected to increase significantly over the next two decades if not diagnosed at an early stage. Early diagnosis is crucial for successful treatment, as the disease becomes more challenging to cure as it progresses. However, identifying new drugs, achieving clinical success, and overcoming drug resistance remain significant challenges. To overcome these obstacles and provide effective treatment, it is crucial to understand the causes of skin cancer, how cells grow and divide, factors that affect cell growth, and how drug resistance occurs. In this review, we have explained various therapeutic approaches for SC treatment via ligands, targeted photosensitizers, natural and synthetic drugs for the treatment of SC, an epigenetic approach for management of melanoma, photodynamic therapy, and targeted therapy for BRAF-mutated melanoma. This article also provides a detailed summary of the various natural drugs that are effective in managing melanoma and reducing the occurrence of skin cancer at early stages and focuses on the current status and future prospects of various therapies available for the management of skin cancer.
Collapse
Affiliation(s)
- Sudharshan
Reddy Dachani
- Department
of Pharmacy Practice, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Al-Dawadmi 11961, Saudi Arabia
| | - Mohammed Kaleem
- Department
of Pharmacology, Babasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Md. Ali Mujtaba
- Department
of Pharmaceutics, Faculty of Pharmacy, Northern
Border University, Arar 91911, Saudi Arabia
| | - Nilesh Mahajan
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Sayyed A. Ali
- Department
of Pharmaceutics, Dabasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440037, Maharashtra, India
| | - Ali F Almutairy
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Danish Mahmood
- Department
of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Md. Khalid Anwer
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Daud Ali
- Department
of Pharmacy, Mohammed Al-Mana College for
Medical Sciences, Abdulrazaq Bin Hammam Street, Al Safa 34222, Dammam, Saudi Arabia
| | - Sanjay Kumar
- Department
of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Uttar Pradesh 201306, India
| |
Collapse
|
9
|
Peng M, Félix RC, Canário AVM, Power DM. The physiological effect of polystyrene nanoplastic particles on fish and human fibroblasts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169979. [PMID: 38215851 DOI: 10.1016/j.scitotenv.2024.169979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
Numerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 μg/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PS-NPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a cell-type and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.
Collapse
Affiliation(s)
- Maoxiao Peng
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Rute C Félix
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Adelino V M Canário
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China
| | - Deborah M Power
- Centre of Marine Sciences (CCMAR/CIMAR), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; International Institution of Marine Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
10
|
Wang J, Patel P, Mineroff J, Jagdeo J. The potential cutaneous benefits of edible bird's nest. Arch Dermatol Res 2024; 316:91. [PMID: 38400925 DOI: 10.1007/s00403-024-02824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
Edible bird's nest (EBN) is composed of the solidified saliva of swiftlet birds. EBN has been extremely popular in Asian culture for centuries. They are often consumed as a delicacy in the form of bird's nest soup and are believed to have numerous skin benefits. In light of EBN's growing popularity and significant cultural importance, we aim provide a comprehensive review of EBN's potential dermatologic benefits and role in photoaging, anti-inflammation, wound healing, skin barrier enhancement, and skin whitening. While in vitro, in vivo, and preliminary clinical trial results are promising, there is a need for future human clinical research to further validate these findings and establish EBN's efficacy and safety for dermatologic applications.
Collapse
Affiliation(s)
- Jennifer Wang
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Paras Patel
- Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Jessica Mineroff
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA
| | - Jared Jagdeo
- Department of Dermatology, State University of New York, Downstate Health Sciences University, SUNY Downstate Medical Center, 450 Clarkson Avenue, 8th Floor, Brooklyn, NY, 11203, USA.
- Dermatology Service, Veterans Affairs New York Harbor Healthcare System-Brooklyn Campus, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Fatima N, Yaqoob S, Rana S, Hameed A, Mirza MR, Jabeen A. In vitro photoprotective potential of aryl-sandwiched (thio)semicarbazones against UVA mediated cellular and DNA damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 251:112841. [PMID: 38194816 DOI: 10.1016/j.jphotobiol.2024.112841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/01/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
The most prevalent solar ultraviolet radiation is ultraviolet-A (UVA) radiation. It is the inducer of reactive oxygen species (ROS), a potent mediator of inflammation and photocarcinogenesis. Regular application of sunscreens containing UVA filters is an effective preventive measure in mitigating the risk associated with the formation of dermal carcinoma. Therefore, the development of new photoprotective agents is of great need. The current work examined the in vitro photoprotection of the aryl-linked (thio)semicarbazone derivatives against UVA-mediated DNA damage, inflammation, reactive nitrogen species (RNS), and ROS. Except for the inflammatory cytokine assay, which was carried out on the human monocytic leukemia (THP-1) cell line, all tests were conducted on the human dermal fibroblast (BJ) cell line. In comparison to benzophenone (reference compound), the compound (2Z, 2'Z)-2,2'-(1,3-Phenylenebis (methanylylidene)) bis (hydrazine-1-carbothioamide) (DD-21) demonstrated considerable protection against UVA-induced damage. Compared to the UVA-irradiated control, DD-21 significantly decreased the levels of nitric oxide (NO) and ROS (p < 0.001). In the presence of DD-21, the release of UVA-induced pro-inflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), was also significantly reduced (p < 0.05). Moreover, it was observed that DD-21 protected the cells from UVA-mediated DNA strand breaks and also inhibited the formation of cyclobutane pyrimidine dimers (CPDs) upon comparison to the UVA-exposed control cells (p < 0.001). In conclusion, the findings of this study revealed that DD-21 exhibits remarkable photoprotective properties, thus demonstrating its potential as a candidate UVA filter.
Collapse
Affiliation(s)
- Noor Fatima
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Sana Yaqoob
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Rana
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan.
| | - Abdul Hameed
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
| | - Munazza Raza Mirza
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Almas Jabeen
- Molecular Biology and Human Genetics Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
12
|
Nurla LA, Wafi G, Tatar R, Dorobanțu AM, Chivu M, Popa LG, Giurcăneanu C, Orzan OA. Recent-Onset Melanoma and the Implications of the Excessive Use of Tanning Devices-Case Report and Review of the Literature. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:187. [PMID: 38276066 PMCID: PMC10821341 DOI: 10.3390/medicina60010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Introduction: Melanoma, a malignant tumor arising from uncontrolled melanocytic proliferation, commonly found in the skin but capable of affecting extracutaneous sites, ranks fifth among diagnosed oncological entities and is a significant cause of cancer deaths, constituting over 80% of skin cancer mortality. Genetic factors and ultraviolet radiation (UVR) exposure, from both natural and artificial sources, are the primary risk factors. Case Presentation: We reported the case of a 25-year-old female with numerous pigmented nevi and notable changes attributed to extensive indoor tanning sessions. Dermatological examinations and dermoscopic evaluations revealed atypical features in two pigmented nevi, leading to surgical excision. Histopathological and immunohistochemical analyses confirmed a compound nevus in one lesion and superficial spreading melanoma in the other, emphasizing the importance of vigilant follow-up and the correct use of immunohistochemistry. Discussion: Indoor tanning significantly elevates the cutaneous melanoma risk, with initiation before age 35 amplifying the risk by up to 75%, especially in young women. The risk escalates with cumulative sessions, particularly exceeding 480, and individuals undergoing over 30 sessions face a 32% higher risk. UVR induces DNA damage, genetic mutations, and immunosuppression, contributing to oncogenesis. Genetic factors, like the PTCHD2 gene, may influence the tanning dependency. Legislation targeting minors has been enacted globally but only with partial efficacy. Tanning accelerators, though associated with minor side effects, correlate with high-risk behaviors. The case underscores the urgency of addressing indoor tanning risks, emphasizing targeted awareness efforts and legislative improvements. Conclusions: In conclusion, the reported case highlights the increased risk of cutaneous melanoma linked to indoor tanning, particularly among young women and specific sociodemographic groups. Despite legislative measures, challenges persist, suggesting the potential efficacy of online campaigns involving relatable influencers to raise awareness and discourage artificial tanning.
Collapse
Affiliation(s)
- Luana-Andreea Nurla
- Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania (O.A.O.)
- Dermatology Clinic, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
- Institute of Doctoral Studies, Doctoral School of Medicine, “Ovidius” University of Constanta, 900573 Constanta, Romania
| | - Gina Wafi
- Dermatovenerology Clinic, “Victor Babeș” Clinical Hospital for Infectious and Tropical Diseases, 030303 Bucharest, Romania
| | - Raluca Tatar
- Department of Plastic Reconstructive Surgery and Burns, “Grigore Alexandrescu” Clinical Emergency Hospital for Children, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Alexandra Maria Dorobanțu
- Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania (O.A.O.)
- Dermatology Clinic, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Mădălina Chivu
- Department of Pathology, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Liliana Gabriela Popa
- Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania (O.A.O.)
- Dermatology Clinic, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Călin Giurcăneanu
- Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania (O.A.O.)
- Dermatology Clinic, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| | - Olguța Anca Orzan
- Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania (O.A.O.)
- Dermatology Clinic, “Elias” Emergency University Hospital, 011461 Bucharest, Romania
| |
Collapse
|
13
|
Zakariya F, Salem FK, Alamrain AA, Sanker V, Abdelazeem ZG, Hosameldin M, Tan JK, Howard R, Huang H, Awuah WA. Refining mutanome-based individualised immunotherapy of melanoma using artificial intelligence. Eur J Med Res 2024; 29:25. [PMID: 38183141 PMCID: PMC10768232 DOI: 10.1186/s40001-023-01625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024] Open
Abstract
Using the particular nature of melanoma mutanomes to develop medicines that activate the immune system against specific mutations is a game changer in immunotherapy individualisation. It offers a viable solution to the recent rise in resistance to accessible immunotherapy alternatives, with some patients demonstrating innate resistance to these drugs despite past sensitisation to these agents. However, various obstacles stand in the way of this method, most notably the practicality of sequencing each patient's mutanome, selecting immunotherapy targets, and manufacturing specific medications on a large scale. With the robustness and advancement in research techniques, artificial intelligence (AI) is a potential tool that can help refine the mutanome-based immunotherapy for melanoma. Mutanome-based techniques are being employed in the development of immune-stimulating vaccines, improving current options such as adoptive cell treatment, and simplifying immunotherapy responses. Although the use of AI in these approaches is limited by data paucity, cost implications, flaws in AI inference capabilities, and the incapacity of AI to apply data to a broad population, its potential for improving immunotherapy is limitless. Thus, in-depth research on how AI might help the individualisation of immunotherapy utilising knowledge of mutanomes is critical, and this should be at the forefront of melanoma management.
Collapse
Affiliation(s)
- Farida Zakariya
- Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
| | - Fatma K Salem
- Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | | | - Vivek Sanker
- Research Assistant, Dept. Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | - Zainab G Abdelazeem
- Division of Molecular Biology, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | | | - Rachel Howard
- School of Clinical Medicine, University of Cambridge, Cambridge, England
| | - Helen Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Wireko Andrew Awuah
- Medical Institute, Sumy State University, Zamonstanksya 7, Sumy, 40007, Ukraine.
| |
Collapse
|
14
|
Lapides R, Saravi B, Mueller A, Wang-Evers M, Maul LV, Németh I, Navarini A, Manstein D, Roider E. Possible Explanations for Rising Melanoma Rates Despite Increased Sunscreen Use over the Past Several Decades. Cancers (Basel) 2023; 15:5868. [PMID: 38136411 PMCID: PMC10741796 DOI: 10.3390/cancers15245868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The incidence of cutaneous melanoma continues to rise despite the increased use of sunscreens within the last several decades. Some research even suggests that the use of sunscreen is associated with increased rates of melanoma. Given the aggressive, and often deadly, nature of cutaneous melanoma, the aim of this communication is to better elucidate the relationship between sunscreen use and melanoma development and if there are other preventative measures to be aware of. A search was performed to identify the studies that have investigated melanoma development in individuals who used sunscreen and those who did not. Study limitations and possible confounding variables were identified, which guided a subsequent search to determine what data were available to support that these limitations and confounding variables may explain the perplexing association between sunscreen use and melanoma development. Five hypotheses were generated, which were related to increased awareness and reporting, the relationship between sunscreen use and the duration of sun exposure, the importance of broad-spectrum protection, and the effect of sunscreen on reactive oxygen species formation. The main conclusion is that more recent studies that control for confounding variables are required to determine the true effect of adequate broad-spectrum sunscreen use today on the development of melanoma.
Collapse
Affiliation(s)
- Rebecca Lapides
- The Robert Larner, M.D., College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (M.W.-E.); (D.M.)
| | - Babak Saravi
- Department of Orthopedics and Trauma Surgery, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Alina Mueller
- Department of Dermatology, University Hospital Basel, 4055 Basel, Switzerland; (A.M.); (L.V.M.); (A.N.)
| | - Michael Wang-Evers
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (M.W.-E.); (D.M.)
| | - Lara Valeska Maul
- Department of Dermatology, University Hospital Basel, 4055 Basel, Switzerland; (A.M.); (L.V.M.); (A.N.)
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - István Németh
- Department of Dermatology and Allergology, Szent-Györgyi Albert Medical School, University of Szeged, 6720 Szeged, Hungary;
| | - Alexander Navarini
- Department of Dermatology, University Hospital Basel, 4055 Basel, Switzerland; (A.M.); (L.V.M.); (A.N.)
| | - Dieter Manstein
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (M.W.-E.); (D.M.)
| | - Elisabeth Roider
- Cutaneous Biology Research Center, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (M.W.-E.); (D.M.)
- Department of Dermatology, University Hospital Basel, 4055 Basel, Switzerland; (A.M.); (L.V.M.); (A.N.)
| |
Collapse
|
15
|
Najafzadeh M, Naeem P, Ghaderi N, Jafarinejad S, Karimi Z, Ghaderi M, Akhbari P, Ghaderi R, Farsi P, Wright A, Anderson D. Comparing P53 expression and genome-wide transcriptome profiling to Comet assay in lymphocytes from melanoma patients and healthy controls. Sci Rep 2023; 13:18858. [PMID: 37914759 PMCID: PMC10620420 DOI: 10.1038/s41598-023-44965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/13/2023] [Indexed: 11/03/2023] Open
Abstract
This study compared the expression of TP53 in lymphocytes from malignant melanoma (MM) patients with positive sentinel nodes to healthy controls (HCs) following exposure to various doses of UVA radiation. The Lymphocyte Genome Sensitivity (LGS) assay indicated significant differences in DNA damage in lymphocytes between MM patients and HCs. qPCR data demonstrated an overall 3.4-fold increase in TP53 expression in lymphocytes from MM patients compared to healthy controls, following treatment with 0.5 mW/cm2 UVA radiation. Western blotting confirmed that p53 expression was increased in MM lymphocytes following UVA exposure compared to healthy individuals. Genome transcriptome profiling data displayed differences in gene expression between UVA-treated lymphocytes from MM patients and HCs. Peripheral lymphocytes from MM patients are more susceptible to the genotoxic effects of UVA compared to healthy individuals. Our previous studies showed that UVA exposure of various intensities caused significant differences in the levels of DNA damage between lymphocytes from cancer patients compared to HCs through the LGS assay. The present study's results provide further credibility to the LGS assay as a screening test for cancer detection. Peripheral lymphocytes could be a promising blood biopsy biomarker for staging of carcinomas and prevention of carcinoma progression at early stages.
Collapse
Affiliation(s)
- Mojgan Najafzadeh
- School of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, West Yorkshire, UK.
| | - Parisa Naeem
- School of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, West Yorkshire, UK
| | - Nader Ghaderi
- Bradford Teaching Hospitals NHS Foundation Trust, St Luke's Hospital, Little Horton Lane, BD5 0NA, UK
| | - Shohreh Jafarinejad
- School of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, West Yorkshire, UK
| | - Zahra Karimi
- School of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, West Yorkshire, UK
| | - Mehran Ghaderi
- Division of Pathology F46, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, 141 86, Stockholm, Sweden
| | - Pouria Akhbari
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, EX2 5DW, UK
| | - Rojan Ghaderi
- Department of Medicine, Imperial College London, London, SW7 2BX, UK
| | - Pedram Farsi
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, 141 86, Stockholm, Sweden
| | - Andrew Wright
- Bradford Teaching Hospitals NHS Foundation Trust, St Luke's Hospital, Little Horton Lane, BD5 0NA, UK
| | - Diana Anderson
- School of Life Sciences, University of Bradford, Richmond Road, Bradford, BD7 1DP, West Yorkshire, UK
| |
Collapse
|
16
|
Bachari A, Nassar N, Telukutla S, Zomer R, Dekiwadia C, Piva TJ, Mantri N. In Vitro Antiproliferative Effect of Cannabis Extract PHEC-66 on Melanoma Cell Lines. Cells 2023; 12:2450. [PMID: 37887294 PMCID: PMC10605078 DOI: 10.3390/cells12202450] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Melanoma, an aggressive form of skin cancer, can be fatal if not diagnosed and treated early. Melanoma is widely recognized to resist advanced cancer treatments, including immune checkpoint inhibitors, kinase inhibitors, and chemotherapy. Numerous studies have shown that various Cannabis sativa extracts exhibit potential anticancer effects against different types of tumours both in vitro and in vivo. This study is the first to report that PHEC-66, a Cannabis sativa extract, displays antiproliferative effects against MM418-C1, MM329 and MM96L melanoma cells. Although these findings suggest that PHEC-66 has promising potential as a pharmacotherapeutic agent for melanoma treatment, further research is necessary to evaluate its safety, efficacy, and clinical applications.
Collapse
Affiliation(s)
- Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Nazim Nassar
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
- Faculty of Health, Charles Darwin University, Casuarina, NT 0810, Australia
| | - Srinivasareddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
| | - Roby Zomer
- MGC Pharmaceuticals Limited, West Perth, WA 6005, Australia;
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (N.N.); (T.J.P.)
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (A.B.); (S.T.)
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Du J, Du Y, Chen L, Liu H. IL-17 promotes melanoma through TRAF2 as a scaffold protein recruiting PIAS2 and ELAVL1 to induce EPHA5. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119547. [PMID: 37481078 DOI: 10.1016/j.bbamcr.2023.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
An abnormal immune response induces melanoma development. IL-17 and the classical downstream signal STAT1 are associated with melanoma development. TRAF2 also mediates the downstream signaling of IL-17; however, its role in IL-17-stimulated melanoma remains unclear. Bioinformatic analysis revealed that TRAF2 can bind to PIAS2 (a SUMO E3 ligase), ELAVL1 (an RNA-binding protein), and EPHA5 (an ephrin receptor of the tyrosine kinase family). To elucidate the IL-17 downstream signal, the IL-17 receptor (R), STAT1, TRAF2, PIAS2, ELAVL1, and EPHA5 were knocked down before melanoma cells were treated with recombinant IL-17A protein. Co-immunoprecipitation and RNA immunoprecipitation were conducted to determine the interaction of TRAF2 with PIAS2, ELAVL1, and EPHA5 proteins, as well as the interaction of ELAVL1 protein with EPHA5 mRNA. STAT1 knockdown suppressed the proliferation and invasion triggered by IL-17A, but the suppressive effects were much weaker than those caused by IL-17R knockdown. This implies that another nonclassical signal mediates IL-17 effects. IL-17A induces TRAF2 recruitment of ELAVL1, PIAS2, and EPHA5 proteins. We speculated that ELAVL1 bound to the AU-rich elements in the 3' untranslated region of the EPHA5 mRNA, thereby enhancing mRNA stability. Furthermore, PIAS2 induced EPHA5 SUMOylation, which suppressed EPHA5 ubiquitination and degradation. Through pre- and post-translational regulation, IL-17A induced EPHA5 expression in melanoma, and EPHA5 knockdown markedly suppressed IL-17A-induced proliferation and invasion. This study revealed a non-classical signaling mechanism responsible for the effects of IL-17 in melanoma.
Collapse
Affiliation(s)
- Junfeng Du
- Department of Plastic Surgery, the first affiliated hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou 510630, China
| | - Yujia Du
- Medical college of Jianghan University, No. 8, Sanjiaohu Road, Wuhan Economic and Technological Development Zone, Wuhan 430014, China
| | - Lang Chen
- Department of Burns and Plastic, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hongwei Liu
- Department of Plastic Surgery, the first affiliated hospital of Jinan University, No. 613, Huangpu Avenue West, Tianhe District, Guangzhou 510630, China; Innovative Technology Research Institute of Plastic Surgery, Guangzhou 510630, People's Republic of China; Key Laboratory of Regenerative Medicine, Ministry of Education, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
18
|
Łuczaj W, Dobrzyńska I, Skrzydlewska E. Differences in the phospholipid profile of melanocytes and melanoma cells irradiated with UVA and treated with cannabigerol and cannabidiol. Sci Rep 2023; 13:16121. [PMID: 37752196 PMCID: PMC10522606 DOI: 10.1038/s41598-023-43363-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023] Open
Abstract
UV radiation inducing mutations in melanocytes might cause melanoma. As changes in lipid composition and metabolism are associated with many types of cancer including skin cancer, we aimed to evaluate the effects of two phytocannabinoids cannabidiol (CBD) and cannabigerol (CBG), on changes in phospholipid and ceramide (CER) profiles induced by UVA irradiation in human melanocytes and melanoma. UVA radiation caused a significant up-regulation PC, PI and SM species and decrease of CERs content in both types of cells, while up-regulation of PEo was only observed in melanocytes. Exposure of UVA-irradiated melanocytes or melanoma cells to CBD and/or CBG led to significant decrease in relative content of PC, PI and SM specie; however, this effect was more pronounced in cancer cells. Interestingly, only in UVA-irradiated melanocytes and not in melanoma, PEo content was lowered after CBD treatment, while CBG led to additional up-regulation of PEo species. CBD and CBG used together caused decrease of zeta potential, inhibiting PS externalization, and different changes in relative contents of CER and SM species of irradiated and non-irradiated melanoma cells. Obtained results are quite promising due to CBD and CBG abilities to partial reverse pro-cancerogenic changes in phospholipid and CER profiles induced by UVA.
Collapse
Affiliation(s)
- Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland.
| | - Izabela Dobrzyńska
- Faculty of Chemistry, University of Białystok, Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Mickiewicza 2d, 15-222, Bialystok, Poland
| |
Collapse
|
19
|
Lara-Vega I, Correa-Lara MVM, Vega-López A. Effectiveness of radiotherapy and targeted radionuclide therapy for melanoma in preclinical mouse models: A combination treatments overview. Bull Cancer 2023; 110:912-936. [PMID: 37277266 DOI: 10.1016/j.bulcan.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
Cutaneous melanoma is an aggressive and highly metastatic skin cancer. In recent years, immunotherapy and targeted small-molecule inhibitors have improved the overall survival of patients. Unfortunately, most patients in advanced stages of disease exhibit either intrinsically resistant or rapidly acquire resistance to these approved treatments. However, combination treatments have emerged to overcome resistance, and novel treatments based on radiotherapy (RT) and targeted radionuclide therapy (TRT) have been developed to treat melanoma in the preclinical mouse model, raising the question of whether synergy in combination therapies may motivate and increase their use as primary treatments for melanoma. To help clarify this question, we reviewed the studies in preclinical mouse models where they evaluated RT and TRT in combination with other approved and unapproved therapies from 2016 onwards, focusing on the type of melanoma model used (primary tumor and or metastatic model). PubMed® was the database in which the search was performed using mesh search algorithms resulting in 41 studies that comply with the inclusion rules of screening. Studies reviewed showed that synergy with RT or TRT had strong antitumor effects, such as tumor growth inhibition and fewer metastases, also exhibiting systemic protection. In addition, most studies were carried out on antitumor response for the implanted primary tumor, demonstrating that more studies are needed to evaluate these combined treatments in metastatic models on long-term protocols.
Collapse
Affiliation(s)
- Israel Lara-Vega
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Maximiliano V M Correa-Lara
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico
| | - Armando Vega-López
- National School of Biological Sciences, National Polytechnic Institute, Environmental Toxicology Laboratory, Avenida Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico.
| |
Collapse
|
20
|
Qin Z, Zheng M. Advances in targeted therapy and immunotherapy for melanoma (Review). Exp Ther Med 2023; 26:416. [PMID: 37559935 PMCID: PMC10407994 DOI: 10.3892/etm.2023.12115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/28/2023] [Indexed: 08/11/2023] Open
Abstract
Melanoma is the most aggressive and deadly type of skin cancer and is known for its poor prognosis as soon as metastasis occurs. Since 2011, new and effective therapies for metastatic melanoma have emerged, with US Food and Drug Administration approval of multiple targeted agents, such as V-Raf murine sarcoma viral oncogene homolog B1/mitogen-activated protein kinase kinase inhibitors and multiple immunotherapy agents, such as cytotoxic T lymphocyte-associated protein 4 and anti-programmed cell death protein 1/ligand 1 blockade. Based on insight into the respective advantages of the above two strategies, the present article provided a review of clinical trials of the application of targeted therapy and immunotherapy, as well as novel approaches of their combinations for the treatment of metastatic melanoma in recent years, with a focus on upcoming initiatives to improve the efficacy of these treatment approaches for metastatic melanoma.
Collapse
Affiliation(s)
- Ziyao Qin
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| | - Mei Zheng
- No. 4 Research Laboratory, Shanghai Institute of Biological Products Co., Ltd., Shanghai 200051, P.R. China
| |
Collapse
|
21
|
Agrez M, Rybchyn MS, De Silva WGM, Mason RS, Chandler C, Piva TJ, Thurecht K, Fletcher N, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall A, Gooding H, Gallagher L. An immunomodulating peptide to counteract solar radiation-induced immunosuppression and DNA damage. Sci Rep 2023; 13:11702. [PMID: 37474630 PMCID: PMC10359417 DOI: 10.1038/s41598-023-38890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | | | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Terrence J Piva
- Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Kristofer Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology at the University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | - Andrew Hall
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | | |
Collapse
|
22
|
Barbosa EC, Bucar EEC, Jubé GR, Silveira LB, Silva NCD, Faria PCC, Ramos PLC, Moraes VRY, Barros JOB. Fecal microbiota transplantation and its repercussions in patients with melanoma refractory to anti-PD-1 therapy: scope review. Rev Col Bras Cir 2023; 50:e20233490. [PMID: 37222345 PMCID: PMC10508684 DOI: 10.1590/0100-6991e-20233490-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/24/2023] [Indexed: 05/25/2023] Open
Abstract
INTRODUCTION despite being extremely effective in some cases, up to 70% of patients with melanoma do not respond to anti-PD-1/PD-L1 (primary resistance) and many of the responders eventually progress (secondary resistance). Extensive efforts are being made to overcome this resistance through new strategies, especially aimed at modulating the intestinal microbiota. OBJECTIVE to assess whether fecal microbiota transplantation (FMT), associated with immunotherapy, is beneficial in the clinical course of patients with refractory melanoma. METHODS this is a scope review, based on studies collected on the MEDLINE, ScienceDirect, The Cochrane Library, Embase and BMJ Journals; using the terms: "Antibodies, Monoclonal"; "Drug Resistance, Neoplasm"; "Fecal Microbiota Transplantation"; "Host Microbial Interactions"; "Immunotherapy"; "Melanoma"; and "Microbiota". Clinical trials, in English, with relevant data on the subject and fully available were included. A cut-off period was not determined, due to the limited amount of evidence on the topic. RESULTS crossing the descriptors allowed the identification of 342 publications and, after applying the eligibility criteria, allowed the selection of 4 studies. From the analyses, it was observed that a considerable part of those studied overcame resistance to immune checkpoint inhibitors after FMT, with better response to treatment, less tumor growth and increased beneficial immune response. CONCLUSION it is noted that FMT favors the response of melanoma to immunotherapy, translated into significant clinical benefit. However, further studies are necessary for the complete elucidation of the bacteria and the mechanisms involved, as well as for the translation of new evidence to oncological care practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - João Ormindo Beltrão Barros
- - Universidade Evangélica de Goiás, Medicina - Anápolis - GO - Brasil
- - Hospital Santa Casa de Anápolis, Cancerologia Cirúrgica - Anápolis - GO - Brasil
| |
Collapse
|
23
|
Cocchetto A, Seymour C, Mothersill C. A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome. Int J Mol Sci 2023; 24:ijms24076022. [PMID: 37046994 PMCID: PMC10094351 DOI: 10.3390/ijms24076022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.
Collapse
Affiliation(s)
- Alan Cocchetto
- National CFIDS Foundation Inc., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
24
|
Zhivagui M, Hoda A, Valenzuela N, Yeh YY, Dai J, He Y, Nandi SP, Otlu B, Van Houten B, Alexandrov LB. DNA damage and somatic mutations in mammalian cells after irradiation with a nail polish dryer. Nat Commun 2023; 14:276. [PMID: 36650165 PMCID: PMC9845303 DOI: 10.1038/s41467-023-35876-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.
Collapse
Affiliation(s)
- Maria Zhivagui
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Areebah Hoda
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA
| | | | - Yi-Yu Yeh
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Jason Dai
- Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA
| | - Yudou He
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Shuvro P Nandi
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Burcak Otlu
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA.,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA.,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA
| | - Bennett Van Houten
- UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, 92093, USA. .,Department of Bioengineering, UC San Diego, La Jolla, CA, 92093, USA. .,Moores Cancer Center, UC San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
25
|
Probing photoprotection properties of lipophilic chain conjugated thiourea-aryl group molecules to attenuate ultraviolet-A induced cellular and DNA damages. Sci Rep 2022; 12:20907. [PMID: 36463260 PMCID: PMC9719470 DOI: 10.1038/s41598-022-25515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
Ultraviolet-A (UVA) radiation is a major contributor to reactive oxygen species (ROS), reactive nitrite species (RNS), inflammation, and DNA damage, which causes photoaging and photocarcinogenesis. This study aimed to evaluate the UVA protective potential of lipophilic chain conjugated thiourea-substituted aryl group molecules against UVA-induced cellular damages in human dermal fibroblasts (BJ cell line). We tested a series of nineteen (19) molecules for UVA photoprotection, from which 2',5'-dichlorophenyl-substituted molecule DD-04 showed remarkable UVA protection properties compared to the reference (benzophenone). The results indicate that DD-04 significantly reduced intracellular ROS and nitric oxide (NO) as compared to the UVA-irradiated control (p < 0.001). Moreover, the compound DD-04 showed anti-inflammatory activity as it significantly reduced the levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) pro-inflammatory cytokines produced by THP-1 (human monocytic) cells (p < 0.05). DNA damage was also prevented by DD-04 treatment in the presence of UVA. It was observed that DD-04 significantly reduced the number of cyclobutane pyrimidine dimers (CPDs) when compared to the UVA-irradiated control (p < 0.001). Finally, the DNA strand breaks were checked and a single intact DNA band was seen upon treatment with DD-04 in the presence of UVA. In conclusion, DD-04 can be considered a potential candidate UVA filter due to its photoprotective potential.
Collapse
|
26
|
Abstract
The incidence of cutaneous melanoma has been increasing worldwide, and melanoma disproportionately contributes to skin cancer mortality. The pathogenesis of melanoma involves genetic and environmental factors, and while the effects of ultraviolet B radiation on melanoma development are well researched, fewer studies have investigated the role of ultraviolet A (UVA) radiation. We comprehensively reviewed cell, animal and epidemiology studies on the association between UVA exposure and melanomagenesis. UVA radiation has been found to have negative effects on melanocytes due to the induction of oxidative stress, dysregulation of gene transcription and creation of mutagenic photoproducts in DNA. Animal studies demonstrate adverse effects of UVA on melanocytes, including the development of melanoma. Epidemiology studies, of varying quality, that examined participants' exposure to tanning devices which use UVA radiation primarily found that UVA exposure increased the risk for melanoma. Some studies reported larger associations with increased frequency of device use, suggestive of a dose-response relationship. Overall, we found that many studies supported a positive association between UVA exposure and melanoma on both molecular and population levels. Understanding the role of UVA in the development of melanoma will inform the implementation of preventive health interventions, such as those related to sunscreen development and use and increasing restrictions on indoor tanning.
Collapse
Affiliation(s)
- Raj P Fadadu
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| | - Maria L Wei
- Department of Dermatology, University of California
- Dermatology Service, San Francisco Veterans Affairs Health Care Center, San Francisco, California, USA
| |
Collapse
|
27
|
Acosta S, Canclini L, Marizcurrena JJ, Castro-Sowinski S, Hernández P. Photo-repair effect of a bacterial Antarctic CPD-photolyase on UVC-induced DNA lesions in human keratinocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:104001. [PMID: 36273708 DOI: 10.1016/j.etap.2022.104001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/30/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Exposure to ultraviolet radiation from sunlight induces oxidative DNA lesions and bipyrimidine photoproducts that can lead to photo-aging and skin carcinogenesis. CPD-photolyases are flavoproteins that repair cyclobutane pyrimidine dimers using blue light as an energy source. In the present work, we evaluated the photo-repair effect of the recombinant CPD-photolyase PhrAHym from the Antarctic bacterium Hymenobacter sp. UV11 on DNA lesions in human keratinocytes induced by UVC light. By performing immunochemistry assays we observed that PhrAHym repairs in a highly efficient way the CPD-photoproducts and reduces the γH2AX formation. Since this enzyme is non-cytotoxic and repairs UVC-induced DNA lesions in human keratinocytes, we propose that PhrAHym could be used as a biotherapeutic agent against UV-induced skin cancer, photoaging, and related diseases.
Collapse
Affiliation(s)
- Silvina Acosta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Lucía Canclini
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Juan José Marizcurrena
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay; Laboratorio de Microbiología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay
| | - Paola Hernández
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay.
| |
Collapse
|
28
|
Huang S, Chen Z, Hou X, Han K, Xu B, Zhang M, Ding S, Wang Y, Yang Y. Promotion of Melanoma Cell Proliferation by Cyclic Straining through Regulatory Morphogenesis. Int J Mol Sci 2022; 23:11884. [PMID: 36233186 PMCID: PMC9569601 DOI: 10.3390/ijms231911884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
The genotype and phenotype of acral melanoma are obviously different from UV-radiation-induced melanoma. Based on the clinical data, mechanical stimulation is believed to be a potential cause of acral melanoma. In this case, it is desirable to clarify the role of mechanical stimulation in the progression of acral melanoma. However, the pathological process of cyclic straining that stimulates acral melanoma is still unclear. In this study, the influence of cyclic straining on melanoma cell proliferation was analyzed by using a specifically designed cell culture system. In the results, cyclic straining could promote melanoma cell proliferation but was inefficient after the disruption of cytoskeleton organization. Therefore, the mechanotransduction mechanism of promoted proliferation was explored. Both myosin and actin polymerization were demonstrated to be related to cyclic straining and further influenced the morphogenesis of melanoma cells. Additionally, the activation of mechanosensing transcription factor YAP was related to regulatory morphogenesis. Furthermore, expression levels of melanoma-involved genes were regulated by cyclic straining and, finally, accelerated DNA synthesis. The results of this study will provide supplementary information for the understanding of acral melanoma.
Collapse
Affiliation(s)
- Siyuan Huang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Zhu Chen
- School of Electro-Mechanical Engineering, Xidian University, Xi’an 710071, China
| | - Xiaoqiang Hou
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Kuankuan Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi’an 710026, China
| |
Collapse
|
29
|
|
30
|
Moi S, Shekh S, Reddy KKA, Dhurjad P, Sonti R, Gowd KH. Peptide Cysteine Thiols Act as Photostabilizer of Avobenzone through Stabilising the Transition State of Keto-enol Tautomerization. Photochem Photobiol 2022; 99:911-919. [PMID: 35975619 DOI: 10.1111/php.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Photostabilizers have been used to impart stability to an FDA-approved chemical UV-A filter avobenzone against the UV-A radiations and sunlight. The thiol group of glutathione plays a critical role in imparting the photostabilization activity of glutathione on avobenzone. The current report aims to evaluate the photostabilization activity of multiple thiols containing cysteine peptides on avobenzone. Cysteine-tripeptide and cysteine-pentapeptide were chemically synthesized and characterized using mass spectrometry. Synthetic peptides were assessed for their photostabilization activity on the enolic-form of the avobenzone under natural sunlight using UV-spectroscopy in both protic and aprotic solvents. Unlike glutathione which has pronounced activity in protic solvents, cysteine-pentapeptide exhibits similar photoprotection activity in both protic and aprotic solvents. Computational calculations using DFT suggest that peptide cysteine thiols may assist in the reversal of the photoketonization process of avobenzone thereby exhibiting the photoprotection activity to the enolic-form of avobenzone. Peptide cysteine thiols lower the activation energy barrier of keto-to-enol tautomerization of avobenzone by 30 kcal/mol by assisting the proton shuttle through a six-membered transition state. The current report emphasizes the applications of peptide thiols in cosmetics and may help in the development of peptides as aesthetic medicines.
Collapse
Affiliation(s)
- Smriti Moi
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - K Kasi Amarnath Reddy
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| | - Pooja Dhurjad
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, 585367, Karnataka, India
| |
Collapse
|
31
|
Yang J, Zeng J, Lu J. Mechanisms of ultraviolet-induced melasma formation: A review. J Dermatol 2022; 49:1201-1210. [PMID: 35946331 DOI: 10.1111/1346-8138.16542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/03/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Melasma, a pigmentation disorder, commonly occurs in exposed skin areas and can be attributed to several factors. Ultraviolet radiation (UVR) is the primary factor that induces and aggravates melasma. Considering gene expression, exposed skin areas experience abnormal gene expression, involving melanin metabolism, oxidative stress, impaired skin barrier function, and abnormal composition of nerve factors. From a histological perspective, UVR can cause basement membrane collapse, melanocyte sinking, and disorders of skin lipid metabolism. Emerging therapies have focused on these pathological alterations in melasma, including platelet-rich plasma, mesotherapy, and phytochemicals. Understanding the role of UVR in the development of melasma can facilitate early prevention and highlight the future direction of melasma treatment.
Collapse
Affiliation(s)
- Jian Yang
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jinrong Zeng
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jianyun Lu
- The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Treatment of Metastatic Melanoma with a Combination of Immunotherapies and Molecularly Targeted Therapies. Cancers (Basel) 2022; 14:cancers14153779. [PMID: 35954441 PMCID: PMC9367420 DOI: 10.3390/cancers14153779] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Immunotherapies and molecularly targeted therapies have drastically changed the therapeutic approach for unresectable advanced or metastatic melanoma. The majority of melanoma patients have benefitted from these therapies; however, some patients acquire resistance to them. Novel combinations of immunotherapies and molecularly targeted therapies may be more efficient in treating these patients. In this review, we discuss various combination therapies under pre-clinical and clinical development which can reduce toxicity, enhance efficacy, and prevent recurrences in patients with metastatic melanoma. Abstract Melanoma possesses invasive metastatic growth patterns and is one of the most aggressive types of skin cancer. In 2021, it is estimated that 7180 deaths were attributed to melanoma in the United States alone. Once melanoma metastasizes, traditional therapies are no longer effective. Instead, immunotherapies, such as ipilimumab, pembrolizumab, and nivolumab, are the treatment options for malignant melanoma. Several biomarkers involved in tumorigenesis have been identified as potential targets for molecularly targeted melanoma therapy, such as tyrosine kinase inhibitors (TKIs). Unfortunately, melanoma quickly acquires resistance to these molecularly targeted therapies. To bypass resistance, combination treatment with immunotherapies and single or multiple TKIs have been employed and have been shown to improve the prognosis of melanoma patients compared to monotherapy. This review discusses several combination therapies that target melanoma biomarkers, such as BRAF, MEK, RAS, c-KIT, VEGFR, c-MET and PI3K. Several of these regimens are already FDA-approved for treating metastatic melanoma, while others are still in clinical trials. Continued research into the causes of resistance and factors influencing the efficacy of these combination treatments, such as specific mutations in oncogenic proteins, may further improve the effectiveness of combination therapies, providing a better prognosis for melanoma patients.
Collapse
|
33
|
Allahyari E, Carraturo F, De Risi A, Nappo A, Morelli M, Cajora A, Guida M. A sequential utilization of the UV-A (365 nm) fluence rate for disinfection of water, contaminated with Legionella pneumophila and Legionelladumoffii. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119224. [PMID: 35351592 DOI: 10.1016/j.envpol.2022.119224] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Legionella species are the etiological agent of Legionnaires' disease, a pathology easily contracted from water circuits and by the inhalation of aerosol droplets. This bacterium mainly proliferates in water: Legionella pneumophila is the most commonly isolated specie in water environments and consequently in water system, although further Legionella species have frequently been isolated, including Legionella dumoffii. The simultaneous presence of the two species in the water system can therefore lead to the simultaneous infection of several people, giving rise to harmful outbreaks. Ultraviolet inactivation of waterborne microorganisms offers a rapid and effective treatment technique and recently is getting more attention mostly to eliminate unsafe level of contamination. To tackle the issue, the inactivation of the two species of Legionella spp., namely L. pneumophila and L. dumoffii, by means of UV-A light emitting diodes (UV-A LED) system is explored. We used a commercially available UV-A LED at 365 nm wavelength, and the UV-A dose is given incrementally to the Legionellae with a concentration of 106 CFU/mL in 0.9% NaCl (aq) solution. In this study, with a UV-A-dose of 1700 mJ/cm2, the log-reduction of 3-log (99.9% inactivation) for L. pneumophila and 2.1-log (99.1% inactivation) for L. dumoffii of the contaminated water are achieved. The Electrical Energy per Order (EEO) is evaluated and showed this system is more economic and efficient in comparison with UV-C and UV-B LEDs. Following the support of this preliminary study with additional tests, aiming to validate the technology, we expect this device may be installed in water plants such as cooling systems or any water purification station in either industrial or home scales to reduce the risk of this infectious disease, preventing consumers' health.
Collapse
Affiliation(s)
- Elaheh Allahyari
- PROMETE Srl, CNR Spin off, P.le V. Tecchio, 45, 80125, Naples, Italy; Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Via Cintia, I-80126 Napoli, Italy.
| | - Federica Carraturo
- Hygiene Laboratories: Water, Food, Environment, Department of Biology, University of Naples Federico II, via Cinthia 26, 80126, Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Federico II, Corso Nicolangelo Protopisani, 80146, Naples, Italy
| | - Arianna De Risi
- Hygiene Laboratories: Water, Food, Environment, Department of Biology, University of Naples Federico II, via Cinthia 26, 80126, Naples, Italy
| | - Antonio Nappo
- Hygiene Laboratories: Water, Food, Environment, Department of Biology, University of Naples Federico II, via Cinthia 26, 80126, Naples, Italy
| | - Michela Morelli
- Hygiene Laboratories: Water, Food, Environment, Department of Biology, University of Naples Federico II, via Cinthia 26, 80126, Naples, Italy
| | - Alessia Cajora
- PROMETE Srl, CNR Spin off, P.le V. Tecchio, 45, 80125, Naples, Italy
| | - Marco Guida
- Hygiene Laboratories: Water, Food, Environment, Department of Biology, University of Naples Federico II, via Cinthia 26, 80126, Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), University of Federico II, Corso Nicolangelo Protopisani, 80146, Naples, Italy
| |
Collapse
|
34
|
Pecorelli A, Valacchi G. Oxidative-Stress-Sensitive microRNAs in UV-Promoted Development of Melanoma. Cancers (Basel) 2022; 14:3224. [PMID: 35804995 PMCID: PMC9265047 DOI: 10.3390/cancers14133224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Melanoma is the most aggressive and life-threatening form of skin cancer. Key molecular events underlying the melanocytic transformation into malignant melanoma mainly involve gene mutations in which exposure to ultraviolet (UV) radiation plays a prominent role. However, several aspects of UV-induced melanomagenesis remain to be explored. Interestingly, redox-mediated signaling and perturbed microRNA (miRNA) profiles appear to be interconnected contributing factors able to act synergistically in melanoma initiation and progression. Since UV radiation can promote both redox imbalance and miRNA dysregulation, a harmful crosstalk between these two key cellular networks, with UV as central hub among them, is likely to occur in skin tissue. Therefore, decoding the complex circuits that orchestrate the interaction of UV exposure, oxidative stress, and dysregulated miRNA profiling can provide a deep understanding of the molecular basis of the melanomagenesis process. Furthermore, these mechanistic insights into the reciprocal regulation between these systems could have relevant implications for future therapeutic approaches aimed at counteracting UV-induced redox and miRNome imbalances for the prevention and treatment of malignant melanoma. In this review, we illustrate current information on the intricate connection between UV-induced dysregulation of redox-sensitive miRNAs and well-known signaling pathways involved in the malignant transformation of normal melanocytes to malignant melanoma.
Collapse
Affiliation(s)
- Alessandra Pecorelli
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
| | - Giuseppe Valacchi
- Department of Animal Science, N.C. Research Campus, Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA;
- Department of Environment and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
35
|
Reactive Oxygen Species Bridge the Gap between Chronic Inflammation and Tumor Development. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2606928. [PMID: 35799889 PMCID: PMC9256443 DOI: 10.1155/2022/2606928] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
According to numerous animal studies, adverse environmental stimuli, including physical, chemical, and biological factors, can cause low-grade chronic inflammation and subsequent tumor development. Human epidemiological evidence has confirmed the close relationship between chronic inflammation and tumorigenesis. However, the mechanisms driving the development of persistent inflammation toward tumorigenesis remain unclear. In this study, we assess the potential role of reactive oxygen species (ROS) and associated mechanisms in modulating inflammation-induced tumorigenesis. Recent reports have emphasized the cross-talk between oxidative stress and inflammation in many pathological processes. Exposure to carcinogenic environmental hazards may lead to oxidative damage, which further stimulates the infiltration of various types of inflammatory cells. In turn, increased cytokine and chemokine release from inflammatory cells promotes ROS production in chronic lesions, even in the absence of hazardous stimuli. Moreover, ROS not only cause DNA damage but also participate in cell proliferation, differentiation, and apoptosis by modulating several transcription factors and signaling pathways. We summarize how changes in the redox state can trigger the development of chronic inflammatory lesions into tumors. Generally, cancer cells require an appropriate inflammatory microenvironment to support their growth, spread, and metastasis, and ROS may provide the necessary catalyst for inflammation-driven cancer. In conclusion, ROS bridge the gap between chronic inflammation and tumor development; therefore, targeting ROS and inflammation represents a new avenue for the prevention and treatment of cancer.
Collapse
|
36
|
Hemin with Peroxidase Activity Can Inhibit the Oxidative Damage Induced by Ultraviolet A. Curr Issues Mol Biol 2022; 44:2683-2694. [PMID: 35735624 PMCID: PMC9221723 DOI: 10.3390/cimb44060183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 01/12/2023] Open
Abstract
Excessive reactive oxygen species (ROS), a highly reactive substance that contains oxygen, induced by ultraviolet A (UVA) cause oxidative damage to skin. We confirmed that hemin can catalyze the reaction of tyrosine (Tyr) and hydrogen peroxide (H2O2). Catalysis was found to effectively reduce or eliminate oxidative damage to cells induced by H2O2 or UVA. The scavenging effects of hemin for other free-radical ROS were also evaluated through pyrogallol autoxidation, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·)-scavenging assays, and phenanthroline–Fe2+ assays. The results show that a mixture of hemin and tyrosine exhibits strong scavenging activities for H2O2, superoxide anion (O2−·), DPPH·, and the hydroxyl radical (·OH). Furthermore, the inhibition of oxidative damage to human skin keratinocyte (HaCaT) cells induced by H2O2 or UVA was evaluated. The results show that catalysis can significantly reduce the ratio of cell apoptosis and death and inhibit the release of lactate dehydrogenase (LDH), as well as accumulation of malondialdehyde (MDA). Furthermore, the resistance to apoptosis was found to be enhanced. These results show that the mixture of hemin and tyrosine has a significantly protective effect against oxidative damage to HaCaT cells caused by UVA, suggesting it as a protective agent for combating UVA damage.
Collapse
|
37
|
Del Fiore P, Russo I, Dal Monico A, Tartaglia J, Ferrazzi B, Mazza M, Cavallin F, Tropea S, Buja A, Cappellesso R, Nicolè L, Chiarion-Sileni V, Menin C, Vecchiato A, Dei Tos AP, Alaibac M, Mocellin S. Altitude Effect on Cutaneous Melanoma Epidemiology in the Veneto Region (Northern Italy): A Pilot Study. Life (Basel) 2022; 12:life12050745. [PMID: 35629411 PMCID: PMC9146073 DOI: 10.3390/life12050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/02/2022] [Accepted: 05/13/2022] [Indexed: 12/24/2022] Open
Abstract
The incidence of cutaneous melanoma has been increasing in the last decades among the fair-skinned population. Despite its complex and multifactorial etiology, the exposure to ultraviolet radiation (UVR) is the most consistent modifiable risk factor for melanoma. Several factors influence the amount of UVR reaching the Earth’s surface. Our study aimed to explore the relationship between melanoma and altitude in an area with mixed geographic morphology, such as the Veneto region (Italy). We included 2752 melanoma patients who were referred to our centers between 1998 and 2014. Demographics, histological and clinical data, and survival information were extracted from a prospectively maintained local database. Head/neck and acral melanoma were more common in patients from the hills and the mountains, while limb and trunk melanoma were more common in patients living in plain and coastal areas. Breslow thickness, ulceration and mitotic rate impaired with increased altitude. However, the geographical area of origin was not associated with overall or disease-free survival. The geographical area of origin of melanoma patients and the “coast-plain-hill gradient” could help to estimate the influence of different sun exposure and to explain the importance of vitamin D levels in skin-cancer control.
Collapse
Affiliation(s)
- Paolo Del Fiore
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
- Correspondence: ; Tel.: +39-49-821-2714
| | - Irene Russo
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
- Division of Dermatology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (A.D.M.); (J.T.); (M.A.)
| | - Alessandro Dal Monico
- Division of Dermatology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (A.D.M.); (J.T.); (M.A.)
| | - Jacopo Tartaglia
- Division of Dermatology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (A.D.M.); (J.T.); (M.A.)
| | - Beatrice Ferrazzi
- Postgraduate School of Occupational Medicine, University of Verona, 37129 Verona, Italy;
| | - Marcodomenico Mazza
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
| | | | - Saveria Tropea
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
| | - Alessandra Buja
- Department of Cardiological, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy;
| | - Rocco Cappellesso
- Pathological Anatomy Unit, University Hospital of Padua, 35128 Padua, Italy; (R.C.); (A.P.D.T.)
| | - Lorenzo Nicolè
- Unit of Pathology & Cytopathology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy;
- Unit of Surgical Pathology & Cytopathology, Ospedale dell’Angelo, 30174 Mestre, Italy
| | | | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy;
| | - Antonella Vecchiato
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
| | - Angelo Paolo Dei Tos
- Pathological Anatomy Unit, University Hospital of Padua, 35128 Padua, Italy; (R.C.); (A.P.D.T.)
| | - Mauro Alaibac
- Division of Dermatology, Department of Medicine (DIMED), University of Padua, 35128 Padua, Italy; (A.D.M.); (J.T.); (M.A.)
| | - Simone Mocellin
- Soft-Tissue, Peritoneum and Melanoma Surgical Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (I.R.); (M.M.); (S.T.); (A.V.); (S.M.)
- Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, 35128 Padua, Italy
| |
Collapse
|
38
|
Kim DJ, Iwasaki A, Chien AL, Kang S. UVB-mediated DNA damage induces matrix metalloproteinases to promote photoaging in an AhR- and SP1-dependent manner. JCI Insight 2022; 7:156344. [PMID: 35316219 PMCID: PMC9090247 DOI: 10.1172/jci.insight.156344] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
It is currently thought that UVB radiation drives photoaging of the skin primarily by generating ROS. In this model, ROS purportedly activates activator protein-1 to upregulate MMPs 1, 3, and 9, which then degrade collagen and other extracellular matrix components to produce wrinkles. However, these MMPs are expressed at relatively low levels and correlate poorly with wrinkles, suggesting that another mechanism distinct from ROS and MMP1/3/9 may be more directly associated with photoaging. Here we show that MMP2, which degrades type IV collagen, is abundantly expressed in human skin, increases with age in sun-exposed skin, and correlates robustly with aryl hydrocarbon receptor (AhR), a transcription factor directly activated by UV-generated photometabolites. Through mechanistic studies with HaCaT human immortalized keratinocytes, we found that AhR, specificity protein 1 (SP1), and other pathways associated with DNA damage are required for the induction of both MMP2 and MMP11 (another MMP implicated in photoaging), but not MMP1/3. Last, we found that topical treatment with AhR antagonists vitamin B12 and folic acid ameliorated UVB-induced wrinkle formation in mice while dampening MMP2 expression in the skin. These results directly implicate DNA damage in photoaging and reveal AhR as a potential target for preventing wrinkles.
Collapse
Affiliation(s)
- Daniel J Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, United States of America
| | - Anna L Chien
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins School of Medicine, Baltimore, United States of America
| |
Collapse
|
39
|
Berry EG, Bezecny J, Acton M, Sulmonetti TP, Anderson DM, Beckham HW, Durr RA, Chiba T, Beem J, Brash DE, Kulkarni R, Cassidy PB, Leachman SA. Slip versus Slop: A Head-to-Head Comparison of UV-Protective Clothing to Sunscreen. Cancers (Basel) 2022; 14:cancers14030542. [PMID: 35158810 PMCID: PMC8833350 DOI: 10.3390/cancers14030542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Photoprotection reduces invasive melanoma incidence and mortality, but not all sun protection modalities are created equal. Dermatologists have long debated the pros and cons of photoprotective clothing and sunscreen, but few studies compare the effectiveness of these two modalities head-to-head. This study uses both in vitro and in vivo techniques to compare the ultraviolet radiation (UVR) protective capacity of four modern textiles and two commercially available, broad-spectrum sunscreens. Abstract Ultraviolet radiation (UVR) exposure is the most important modifiable risk factor for skin cancer development. Although sunscreen and sun-protective clothing are essential tools to minimize UVR exposure, few studies have compared the two modalities head-to-head. This study evaluates the UV-protective capacity of four modern, sun-protective textiles and two broad-spectrum, organic sunscreens (SPF 30 and 50). Sun Protection Factor (SPF), Ultraviolet Protection Factor (UPF), Critical Wavelength (CW), and % UVA- and % UVB-blocking were measured for each fabric. UPF, CW, % UVA- and % UVB-blocking were measured for each sunscreen at 2 mg/cm2 (recommended areal density) and 1 mg/cm2 (simulating real-world consumer application). The four textiles provided superior UVR protection when compared to the two sunscreens tested. All fabrics blocked erythemogenic UVR better than the sunscreens, as measured by SPF, UPF, and % UVB-blocking. Each fabric was superior to the sunscreens in blocking full-spectrum UVR, as measured by CW and % UVA-blocking. Our data demonstrate the limitations of sunscreen and UV-protective clothing labeling and suggest the combination of SPF or UPF with % UVA-blocking may provide more suitable measures for broad-spectrum protection. While sunscreen remains an important photoprotective modality (especially for sites where clothing is impractical), these data suggest that clothing should be considered the cornerstone of UV protection.
Collapse
Affiliation(s)
- Elizabeth G. Berry
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.K.); (P.B.C.); (S.A.L.)
- Correspondence: ; Tel.: +1-(503)-418-3376
| | - Joshua Bezecny
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Lebanon, OR 97355, USA;
| | | | | | | | - Haskell W. Beckham
- Columbia Sportswear Company, Portland, OR 97229, USA; (H.W.B.); (R.A.D.); (T.C.); (J.B.)
| | - Rebecca A. Durr
- Columbia Sportswear Company, Portland, OR 97229, USA; (H.W.B.); (R.A.D.); (T.C.); (J.B.)
| | - Takahiro Chiba
- Columbia Sportswear Company, Portland, OR 97229, USA; (H.W.B.); (R.A.D.); (T.C.); (J.B.)
| | - Jennifer Beem
- Columbia Sportswear Company, Portland, OR 97229, USA; (H.W.B.); (R.A.D.); (T.C.); (J.B.)
| | - Douglas E. Brash
- Departments of Therapeutic Radiology and Dermatology, Yale University, New Haven, CT 06520, USA;
| | - Rajan Kulkarni
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.K.); (P.B.C.); (S.A.L.)
- Portland Veterans Administration Medical Center, Portland, OR 97239, USA
| | - Pamela B. Cassidy
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.K.); (P.B.C.); (S.A.L.)
| | - Sancy A. Leachman
- Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA; (R.K.); (P.B.C.); (S.A.L.)
| |
Collapse
|
40
|
Masuda S, Makioka-Itaya Y, Ijichi T, Tsukahara T. Edible bird's nest extract downregulates epidermal apoptosis and helps reduce damage by ultraviolet radiation in skin of hairless mice. J Clin Biochem Nutr 2022; 70:33-36. [PMID: 35068679 PMCID: PMC8764105 DOI: 10.3164/jcbn.21-54] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
The purpose of the present study was to examine whether daily intake of edible bird's nest extract reduced ultraviolet-induced damage to skin. Twenty-one female HR-1/Hos mice were divided into control (C, n = 7), low-dose (2 mg/kg body weight/day of edible bird's nest extract) (L, n = 7), and high-dose (20 mg/kg body weight/day of edible bird's nest extract) (H, n = 7) groups. With their left back skin covered with aluminum sheet to prevent exposure, mice were radiated with either ultraviolet A (20 J/cm2) or ultraviolet B (40 mJ/cm2) in an alternate manner once daily for 10 weeks. They were gavaged either a solution of saline or edible bird's nest extract every day. The moisture content of the ultraviolet-exposed right back skin was significantly higher in H than in C or L. Histochemical analysis showed that the number of apoptotic epidermal cells on the ultraviolet-exposed skin was significantly lower in L and H than in C. In H, the mRNA expression of superoxide dismutase 2 was significantly higher on ultraviolet-exposed skin than on unexposed skin. Our data suggested that edible bird's nest extract enhanced superoxide dismutase 2 expression and downregulated apoptosis in their epidermis, which likely helped reduce skin damage.
Collapse
Affiliation(s)
- Shinya Masuda
- Kyoto Institute of Nutrition & Pathology, 7-2 Furuikedani Tachikawa, Ujitawara, Kyoto 610-0231, Japan
| | - Yuko Makioka-Itaya
- Life Science Division, Combi Corporation, Nishibori, Sakura-ku, Saitama 338-0832, Japan
| | - Tetsuo Ijichi
- Life Science Division, Combi Corporation, Nishibori, Sakura-ku, Saitama 338-0832, Japan
| | - Takamitsu Tsukahara
- Kyoto Institute of Nutrition & Pathology, 7-2 Furuikedani Tachikawa, Ujitawara, Kyoto 610-0231, Japan
| |
Collapse
|
41
|
Liang L, Mai S, Mai G, Chen Y, Liu L. DNA damage repair-related gene signature predicts prognosis and indicates immune cell infiltration landscape in skin cutaneous melanoma. Front Endocrinol (Lausanne) 2022; 13:882431. [PMID: 35957812 PMCID: PMC9361349 DOI: 10.3389/fendo.2022.882431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND DNA damage repair plays an important role in the onset and progression of cancers and its resistance to treatment therapy. This study aims to assess the prognostic potential of DNA damage repair markers in skin cutaneous melanoma (SKCM). METHOD In this study, we have analyzed the gene expression profiles being downloaded from TCGA, GTEx, and GEO databases. We sequentially used univariate and LASSO Cox regression analyses to screen DNA repair genes associated with prognosis. Then, we have conducted a multivariate regression analysis to construct the prognostic profile of DNA repair-related genes (DRRGs). The risk coefficient is used to calculate the risk scores and divide the patients into two cohorts. Additionally, we validated our prognosis model on an external cohort as well as evaluated the link between immune response and the DRRGs prognostic profiles. The risk signature is compared to immune cell infiltration, chemotherapy, and immune checkpoint inhibitors (ICIs) treatment. RESULTS An analysis using LASSO-Cox stepwise regression established a prognostic signature consisting of twelve DRRGs with strong predictive ability. Disease-specific survival (DSS) is found to be lower among high-risk patients group as compared to low-risk patients. The signature may be employed as an independent prognostic predictor after controlling for clinicopathological factors, as demonstrated by validation on one external GSE65904 cohort. A strong correlation is also found between the risk score and the immune microenvironment, along with the infiltrating immune cells, and ICIs key molecules. The gene enrichment analysis results indicate a wide range of biological activities and pathways to be exhibited by high-risk groups. Furthermore, Cisplatin exhibited a considerable response sensitivity in low-risk groups as opposed to the high-risk incidents, while docetaxel exhibited a considerable response sensitivity in high-risk groups. CONCLUSIONS Our findings provide a thorough investigation of DRRGs to develop an DSS-related prognostic indicator which may be useful in forecasting SKCM progression and enabling more enhanced clinical benefits from immunotherapy.
Collapse
Affiliation(s)
- Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shijie Mai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Le Liu, ; Ye Chen,
| | - Le Liu
- Department of Gastroenterology, Integrated Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Le Liu, ; Ye Chen,
| |
Collapse
|
42
|
|
43
|
Liu C, Zheng Y, Sanche L. Damage Induced to DNA and Its Constituents by 0-3 eV UV Photoelectrons †. Photochem Photobiol 2021; 98:546-563. [PMID: 34767635 DOI: 10.1111/php.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
The complex physical and chemical interactions between DNA and 0-3 eV electrons released by UV photoionization can lead to the formation of various lesions such as base modifications and cleavage, crosslinks and single strand breaks. Furthermore, in the presence of platinum chemotherapeutic agents, these electrons can cause clustered lesions, including double strand breaks. We explain the mechanisms responsible for these damages via the production 0-3 eV electrons by UVC radiation, and by UV photons of any wavelengths, when they are produced by photoemission from nanoparticles lying within about 10 nm from DNA. We review experimental evidence showing that a single 0-3 eV electron can produce these damages. The foreseen benefits UV-irradiation of nanoparticles targeted to the cell nucleus are mentioned in the context of cancer therapy, as well as the potential hazards to human health when they are present in cells.
Collapse
Affiliation(s)
- Chaochao Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
44
|
Vechtomova YL, Telegina TA, Buglak AA, Kritsky MS. UV Radiation in DNA Damage and Repair Involving DNA-Photolyases and Cryptochromes. Biomedicines 2021; 9:biomedicines9111564. [PMID: 34829793 PMCID: PMC8615538 DOI: 10.3390/biomedicines9111564] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Prolonged exposure to ultraviolet radiation on human skin can lead to mutations in DNA, photoaging, suppression of the immune system, and other damage up to skin cancer (melanoma, basal cell, and squamous cell carcinoma). We reviewed the state of knowledge of the damaging action of UVB and UVA on DNA, and also the mechanisms of DNA repair with the participation of the DNA-photolyase enzyme or of the nucleotide excision repair (NER) system. In the course of evolution, most mammals lost the possibility of DNA photoreparation due to the disappearance of DNA photolyase genes, but they retained closely related cryptochromes that regulate the transcription of the NER system enzymes. We analyze the published relationships between DNA photolyases/cryptochromes and carcinogenesis, as well as their possible role in the prevention and treatment of diseases caused by UV radiation.
Collapse
Affiliation(s)
- Yuliya L. Vechtomova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
- Correspondence:
| | - Taisiya A. Telegina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| | - Andrey A. Buglak
- Faculty of Physics, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail S. Kritsky
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (T.A.T.); (M.S.K.)
| |
Collapse
|
45
|
Robinson JK, Durst DA, Gray E, Kwasny M, Heo SY, Banks A, Rogers JA. Sun exposure reduction by melanoma survivors with wearable sensor providing real-time UV exposure and daily text messages with structured goal setting. Arch Dermatol Res 2021; 313:685-694. [PMID: 33185716 PMCID: PMC8116350 DOI: 10.1007/s00403-020-02163-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/19/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Despite knowledge of subsequent melanoma risk and the benefit of sun protection in risk reduction, melanoma survivors often do not engage in adequate sun protection and continue to sunburn at rates similar to individuals without a history of skin cancer. This novel intensive intervention provided a wearable UV sensor delivering real-time UV exposure with a smartphone and daily text messages. On days 1-10 (period 1), behavioral facilitation and outcome expectancies messages were provided. On day 10, participants reviewed and reflected on their daily UV exposure on the previous 10 days and set goals for improving sun protection. Then on days 11-21 (period 2) self-efficacy and self-regulation messages were provided. Sixty melanoma survivors were randomized (1:1) to receive structured or unstructured goal setting queries on day 10. Controlling for cloudy/rain conditions with less UV due to weather, there was a time effect with a significant decrease in UV exposure from periods 1-2 [period 1-2, F (59) = 22.60, p < 0.0001]. In this short-term study, melanoma survivors managed their daily UV exposure to stay below their maximum tolerated UV dose. ClinicalTrials.gov Protocol Record NCT0334796, date of registration Nov 15, 2017.
Collapse
Affiliation(s)
- June K Robinson
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1050, Chicago, IL, 60611, USA.
| | - Dalya A Durst
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1050, Chicago, IL, 60611, USA
| | - Elizabeth Gray
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mary Kwasny
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seung Yun Heo
- Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute for Bionanotechnology, Northwestern University, Evanston, IL, USA
| | - Anthony Banks
- Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute for Bionanotechnology, Northwestern University, Evanston, IL, USA
| | - John A Rogers
- Department of Biomedical Engineering, Center for Bio-Integrated Electronics, Simpson Querrey Institute for Bionanotechnology, Northwestern University, Evanston, IL, USA
| |
Collapse
|
46
|
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence. Cancers (Basel) 2021; 13:cancers13194914. [PMID: 34638397 PMCID: PMC8508267 DOI: 10.3390/cancers13194914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Melanoma constitutes a major public health risk, with the rates of diagnosis increasing on a yearly basis. Monitoring for risk factors and preventing dangerous behaviors that increase melanoma risk, such as tanning, are important measures for melanoma prevention. Additionally, assessing the effectiveness of various methods to prevent sun exposure and sunburns—which can lead to melanoma—is important to help identify ways to reduce the development of melanoma. We summarize the recent evidence regarding the heritable and behavioral risks underlying melanoma, as well as the current methods used to reduce the risk of developing melanoma and to improve the diagnosis of this disease. Abstract (1) Melanoma is the most aggressive dermatologic malignancy, with an estimated 106,110 new cases to be diagnosed in 2021. The annual incidence rates continue to climb, which underscores the critical importance of improving the methods to prevent this disease. The interventions to assist with melanoma prevention vary and typically include measures such as UV avoidance and the use of protective clothing, sunscreen, and other chemopreventive agents. However, the evidence is mixed surrounding the use of these and other interventions. This review discusses the heritable etiologies underlying melanoma development before delving into the data surrounding the preventive methods highlighted above. (2) A comprehensive literature review was performed to identify the clinical trials, observational studies, and meta-analyses pertinent to melanoma prevention and incidence. Online resources were queried to identify epidemiologic and clinical trial information. (3) Evidence exists to support population-wide screening programs, the proper use of sunscreen, and community-targeted measures in the prevention of melanoma. Clinical evidence for the majority of the proposed preventive chemotherapeutics is presently minimal but continues to evolve. (4) Further study of these chemotherapeutics, as well as improvement of techniques in artificial intelligence and imaging techniques for melanoma screening, is warranted for continued improvement of melanoma prevention.
Collapse
|
47
|
El Yaagoubi OM, Oularbi L, Bouyahya A, Samaki H, El Antri S, Aboudkhil S. The role of the ubiquitin-proteasome pathway in skin cancer development: 26S proteasome-activated NF-κB signal transduction. Cancer Biol Ther 2021; 22:479-492. [PMID: 34583610 DOI: 10.1080/15384047.2021.1978785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Ubiquitin-Proteasome System plays a central role in signal transduction associated with stress, in the skin in particular by the control of NF-κB pathways. Under normal conditions, the inhibitory protein IκB is phosphorylated by kinases, then ubiquitinated and ends up at the proteasome to be degraded. The present short review discusses recent progress in the inhibition of NF-κB activation by proteasome inhibitors prevents the degradation of protein IκB, which accumulates in the cytosol, and there by the activation of NF-κB. Moreover, would not only limit the expression of adhesion molecules and cytokines involved in metastatic processes, but also increase the sensitivity of cancer cells to apoptosis. Considering this fact, the activity of NF-κB is regulated by the phosphorylation and proteasome-dependent degradation of its inhibitor Iκb. In this scenario, the use of a proteasome inhibitor might be an effective strategy in the treatment of skin cancer with constitutive activation of NF-κB.
Collapse
Affiliation(s)
- Ouadie Mohamed El Yaagoubi
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Larbi Oularbi
- Laboratory of Materials, Membranes, and Environment, Faculty of Science and Technology-Mohammedia, Hassan II University, Casablanca, Morocco.,Supramolecular Nanomaterials Group (SNG), Mohammed VI Polytechnic University, Benguerir Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.,Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Hamid Samaki
- National Institute of Social Action (INAS), Tangier, Morocco
| | - Said El Antri
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| | - Souad Aboudkhil
- Laboratory of Biochemistry, Environment and Agri-Food (URAC 36) -Faculty of Sciences and Technology -Mohammedia, Hassan II University, Casablanca, Morocco
| |
Collapse
|
48
|
Mendoza DJ, Maliha M, Raghuwanshi VS, Browne C, Mouterde LMM, Simon GP, Allais F, Garnier G. Diethyl sinapate-grafted cellulose nanocrystals as nature-inspired UV filters in cosmetic formulations. Mater Today Bio 2021; 12:100126. [PMID: 34522878 PMCID: PMC8424589 DOI: 10.1016/j.mtbio.2021.100126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022] Open
Abstract
Inspired by nature’s photoprotection mechanisms, we report an effective UV-blocking nanomaterial based on diethyl sinapate-grafted cellulose nanocrystals (CNC-DES). The colloidal stability and UV-blocking performance of CNC-DES in aqueous glycerol (a common humectant in petroleum-free cosmetic formulations) and in a commercially available moisturizing cream were studied. Grafting the water-insoluble DES onto CNCs renders it dispersible in these water-based formulations, thanks to the excellent water-dispersibility of CNC nanoparticles. Glycerol dispersions containing 0.1 to 1.5 wt% CNC-DES display very high UV-blocking activity owing to the anti-UV DES moieties anchored onto CNCs. A facial cream blended with 1.5 wt% CNC-DES exhibits an SPF of 5.03, which is higher than a commercially available sunscreen with the same active ingredient concentration (SPF = 3.84). DPPH radical scavenging assay also showed the antioxidant potential of CNC-DES, albeit coinciding with a significant reduction in antioxidant activity after grafting DES onto CNCs. Cytotoxicity measurements revealed the CNC-DES not to cause significant cytotoxicity to murine fibroblast cells after 24 h of exposure. Overall, CNC-DES exhibits strong anti-UV and antioxidant properties and is water-dispersible, biocompatible, non-greasy, and lightweight. This study demonstrates the exceptional potential of DES-grafted CNCs as nature-inspired UV filters in the next generation of cosmetic formulations, including those for sensitive skins.
Collapse
Affiliation(s)
- D J Mendoza
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - M Maliha
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - V S Raghuwanshi
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - C Browne
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - L M M Mouterde
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - G P Simon
- 14 Alliance Lane (Building 72), Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - F Allais
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.,URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| | - G Garnier
- 15 Alliance Lane (Building 59), Bioresource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.,URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110, Pomacle, France
| |
Collapse
|
49
|
Bowman RL, Hennessey RC, Weiss TJ, Tallman DA, Crawford ER, Murphy BM, Webb A, Zhang S, La Perle KM, Burd CJ, Levine RL, Shain AH, Burd CE. UVB mutagenesis differs in Nras- and Braf-mutant mouse models of melanoma. Life Sci Alliance 2021; 4:e202101135. [PMID: 34210801 PMCID: PMC8321651 DOI: 10.26508/lsa.202101135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BRAF-mutant melanomas are more likely than NRAS-mutant melanomas to arise in anatomical locations protected from chronic sun damage. We hypothesized that this discrepancy in tumor location is a consequence of the differential sensitivity of BRAF and NRAS-mutant melanocytes to ultraviolet light (UV)-mediated carcinogenesis. We tested this hypothesis by comparing the mutagenic consequences of a single neonatal, ultraviolet-AI (UVA; 340-400 nm) or ultraviolet-B (UVB; 280-390 nm) exposure in mouse models heterozygous for mutant Braf or homozygous for mutant Nras Tumor onset was accelerated by UVB, but not UVA, and the resulting melanomas contained recurrent mutations affecting the RING domain of MAP3K1 and Actin-binding domain of Filamin A. Melanomas from UVB-irradiated, Braf-mutant mice averaged twice as many single-nucleotide variants and five times as many dipyrimidine variants than tumors from similarly irradiated Nras-mutant mice. A mutational signature discovered in UVB-accelerated tumors mirrored COSMIC signatures associated with human skin cancer and was more prominent in Braf- than Nras-mutant murine melanomas. These data show that a single UVB exposure yields a greater burden of mutations in murine tumors driven by oncogenic Braf.
Collapse
Affiliation(s)
- Robert L Bowman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca C Hennessey
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Tirzah J Weiss
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - David A Tallman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Emma R Crawford
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Brandon M Murphy
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Souhui Zhang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Krista Md La Perle
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - A Hunter Shain
- Department of Dermatology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Christin E Burd
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
50
|
Preparation, Characterization and Evaluation of Organogel-Based Lipstick Formulations: Application in Cosmetics. Gels 2021; 7:gels7030097. [PMID: 34287321 PMCID: PMC8293262 DOI: 10.3390/gels7030097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
1,3:2,4-Dibenzylidene-D-sorbitol (DBS) and 12-hydroxystearic acid (12-HSA) are well-known as low-molecular-weight organogelators (LMOGs) capable of gelling an organic liquid phase. Considering their unique chemical and physical properties, we assessed their potential effects in new lipstick formulations by discrimination testing; in vitro measurements of the sun protection factor (SPF); and thermal, mechanical and texture analyzes. DBS and 12-HSA were used to formulate four types of lipsticks: L1 (1% DBS), L2 (10% 12-HSA), L3 (1.5% DBS) and L4 (control, no LMOGs). The lipsticks were tested for sensory perception with an untrained panel of 16 consumers. LMOG formulations exhibited higher UVA protection factor (UVA-PF) and in vitro SPF, particularly in the 12-HSA-based lipstick. Regarding thermal properties, the 12-HSA-based lipstick and those without LMOGs were more heat-amenable compared to thermoresistant DBS-based lipsticks. The results also showed the viscoelastic and thermally reversible properties of LMOGs and their effect of increasing pay-off values. In general, the texture analysis indicated that 12-HSA-based lipstick was significantly harder to bend compared to control, while the other formulations became softer and easier to bend throughout the stability study. This work suggests the potential use of LMOGs as a structuring agent for lipsticks, paving the way towards more photoprotective and sustainable alternatives.
Collapse
|