1
|
Khanna V, Singh K. MicroRNAs as promising drug delivery target to ameliorate chronic obstructive pulmonary disease using nano-carriers: a comprehensive review. Mol Cell Biochem 2024:10.1007/s11010-024-05110-0. [PMID: 39254870 DOI: 10.1007/s11010-024-05110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deteriorating condition triggered by various factors, such as smoking, free radicals, and air pollution. This worsening disease is characterized by narrowing and thickening of airways, painful cough, and dyspnea. In COPD, numerous genes as well as microRNA (miRNA) play a significant role in the pathogenesis of the disease. Many in vivo and in vitro studies suggest that upregulation or suppression of certain miRNAs are effective treatment options for COPD. They have been proven to be more beneficial than the current symptomatic treatments, such as bronchodilators and corticosteroids. MiRNAs play a crucial role in immune cell development and regulate inflammatory responses in various tissues. MiRNA treatment thus allows for precision therapy with improved outcomes. Nanoparticle drug delivery systems such as polymeric nanoparticles, inorganic nanoparticles, dendrimers, polymeric micelles, and liposomes are an efficient method to ensure the biodistribution of the miRNAs to the target site. Identification of the right nanoparticle depending on the requirements and compatibility is essential for achieving maximum therapeutic effect. In this review, we offer a thorough comprehension of the pathology and genetics of COPD and the significance of miRNAs concerning various pathologies of the lung, as potential targets for treating the disease. The present review offers the latest insights into the nanoparticle drug delivery systems that can efficiently carry and deliver miRNA or antagomirs to the specific target site and hence help in effective management of COPD.
Collapse
Affiliation(s)
- Vamika Khanna
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
2
|
Bae J, Lee HJ, Choi KY, Lee JK, Park TY, Heo EY, Lee CH, Kim DK, Lee HW. Risk factors of acute exacerbation and disease progression in young patients with COPD. BMJ Open Respir Res 2024; 11:e001740. [PMID: 39019624 PMCID: PMC11256056 DOI: 10.1136/bmjresp-2023-001740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/28/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVE We aimed to elucidate the clinical factors associated with acute exacerbation and disease progression in young patients with chronic obstructive pulmonary disease (COPD). METHODS This retrospective longitudinal observational study included patients with COPD aged between 20 and 50 years with post-bronchodilator forced expiratory volume in one second (FEV1)/forced vital capacity (FVC)<0.7. Eligible patients were followed up with ≥2 spirometry examinations at 1 year interval after COPD diagnosis. The primary outcome was moderate-to-severe acute exacerbation in young patients with COPD. Secondary outcomes were early initiation of regular inhalation therapy and accelerated annual post-bronchodilator FEV1 decline. RESULTS A total of 342 patients were followed up during a median of 64 months. In multivariable analyses, risk factors for moderate-to-severe exacerbation were history of asthma (adjusted HR (aHR)=2.999, 95% CI=[2.074-4.335]), emphysema (aHR=1.951, 95% CI=[1.331-2.960]), blood eosinophil count >300/µL (aHR=1.469, 95% CI=[1.038-2.081]) and low FEV1 (%) (aHR=0.979, 95% CI=[0.970-0.987]). A history of asthma, sputum, blood eosinophil count >300/µL, low FEV1 (%) and low diffusing capacity of the lung for carbon monoxide (DLCO) (%) were identified as clinical factors associated with the early initiation of regular inhalation therapy. The risk factors associated with worsened FEV1 decline were increasing age, female sex, history of pulmonary tuberculosis, sputum, low FEV1 (%) and low DLCO (%). CONCLUSIONS In young COPD patients, specific high-risk features of acute exacerbation and disease progression need to be identified, including a history of previous respiratory diseases, current respiratory symptoms, blood eosinophil counts, and structural or functional pulmonary impairment.
Collapse
Affiliation(s)
- Juye Bae
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Seoul, Korea (the Republic of)
| | - Hyo Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Kwang Yong Choi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang-si, Korea (the Republic of)
| | - Jung-Kyu Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Tae Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Eun Young Heo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Chang Hoon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Jongno-gu, Seoul, Korea (the Republic of)
| | - Deog Kyeom Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| | - Hyun Woo Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Dongjak-gu, Seoul, Korea (the Republic of)
| |
Collapse
|
3
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
4
|
farrukh S, Baig S, Hussain R, Imad R, kulsoom O, Yousaf Rana M. Identification of polymorphic alleles in TERC and TERT gene reprogramming the telomeres of newborn and legacy with parental health. Saudi J Biol Sci 2024; 31:103897. [PMID: 38192544 PMCID: PMC10772381 DOI: 10.1016/j.sjbs.2023.103897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
Telomere and telomerase genes (TERC and TERT) highlighted many novel genetic polymorphisms related to common diseases. This study explored the polymorphic alleles of TERC and TERT gene in parents-newborn (triad) and its association with telomere length (TL) and parental diseases (mother: Gestational Diabetes Mellitus (GDM), Preeclampsia, fathers: Diabetes, Hypertension). In this cross-sectional study, the blood samples (n = 612) were collected from parents-newborn triad (204 each) for TL (T/S ratio) quantification by using qPCR, and gene (TERC and TERT) polymorphism was detected by Sanger sequencing. The correlation analysis was used to find an association between paternal TL (T/S ratio) and newborn TL. The multivariate linear regression was applied to determine the effect of parents genes and diseases on newborn TL. A positive association (r = 0.42,0.39) (p < 0.0001) among parents and newborn TL was observed. In the diseased group, both TERC (rs10936599) and TERT (rs2736100) genes had a high frequency of allele C in newborns (OR = 0.94, P = 0.90, OR = 4.24, P = 0.012). However, among parents, TERT gene [Mother CC (B = 0.575; P = 0.196), Father CC (B = -0.739; P = 0.071)] was found significant contributing factor for Newborn TL. Diseased parents with T/T and A/C genotypes had longer newborn TL (2.82 ± 2.43, p < 0.022; 1.80 ± 1.20, p < 0.00) than the C/C genotype. Therefore, the study, confirmed that major allele C of TERC and TERT genes is associated with smaller TL in diseased parents-newborns of the targeted population.
Collapse
Affiliation(s)
- Sadia farrukh
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
- Department of Community Health Sciences, The Agha Khan University, Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Rubina Hussain
- Department Gynecology and obstetrician, Ziauddin university and hospitals, Karachi, Pakistan
| | - Rehan Imad
- Department of Molecular medicine, Ziauddin University Karachi, Pakistan
| | - Ome kulsoom
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| | - Mehreen Yousaf Rana
- Department Gynecology and obstetrician, Ziauddin hospital, Karachi, Pakistan
| |
Collapse
|
5
|
Farrukh S, Baig S. Parental telomeres implications on immune senescence of newborns. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2023; 12:81-86. [PMID: 38022874 PMCID: PMC10658162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Telomere, the biological chronometer, and its effect on the immune system considerably varies among individuals. During pregnancy, multiple risk factors affect telomere reprogramming during fetal life which can lead to health disparities in newborns. These changes may cause a long-term impact on the telomere genetics of the newborn and become a reason for lifelong health implications and immune senescence. Therefore, telomere shortening in parents due to genetic variation may act as a hallmark of immune senescence and aging in their newborns.
Collapse
Affiliation(s)
- Sadia Farrukh
- Department of Biochemistry, Ziauddin University Karachi, Pakistan
| | - Saeeda Baig
- Department of Biochemistry, Ziauddin University Karachi, Pakistan
| |
Collapse
|
6
|
Park J, Ha MR, Song J, Kim OY. The Synergistic Effect of Dietary Acid Load Levels and Cigarette Smoking Status on the Risk of Chronic Obstructive Pulmonary Disease (COPD) in Healthy, Middle-Aged Korean Men. Nutrients 2023; 15:4063. [PMID: 37764846 PMCID: PMC10536353 DOI: 10.3390/nu15184063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
We investigated whether cigarette smoking and dietary acid load (DAL) are associated with a risk of chronic obstructive pulmonary disease (COPD) in healthy, middle-aged Korean men. Healthy men without diagnosed chronic disease (aged 40-64 years) from the KNHANES-VI (2013-2015) were included in the analysis (n = 774) and were subdivided by smoking status and DAL levels, as estimated using the quartile of net endogenous acid production (NEAP). The current smokers tended to have a higher risk of COPD than the never-smokers before and after adjustment. When divided by the DAL quartile, the Q4 group tended to have a higher risk of COPD than the Q1 group. Additionally, the current smokers with lower (Q2), modest (Q3), and the highest NEAP scores (Q4) showed risks of COPD that were more than fourfold higher than those of the never-smokers with the lowest NEAP scores (Q1). The ex-smokers with higher NEAP scores (Q3 and Q4) showed risks of COPD that were more than fourfold higher than those of the Q1 group. Interestingly, the risk of COPD was also more than sixfold higher in the never-smokers with the highest NEAP scores compared to that in the Q1 group. The NEAP scores and smoking status synergistically increased the risk of COPD in healthy, middle-aged Korean men. This suggests that DAL levels are an important factor in the prevention and management of COPD.
Collapse
Affiliation(s)
- Jihyun Park
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
| | - Mi Ri Ha
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Republic of Korea
| | - Oh Yoen Kim
- Clinical Nutrition, Department of Health Sciences, Graduate School of Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea; (J.P.); (M.R.H.)
- Department of Food Science and Nutrition, Dong-A University, Sahagu, Nakdongdaero 550 beon-gil, Busan 49315, Republic of Korea
| |
Collapse
|
7
|
TLR5 Variants Are Associated with the Risk for COPD and NSCLC Development, Better Overall Survival of the NSCLC Patients and Increased Chemosensitivity in the H1299 Cell Line. Biomedicines 2022; 10:biomedicines10092240. [PMID: 36140341 PMCID: PMC9496592 DOI: 10.3390/biomedicines10092240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is considered as the strongest independent risk factor for lung cancer (LC) development, suggesting an overlapping genetic background in both diseases. A common feature of both diseases is aberrant immunity in respiratory epithelia that is mainly regulated by Toll-like receptors (TLRs), key regulators of innate immunity. The function of the flagellin-sensing TLR5 in airway epithelia and pathophysiology of COPD and LC has remained elusive. We performed case−control genetic association and functional studies on the importance of TLR5 in COPD and LC development, comparing Caucasian COPD/LC patients (n = 974) and healthy donors (n = 1283). Association analysis of three single nucleotide polymorphisms (SNPs) (rs725084, rs2072493_N592S, and rs5744174_F616L) indicated the minor allele of rs2072493_N592S to be associated with increased risk for COPD (OR = 4.41, p < 0.0001) and NSCLC (OR = 5.17, p < 0.0001) development and non-small cell LC risk in the presence of COPD (OR = 1.75, p = 0.0031). The presence of minor alleles (rs5744174 and rs725084) in a co-dominant model was associated with overall survival in squamous cell LC patients. Functional analysis indicated that overexpression of the rs2072493_N592S allele affected the activation of NF-κB and AP-1, which could be attributed to impaired phosphorylation of p38 and ERK. Overexpression of TLR5N592S was associated with increased chemosensitivity in the H1299 cell line. Finally, genome-wide transcriptomic analysis on WI-38 and H1299 cells overexpressing TLR5WT or TLR5N592S, respectively, indicated the existence of different transcription profiles affecting several cellular pathways potentially associated with a dysregulated immune response. Our results suggest that TLR5 could be recognized as a potential biomarker for COPD and LC development with functional relevance.
Collapse
|
8
|
Domingo-Relloso A, Riffo-Campos AL, Powers M, Tellez-Plaza M, Haack K, Brown RH, Umans JG, Fallin MD, Cole SA, Navas-Acien A, Sanchez TR. An epigenome-wide study of DNA methylation profiles and lung function among American Indians in the Strong Heart Study. Clin Epigenetics 2022; 14:75. [PMID: 35681244 PMCID: PMC9185990 DOI: 10.1186/s13148-022-01294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/25/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Epigenetic modifications, including DNA methylation (DNAm), are often related to environmental exposures, and are increasingly recognized as key processes in the pathogenesis of chronic lung disease. American Indian communities have a high burden of lung disease compared to the national average. The objective of this study was to investigate the association of DNAm and lung function in the Strong Heart Study (SHS). We conducted a cross-sectional study of American Indian adults, 45-74 years of age who participated in the SHS. DNAm was measured using the Illumina Infinium Human MethylationEPIC platform at baseline (1989-1991). Lung function was measured via spirometry, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), at visit 2 (1993-1995). Airflow limitation was defined as FEV1 < 70% predicted and FEV1/FVC < 0.7, restriction was defined as FEV1/FVC > 0.7 and FVC < 80% predicted, and normal spirometry was defined as FEV1/FVC > 0.7, FEV1 > 70% predicted, FVC > 80% predicted. We used elastic-net models to select relevant CpGs for lung function and spirometry-defined lung disease. We also conducted bioinformatic analyses to evaluate the biological plausibility of the findings. RESULTS Among 1677 participants, 21.2% had spirometry-defined airflow limitation and 13.6% had spirometry-defined restrictive pattern lung function. Elastic-net models selected 1118 Differentially Methylated Positions (DMPs) as predictors of airflow limitation and 1385 for restrictive pattern lung function. A total of 12 DMPs overlapped between airflow limitation and restrictive pattern. EGFR, MAPK1 and PRPF8 genes were the most connected nodes in the protein-protein interaction network. Many of the DMPs targeted genes with biological roles related to lung function such as protein kinases. CONCLUSION We found multiple differentially methylated CpG sites associated with chronic lung disease. These signals could contribute to better understand molecular mechanisms involved in lung disease, as assessed systemically, as well as to identify patterns that could be useful for diagnostic purposes. Further experimental and longitudinal studies are needed to assess whether DNA methylation has a causal role in lung disease.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain. .,Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA. .,Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Angela L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile.,Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Martha Powers
- United States Environmental Protection Agency, Washington, DC, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, 28029, Madrid, Spain
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robert H Brown
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Jason G Umans
- MedStar Health Research Institute, Hyattsville, MD, USA.,Georgetown-Howard Universities Center for Clinical and Translational Science, Washington, DC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| |
Collapse
|
9
|
Wang L, Zhao H, Raman I, Yan M, Chen Q, Li QZ. Peripheral Blood Mononuclear Cell Gene Expression in Chronic Obstructive Pulmonary Disease: miRNA and mRNA Regulation. J Inflamm Res 2022; 15:2167-2180. [PMID: 35392023 PMCID: PMC8983057 DOI: 10.2147/jir.s337894] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/16/2022] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lijing Wang
- Departments of Geriatrics, Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Hongjun Zhao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Indu Raman
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mei Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qiong Chen
- Departments of Geriatrics, Respiratory Medicine, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People’s Republic of China
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Correspondence: Quan-Zhen Li, Department of Immunology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA, Tel +1 214-645-6071, Fax +1 214-645-6074, Email
| |
Collapse
|
10
|
Röhl A, Baek SH, Kachroo P, Morrow JD, Tantisira K, Silverman EK, Weiss ST, Sharma A, Glass K, DeMeo DL. Protein interaction networks provide insight into fetal origins of chronic obstructive pulmonary disease. Respir Res 2022; 23:69. [PMID: 35331221 PMCID: PMC8944072 DOI: 10.1186/s12931-022-01963-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a leading cause of death in adults that may have origins in early lung development. It is a complex disease, influenced by multiple factors including genetic variants and environmental factors. Maternal smoking during pregnancy may influence the risk for diseases during adulthood, potentially through epigenetic modifications including methylation. METHODS In this work, we explore the fetal origins of COPD by utilizing lung DNA methylation marks associated with in utero smoke (IUS) exposure, and evaluate the network relationships between methylomic and transcriptomic signatures associated with adult lung tissue from former smokers with and without COPD. To identify potential pathobiological mechanisms that may link fetal lung, smoke exposure and adult lung disease, we study the interactions (physical and functional) of identified genes using protein-protein interaction networks. RESULTS We build IUS-exposure and COPD modules, which identify connected subnetworks linking fetal lung smoke exposure to adult COPD. Studying the relationships and connectivity among the different modules for fetal smoke exposure and adult COPD, we identify enriched pathways, including the AGE-RAGE and focal adhesion pathways. CONCLUSIONS The modules identified in our analysis add new and potentially important insights to understanding the early life molecular perturbations related to the pathogenesis of COPD. We identify AGE-RAGE and focal adhesion as two biologically plausible pathways that may reveal lung developmental contributions to COPD. We were not only able to identify meaningful modules but were also able to study interconnections between smoke exposure and lung disease, augmenting our knowledge about the fetal origins of COPD.
Collapse
Affiliation(s)
- Annika Röhl
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Seung Han Baek
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Priyadarshini Kachroo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pediatric Respiratory Medicine, University of California San Diego, San Diego, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Center for Complex Network Research, Northeastern University, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
11
|
Amatya S, Rajbhandari S, Pradhan S, Trinh V, Paudel U, Parton LA. Hedgehog signaling pathway gene variant influences bronchopulmonary dysplasia in extremely low birth weight infants. World J Pediatr 2021; 17:298-304. [PMID: 33860472 DOI: 10.1007/s12519-021-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Genome wide association study identified hedgehog interacting protein gene (HHIP) variants with chronic obstructive pulmonary disease and asthma. Loss of HHIP, a key regulator of the hedgehog signaling pathway, leads to impaired lung morphogenesis and lethality in animal models, through unimpeded sonic hedgehog expression blocking mesenchymal-expressed fibroblast growth factor 10 (FGF10). Since bronchopulmonary dysplasia (BPD) is also associated with altered lung development and worsens with stimuli including mechanical ventilation, reactive oxygen species, and inflammation, HHIP and FGF10 may be candidate genes. METHODS This was an observational, cohort study including extremely low birth weight infants that who developed BPD and those who did not. DNA was isolated from buccal swabs and subjected to allelic discrimination, using specific HHIP and FGF10 probes. Protein levels were measured in tracheal aspirates. Student's t test, Chi-square, Z test and logistic regression were used. RESULTS Demographic characteristics did not differ except that birth weight (715 ± 153 vs. 835 ± 132 g) and gestational age (25 vs. 26 weeks) were less in babies with BPD. HHIP variant rs13147758 (GG genotype) was found to be independently protective for BPD (odds ratio 0.35, 95% confidence interval 0.15-0.82, P = - 0.02). Early airway HHIP protein levels were increased in infants with BPD compared to those without [median (interquartile range) 130.6 (55.6-297.0) and 41.2 (22.1-145.6) pg/mL, respectively; P = 0.05]. The FGF10 single nucleotide polymorphisms were not associated with BPD. CONCLUSION HHIP, as a regulator of lung bud formation, affects BPD susceptibility, and may be valuable in understanding the specific mechanisms for this disease as well as for identifying therapeutic targets in the era of personalized medicine.
Collapse
Affiliation(s)
- Shaili Amatya
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pediatrics, Penn State Children's Hospital, Hershey, PA, USA
| | - Sharina Rajbhandari
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Novant Health Presbyterian Medical Center, Charlotte, NC, USA
| | - Sandeep Pradhan
- Department of Public Health, Penn State University, Hershey, PA, USA
| | - Van Trinh
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Umesh Paudel
- Department of Pediatrics, Harlem Hospital-Columbia University Irving Medical Center, New York, NY, USA
| | - Lance A Parton
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA. .,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
12
|
Wu X. Depletion of miR-380 mitigates human bronchial epithelial cells injury to improve chronic obstructive pulmonary disease through targeting CHRNA4. Mol Cell Probes 2020; 49:101492. [DOI: 10.1016/j.mcp.2019.101492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/03/2023]
|
13
|
Farrukh S, Baig S, Hussain R, Shahid A, Khan ST. Telomere reprogramming during fetal life in low socioeconomic mothers. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0007-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
14
|
Zhang J, Sha Q, Liu G, Wang X. A gene based approach to test genetic association based on an optimally weighted combination of multiple traits. PLoS One 2019; 14:e0220914. [PMID: 31398229 PMCID: PMC6688794 DOI: 10.1371/journal.pone.0220914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/25/2019] [Indexed: 01/11/2023] Open
Abstract
There is increasing evidence showing that pleiotropy is a widespread phenomenon in complex diseases for which multiple correlated traits are often measured. Joint analysis of multiple traits could increase statistical power by aggregating multiple weak effects. Existing methods for multiple trait association tests usually study each of the multiple traits separately and then combine the univariate test statistics or combine p-values of the univariate tests for identifying disease associated genetic variants. However, ignoring correlation between phenotypes may cause power loss. Additionally, the genetic variants in one gene (including common and rare variants) are often viewed as a whole that affects the underlying disease since the basic functional unit of inheritance is a gene rather than a genetic variant. Thus, results from gene level association tests can be more readily integrated with downstream functional and pathogenic investigation, whereas many existing methods for multiple trait association tests only focus on testing a single common variant rather than a gene. In this article, we propose a statistical method by Testing an Optimally Weighted Combination of Multiple traits (TOW-CM) to test the association between multiple traits and multiple variants in a genomic region (a gene or pathway). We investigate the performance of the proposed method through extensive simulation studies. Our simulation studies show that the proposed method has correct type I error rates and is either the most powerful test or comparable with the most powerful tests. Additionally, we illustrate the usefulness of TOW-CM based on a COPDGene study.
Collapse
Affiliation(s)
- Jianjun Zhang
- Department of Mathematics, University of North Texas, Denton, TX, United States of America
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States of America
| | - Guanfu Liu
- School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, China
| | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, TX, United States of America
| |
Collapse
|
15
|
Ham S, Oh YM, Roh TY. Evaluation and Interpretation of Transcriptome Data Underlying Heterogeneous Chronic Obstructive Pulmonary Disease. Genomics Inform 2019; 17:e2. [PMID: 30929403 PMCID: PMC6459164 DOI: 10.5808/gi.2019.17.1.e2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 01/23/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a type of progressive lung disease, featured by airflow obstruction. Recently, a comprehensive analysis of the transcriptome in lung tissue of COPD patients was performed, but the heterogeneity of the sample was not seriously considered in characterizing the mechanistic dysregulation of COPD. Here, we established a new transcriptome analysis pipeline using a deconvolution process to reduce the heterogeneity and clearly identified that these transcriptome data originated from the mild or moderate stage of COPD patients. Differentially expressed or co-expressed genes in the protein interaction subnetworks were linked with mitochondrial dysfunction and the immune response, as expected. Computational protein localization prediction revealed that 19 proteins showing changes in subcellular localization were mostly related to mitochondria, suggesting that mislocalization of mitochondria-targeting proteins plays an important role in COPD pathology. Our extensive evaluation of COPD transcriptome data could provide guidelines for analyzing heterogeneous gene expression profiles and classifying potential candidate genes that are responsible for the pathogenesis of COPD.
Collapse
Affiliation(s)
- Seokjin Ham
- Department of Life Sciences, POSTECH, Pohang 37674, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang 37674, Korea.,Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 37674, Korea
| |
Collapse
|
16
|
Wadhwa R, Aggarwal T, Malyla V, Kumar N, Gupta G, Chellappan DK, Dureja H, Mehta M, Satija S, Gulati M, Maurya PK, Collet T, Hansbro PM, Dua K. Identification of biomarkers and genetic approaches toward chronic obstructive pulmonary disease. J Cell Physiol 2019; 234:16703-16723. [DOI: 10.1002/jcp.28482] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Ridhima Wadhwa
- Faculty of Life Sciences and Biotechnology South Asian University New Delhi India
| | - Taru Aggarwal
- Amity Institute of Biotechnology Amity University Noida Uttar Pradesh India
| | - Vamshikrishna Malyla
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| | - Nitesh Kumar
- Amity Institute for Advanced Research & Studies (M&D) Amity University Noida Uttar Pradesh India
| | - Gaurav Gupta
- School of Pharmaceutical Sciences Jaipur National University, Jagatpura Jaipur Rajasthan India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy International Medical University Bukit Jalil Kuala Lumpur Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences Maharishi Dayanand University Rohtak Haryana India
| | - Meenu Mehta
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Saurabh Satija
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Monica Gulati
- School of Pharmaceutical Sciences Lovely Professional University Phagwara Punjab India
| | - Pawan Kumar Maurya
- Department of Biochemistry Central University of Haryana Mahendergarh Haryana India
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health & Biomedical Innovation Queensland University of Technology Brisbane Queensland Australia
| | - Philip Michael Hansbro
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
- School of Life Sciences University of Technology Sydney Sydney New South Wales Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health University of Technology Sydney New South Wales Australia
- Priority Research Centre for Healthy Lungs University of Newcastle & Hunter Medical Research Institute Newcastle New South Wales Australia
- Centre for Inflammation Centenary Institute Sydney New South Wales Australia
| |
Collapse
|
17
|
Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci Rep 2018; 8:17132. [PMID: 30459441 PMCID: PMC6244246 DOI: 10.1038/s41598-018-35372-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/25/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) comprises multiple phenotypes such as airflow obstruction, emphysema, and frequent episodes of acute worsening of respiratory symptoms, known as exacerbations. The goal of this pilot study was to test the usefulness of unbiased metabolomics and transcriptomics approaches to delineate biological pathways associated with COPD phenotypes and outcomes. Blood was collected from 149 current or former smokers with or without COPD and separated into peripheral blood mononuclear cells (PBMC) and plasma. PBMCs and plasma were analyzed using microarray and liquid chromatography mass spectrometry, respectively. Statistically significant transcripts and compounds were mapped to pathways using IMPaLA. Results showed that glycerophospholipid metabolism was associated with worse airflow obstruction and more COPD exacerbations. Sphingolipid metabolism was associated with worse lung function outcomes and exacerbation severity requiring hospitalizations. The strongest associations between a pathway and a certain COPD outcome were: fat digestion and absorption and T cell receptor signaling with lung function outcomes; antigen processing with exacerbation frequency; arginine and proline metabolism with exacerbation severity; and oxidative phosphorylation with emphysema. Overlaying transcriptomic and metabolomics datasets across pathways enabled outcome and phenotypic differences to be determined. Findings are relevant for identifying molecular targets for animal intervention studies and early intervention markers in human cohorts.
Collapse
|
18
|
Wang C, de Mochel NSR, Christenson SA, Cassandras M, Moon R, Brumwell AN, Byrnes LE, Li A, Yokosaki Y, Shan P, Sneddon JB, Jablons D, Lee PJ, Matthay MA, Chapman HA, Peng T. Expansion of hedgehog disrupts mesenchymal identity and induces emphysema phenotype. J Clin Invest 2018; 128:4343-4358. [PMID: 29999500 PMCID: PMC6159975 DOI: 10.1172/jci99435] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/05/2018] [Indexed: 12/11/2022] Open
Abstract
GWAS have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli. Single-cell RNA-sequencing showed that the hedgehog-receptive mesenchyme is composed of mostly fibroblasts with distinct proximal and distal subsets with discrete identities. Ectopic hedgehog activation in the distal fibroblasts promoted expression of proximal fibroblast markers and loss of distal alveoli and airspace enlargement of over 20% compared with controls. We found that hedgehog suppressed mesenchymal-derived mitogens enriched in distal fibroblasts that regulate alveolar stem cell regeneration and airspace size. Finally, single-cell analysis of the human lung mesenchyme showed that segregated proximal-distal identity with preferential hedgehog activation in the proximal fibroblasts was conserved between mice and humans. In conclusion, we showed that differential hedgehog activation segregates mesenchymal identities of distinct fibroblast subsets and that disruption of fibroblast identity can alter the alveolar stem cell niche, leading to emphysematous changes in the murine lung.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alfred Li
- Bone Imaging Research Core, (UCSF), San Francisco, California, USA
| | | | - Peiying Shan
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | - Patty J. Lee
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | - Tien Peng
- Department of Medicine
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| |
Collapse
|
19
|
Melro H, Gomes J, Moura G, Marques A. Genetic profile and patient-reported outcomes in chronic obstructive pulmonary disease: A systematic review. PLoS One 2018; 13:e0198920. [PMID: 29927965 PMCID: PMC6013101 DOI: 10.1371/journal.pone.0198920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/29/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) impacts differently on patients at similar grades, suggesting that factors other than lung function may influence patients' experience of the disease. Recent studies have found associations between genetic variations and patient-reported outcomes (PROs). Identifying these associations might be fundamental to predict the disease progression and develop tailored interventions. This systematic review aimed to identify the genetic variations associated with PROs in COPD. METHODS AND FINDINGS Databases were searched until July 2017 (PROSPERO: CRD42016041639) and additional searches were conducted scanning the reference list of the articles. Two independent reviewers assessed the quality of studies using the Q-Genie checklist. This instrument is composed of 11 questions, each subdivided in 7 options from 1 poor-7 excellent. Thirteen studies reporting 5 PROs in association with genes were reviewed. Studies were rated between "good quality" (n = 8) and "moderate" (n = 5). The most reported PRO was frequency of exacerbations (n = 7/13), which was mainly associated with MBL2 gene variants. Other PRO's were health-related quality of life (HRQOL) (n = 4/13), depressive symptoms (n = 1/13), exacerbation severity (n = 1/13) and breathlessness, cough and sputum (n = 1/13), which were commonly associated with other genetic variants. CONCLUSIONS Although a limited number of PRO's have been related to genetic variations, findings suggest that there is a significant association between specific gene variants and the number/severity of exacerbations, depressive symptoms and HRQOL. Further research is needed to confirm these findings and assess the genetic influence on other dimensions of patients' lives, since it may enhance our understanding and management of COPD.
Collapse
Affiliation(s)
- Hélder Melro
- Lab3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro, Aveiro, Portugal
- iBiMED – Institute for Biomedicine, School of Health Sciences, University of Aveiro, Aveiro, Portugal
| | - Jorge Gomes
- School of Engineering, Campus de Gualtar, University of Minho, Braga, Portugal
| | - Gabriela Moura
- iBiMED – Institute for Biomedicine, School of Health Sciences, University of Aveiro, Aveiro, Portugal
- Genome Sequencing and Analysis Lab, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Alda Marques
- Lab3R – Respiratory Research and Rehabilitation Laboratory, School of Health Sciences, University of Aveiro, Aveiro, Portugal
- iBiMED – Institute for Biomedicine, School of Health Sciences, University of Aveiro, Aveiro, Portugal
- * E-mail:
| |
Collapse
|
20
|
Vishweswaraiah S, George L, Purushothaman N, Ganguly K. A candidate gene identification strategy utilizing mouse to human big-data mining: "3R-tenet" in COPD genetic research. Respir Res 2018; 19:92. [PMID: 29871630 PMCID: PMC5989378 DOI: 10.1186/s12931-018-0795-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life impairments leading to lower lung function by adulthood are considered as risk factors for chronic obstructive pulmonary disease (COPD). Recently, we compared the lung transcriptomic profile between two mouse strains with extreme total lung capacities to identify plausible pulmonary function determining genes using microarray analysis (GSE80078). Advancement of high-throughput techniques like deep sequencing (eg. RNA-seq) and microarray have resulted in an explosion of genomic data in the online public repositories which however remains under-exploited. Strategic curation of publicly available genomic data with a mouse-human translational approach can effectively implement “3R- Tenet” by reducing screening experiments with animals and performing mechanistic studies using physiologically relevant in vitro model systems. Therefore, we sought to analyze the association of functional variations within human orthologs of mouse lung function candidate genes in a publicly available COPD lung RNA-seq data-set. Methods Association of missense single nucleotide polymorphisms, insertions, deletions, and splice junction variants were analyzed for susceptibility to COPD using RNA-seq data of a Korean population (GSE57148). Expression of the associated genes were studied using the Gene Paint (mouse embryo) and Human Protein Atlas (normal adult human lung) databases. The genes were also assessed for replication of the associations and expression in COPD−/mouse cigarette smoke exposed lung tissues using other datasets. Results Significant association (p < 0.05) of variations in 20 genes to higher COPD susceptibility have been detected within the investigated cohort. Association of HJURP, MCRS1 and TLR8 are novel in relation to COPD. The associated ADAM19 and KIT loci have been reported earlier. The remaining 15 genes have also been previously associated to COPD. Differential transcript expression levels of the associated genes in COPD- and/ or mouse emphysematous lung tissues have been detected. Conclusion Our findings suggest strategic mouse-human datamining approaches can identify novel COPD candidate genes using existing datasets in the online repositories. The candidates can be further evaluated for mechanistic role through in vitro studies using appropriate primary cells/cell lines. Functional studies can be limited to transgenic animal models of only well supported candidate genes. This approach will lead to a significant reduction of animal experimentation in respiratory research. Electronic supplementary material The online version of this article (10.1186/s12931-018-0795-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Leema George
- SRM Research Institute, SRM University, Chennai, 603203, India
| | - Natarajan Purushothaman
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, SRM University, Chennai, 603203, India
| | - Koustav Ganguly
- SRM Research Institute, SRM University, Chennai, 603203, India. .,Work Environment Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 287, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
21
|
Jia J, Conlon TM, Sarker RS, Taşdemir D, Smirnova NF, Srivastava B, Verleden SE, Güneş G, Wu X, Prehn C, Gao J, Heinzelmann K, Lintelmann J, Irmler M, Pfeiffer S, Schloter M, Zimmermann R, Hrabé de Angelis M, Beckers J, Adamski J, Bayram H, Eickelberg O, Yildirim AÖ. Cholesterol metabolism promotes B-cell positioning during immune pathogenesis of chronic obstructive pulmonary disease. EMBO Mol Med 2018; 10:e8349. [PMID: 29674392 PMCID: PMC5938615 DOI: 10.15252/emmm.201708349] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/30/2022] Open
Abstract
The development of chronic obstructive pulmonary disease (COPD) pathogenesis remains unclear, but emerging evidence supports a crucial role for inducible bronchus-associated lymphoid tissue (iBALT) in disease progression. Mechanisms underlying iBALT generation, particularly during chronic CS exposure, remain to be defined. Oxysterol metabolism of cholesterol is crucial to immune cell localization in secondary lymphoid tissue. Here, we demonstrate that oxysterols also critically regulate iBALT generation and the immune pathogenesis of COPD In both COPD patients and cigarette smoke (CS)-exposed mice, we identified significantly upregulated CH25H and CYP7B1 expression in airway epithelial cells, regulating CS-induced B-cell migration and iBALT formation. Mice deficient in CH25H or the oxysterol receptor EBI2 exhibited decreased iBALT and subsequent CS-induced emphysema. Further, inhibition of the oxysterol pathway using clotrimazole resolved iBALT formation and attenuated CS-induced emphysema in vivo therapeutically. Collectively, our studies are the first to mechanistically interrogate oxysterol-dependent iBALT formation in the pathogenesis of COPD, and identify a novel therapeutic target for the treatment of COPD and potentially other diseases driven by the generation of tertiary lymphoid organs.
Collapse
Affiliation(s)
- Jie Jia
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rim Sj Sarker
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Demet Taşdemir
- Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Turkey
| | - Natalia F Smirnova
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Barkha Srivastava
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Gizem Güneş
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Xiao Wu
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Munich, Germany
| | - Cornelia Prehn
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
| | - Jiaqi Gao
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jutta Lintelmann
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Munich, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
| | - Stefan Pfeiffer
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Munich, Germany
- University of Rostock, Rostock, Germany
| | - Martin Hrabé de Angelis
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Munich, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Munich, Germany
- German Center for Diabetes Research (DZD), Munich, Germany
- Chair of Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
| | - Hasan Bayram
- Department of Chest Diseases, School of Medicine, University of Gaziantep, Gaziantep, Turkey
- School of Medicine, Koç University, Istanbul, Turkey
| | - Oliver Eickelberg
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Denver, CO, USA
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC), Institute of Lung Biology and Disease, Helmholtz Zentrum München, Munich, Germany
- Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
22
|
Mohammed J, Derom E, Van Oosterwijck J, Da Silva H, Calders P. Evidence for aerobic exercise training on the autonomic function in patients with chronic obstructive pulmonary disease (COPD): a systematic review. Physiotherapy 2018; 104:36-45. [DOI: 10.1016/j.physio.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/12/2017] [Indexed: 02/04/2023]
|
23
|
Liu JC, Hao WR, Hsu YP, Sung LC, Kao PF, Lin CF, Wu ATH, Yuan KSP, Wu SY. Statins dose-dependently exert a significant chemopreventive effect on colon cancer in patients with chronic obstructive pulmonary disease: A population-based cohort study. Oncotarget 2018; 7:65270-65283. [PMID: 27542242 PMCID: PMC5323154 DOI: 10.18632/oncotarget.11263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/27/2016] [Indexed: 12/21/2022] Open
Abstract
Purpose We evaluated the chemopreventive effect of statins on colon cancer in patients with chronic obstructive pulmonary disease (COPD) and identified the statin exerting the strongest chemopreventive effect. Methods Using the National Health Insurance Research Database, we identified patients who received a COPD diagnosis in Taiwan between January 1, 2001, and December 31, 2012, and included them in the study cohort. Each patient was followed to assess the colon cancer risk and protective factors. A propensity score was derived using a logistic regression model to estimate the effect of statins by accounting for covariates predicted during the intervention (statins). To examine the dose–response relationship, we categorized statin doses into four groups in each cohort [<28, 28–90, 91–365, and >365 cumulative defined daily dose]. Results Compared with the statin nonusers, the adjusted hazard ratio (aHR) for colon cancer decreased in the statin users (aHR = 0.52, 95% confidence interval = 0.44, 0.62). Hydrophilic statins exerted a stronger preventive effect against colon cancer. Regarding the statin type, lovastatin, pravastatin, and fluvastatin nonsignificantly reduced the colon cancer risk in the patients with COPD. Compared with the statin nonusers, the aHRs for colon cancer decreased in the individual statin users (rosuvastatin, simvastatin, and atorvastatin: aHRs = 0.28, 0.64, and 0.65, respectively). In the sensitivity analysis, statins dose-dependently reduced the colon cancer risk. Conclusions Statins dose-dependently exert significant chemopreventive effects on colon cancer in patients with COPD, with rosuvastatin exerting the largest chemopreventive effect.
Collapse
Affiliation(s)
- Ju-Chi Liu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wen-Rui Hao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Yi-Ping Hsu
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Li-Chin Sung
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pai-Feng Kao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Feng Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei, Taiwan
| | - Alexander T H Wu
- Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kevin Sheng-Po Yuan
- Department of Otorhinolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biotechnology, Hungkuang University, Taichung, Taiwan
| |
Collapse
|
24
|
Radder JE, Gregory AD, Leme AS, Cho MH, Chu Y, Kelly NJ, Bakke P, Gulsvik A, Litonjua AA, Sparrow D, Beaty TH, Crapo JD, Silverman EK, Zhang Y, Berndt A, Shapiro SD. Variable Susceptibility to Cigarette Smoke-Induced Emphysema in 34 Inbred Strains of Mice Implicates Abi3bp in Emphysema Susceptibility. Am J Respir Cell Mol Biol 2017; 57:367-375. [PMID: 28441029 DOI: 10.1165/rcmb.2016-0220oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by a complex interaction of environmental exposures, most commonly cigarette smoke, and genetic factors. Chronic cigarette smoke exposure in the mouse is a commonly used animal model of COPD. We aimed to expand our knowledge about the variable susceptibility of inbred strains to this model and test for genetic variants associated with this trait. To that end, we sought to measure differential susceptibility to cigarette smoke-induced emphysema in the mouse, identify genetic loci associated with this quantitative trait, and find homologous human genes associated with COPD. Alveolar chord length (CL) in 34 inbred strains of mice was measured after 6 months of exposure to cigarette smoke. After testing for association, we connected a murine candidate locus to a published meta-analysis of moderate-to-severe COPD. We identified deleterious mutations in a candidate gene in silico and measured gene expression in extreme strains. A/J was the most susceptible strain in our survey (Δ CL 7.0 ± 2.2 μm) and CBA/J was the least susceptible (Δ CL -0.3 ± 1.2 μm). By integrating mouse and human genome-wide scans, we identified the candidate gene Abi3bp. CBA/J mice harbor predicted deleterious variants in Abi3bp, and expression of the gene differs significantly between CBA/J and A/J mice. This is the first report of susceptibility to cigarette smoke-induced emphysema in 34 inbred strains of mice, and Abi3bp is identified as a potential contributor to this phenotype.
Collapse
Affiliation(s)
- Josiah E Radder
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alyssa D Gregory
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adriana S Leme
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael H Cho
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Yanxia Chu
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Neil J Kelly
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Per Bakke
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Augusto A Litonjua
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - David Sparrow
- 5 School of Public Health and.,6 School of Medicine, Boston University, Boston, Massachusetts.,7 Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Terri H Beaty
- 8 Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland; and
| | - James D Crapo
- 9 Department of Radiology, National Jewish Health, Denver, Colorado
| | - Edwin K Silverman
- 2 Channing Division of Network Medicine, and.,3 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts
| | - Yingze Zhang
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Annerose Berndt
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven D Shapiro
- 1 Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
25
|
Yun JH, Morrow J, Owen CA, Qiu W, Glass K, Lao T, Jiang Z, Perrella MA, Silverman EK, Zhou X, Hersh CP. Transcriptomic Analysis of Lung Tissue from Cigarette Smoke-Induced Emphysema Murine Models and Human Chronic Obstructive Pulmonary Disease Show Shared and Distinct Pathways. Am J Respir Cell Mol Biol 2017; 57:47-58. [PMID: 28248572 DOI: 10.1165/rcmb.2016-0328oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although cigarette smoke (CS) is the primary risk factor for chronic obstructive pulmonary disease (COPD), the underlying molecular mechanisms for the significant variability in developing COPD in response to CS are incompletely understood. We performed lung gene expression profiling of two different wild-type murine strains (C57BL/6 and NZW/LacJ) and two genetic models with mutations in COPD genome-wide association study genes (HHIP and FAM13A) after 6 months of chronic CS exposure and compared the results to human COPD lung tissues. We identified gene expression patterns that correlate with severity of emphysema in murine and human lungs. Xenobiotic metabolism and nuclear erythroid 2-related factor 2-mediated oxidative stress response were commonly regulated molecular response patterns in C57BL/6, Hhip+/-, and Fam13a-/- murine strains exposed chronically to CS. The CS-resistant Fam13a-/- mouse and NZW/LacJ strain revealed gene expression response pattern differences. The Fam13a-/- strain diverged in gene expression compared with C57BL/6 control only after CS exposure. However, the NZW/LacJ strain had a unique baseline expression pattern, enriched for nuclear erythroid 2-related factor 2-mediated oxidative stress response and xenobiotic metabolism, and converged to a gene expression pattern similar to the more susceptible wild-type C57BL/6 after CS exposure. These results suggest that distinct molecular pathways may account for resistance to emphysema. Surprisingly, there were few genes commonly modulated in mice and humans. Our study suggests that gene expression responses to CS may be largely species and model dependent, yet shared pathways could provide biologically significant insights underlying individual susceptibility to CS.
Collapse
Affiliation(s)
- Jeong H Yun
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | | | - Caroline A Owen
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,3 The Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| | | | | | - Taotao Lao
- 1 Channing Division of Network Medicine, and
| | | | - Mark A Perrella
- 2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,4 Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin K Silverman
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Craig P Hersh
- 1 Channing Division of Network Medicine, and.,2 Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Sharman A, Zhussupov B, Sharman D, Stambekova A, Yeraliyev S. Cross-Sectional Study of Chronic Obstructive Pulmonary Disease Prevalence Among Smokers, Ex-Smokers, and Never-Smokers in Almaty, Kazakhstan: Study Protocol. JMIR Res Protoc 2017; 6:e143. [PMID: 28743683 PMCID: PMC5548982 DOI: 10.2196/resprot.7422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is significantly underdiagnosed in Kazakhstan, and there is no previously conducted study on COPD prevalence in the country. OBJECTIVE The purpose of this study is to assess the prevalence of COPD among individuals aged 40 to 59 years based on results of spirometry before and after bronchodilator, presence of structural changes in the lungs (emphysema, inflammatory changes, and thickening of the walls of the large and small airways) detected by computer tomography, and the symptoms of COPD. The study has 3 study groups: smokers of conventional cigarettes, those who had quit smoking 1 to 5 years ago, and those who haven't smoked cigarettes. METHODS This is an observational study with a cross-sectional design among individuals aged 40 to 59 years in Almaty, Kazakhstan. The sample of 900 individuals of both sexes contains 500 smokers, 200 ex-smokers, and 200 never-smokers. Study measures include spirometry, chest computed tomography, electrocardiography, physical exams, laboratory testing of serum, anthropometry, and 6-minute walk test. Data are collected by computer-assisted personal interviewing with tablets. The questionnaire was designed to explore possible COPD risk factors including history of smoking, current smoking, level of smoking exposure (in pack-years), passive smoking, occupational and environmental hazards, and covariates: age, gender, ethnicity, education, occupation, and self-reported morbidity. COPD Assessment Test (CAT) is used to collect information about COPD symptoms. RESULTS We have completed the participant recruitment and study procedures. Currently, we are working on data processing and data analysis. The authors anticipate the preliminary results should be available by September 2017. Study results will be published in peer-reviewed scientific journals. CONCLUSIONS This is the first study in Kazakhstan that assesses prevalence of COPD and its comorbidities in the adult population aged 40 to 59 years. The results of the study will be useful for improving COPD preventive measures, better COPD screening, identification, and registration. Findings of the study will also contribute to global knowledge on the epidemiology of COPD. TRIAL REGISTRATION ClinicalTrials.gov NCT02926534; https://clinicaltrials.gov/ct2/show/NCT02926534 (Archived by WebCite at http://www.webcitation.org/6rjwGsPOZ).
Collapse
Affiliation(s)
- Almaz Sharman
- Kazakhstan Academy оf Preventive Medicine, Almaty, Kazakhstan
| | | | - Dana Sharman
- Kazakhstan Academy оf Preventive Medicine, Almaty, Kazakhstan
| | | | | |
Collapse
|
27
|
Banerjee S, Bhattacharyya P, Mitra S, Kundu S, Panda S, Chatterjee IB. Anti- p-benzoquinone antibody level as a prospective biomarker to identify smokers at risk for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1847-1856. [PMID: 28684907 PMCID: PMC5485895 DOI: 10.2147/copd.s134455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background and objective Identification of smokers having predisposition to COPD is important for early intervention to reduce the huge global burden of the disease. Using a guinea pig model, we have shown that p-benzoquinone (p-BQ) derived from cigarette smoke (CS) in the lung is a causative factor for CS-induced emphysema. p-BQ is also derived from CS in smokers and it elicits the production of anti-p-BQ antibody in humans. We therefore hypothesized that anti-p-BQ antibody might have a protective role against COPD and could be used as a predictive biomarker for COPD in smokers. The objective of this study was to compare the serum anti-p-BQ antibody level between smokers with and without COPD for the evaluation of the hypothesis. Methods Serum anti-p-BQ antibody concentrations of current male smokers with (n=227) or without (n=308) COPD were measured by an indirect enzyme-linked immunoabsorbent assay (ELISA) developed in our laboratory. COPD was diagnosed by spirometry according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines. Results and discussion A significant difference was observed in the serum anti-p-BQ antibody level between smokers with and without COPD (Mann–Whitney U-test =4,632.5, P=0.000). Receiver operating characteristic (ROC) curve analysis indicated that the ELISA had significant precision (area under the curve [AUC] =0.934, 95% confidence interval [CI]: 0.913–0.935) for identifying smokers with COPD from their low antibody level. The antibody cutoff value of 29.4 mg/dL was constructed from the ROC coordinates to estimate the risk for COPD in smokers. While 90.3% of smokers with COPD had a low antibody value (≤29.4 mg/dL), the majority (86.4%) of smokers without COPD had a high antibody value (≤29.4 mg/dL); 13.6% of current smokers without COPD having an antibody level below this cutoff value (odds ratio [OR] =59.3, 95% CI: 34.15–101.99) were considered to be at risk for COPD. Conclusion and future directions Our results indicate that serum anti-p-BQ antibody level may be used as a biomarker to identify asymptomatic smokers at risk for COPD for early intervention of the disease.
Collapse
Affiliation(s)
- Santanu Banerjee
- Department of Biotechnology and Dr B C Guha Centre for Genetic Engineering and Biotechnology, University College of Science and Technology, University of Calcutta
| | | | - Subhra Mitra
- Department of Pulmonary Medicine, Calcutta National Medical College
| | - Somenath Kundu
- Department of Chest Medicine, Institute of Post Graduate Medical Education and Research
| | - Samiran Panda
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Indu B Chatterjee
- Department of Biotechnology and Dr B C Guha Centre for Genetic Engineering and Biotechnology, University College of Science and Technology, University of Calcutta
| |
Collapse
|
28
|
Wang R, Xu J, Liu H, Zhao Z. Peripheral leukocyte microRNAs as novel biomarkers for COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:1101-1112. [PMID: 28435243 PMCID: PMC5388252 DOI: 10.2147/copd.s130416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
COPD is a multifactorial disease caused by environmental determinants as well as genetic risk factors. The prevalence and mortality of COPD continue to increase, and underdiagnosis of COPD remains a critical issue. Previous reports investigated promising microRNAs (miRNAs) to reveal the molecular mechanism for the development of COPD; however, diagnostic and therapeutic markers for COPD have not yet been found. For this study, 20 representative COPD patients were separated into four groups based on increasing severity (A, B, C, and D) and compared to six healthy controls. Small RNA profiles of peripheral leukocytes were differentially expressed miRNAs (analyzed via next-generation sequencing) were validated via quantitative reverse transcriptase-polymerase chain reaction. Compared to healthy controls, 19 differentially expressed miRNAs were found in COPD patients. For all COPD groups, miR-3177-3p was downregulated, while 17 miRNAs were upregulated. Furthermore, the results revealed 21 differentially expressed miRNAs, of which miR-183-5p was continually downregulated from A to B to D. Between respective bronchodilator reversibility positive and negative groups of COPD different groups (A, B, C, and D), 10 miRNAs were differentially expressed, while miR-100-5p was upregulated in the negative groups. In conclusion, miR-106b-5p, miR-125a-5p, miR-183-5p, and miR-100-5p are central for the development of COPD. The severity of COPD was attenuated by miR-106b-5p, thus suggesting this miRNA as potential target for disease treatment.
Collapse
Affiliation(s)
- Ruiying Wang
- Department of Respiratory, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianying Xu
- Department of Respiratory, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Hu Liu
- Department of Respiratory, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Zhiping Zhao
- Department of Respiratory, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
29
|
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 2017; 42:52-59. [DOI: 10.1016/j.semcancer.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
|
30
|
Ding Y, Niu H, Li Y, He P, Li Q, Ouyang Y, Li M, Hu Z, Zhong Y, Sun P, Jin T. Polymorphisms in VEGF-A are associated with COPD risk in the Chinese population from Hainan province. J Genet 2016; 95:151-6. [PMID: 27019442 DOI: 10.1007/s12041-016-0627-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we examined and validated how common variants contribute to susceptibility to chronic obstructive pulmonary disease (COPD) in the Han Chinese population. Here, we genotyped 18 nucleotide polymorphisms and evaluated their association with COPD using chi-square test and genetic model analysis (246 COPD patients and 350 controls), and found three SNPs that might cause a predisposition to COPD. Both rs3025030 and rs3025033 are located on chromosome 6 in VEGF-A. We found one risk allele 'C' from rs3025030 and another 'G' from rs3025033 using the log-additive model (OR 1.40; 95% CI 1.05-5.96; P = 0.022), (OR 1.38; 95% CI 1.03-1.84; P = 0.03). We also found another risk allele 'A' of rs9296092 in gene region ZBTB9-BAK1 by the allele model (OR 2.63; 95% CI 1.27-5.45; P = 0.0078), (adjusted OR 3.53; 95% CI 1.12-11.11; P = 0.031).We found a risk haplotype 'CG' associated with the risk of COPD (OR 1.39; 95% CI 1.04-1.86; P = 0.028). Our results when compared with previous studies showed significant association between VEGF-A polymorphism and COPD. We also identified rs9296092 as a risk factor for COPD.
Collapse
Affiliation(s)
- Yipeng Ding
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan 570311,People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bose P, Bathri R, Kumar L, Vijayan VK, Maudar KK. Role of oxidative stress & transient receptor potential in chronic obstructive pulmonary disease. Indian J Med Res 2016; 142:245-60. [PMID: 26458340 PMCID: PMC4669859 DOI: 10.4103/0971-5916.166529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) affect millions of people worldwide and is known to be one of the leading causes of death. The highly sensitive airways protect themselves from irritants by cough and sneeze which propel endogenous and exogenous substances to minimize airway noxious effects. One noxious effect of these substances is activation of peripheral sensory nerve endings of nociceptor neurons innervating these airways lining thus transmitting dangerous signals from the environment to the central nervous system (CNS). Nociceptor neurons include transient receptor potential (TRP) ion channels, especially the vanilloid and ankyrin subfamilies, TRPV1/A1 which can be activated by noxious chemical challenges in models of airways disease. As oxidative stress may activate airways sensory neurons and contribute to COPD exacerbations we sought to review the role that TRP channel activation by oxidative signals may have on airway responses. It would be prudent to target the TRP channels with antagonists and lower systemic oxidative stress with agents that can modulate TRP expression and boost the endogenous levels of antioxidants for treatment and management of COPD.
Collapse
Affiliation(s)
- Protiti Bose
- Department of Research, Bhopal Memorial Hospital & Research Centre (ICMR), Bhopal, India
| | | | | | | | | |
Collapse
|
32
|
Fawzy MS, Hussein MH, Abdelaziz EZ, Yamany HA, Ismail HM, Toraih EA. Association of MicroRNA-196a2 Variant with Response to Short-Acting β2-Agonist in COPD: An Egyptian Pilot Study. PLoS One 2016; 11:e0152834. [PMID: 27043015 PMCID: PMC4820109 DOI: 10.1371/journal.pone.0152834] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a multifactorial chronic respiratory disease, characterized by an obstructive pattern. Understanding the genetic predisposition of COPD is essential to develop personalized treatment regimens. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that modulate the expression levels of specific proteins based on sequence complementarity with their target mRNA molecules. Emerging evidences demonstrated the potential use of miRNAs as a disease biomarker. This pilot study aimed to investigate the association of the MIR-196a2 rs11614913 (C/T) polymorphism with COPD susceptibility, the clinical outcome and bronchodilator response to short-acting β2-agonist. Genotyping of rs11614913 polymorphism was determined in 108 COPD male patients and 116 unrelated controls using real-time polymerase chain reaction technology. In silico target prediction and network core analysis were performed. COPD patients did not show significant differences in the genotype distribution (p = 0.415) and allele frequencies (p = 0.306) of the studied miRNA when compared with controls. There were also no associations with GOLD stage, dyspnea grade, disease exacerbations, COPD assessment test for estimating impact on health status score, or the frequency of intensive care unit admission. However, COPD patients with CC genotype corresponded to the smallest bronchodilator response after Salbutamol inhalation, the heterozygotes (CT) had an intermediate response, while those with the TT genotype showed the highest response (p < 0.001). In conclusion MIR-196a2 rs11614913 polymorphism is associated with the bronchodilator response of COPD in our sample of the Egyptian population, generating hypothesis of the potential use of MIR-196a2 variant as a pharmacogenetic marker for COPD.
Collapse
Affiliation(s)
- Manal S. Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- * E-mail: (EAT); (MSF)
| | - Mohammad H. Hussein
- Department of Chest Diseases, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Eman Z. Abdelaziz
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Hussain A. Yamany
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
| | - Hussein M. Ismail
- Department of Medicine, College of Medicine, Taibah University, Almadinah Almunawwarah, Kingdom of Saudi Arabia
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A. Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- * E-mail: (EAT); (MSF)
| |
Collapse
|
33
|
Pouladi N, Bime C, Garcia JGN, Lussier YA. Complex genetics of pulmonary diseases: lessons from genome-wide association studies and next-generation sequencing. Transl Res 2016; 168:22-39. [PMID: 26006746 PMCID: PMC4658294 DOI: 10.1016/j.trsl.2015.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 12/16/2022]
Abstract
The advent of high-throughput technologies has provided exceptional assistance for lung scientists to discover novel genetic variants underlying the development and progression of complex lung diseases. However, the discovered variants thus far do not explain much of the estimated heritability of complex lung diseases. Here, we review the literature of successfully used genome-wide association studies (GWASs) and identified the polymorphisms that reproducibly underpin the susceptibility to various noncancerous complex lung diseases or affect therapeutic responses. We also discuss the inherent limitations of GWAS approaches and how the use of next-generation sequencing technologies has furthered our understanding about the genetic determinants of these diseases. Next, we describe the contribution of the metagenomics to understand the interactions of the airways microbiome with lung diseases. We then highlight the urgent need for new integrative genomics-phenomics methods to more effectively interrogate and understand multiple downstream "omics" (eg, chromatin modification patterns). Finally, we address the scarcity of genetic studies addressing under-represented populations such as African Americans and Hispanics.
Collapse
Affiliation(s)
- Nima Pouladi
- Department of Medicine, University of Arizona, Tucson, Ariz; Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Ariz; BIO5 Institute, University of Arizona, Tucson, Ariz
| | - Christian Bime
- University of Arizona Health Sciences Center, University of Arizona, Tucson, Ariz; Arizona Respiratory Center, University of Arizona, Tucson, Ariz
| | - Joe G N Garcia
- University of Arizona Health Sciences Center, University of Arizona, Tucson, Ariz; Arizona Respiratory Center, University of Arizona, Tucson, Ariz
| | - Yves A Lussier
- Department of Medicine, University of Arizona, Tucson, Ariz; Center for Biomedical Informatics and Biostatistics, University of Arizona, Tucson, Ariz; BIO5 Institute, University of Arizona, Tucson, Ariz; University of Arizona Health Sciences Center, University of Arizona, Tucson, Ariz; Institute for Genomics and Systems Biology, Argonne National Laboratory and University of Chicago, Chicago, Ill.
| |
Collapse
|
34
|
Liu Z, Li W, Lv J, Xie R, Huang H, Li Y, He Y, Jiang J, Chen B, Guo S, Chen L. Identification of potential COPD genes based on multi-omics data at the functional level. MOLECULAR BIOSYSTEMS 2016; 12:191-204. [DOI: 10.1039/c5mb00577a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel systematic approach MMMG (Methylation–MicroRNA–MRNA–GO) to identify potential COPD genes and their classifying performance evaluation.
Collapse
Affiliation(s)
- Zhe Liu
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Wan Li
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Junjie Lv
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Ruiqiang Xie
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Hao Huang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Yiran Li
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Yuehan He
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Jing Jiang
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Binbin Chen
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Shanshan Guo
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| | - Lina Chen
- College of Bioinformatics Science and Technology
- Harbin Medical University
- Harbin
- China
| |
Collapse
|
35
|
Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease. PLoS One 2015; 10:e0140885. [PMID: 26480348 PMCID: PMC4610675 DOI: 10.1371/journal.pone.0140885] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/30/2015] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies aim to correlate genotype with phenotype. Many common diseases including Type II diabetes, Alzheimer’s, Parkinson’s and Chronic Obstructive Pulmonary Disease (COPD) are complex genetic traits with hundreds of different loci that are associated with varied disease risk. Identifying common features in the genes associated with each disease remains a challenge. Furthermore, the role of post-transcriptional regulation, and in particular alternative splicing, is still poorly understood in most multigenic diseases. We therefore compiled comprehensive lists of genes associated with Type II diabetes, Alzheimer’s, Parkinson’s and COPD in an attempt to identify common features of their corresponding mRNA transcripts within each gene set. The SERPINA1 gene is a well-recognized genetic risk factor of COPD and it produces 11 transcript variants, which is exceptional for a human gene. This led us to hypothesize that other genes associated with COPD, and complex disorders in general, are highly transcriptionally diverse. We found that COPD-associated genes have a statistically significant enrichment in transcript complexity stemming from a disproportionately high level of alternative splicing, however, Type II Diabetes, Alzheimer’s and Parkinson’s disease genes were not significantly enriched. We also identified a subset of transcriptionally complex COPD-associated genes (~40%) that are differentially expressed between mild, moderate and severe COPD. Although the genes associated with other lung diseases are not extensively documented, we found preliminary data that idiopathic pulmonary disease genes, but not cystic fibrosis modulators, are also more transcriptionally complex. Interestingly, complex COPD transcripts are more often the product of alternative acceptor site usage. To verify the biological importance of these alternative transcripts, we used RNA-sequencing analyses to determine that COPD-associated genes are frequently expressed in lung and liver tissues and are regulated in a tissue-specific manner. Additionally, many complex COPD-associated genes are spliced differently between COPD and non-COPD patients. Our analysis therefore suggests that post-transcriptional regulation, particularly alternative splicing, is an important feature specific to COPD disease etiology that warrants further investigation.
Collapse
|
36
|
Cabanski M, Fields B, Boue S, Boukharov N, DeLeon H, Dror N, Geertz M, Guedj E, Iskandar A, Kogel U, Merg C, Peck MJ, Poussin C, Schlage WK, Talikka M, Ivanov NV, Hoeng J, Peitsch MC. Transcriptional profiling and targeted proteomics reveals common molecular changes associated with cigarette smoke-induced lung emphysema development in five susceptible mouse strains. Inflamm Res 2015; 64:471-86. [PMID: 25962837 PMCID: PMC4464601 DOI: 10.1007/s00011-015-0820-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/15/2015] [Accepted: 04/11/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Mouse models are useful for studying cigarette smoke (CS)-induced chronic pulmonary pathologies such as lung emphysema. To enhance translation of large-scale omics data from mechanistic studies into pathophysiological changes, we have developed computational tools based on reverse causal reasoning (RCR). OBJECTIVE In the present study we applied a systems biology approach leveraging RCR to identify molecular mechanistic explanations of pathophysiological changes associated with CS-induced lung emphysema in susceptible mice. METHODS The lung transcriptomes of five mouse models (C57BL/6, ApoE (-/-) , A/J, CD1, and Nrf2 (-/-) ) were analyzed following 5-7 months of CS exposure. RESULTS We predicted 39 molecular changes mostly related to inflammatory processes including known key emphysema drivers such as NF-κB and TLR4 signaling, and increased levels of TNF-α, CSF2, and several interleukins. More importantly, RCR predicted potential molecular mechanisms that are less well-established, including increased transcriptional activity of PU.1, STAT1, C/EBP, FOXM1, YY1, and N-COR, and reduced protein abundance of ITGB6 and CFTR. We corroborated several predictions using targeted proteomic approaches, demonstrating increased abundance of CSF2, C/EBPα, C/EBPβ, PU.1, BRCA1, and STAT1. CONCLUSION These systems biology-derived candidate mechanisms common to susceptible mouse models may enhance understanding of CS-induced molecular processes underlying emphysema development in mice and their relevancy for human chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Maciej Cabanski
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Novartis Pharma AG, Novartis Institutes for Biomedical Research (NIBR), 4002 Basel, Switzerland
| | - Brett Fields
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Stephanie Boue
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Hector DeLeon
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Natalie Dror
- />Selventa, One Alewife Center, Cambridge, MA 02140 USA
| | - Marcel Geertz
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
- />Bayer Technology Services GmbH, 51368 Leverkusen, Germany
| | - Emmanuel Guedj
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Anita Iskandar
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Ulrike Kogel
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Celine Merg
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michael J. Peck
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Carine Poussin
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Walter K. Schlage
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Nikolai V. Ivanov
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- />Philip Morris International Research and Development, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
37
|
Morita K, Masuda N, Oniki K, Saruwatari J, Kajiwara A, Otake K, Ogata Y, Nakagawa K. Association between the aldehyde dehydrogenase 2*2 allele and smoking-related chronic airway obstruction in a Japanese general population: a pilot study. Toxicol Lett 2015; 236:117-22. [PMID: 25978981 DOI: 10.1016/j.toxlet.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
Aldehyde dehydrogenase 2 (ALDH2) detoxifies exogenous and endogenous toxic aldehydes; however, its protective effect against cigarette smoke in airways is unknown. We therefore examined whether the inactive ALDH2*2 allele is associated with smoking-related chronic airway obstruction. We conducted a cross-sectional study including 684 Japanese participants in a health screening program, and a retrospective longitudinal study in the elderly subgroup. The risks of airway obstruction in the ever-smokers with the ALDH2*1/*2 and *2/*2 genotypes were two and three times higher, respectively, than in the never-smokers with the ALDH2*1/*1 genotype. Moreover, the combined effect of smoking and the ALDH2*2 allele was prominent in the asthmatic subjects. In a longitudinal association analysis, the combination of the ALDH2 genotype and pack-years of smoking synergistically increased the risk of airway obstruction. The number of pack-years of smoking at baseline was identified to be a significant predictor of airway obstruction only in the ALDH2*2 allele carriers. In addition, the ALDH2*2 allele was also associated with the incidence of smoking-related airway obstruction, in the Cox proportional hazards model. This pilot study demonstrated for the first time a significant gene-environment interaction between the ALDH2*2 allele and cumulative exposure to cigarette smoke on the risk of airway obstruction.
Collapse
Affiliation(s)
- Kazunori Morita
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Natsuki Masuda
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kentaro Oniki
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ayami Kajiwara
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Koji Otake
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, Japan
| | - Yasuhiro Ogata
- Japanese Red Cross Kumamoto Health Care Center, Kumamoto, Japan
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan; Center for Clinical Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
38
|
Mimae T, Suzuki K, Tsuboi M, Nagai K, Ikeda N, Mitsudomi T, Saji H, Okumura S, Okumura M, Yoshimura K, Okada M. Surgical Outcomes of Lung Cancer in Patients with Combined Pulmonary Fibrosis and Emphysema. Ann Surg Oncol 2015; 22 Suppl 3:S1371-9. [DOI: 10.1245/s10434-015-4577-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Indexed: 11/18/2022]
|
39
|
Zöller B, Li X, Sundquist J, Sundquist K. Familial transmission of chronic obstructive pulmonary disease in adoptees: a Swedish nationwide family study. BMJ Open 2015; 5:e007310. [PMID: 25869691 PMCID: PMC4401855 DOI: 10.1136/bmjopen-2014-007310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES Familial clustering of chronic obstructive pulmonary disease (COPD) is well established, but the familial risk of COPD has not been determined among adoptees. The aim was to determine whether the familial transmission of COPD is related to disease in biological and/or adoptive parents. DESIGN Historic cohort study. PARTICIPANTS 80,214 (50% females). METHODS The Swedish Multi-Generation Register was used to follow all Swedish-born adoptees born in 1932-2004 (n=80,214) between 1 January 1964 and 31 December 2010 for COPD (n=1978). The risk of COPD was estimated in adoptees with at least one biological parent with COPD but no adoptive parent with COPD (n=162) compared with adoptees without a biological or adoptive parent with COPD. The risk of COPD was also determined in adoptees with at least one adoptive parent but no biological parent with COPD (n=110), and in adoptees with both affected biological and adoptive parents (n=162). PRIMARY OUTCOME MEASURE COPD in adoptees. RESULTS Adoptees with COPD in at least one biological parent but no adoptive parent were more likely to have COPD than adoptees without a biological or adoptive parent with COPD (standardised incidence ratio, SIR=1.98 (95% CI 1.69 to 2.31)). The familial SIR for adoptees with both a biological parent and an adoptive parent with COPD was 1.68 (95% CI 1.39 to 2.00). Adoptees with at least one adoptive parent with COPD but no biological parent with COPD were not at an increased risk of COPD (SIR=1.12 (95% CI 0.92 to 1.35)). CONCLUSIONS The findings of the study show that the familial transmission of COPD is associated with COPD in biological but not adoptive parents, suggesting that genetic or early life factors are important in the familial transmission of COPD.
Collapse
Affiliation(s)
- Bengt Zöller
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Xinjun Li
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Stanford Prevention Research Centre, Stanford University School of Medicine, Stanford, California, USA
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University, Malmö, Sweden
- Stanford Prevention Research Centre, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
40
|
Abstract
Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.
Collapse
Affiliation(s)
- Dirkje S Postma
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London, UK
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Pouwels SD, Heijink IH, Brouwer U, Gras R, den Boef LE, Boezen HM, Korstanje R, van Oosterhout AJM, Nawijn MC. Genetic variation associates with susceptibility for cigarette smoke-induced neutrophilia in mice. Am J Physiol Lung Cell Mol Physiol 2015; 308:L693-709. [PMID: 25637605 DOI: 10.1152/ajplung.00118.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/16/2015] [Indexed: 11/22/2022] Open
Abstract
Neutrophilic airway inflammation is one of the major hallmarks of chronic obstructive pulmonary disease and is also seen in steroid resistant asthma. Neutrophilic airway inflammation can be induced by different stimuli including cigarette smoke (CS). Short-term exposure to CS induces neutrophilic airway inflammation in both mice and humans. Since not all individuals develop extensive neutrophilic airway inflammation upon smoking, we hypothesized that this CS-induced innate inflammation has a genetic component. This hypothesis was addressed by exposing 30 different inbred mouse strains to CS or control air for 5 consecutive days, followed by analysis of neutrophilic lung inflammation. By genomewide haplotype association mapping, we identified four susceptibility genes with a significant association to lung tissue levels of the neutrophil marker myeloperoxidase under basal conditions and an additional five genes specifically associated with CS-induced tissue MPO levels. Analysis of the expression levels of the susceptibility genes by quantitative RT-PCR revealed that three of the four genes associated with CS-induced tissue MPO levels had CS-induced changes in gene expression levels that correlate with CS-induced airway inflammation. Most notably, CS exposure induces an increased expression of the coiled-coil domain containing gene, Ccdc93, in mouse strains susceptible for CS-induced airway inflammation whereas Ccdc93 expression was decreased upon CS exposure in nonsusceptible mouse strains. In conclusion, this study shows that CS-induced neutrophilic airway inflammation has a genetic component and that several genes contribute to the susceptibility for this response.
Collapse
Affiliation(s)
- Simon D Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Uilke Brouwer
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Renee Gras
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lisette E den Boef
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Marike Boezen
- GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands; and
| | | | - Antoon J M van Oosterhout
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, Groningen, The Netherlands; GRIAC Research Institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands;
| |
Collapse
|
42
|
Ding Y, Niu H, Yang H, Sun P, Chen Y, Duan M, Xu D, Xu J, Jin T. EGLN2 and RNF150 genetic variants are associated with chronic obstructive pulmonary disease risk in the Chinese population. Int J Chron Obstruct Pulmon Dis 2015; 10:145-51. [PMID: 25609945 PMCID: PMC4298296 DOI: 10.2147/copd.s73031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a major and an increasingly prevalent health problem worldwide. It has been reported that genetic variation may play a role in the development and severity of COPD. The purpose of this study was to investigate whether single nucleotide polymorphisms in multiple genetic variants were associated with COPD in a Chinese population from Hainan province. Methods In this case-control study, including 200 COPD patients and 401 controls, we genotyped 14 tag single nucleotide polymorphisms and evaluated their association with COPD using the χ2 test and genetic model analysis. Results The polymorphism, rs10007052, in the RNF150 gene was significantly associated with COPD risk at a 5% level (odds ratio =1.43, 95% confidence interval, 1.06–1.95, P=0.020). In the log-additive model, the minor allele (C) of rs10007052 in the RNF150 gene (P=0.026) and the minor allele (C) of rs3733829 in the EGLN2 gene (P=0.037) were associated with COPD risk after adjustment for age, sex, and smoking status. Further haplotype analysis revealed that the “CT” haplotype composed of the mutant allele (C) of rs7937, rs3733829 in the EGLN2 gene, was associated with increased COPD risk (odds ratio =1.55; 95% confidence interval, 1.05–2.31; P=0.029). Conclusion Our findings indicated that rs10007052 in the RNF150 and rs3733829 in the EGLN2 gene were significantly associated with the risk of COPD in Chinese populations of Hainan province. These data may provide novel insights into the pathogenesis of COPD, although further studies with larger numbers of participants worldwide are needed for validation of our conclusions.
Collapse
Affiliation(s)
- Yipeng Ding
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Huan Niu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Hua Yang
- School of Life Sciences, Northwest University, Xi'an, People's Republic of China
| | - Pei Sun
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Yu Chen
- Department of Respiration Emergency, The Third People's Hospital of Haikou, Haikou, Hainan, People's Republic of China
| | - Mengling Duan
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Dongchuan Xu
- Department of Emergency, People's Hospital of Hainan Province, Haikou, Hainan, People's Republic of China
| | - Junxue Xu
- Department of Respiration Emergency, The Third People's Hospital of Haikou, Haikou, Hainan, People's Republic of China
| | - Tianbo Jin
- School of Life Sciences, Northwest University, Xi'an, People's Republic of China ; National Engineering Research Center for Miniaturized Detection Systems, Xi'an, People's Republic of China
| |
Collapse
|
43
|
Názara Otero CA, Baloira Villar A. [The continuum of COPD and cardiovascular risk: A global scenario of disease]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 27:144-7. [PMID: 25496655 DOI: 10.1016/j.arteri.2014.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 11/26/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a serious public health problem in our country. COPD is a treatable and preventable disease which is underdiagnosed. The EPISCAN study revealed a prevalence of 10.2% in Spain between individuals of 40-80 years, with 73% underdiagnosis. In Primary Care occupies 8.5% of all queries with a high economic impact. These patients exhibit some degree of systemic inflammation characterized by increased plasma levels of some inflammatory mediators such as IL-1, IL-6, IL-8, CRP and TNF, which are also related to endothelial disorders and arteriosclerosis. In the continuum of COPD, comorbidities most frequently appear are: ischemic heart disease, heart failure, stroke, hypertension, type 2 diabetes mellitus, renal failure, osteoporosis, myopathy, anxiety, depression, cognitive impairment, malnutrition, anemia and lung cancer.
Collapse
|
44
|
Domej W, Oettl K, Renner W. Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 2014; 9:1207-24. [PMID: 25378921 PMCID: PMC4207545 DOI: 10.2147/copd.s51226] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress occurs when free radicals and other reactive species overwhelm the availability of antioxidants. Reactive oxygen species (ROS), reactive nitrogen species, and their counterpart antioxidant agents are essential for physiological signaling and host defense, as well as for the evolution and persistence of inflammation. When their normal steady state is disturbed, imbalances between oxidants and antioxidants may provoke pathological reactions causing a range of nonrespiratory and respiratory diseases, particularly chronic obstructive pulmonary disease (COPD). In the respiratory system, ROS may be either exogenous from more or less inhalative gaseous or particulate agents such as air pollutants, cigarette smoke, ambient high-altitude hypoxia, and some occupational dusts, or endogenously generated in the context of defense mechanisms against such infectious pathogens as bacteria, viruses, or fungi. ROS may also damage body tissues depending on the amount and duration of exposure and may further act as triggers for enzymatically generated ROS released from respiratory, immune, and inflammatory cells. This paper focuses on the general relevance of free radicals for the development and progression of both COPD and pulmonary emphysema as well as novel perspectives on therapeutic options. Unfortunately, current treatment options do not suffice to prevent chronic airway inflammation and are not yet able to substantially alter the course of COPD. Effective therapeutic antioxidant measures are urgently needed to control and mitigate local as well as systemic oxygen bursts in COPD and other respiratory diseases. In addition to current therapeutic prospects and aspects of genomic medicine, trending research topics in COPD are presented.
Collapse
Affiliation(s)
- Wolfgang Domej
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Karl Oettl
- Institute of Physiological Chemistry, Medical University of Graz, Graz, Austria
| | - Wilfried Renner
- Clinical Institute of Medical and Chemical Diagnostics, Medical University of Graz, Graz, Austria
| |
Collapse
|
45
|
Radder JE, Shapiro SD, Berndt A. Personalized medicine for chronic, complex diseases: chronic obstructive pulmonary disease as an example. Per Med 2014; 11:669-679. [PMID: 29764057 DOI: 10.2217/pme.14.51] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Chronic, complex diseases represent the majority of healthcare utilization and spending in the USA today. Despite this, therapeutics that account for the heterogeneity of these diseases are lacking, begging for more personalized approaches. Improving our understanding of disease phenotypes through retrospective trials of electronic health record data will enable us to better categorize patients. Increased usage of next-generation sequencing will further our understanding of the genetic variants involved in chronic disease. Utilization of data warehousing will be necessary in order to securely handle, integrate and analyze the large sets of data produced with these methods. Finally, increased use of clinical decision support will enable the return of clinically actionable results that physicians can use to apply these personalized approaches.
Collapse
Affiliation(s)
- Josiah E Radder
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven D Shapiro
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Annerose Berndt
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Chen X, Xu X, Xiao F. Heterogeneity of chronic obstructive pulmonary disease: from phenotype to genotype. Front Med 2014; 7:425-32. [PMID: 24234678 DOI: 10.1007/s11684-013-0295-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 08/22/2013] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality throughout the world and is mainly characterized by persistent airflow limitation. Given that multiple systems other than the lung can be impaired in COPD patients, the traditional FEV1/FVC ratio shows many limitations in COPD diagnosis and assessment. Certain heterogeneities are found in terms of clinical manifestations, physiology, imaging findings, and inflammatory reactions in COPD patients; thus, phenotyping can provide effective information for the prognosis and treatment. However, phenotypes are often based on symptoms or pathophysiological impairments in late-stage COPD, and the role of phenotypes in COPD prevention and early diagnosis remains unclear. This shortcoming may be overcome by the potential genotypes defined by the heterogeneities in certain genes. This review briefly describes the heterogeneity of COPD, with focus on recent advances in the correlations between genotypes and phenotypes. The potential roles of these genotypes and phenotypes in the molecular mechanisms and management of COPD are also elucidated.
Collapse
|
47
|
Yoon HK, Hu HJ, Rhee CK, Shin SH, Oh YM, Lee SD, Jung SH, Yim SH, Kim TM, Chung YJ. Polymorphisms in PDE4D are associated with a risk of COPD in non-emphysematous Koreans. COPD 2014; 11:652-8. [PMID: 24926854 DOI: 10.3109/15412555.2014.898045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite extensive effort, only a few chronic obstructive pulmonary disease (COPD)-associated genes have been suggested, indicating that there must be additional risk-associated loci. Here we aimed to identify additional COPD-associated SNPs and to explore the potential relationship between COPD subgroups and the SNPs in the Korean population. We performed a genome-wide association study (GWAS) with 990 Korean individuals; 102 COPD cases and 544 controls for GWAS using Affymetrix SNP array 5.0, and 173 COPD cases and 171 controls for replication. After validating the candidate single nucleotide polymorphisms (SNP), we performed subgroup analysis by disease phenotype. Through GWAS, we identified a novel SNP in the phosphodiesterase-4D (PDE4D) gene [rs16878037 (C>T), p = 1.66 ◊ 10(-6)] that was significantly associated with COPD. This signal in PDE4D was successfully replicated in the independent set (p = 0.041). When we combined the discovery and replication data, the association signal became more significant (p = 5.69 ◊ 10(-7)). In the COPD subgroup analysis, the T allele of rs16878037 was significantly more frequent in COPD patients without severe diffusion capacity impairment (mild mixed and obstruction-dominant group) than in patients with severe impairment (severe mixed and emphysema-dominant groups). This result supports that PDE4D polymorphisms might be involved in the susceptibility to COPD especially in non-emphysematous individuals and that they could also affect the responsiveness of the PDE4 inhibitor treatment.
Collapse
Affiliation(s)
- Hyoung-Kyu Yoon
- 1Division of Pulmonary Disease and Critical Care, Department of Internal Medicine, The Catholic University of Korea , College of Medicine, Seoul , Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marcelino MY, Fuoco NL, de Faria CA, Kozma RDLH, Marques LF, Ribeiro-Paes JT. Animal models in chronic obstructive pulmonary disease-an overview. Exp Lung Res 2014; 40:259-71. [PMID: 24785359 DOI: 10.3109/01902148.2014.908250] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
ABSTRACT Chronic obstructive pulmonary disease (COPD) is characterized by progressive airway obstruction resultant from an augmented inflammatory response of the respiratory tract to noxious particles and gases. Previous reports present a number of different hypotheses about the etiology and pathophysiology of COPD. The generating mechanisms of the disease are subject of much speculation, and a series of questions and controversies among experts still remain. In this context, several experimental models have been proposed in order to broaden the knowledge on the pathophysiological characteristics of the disease, as well as the search for new therapeutic approaches for acute or chronically injured lung tissue. This review aims to present the main experimental models of COPD, more specifically emphysema, as well as to describe the main characteristics, advantages, disadvantages, possibilities of application, and potential contribution of each of these models for the knowledge on the pathophysiological aspects and to test new treatment options for obstructive lung diseases.
Collapse
Affiliation(s)
- Monica Yonashiro Marcelino
- 1Program of Post-Graduation in Biotechnology, Universidade de São Paulo-Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
49
|
Ferrarotti I, Luisetti M. COPD: no gene left unturned. THE LANCET RESPIRATORY MEDICINE 2014; 2:171-2. [DOI: 10.1016/s2213-2600(14)70026-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Raju SV, Tate JH, Peacock SKG, Fang P, Oster RA, Dransfield MT, Rowe SM. Impact of heterozygote CFTR mutations in COPD patients with chronic bronchitis. Respir Res 2014; 15:18. [PMID: 24517344 PMCID: PMC3925354 DOI: 10.1186/1465-9921-15-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 02/02/2014] [Indexed: 11/29/2022] Open
Abstract
Background Cigarette smoking causes Chronic Obstructive Pulmonary Disease (COPD), the 3rd leading cause of death in the U.S. CFTR ion transport dysfunction has been implicated in COPD pathogenesis, and is associated with chronic bronchitis. However, susceptibility to smoke induced lung injury is variable and the underlying genetic contributors remain unclear. We hypothesized that presence of CFTR mutation heterozygosity may alter susceptibility to cigarette smoke induced CFTR dysfunction. Consequently, COPD patients with chronic bronchitis may have a higher rate of CFTR mutations compared to the general population. Methods Primary human bronchial epithelial cells derived from F508del CFTR heterozygotes and mice with (CFTR+/-) and without (CFTR+/+) CFTR heterozygosity were exposed to whole cigarette smoke (WCS); CFTR-dependent ion transport was assessed by Ussing chamber electrophysiology and nasal potential difference measurements, respectively. Caucasians with COPD and chronic bronchitis, age 40 to 80 with FEV1/FVC < 0.70 and FEV1 < 60% predicted, were selected for genetic analysis from participants in the NIH COPD Clinical Research Network’s Azithromycin for Prevention of Exacerbations of COPD in comparison to 32,900 Caucasian women who underwent prenatal genetic testing. Genetic analysis involved an allele-specific genotyping of 89 CFTR mutations. Results Exposure to WCS caused a pronounced reduction in CFTR activity in both CFTR (+/+) cells and F508del CFTR (+/-) cells; however, neither the degree of decrement (44.7% wild-type vs. 53.5% F508del heterozygous, P = NS) nor the residual CFTR activity were altered by CFTR heterozygosity. Similarly, WCS caused a marked reduction in CFTR activity measured by NPD in both wild type and CFTR heterozygous mice, but the severity of decrement (91.1% wild type vs. 47.7% CF heterozygous, P = NS) and the residual activity were not significantly affected by CFTR genetic status. Five of 127 (3.9%) COPD patients with chronic bronchitis were heterozygous for CFTR mutations which was not significantly different from controls (4.5%) (P = NS). Conclusions The magnitude of WCS induced reductions in CFTR activity was not affected by the presence of CFTR mutation heterozygosity. CFTR mutations do not increase the risk of COPD with chronic bronchitis. CFTR dysfunction due to smoking is primarily an acquired phenomenon and is not affected by the presence of congenital CFTR mutations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, MCLM 706 1918 University Blvd,, Birmingham, AL, USA.
| |
Collapse
|