1
|
Maleki AH, Rajabivahid M, Khosh E, Khanali Z, Tahmasebi S, Ghorbi MD. Harnessing IL-27: challenges and potential in cancer immunotherapy. Clin Exp Med 2025; 25:34. [PMID: 39797931 PMCID: PMC11724803 DOI: 10.1007/s10238-025-01562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways. Specifically, IL-27 is identified as augmenting cytokine of immune responses, including Th1 cell differentiation, TCd4 + cell proliferation, and IFN-γ production with the help of IL-12. According to several published studies, due to the pro-inflammatory or anti-inflammatory functions of cytokine related to the biological context in various disorders and diseases, IL-27 has been considered a complex regulator of the immune system. Surprisingly, the dual role of IL-27, the same as the double-edged sword, has also been evidenced in clinical models of various hematological or solid tumors. Predominantly, Il-27 applies anti-tumor functions by inducing the responses of a cytotoxic T lymphocyte (CTL) and Th1 and suppressing the growth, proliferation, angiogenesis, invasiveness, metastasis, and survival of tumor cells. On the other hand, IL-27 may also play a protumor role in cancers and induce tumor progression. The current update study aimed to summarize the protumor anti-tumor and biological functions of IL-27 in different hematological malignancies and solid tumors.
Collapse
Affiliation(s)
| | - Mansour Rajabivahid
- Department of Internal Medicine, Valiasr Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elnaz Khosh
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zeinab Khanali
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmood Dehghani Ghorbi
- Department of Hematology-Oncology, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lyu A, Nam SH, Humphrey RS, Horton TM, Ehrlich LIR. Cells and signals of the leukemic microenvironment that support progression of T-cell acute lymphoblastic leukemia (T-ALL). Exp Mol Med 2024; 56:2337-2347. [PMID: 39482533 PMCID: PMC11612169 DOI: 10.1038/s12276-024-01335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Current intensified chemotherapy regimens have significantly increased survival rates for pediatric patients with T-cell acute lymphoblastic leukemia (T-ALL), but these treatments can result in serious adverse effects; furthermore, patients who are resistant to chemotherapy or who relapse have inferior outcomes, together highlighting the need for improved therapeutic strategies. Despite recent advances in stratifying T-ALL into molecular subtypes with distinct driver mutations, efforts to target the tumor-intrinsic genomic alterations critical for T-ALL progression have yet to translate into more effective and less toxic therapies. Ample evidence now indicates that extrinsic factors in the leukemic microenvironment are critical for T-ALL growth, infiltration, and therapeutic resistance. Considering the diversity of organs infiltrated by T-ALL cells and the unique cellular components of the microenvironment encountered at each site, it is likely that there are both shared features of tumor-supportive niches across multiple organs and site-specific features that are key to leukemia cell survival. Therefore, elucidating the distinct microenvironmental cues supporting T-ALL in different anatomic locations could reveal novel therapeutic targets to improve therapies. This review summarizes the current understanding of the intricate interplay between leukemia cells and the diverse cells they encounter within their tumor microenvironments (TMEs), as well as opportunities to therapeutically target the leukemic microenvironment.
Collapse
Affiliation(s)
- Aram Lyu
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, CA, USA
| | - Seo Hee Nam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Ryan S Humphrey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Terzah M Horton
- Department of Pediatrics, Baylor College of Medicine/Dan L. Duncan Cancer Center and Texas Children's Cancer Center, Houston, TX, USA
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
- Department of Oncology, Livestrong Cancer Institutes, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
3
|
Le Maout C, Fahy L, Renou L, Devanand C, Duwat C, Barroca V, Le Gall M, Ballerini P, Petit A, Calvo J, Uzan B, Pflumio F, Petit V. T-cell acute lymphoblastic leukemia progression is supported by inflammatory molecules including hepatocyte growth factor. Biomed Pharmacother 2024; 177:117039. [PMID: 38955085 DOI: 10.1016/j.biopha.2024.117039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignant hematological disorder characterized by an increased proliferation of immature T lymphocytes precursors. T-ALL treatment includes chemotherapy with strong side effects, and patients that undergo relapse display poor prognosis. Although cell-intrinsic oncogenic pathways are well-studied, the tumor microenvironment, like inflammatory cellular and molecular components is less explored in T-ALL. We sought to determine the composition of the inflammatory microenvironment induced by T-ALL, and its role in T-ALL progression. We show in two mouse T-ALL cell models that T-ALLs enhance blood neutrophils and resident monocytes, accompanied with a plasmatic acute secretion of inflammatory molecules. Depleting neutrophils using anti-Ly6G treatment or resident monocytes by clodronate liposomes treatment does not modulate plasmatic inflammatory molecule secretion and mice survival. However, inhibiting the secretion of inflammatory molecules by microenvironment with NECA, an agonist of adenosine receptors, diminishes T-ALL progression enhancing mouse survival. We uncovered Hepatocyte Growth Factor (HGF), T-ALL-driven and the most decreased molecule with NECA, as a potential therapeutic target in T-ALL. Altogether, we identified a signature of inflammatory molecules that can potentially be involved in T-ALL evolution and uncovered HGF/cMET pathway as important to target for limiting T-ALL progression.
Collapse
Affiliation(s)
- Charly Le Maout
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Lucine Fahy
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Laurent Renou
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France
| | - Caroline Devanand
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Charlotte Duwat
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Vilma Barroca
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France
| | - Morgane Le Gall
- Proteom'IC facility, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris F-75014, France
| | - Paola Ballerini
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Arnaud Petit
- Service D'hématologie Pédiatrique, Assistance Publique - Hôpitaux de Paris, Hôpital A. Trousseau, Paris, France
| | - Julien Calvo
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France
| | - Benjamin Uzan
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France
| | - Françoise Pflumio
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire des cellules Souches Hématopoïétiques et des Leucémies (LSHL), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Fontenay-aux-Roses F-92260, France; CEA, Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), Plateforme d'expérimentation animale, Fontenay-aux-Roses, France; Institut Carnot OPALE, Hôpital Saint Louis, Paris F-75020, France.
| | - Vanessa Petit
- Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, iRCM/IBFJ, Fontenay-aux-Roses F-92260, France; Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, Laboratoire Réparation et Transcription dans les cellules Souches (LRTS), Institut de Radiobiologie Cellulaire et Moléculaire (iRCM), Institut de Biologie François Jacob (IBFJ), France.
| |
Collapse
|
4
|
Cardoso BA, Duque M, Gírio A, Fragoso R, Oliveira ML, Allen JR, Martins LR, Correia NC, Silveira AB, Veloso A, Kimura S, Demoen L, Matthijssens F, Jeha S, Cheng C, Pui CH, Grosso AR, Neto JL, De Almeida SF, Van Vlieberghe P, Mullighan CG, Yunes JA, Langenau DM, Pflumio F, Barata JT. CASZ1 upregulates PI3K-AKT-mTOR signaling and promotes T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1713-1725. [PMID: 38058200 PMCID: PMC11141679 DOI: 10.3324/haematol.2023.282854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
CASZ1 is a conserved transcription factor involved in neural development, blood vessel assembly and heart morphogenesis. CASZ1 has been implicated in cancer, either suppressing or promoting tumor development depending on the tissue. However, the impact of CASZ1 on hematological tumors remains unknown. Here, we show that the T-cell oncogenic transcription factor TAL1 is a direct positive regulator of CASZ1, that T-cell acute lymphoblastic leukemia (T-ALL) samples at diagnosis overexpress CASZ1b isoform, and that CASZ1b expression in patient samples correlates with PI3K-AKT-mTOR signaling pathway activation. In agreement, overexpression of CASZ1b in both Ba/F3 and T-ALL cells leads to the activation of PI3K signaling pathway, which is required for CASZ1b-mediated transformation of Ba/F3 cells in vitro and malignant expansion in vivo. We further demonstrate that CASZ1b cooperates with activated NOTCH1 to promote T-ALL development in zebrafish, and that CASZ1b protects human T-ALL cells from serum deprivation and treatment with chemotherapeutic drugs. Taken together, our studies indicate that CASZ1b is a TAL1-regulated gene that promotes T-ALL development and resistance to chemotherapy.
Collapse
Affiliation(s)
- Bruno A Cardoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Mafalda Duque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Ana Gírio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Rita Fragoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - James R Allen
- MGH Pathology and Harvard Medical School, Charlestown MA 02129
| | - Leila R Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Nádia C Correia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | | | | | - Shunsuke Kimura
- Department of Pathology, Center of Excellence for Leukemia Studies, and Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis TN
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Global Pediatric Medicine, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Global Pediatric Medicine, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Pathology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Ana R Grosso
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica
| | - João L Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Sérgio F De Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Pieter Van Vlieberghe
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, Center of Excellence for Leukemia Studies, and Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis TN
| | - J Andres Yunes
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP
| | | | - Françoise Pflumio
- Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Saint-Louis Hospital, 75010 Paris
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon.
| |
Collapse
|
5
|
Lymphocytic Extracellular Signal-Regulated Kinase Dysregulation in Autism Spectrum Disorder. J Am Acad Child Adolesc Psychiatry 2023; 62:582-592.e2. [PMID: 36638885 DOI: 10.1016/j.jaac.2022.09.437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 08/06/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Extracellular signal-regulated kinase (ERK1/2) is a conserved central intracellular signaling cascade involved in many aspects of neuronal development and plasticity. Converging evidence support investigation of ERK1/2 activity in autism spectrum disorder (ASD). We previously reported enhanced baseline lymphocytic ERK1/2 activation in autism, and now we extend our work to investigate the early phase kinetics of lymphocytic ERK1/2 activation in idiopathic ASD. METHOD Study participants included 67 individuals with ASD (3-25 years of age), 65 age- and sex-matched typical developing control (TDC) subjects, and 36 age-, sex-, and IQ-matched developmental disability control (DDC) subjects matched to those with ASD and IQ <90. We completed an additional analysis comparing results from ASD, TDC, and DDC groups with data from 37 individuals with Fragile X syndrome (FXS). All subjects had blood lymphocyte samples analyzed by flow cytometry following stimulation with phorbol ester and sequentially analyzed for ERK1/2 activation (phosphorylation) at several time points. RESULTS The ASD group (mean = 5.81 minutes; SD = 1.5) had a significantly lower (more rapid) mean ERK1/2 T1/2 activation value than both the DDC group (mean = 6.78 minutes; SD = 1.6; p = .00078) and the TDC group (mean = 6.4 minutes; SD = 1.5; p = .025). More rapid ERK1/2 T1/2 activation times did correlate with increased social impairment across all study groups including the ASD cohort. Differences in ERK1/2 T1/2 activation were more pronounced in younger than in older individuals in the primary analysis. The ASD group additionally had more rapid activation times than the FXS group, and the FXS group activation kinetics did not differ from those of the TDC and DDC groups. CONCLUSION Our findings indicate that lymphocytic ERK1/2 activation kinetics are dysregulated in persons with ASD, marked by more rapid early phase activation. Group differences in ERK1/2 activation kinetics appear to be driven by findings from the youngest children analyzed. DIVERSITY & INCLUSION STATEMENT We worked to ensure sex and gender balance in the recruitment of human participants. We actively worked to promote sex and gender balance in our author group. The author list of this paper includes contributors from the location and/or community where the research was conducted who participated in the data collection, design, analysis, and/or interpretation of the work.
Collapse
|
6
|
de Freitas Dutra V, Leal VNC, Pontillo A. The inflammasomes: crosstalk between innate immunity and hematology. Inflamm Res 2022; 71:1403-1416. [PMID: 36266587 DOI: 10.1007/s00011-022-01646-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The inflammasome is a cytosolic multi-protein complex responsible for the proteolytic maturation of pro-inflammatory cytokines IL-1ß and IL-18 and of gasdermin-D, which mediates membrane pore formation and the cytokines release, or eventually a lytic cell death known as pyroptosis. Inflammation has long been accepted as a key component of hematologic conditions, either oncological or benign diseases. OBJECTIVES This study aims to review the current knowledge about the contribution of inflammasome in hematologic diseases. We attempted to depict the participation of specific inflammasome receptors, and the possible cell-specific consequence of complex activation, as well as the use of anti-inflammasome therapies. METHODS We performed a keyword-based search in public databases (Pubmed.gov, ClinicalTrials.gov.). CONCLUSION Different blood cells variably express inflammasome components. Considering the immunosuppression associated with both the disease and the treatment of some hematologic diseases, and a microenvironment that allows neoplastic cell proliferation, inflammasomes could be a link between innate immunity and disease progression, as well as an interesting therapeutic target.
Collapse
Affiliation(s)
- Valéria de Freitas Dutra
- Hematology and Blood Transfusion Division, Clinical and Experimental Oncology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), R. Dr. Diogo de Farias, 824, Vila Clementino, São Paulo, SP, 04037-002, Brazil.
| | - Vinicius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences/ICB, University of São Paulo/USP, Av. Prof. Lineu Prestes, 1730-Butantã, São Paulo, 05508-000, Brazil
| |
Collapse
|
7
|
Wu J, Wang L, Xu J. The role of pyroptosis in modulating the tumor immune microenvironment. Biomark Res 2022; 10:45. [PMID: 35739593 PMCID: PMC9229852 DOI: 10.1186/s40364-022-00391-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/03/2022] [Indexed: 12/12/2022] Open
Abstract
The tumor immune microenvironment (TIME) plays a key role in immunosuppression in cancer, which results in tumorigenesis and tumor progression, and contributes to insensitivity to chemotherapy and immunotherapy. Understanding the mechanism of TIME formation is critical for overcoming cancer. Pyroptosis exerts a dual role in modulating the TIME. In this review, we summarize the regulatory mechanisms of pyroptosis in modulating the TIME and the potential application of targeted pyroptosis therapy in the clinic. Several treatments targeting pyroptosis have been developed; however, the majority of treatments are still in preclinical studies. Only a few agents have been used in clinic, but the outcomes are unsatisfactory. More studies are necessary to determine the role of pyroptosis in cancer, and more research is required to realize the application of treatments targeting pyroptosis in the clinic.
Collapse
Affiliation(s)
- Jinxiang Wu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Wang
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China
| | - Jianwei Xu
- Department of Pancreatic Surgery, General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
8
|
Behura A, Das M, Kumar A, Naik L, Mishra A, Manna D, Patel S, Mishra A, Singh R, Dhiman R. ESAT-6 impedes IL-18 mediated phagosome lysosome fusion via microRNA-30a upon Calcimycin treatment in mycobacteria infected macrophages. Int Immunopharmacol 2021; 101:108319. [PMID: 34740079 DOI: 10.1016/j.intimp.2021.108319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
The weaponry possessed by Mycobacterium tuberculosis (M. tb) in the form of immunodominant antigens hijack the host immune system to give a survival advantage to this intracellular fiend, but the mechanism of this control is not entirely known. Since we have previously reported the mechanism of autophagy inhibition by early secreted antigenic target 6 kDa (ESAT-6) through microRNA (miR)-30a-3p in Calcimycin treated differentiated THP-1 (dTHP-1) cells, the present study was undertaken to deduce the effect of miR-30a on the immunomodulatory profile of ESAT-6 treated cells and the mechanism involved thereof, if any. Initially, the effect of recombinant ESAT-6 (rESAT-6) on the immunomodulatory profile in Calcimycin-treated phorbol 12-myristate 13-acetate (PMA) dTHP-1 cells was checked. Later, transfection studies using miR-30a-3p inhibitor or -5p mimic highlighted the contrary roles of different arms of the same miRNA in regulating IL-18 response by ESAT-6 in dTHP-1 cells after Calcimycin treatment. By using either IL-18 neutralizing antibody or inhibitors of phosphoinositide 3-kinase (PI3K)/NF-κB/phagosome-lysosome fusion in the miRNA-30a transfected background, IL-18 mediated signaling and intracellular killing of mycobacteria was reversed in the presence of ESAT-6. Overall, the results of this study conclusively prove the contrary roles of miR-30a-3p and miR-30a-5p in regulating IL-18 signaling by ESAT-6 in dTHP-1 cells upon Calcimycin treatment that affected phagosome-lysosome fusion and intracellular survival of mycobacteria.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
9
|
Tumor-associated myeloid cells provide critical support for T-ALL. Blood 2021; 136:1837-1850. [PMID: 32845007 DOI: 10.1182/blood.2020007145] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/26/2020] [Indexed: 12/13/2022] Open
Abstract
Despite harboring mutations in oncogenes and tumor suppressors that promote cancer growth, T-cell acute lymphoblastic leukemia (T-ALL) cells require exogenous cells or signals to survive in culture. We previously reported that myeloid cells, particularly dendritic cells, from the thymic tumor microenvironment support the survival and proliferation of primary mouse T-ALL cells in vitro. Thus, we hypothesized that tumor-associated myeloid cells would support T-ALL in vivo. Consistent with this possibility, in vivo depletion of myeloid cells results in a significant reduction in leukemia burden in multiple organs in 2 distinct mouse models of T-ALL and prolongs survival. The impact of the myeloid compartment on T-ALL growth is not dependent on suppression of antitumor T-cell responses. Instead, myeloid cells provide signals that directly support T-ALL cells. Transcriptional profiling, functional assays, and acute in vivo myeloid-depletion experiments identify activation of IGF1R as a critical component of myeloid-mediated T-ALL growth and survival. We identify several myeloid subsets that have the capacity to directly support survival of T-ALL cells. Consistent with mouse models, myeloid cells derived from human peripheral blood monocytes activate IGF1R and directly support survival of primary patient T-ALL cells in vitro. Furthermore, enriched macrophage gene signatures in published clinical samples correlate with inferior outcomes for pediatric T-ALL patients. Collectively, these data reveal that tumor-associated myeloid cells provide signals critical for T-ALL growth in multiple organs in vivo and implicate tumor-associated myeloid cells and associated signals as potential therapeutic targets.
Collapse
|
10
|
Cominal JG, Cacemiro MDC, Berzoti-Coelho MG, Pereira IEG, Frantz FG, Souto EX, Covas DT, de Figueiredo-Pontes LL, Oliveira MC, Malmegrim KCR, de Castro FA. Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Front Oncol 2021; 11:665037. [PMID: 34084749 PMCID: PMC8167065 DOI: 10.3389/fonc.2021.665037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. Methods Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. Results The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1β, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. Conclusions Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.
Collapse
Affiliation(s)
- Juçara Gastaldi Cominal
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Illy Enne Gomes Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth Xisto Souto
- Department of Clinical Hematology, Euryclides de Jesus Zerbini Transplant Hospital, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Hematology, Hemotherapy and Cellular Therapy, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Rheumatology, Allergy and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
11
|
Zhang L, Zhou X, Dai Y, Lv C, Wu J, Wu Q, Li T, Wang Y, Xia P, Pei H, Huang B. Establishment of interleukin-18 time-resolved fluorescence immunoassay and its preliminary application in liver disease. J Clin Lab Anal 2021; 35:e23758. [PMID: 33720453 PMCID: PMC8128310 DOI: 10.1002/jcla.23758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/27/2021] [Indexed: 12/30/2022] Open
Abstract
Background To establish a time‐resolved fluorescence immunoassay of interleukin (IL)‐18 (IL‐18‐TRFIA) and detect its concentration in different liver disease serum samples. Methods The IL‐18 coating antibody and the Eu3+‐labeled detection antibody were used for the IL‐18‐TRFIA to detect serum IL‐18 concentration in patients with liver cancer, hepatitis B, hepatitis C, autoimmune hepatitis, fatty liver disease, and healthy controls. The double‐antibody sandwich method was used and methodological evaluation was performed. Results The average intra‐ and inter‐assay coefficient of variation for IL‐18‐TRFIA was 4.80% and 5.90%, respectively. The average recovery rate was 106.19 ± 3.44%. The sensitivity (10.96 pg/mL) was higher than that obtained using the ELISA method (62.5 pg/mL). The detection range was 10.96–1000 pg/mL. IL‐6 and galectin‐3 did not cross‐react with IL‐18‐TRFIA. The serum concentration of IL‐18 was (776.99; 653.48–952.39 pg/mL) in hepatitis C, (911; 775.55–1130.03 pg/mL) in fatty liver, (1048.88; 730.04–1185.10 pg/mL) in liver cancer, and (949.12; 723.70–1160.28 pg/mL) in hepatitis B. Moreover, IL‐18 serum levels were significantly higher in patients than the healthy controls (483.09; 402.52–599.70/mL) (p < 0.0001). Autoimmune hepatitis with a serum IL‐18 concentration of 571.62; 502.47–730.31 pg/mL was not significantly different from the healthy controls (p > 0.05). Conclusion We established a highly sensitive IL‐18‐TRFIA method that successfully detected serum IL‐18 concentrations in different liver diseases. Furthermore, IL‐18 serum concentration was higher in patients with liver cancer, hepatitis C, hepatitis B, and fatty liver disease compared to healthy controls.
Collapse
Affiliation(s)
- Li Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiumei Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yaping Dai
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Chunyan Lv
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Jian Wu
- Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng, China
| | - Qingqing Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Penguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Pei
- Wuxi No. 5 People's Hospital, Wuxi, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
12
|
|
13
|
IL-35 and IL-18 Serum Levels in Children With Acute Lymphoblastic Leukemia: The Relationship With Prognostic Factors. J Pediatr Hematol Oncol 2020; 42:281-286. [PMID: 31764513 DOI: 10.1097/mph.0000000000001667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common type of cancer among children. In this study, we investigated the serum levels of interleukin (IL)-35 and IL-18 in children with ALL to compare with healthy subjects and find their relationship with prognostic factors and response to therapy. IL-35 and IL-18 serum concentrations in 40 children diagnosed with ALL and 35 age-matched and sex-matched healthy children were measured using ELISA. The association between cytokine levels and patients' clinical and laboratory data were determined. A significant difference was found in IL-35 serum levels between the patients (3.6±1.5 ng/mL) and controls (2.5±1.8 ng/mL) (P=0.007). No significant difference in IL-18 serum levels between these groups was observed. A positive correlation between IL-35 and IL-18 levels was detected (P=0.001). The authors found that patients with lower platelet count had higher IL-35 concentration (P=0.003). By considering a cut-off value of 6.21 ng/mL (mean±2SD of controls) for IL-35, it was found that white blood cell (WBC) count was higher in patients with IL-35 >6.21 ng/mL (P=0.016), and the majority of these patients had T-ALL (P=0.01). Although the mean overall survival in patients with IL-35 >6.21 ng/mL was shorter (937±381 d) than in those with IL-35 ≤6.21 ng/mL (1567±103 d), but the result was not significant (P=0.1, log-rank test). The IL-18 level was associated with a lower hemoglobin level (P=0.027). These data suggested a role for IL-35 in ALL development. The significant relation of IL-35 to white blood cells and platelet counts may imply a possible influence of IL-35 on ALL prognosis.
Collapse
|
14
|
Calvo J, Fahy L, Uzan B, Pflumio F. Desperately seeking a home marrow niche for T-cell acute lymphoblastic leukaemia. Adv Biol Regul 2019; 74:100640. [PMID: 31378700 DOI: 10.1016/j.jbior.2019.100640] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
T-cell acute leukemia is a hematologic malignancy that results from the progressive acquisition of genomic abnormalities in T-cell progenitors/precursors. T-ALL is commonly thought to originate from the thymus albeit recent literature describes the possible acquisition of the first oncogenic hits in hematopoietic progenitor cells of the bone marrow (BM). The journey of T-ALL from its arising to full blown expansion meets different microenvironments, including the BM in which leukemic cells settle down early after the disease spreading. We take advantage of recent literature to give an overview of important cells and factors that participate in T-ALL, especially in the BM, arguing in favor of a home marrow niche for this rare leukemia.
Collapse
Affiliation(s)
- Julien Calvo
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Lucine Fahy
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Benjamin Uzan
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France
| | - Françoise Pflumio
- UMRE008 Stabilité Génétique Cellules Souches et Radiations, U1274 Inserm, Université de Paris, Université Paris-Saclay, CEA, F-92260 Fontenay-aux-Roses, France; Laboratory of Hematopoietic Stem Cells and Leukemia, Team Niche and Cancer in Hematopoiesis, U1274, Inserm, CEA, 18 route du panorama, 92260, Fontenay-aux-Roses, France; Laboratoire labellisé par l'Association pour la Recherche sur le Cancer, France.
| |
Collapse
|
15
|
PI3K Is a Linker Between L-selectin and PSGL-1 Signaling to IL-18 Transcriptional Activation at the Promoter Level. Inflammation 2018; 41:555-561. [PMID: 29218606 DOI: 10.1007/s10753-017-0711-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) are adhesion molecules which induce similar physiological events. Our previous paper showed that phosphatidylinositol 3-kinase (PI3K) played a crucial role in L-selectin- and PSGL-1-mediated F-actin redistribution and assembly during neutrophil rolling on E-selectin. However, it is not clear whether L-selectin and PSGL-1 induce other similar physiology events by PI3K. Here, we investigated the possibility of PI3K linking the signaling pathways of L-selectin and PSGL-1 to IL-18 transcription. We first demonstrated that L-selectin and PSGL-1 stimulation upregulated IL-18 transcription level in Jurkat cells. Then we found that PI3K inhibitor LY294002 reduced L-selectin- and PSGL-1-induced mRNA upregulation of IL-18 in Jurkat cells. Transfection of phosphatase and tensin homolog expressing plasmid inhibited the transcription level of IL-18. Therefore, PI3K is a signal linker between L-selectin and PSGL-1 in IL-18 transcriptional activation at the promoter level. To our knowledge, this is the first time to directly link PI3K to L-selectin- and PSGL-1-mediated IL-18 transcription, providing a foundation for intervention of PI3K-related inflammation.
Collapse
|
16
|
Ghezzo MN, Fernandes MT, Pacheco-Leyva I, Rodrigues PM, Machado RS, Araújo MAS, Kalathur RK, Futschik ME, Alves NL, dos Santos NR. FoxN1-dependent thymic epithelial cells promote T-cell leukemia development. Carcinogenesis 2018; 39:1463-1476. [DOI: 10.1093/carcin/bgy127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 09/19/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Marinella N Ghezzo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- PhD Program in Biomedical Sciences, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Ivette Pacheco-Leyva
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Pedro M Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rui S Machado
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- ProRegeM PhD Program, Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Marta A S Araújo
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ravi K Kalathur
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Matthias E Futschik
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
- School of Biomedical Sciences, Faculty of Medicine and Dentistry, Institute of Translational and Stratified Medicine (ITSMED), University of Plymouth, Plymouth, UK
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Nuno R dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, Porto, Portugal
- Institute of Pathology and Molecular Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| |
Collapse
|
17
|
Poglio S, Lewandowski D, Calvo J, Caye A, Gros A, Laharanne E, Leblanc T, Landman-Parker J, Baruchel A, Soulier J, Ballerini P, Clappier E, Pflumio F. Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia. Oncotarget 2018; 7:41599-41611. [PMID: 27191650 PMCID: PMC5173081 DOI: 10.18632/oncotarget.9313] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/22/2016] [Indexed: 11/25/2022] Open
Abstract
T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34− cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34− T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34− cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments.
Collapse
Affiliation(s)
- Sandrine Poglio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV-IRCM-SCSR-LSHL, UMR 967, Fontenay-aux-Roses, France.,INSERM, U967, Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, Fontenay-aux-Roses, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, France
| | - Daniel Lewandowski
- INSERM, U967, Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, Fontenay-aux-Roses, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, France.,CEA, DSV-IRCM-SCSR-LRTS, UMR 967, Fontenay-aux-Roses, France
| | - Julien Calvo
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV-IRCM-SCSR-LSHL, UMR 967, Fontenay-aux-Roses, France.,INSERM, U967, Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, Fontenay-aux-Roses, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, France
| | - Aurélie Caye
- Université Paris Diderot, Paris, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré Paris, France
| | - Audrey Gros
- INSERM, UMR1053 Bordeaux Research in Translational Oncology (BaRITOn), Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Elodie Laharanne
- INSERM, UMR1053 Bordeaux Research in Translational Oncology (BaRITOn), Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Thierry Leblanc
- AP-HP, Service d'hématologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | | | - André Baruchel
- AP-HP, Service d'hématologie Pédiatrique, Hôpital Robert Debré, Paris, France
| | - Jean Soulier
- Université Paris Diderot, Paris, France.,AP-HP, Laboratoire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Team Genome and Cancer, U944 INSERM, Paris, France
| | - Paola Ballerini
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV-IRCM-SCSR-LSHL, UMR 967, Fontenay-aux-Roses, France.,INSERM, U967, Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, Fontenay-aux-Roses, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, France.,AP-HP, Service d'hématologie Pédiatrique, Hôpital Armand Trousseau, Paris, France
| | - Emmanuelle Clappier
- Université Paris Diderot, Paris, France.,AP-HP, Laboratoire d'Hématologie, Hôpital Saint-Louis, Paris, France.,Team Genome and Cancer, U944 INSERM, Paris, France
| | - Françoise Pflumio
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV-IRCM-SCSR-LSHL, UMR 967, Fontenay-aux-Roses, France.,INSERM, U967, Fontenay-aux-Roses, France.,Université Paris Diderot, Sorbonne Paris Cité, UMR 967, Fontenay-aux-Roses, France.,Université Paris-Sud, UMR 967, Fontenay-aux-Roses, France
| |
Collapse
|
18
|
Vagapova ER, Spirin PV, Lebedev TD, Prassolov VS. The Role of TAL1 in Hematopoiesis and Leukemogenesis. Acta Naturae 2018; 10:15-23. [PMID: 29713515 PMCID: PMC5916730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
TAL1 (SCL/TAL1, T-cell acute leukemia protein 1) is a transcription factor that is involved in the process of hematopoiesis and leukemogenesis. It participates in blood cell formation, forms mesoderm in early embryogenesis, and regulates hematopoiesis in adult organisms. TAL1 is essential in maintaining the multipotency of hematopoietic stem cells (HSC) and keeping them in quiescence (stage G0). TAL1 forms complexes with various transcription factors, regulating hematopoiesis (E2A/HEB, GATA1-3, LMO1-2, Ldb1, ETO2, RUNX1, ERG, FLI1). In these complexes, TAL1 regulates normal myeloid differentiation, controls the proliferation of erythroid progenitors, and determines the choice of the direction of HSC differentiation. The transcription factors TAL1, E2A, GATA1 (or GATA2), LMO2, and Ldb1 are the major components of the SCL complex. In addition to normal hematopoiesis, this complex may also be involved in the process of blood cell malignant transformation. Upregulation of C-KIT expression is one of the main roles played by the SCL complex. Today, TAL1 and its partners are considered promising therapeutic targets in the treatment of T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- E. R. Vagapova
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - P. V. Spirin
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - T. D. Lebedev
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| | - V. S. Prassolov
- The Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, Moscow,119991, Russia
| |
Collapse
|
19
|
Bone marrow sites differently imprint dormancy and chemoresistance to T-cell acute lymphoblastic leukemia. Blood Adv 2017; 1:1760-1772. [PMID: 29296822 DOI: 10.1182/bloodadvances.2017004960] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/17/2017] [Indexed: 12/21/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) expands in various bone marrow (BM) sites of the body. We investigated whether different BM sites could differently modulate T-ALL propagation using in vivo animal models. We observed that mouse and human T-ALL develop slowly in the BM of tail vertebrae compared with the BM from thorax vertebrae. T-ALL recovered from tail BM displays lower cell-surface marker expression and decreased metabolism and cell-cycle progression, demonstrating a dormancy phenotype. Functionally, tail-derived T-ALL exhibit a deficient short-term ex vivo growth and a delayed in vivo propagation. These features are noncell-autonomous because T-ALL from tail and thorax shares identical genomic abnormalities and functional disparities disappear in vivo and in prolonged in vitro assays. Importantly tail-derived T-ALL displays higher intrinsic resistance to cell-cycle-related drugs (ie, vincristine sulfate and cytarabine). Of note, T-ALL recovered from gonadal adipose tissues or from cocultures with adipocytes shares metabolic, cell-cycle, and phenotypic or chemoresistance features, with tail-derived T-ALL suggesting adipocytes may participate in the tail BM imprints on T-ALL. Altogether these results demonstrate that BM sites differentially orchestrate T-ALL propagation stamping specific features to leukemic cells such as quiescence and decreased response to cell-cycle-dependent chemotherapy.
Collapse
|
20
|
Baldini C, Santini E, Rossi C, Donati V, Solini A. The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin's lymphoma in Sjogren's syndrome: a prospective, observational, single-centre study. J Intern Med 2017; 282:175-186. [PMID: 28503820 DOI: 10.1111/joim.12631] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND P2X7 receptor (P2X7R), trigger of acute inflammatory responses via the NLRP3 inflammasome, is hyperfunctioning in patients with Sjögren's syndrome (SS), where it stimulates IL-18 production. Some patients with SS develop a mucosa-associated lymphoid tissue non-Hodgkin's lymphoma (MALT-NHL). OBJECTIVES To prospectively evaluate the involvement and the putative prognostic role of this inflammatory pathway in the development of MALT-NHL. METHODS A total of 147 women with SS have been prospectively followed for a mean of 52 months, relating the expression and function of the P2X7R-inflammasome axis in salivary glands and circulating lymphomonocytes to the prognosis and the degree of the disease. RESULTS At baseline, gene expression of P2X7R and of the inflammasome components NLRP3, caspase-1 and IL-18 increased according to the presence of germinative centres and was higher in autoantibody-positive individuals and strongly higher in those developing a MALT-NHL over the follow-up. Glandular expression of IL-18 was threefold higher in MALT-NHL than in controls or in the other patients with SS. P2X7R did not colocalize with generic markers of inflammatory infiltrate, like CD20, being selectively expressed by epithelial cells. P2X4R, sharing functional characteristics with P2X7R, did not differ in SS and controls. The increased P2X7R gene and protein expression was tissue specific, no difference being observed in peripheral lymphomonocytes between SS with MALT-NHL and SS not developing MALT-NHL. CONCLUSION We propose the P2X7R-inflammasome axis as a novel potential pathway involved in both SS exocrinopathy and lymphomagenesis, reinforcing the hypothesis of a key role of IL-18, via its increased P2X7R-mediated production, in the pathogenesis of lymphoproliferative malignancies, and opening novel opportunities for the early diagnosis of lymphoproliferative complications and the development of potential targeted therapies.
Collapse
Affiliation(s)
- C Baldini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - E Santini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - C Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - V Donati
- Unit of Anatomic Pathology II, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - A Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Passaro D, Abarrategi A, Foster K, Ariza-McNaughton L, Bonnet D. Bioengineering of Humanized Bone Marrow Microenvironments in Mouse and Their Visualization by Live Imaging. J Vis Exp 2017:55914. [PMID: 28809828 PMCID: PMC5613813 DOI: 10.3791/55914] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human hematopoietic stem cells (HSCs) reside in the bone marrow (BM) niche, an intricate, multifactorial network of components producing cytokines, growth factors, and extracellular matrix. The ability of HSCs to remain quiescent, self-renew or differentiate, and acquire mutations and become malignant depends upon the complex interactions they establish with different stromal components. To observe the crosstalk between human HSCs and the human BM niche in physiological and pathological conditions, we designed a protocol to ectopically model and image a humanized BM niche in immunodeficient mice. We show that the use of different cellular components allows for the formation of humanized structures and the opportunity to sustain long-term human hematopoietic engraftment. Using two-photon microscopy, we can live-image these structures in situ at the single-cell resolution, providing a powerful new tool for the functional characterization of the human BM microenvironment and its role in regulating normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Diana Passaro
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | - Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute
| | | | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute;
| |
Collapse
|
22
|
Oliveira ML, Akkapeddi P, Alcobia I, Almeida AR, Cardoso BA, Fragoso R, Serafim TL, Barata JT. From the outside, from within: Biological and therapeutic relevance of signal transduction in T-cell acute lymphoblastic leukemia. Cell Signal 2017. [PMID: 28645565 DOI: 10.1016/j.cellsig.2017.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological cancer that arises from clonal expansion of transformed T-cell precursors. In this review we summarize the current knowledge on the external stimuli and cell-intrinsic lesions that drive aberrant activation of pivotal, pro-tumoral intracellular signaling pathways in T-cell precursors, driving transformation, leukemia expansion, spread or resistance to therapy. In addition to their pathophysiological relevance, receptors and kinases involved in signal transduction are often attractive candidates for targeted drug development. As such, we discuss also the potential of T-ALL signaling players as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mariana L Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Padma Akkapeddi
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Isabel Alcobia
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal; Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Afonso R Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - Teresa L Serafim
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Portugal.
| |
Collapse
|
23
|
Erickson CA, Ray B, Wink LK, Bayon BL, Pedapati EV, Shaffer R, Schaefer TL, Lahiri DK. Initial analysis of peripheral lymphocytic extracellular signal related kinase activation in autism. J Psychiatr Res 2017; 84:153-160. [PMID: 27743527 PMCID: PMC5903443 DOI: 10.1016/j.jpsychires.2016.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/02/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulation of extracellular signal-related kinase (ERK) activity has been potentially implicated in the pathophysiology of autistic disorder (autism). ERK is part of a central intracellular signaling cascade responsible for a myriad of cellular functions. ERK is expressed in peripheral blood lymphocytes, and measurement of activated (phosphorylated) lymphocytic ERK is commonly executed in many areas of medicine. We sought to conduct the first study of ERK activation in humans with autism by utilizing a lymphocytic ERK activation assay. We hypothesized that ERK activation would be enhanced in peripheral blood lymphocytes from persons with autism compared to those of neurotypical control subjects. METHOD We conducted an initial study of peripheral lymphocyte ERK activation in 45 subjects with autism and 26 age- and gender-matched control subjects (total n = 71). ERK activation was measured using a lymphocyte counting method (primary outcome expressed as lymphocytes staining positive for cytosolic phosphorylated ERK divided by total cells counted) and additional Western blot analysis of whole cell phosphorylated ERK adjusted for total ERK present in the lymphocyte lysate sample. RESULTS Cytosolic/nuclear localization of pERK activated cells were increased by almost two-fold in the autism subject group compared to matched neurotypical control subjects (cell count ratio of 0.064 ± 0.044 versus 0.034 ± 0.031; p = 0.002). Elevated phosphorylated ERK levels in whole cell lysates also showed increased activated ERK in the autism group compared to controls (n = 54 total) in Western blot analysis. CONCLUSIONS The results of this first in human ERK activation study are consistent with enhanced peripheral lymphocytic ERK activation in autism, as well as suggesting that cellular compartmentalization of activated ERK may be altered in this disorder. Future work will be required to explore the impact of concomitant medication use and other subject characteristics such as level of cognitive functioning on ERK activation. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Craig A Erickson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Balmiki Ray
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Logan K Wink
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Baindu L Bayon
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| | - Ernest V Pedapati
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Rebecca Shaffer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Tori L Schaefer
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Debomoy K Lahiri
- Department of Psychiatry, Indiana University School of Medicine, Neuroscience Research Center, 320 West 15th Street, NB 200C, Indianapolis, IN 46202, USA.
| |
Collapse
|
24
|
Passaro D, Quang CT, Ghysdael J. Microenvironmental cues for T-cell acute lymphoblastic leukemia development. Immunol Rev 2016; 271:156-72. [PMID: 27088913 DOI: 10.1111/imr.12402] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intensive chemotherapy regimens have led to a substantial improvement in the cure rate of patients suffering from T-cell acute lymphoblastic leukemia (T-ALL). Despite this progress, about 15% and 50% of pediatric and adult cases, respectively, show resistance to treatment or relapse with dismal prognosis, calling for further therapeutic investigations. T-ALL is an heterogeneous disease, which presents intrinsic alterations leading to aberrant expression of transcription factors normally involved in hematopoietic stem/progenitor cell development and mutations in genes implicated in the regulation of cell cycle progression, apoptosis, and T-cell development. Gene expression profiling allowed the classification of T-ALL into defined molecular subgroups that mostly reflects the stage of their differentiation arrest. So far this knowledge has not translated into novel, targeted therapy. Recent evidence points to the importance of extrinsic signaling cues in controlling the ability of T-ALL to home, survive, and proliferate, thus offering the perspective of new therapeutic options. This review summarizes the present understanding of the interactions between hematopoietic cells and bone marrow/thymic niches during normal hematopoiesis, describes the main signaling pathways implicated in this dialog, and finally highlights how malignant T cells rely on specific niches to maintain their ability to sustain and propagate leukemia.
Collapse
Affiliation(s)
- Diana Passaro
- Hematopoietic Stem Cell Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London, UK
| | - Christine Tran Quang
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Orsay, France.,Centre National de la Recherche Scientifique, Centre Universitaire, Orsay, France
| |
Collapse
|
25
|
Atretkhany KSN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther 2016; 168:98-112. [PMID: 27613100 DOI: 10.1016/j.pharmthera.2016.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Relationship between inflammation and cancer is now well-established and represents a paradigm that our immune response does not necessarily serves solely to protect us from infections and cancer. Many specific mechanisms that link chronic inflammation to cancer promotion and metastasis have been uncovered in the recent years. Here we are focusing on the effects that tumors may exert on inflammatory cascades, tuning the immune system ability to cause tumor promotion or regression. In particular, we discuss the contributions of chemokines, cytokines and exosomes to the processes such as induction of inflammation and tumorigenesis. Overall, tumor-elicited inflammation is a key driver of tumor progression and an essential component of tumor microenvironment.
Collapse
Affiliation(s)
- K-S N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - M S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - S A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia; German Rheumatology Research Center (DRFZ), Berlin, Germany
| | - S I Grivennikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Fox Chase Cancer Center, Cancer Prevention and Control Program, Philadelphia, PA, USA.
| | - D V Kuprash
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Vavilova Str. 32, Russia; Biological Faculty, Lomonosov Moscow State University, 119234, Moscow, Russia.
| |
Collapse
|
26
|
Stem Cell Leukemia: how a TALented actor can go awry on the hematopoietic stage. Leukemia 2016; 30:1968-1978. [DOI: 10.1038/leu.2016.169] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 02/06/2023]
|
27
|
Zhang C, Hu X, Liu XY, Liang P, Zhang J, Cao L, Wang ZL, Liu HR, Yin XG, Dong CY, Wang LM. Effect of tumor-associated macrophages on gastric cancer stem cell in omental milky spots and lymph node micrometastasis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13795-13805. [PMID: 26823693 PMCID: PMC4713479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 10/24/2015] [Indexed: 06/05/2023]
Abstract
We observed whether the effect of tumor-associated macrophages on gastric cancer stem cell in omental milky spots and lymph nodes micrometastasis and research its possible mechanism. Macrophage THP-1 cells and Human gastric adenocarcinoma SGC-7901 cells were collectively cultivated in vivo. We found macrophage could suppress the proliferation and accelerated cell death of MFC cell. Meanwhile, these effects may be concerned with many signaling pathways, and we detected MCP-1 and COX-2 miRNA expressions, PGE-2 release levels, IL-4 and IL-10 activities, and TGF-β, IFN-γ, VEGF, MMP-2 and MMP-9 protein expressions in collectively cultivated cell. We found that MCP-1 and COX-2 miRNA expressions, and PGE-2 release levels were suppressed, IL-4 activity was inhibited and IL-10 activity was activated in collectively cultivated cell. Meanwhile, TGF-β, MMP-2 and MMP-9 protein expressions were inhibited and IFN-γ and VEGF protein expressions were activated in collectively cultivated cell. Taken together, these results suggest that the effect of tumor-associated macrophages on gastric cancer stem cell in omental milky spots and lymph nodes micrometastasis via COX-2/PGE-2/TGF-β/VEGF signal pathways.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Xiang Hu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Xiao-Yu Liu
- Liaoning Laboratory of Cancer Genetics and Epigenetics, Department of Cell Biology, Dalian Medical University Dalian, China
| | - Pin Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Liang Cao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Zheng-Lin Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Huan-Ran Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Xun-Guo Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Dalian Medical Universiey Dalian, China
| | - Cheng-Yong Dong
- Department of Hepatobiliary Pancreas Surgery, The Second Affiliated Hospital of Dalian Medical University Dalian, China
| | - Li-Ming Wang
- Department of Hepatobiliary Pancreas Surgery, The Second Affiliated Hospital of Dalian Medical University Dalian, China
| |
Collapse
|
28
|
Fernandes MT, Ghezzo MN, Silveira AB, Kalathur RK, Póvoa V, Ribeiro AR, Brandalise SR, Dejardin E, Alves NL, Ghysdael J, Barata JT, Yunes JA, dos Santos NR. Lymphotoxin-β receptor in microenvironmental cells promotes the development of T-cell acute lymphoblastic leukaemia with cortical/mature immunophenotype. Br J Haematol 2015; 171:736-51. [PMID: 26456771 DOI: 10.1111/bjh.13760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/29/2015] [Indexed: 01/21/2023]
Abstract
Lymphotoxin-mediated activation of the lymphotoxin-β receptor (LTβR; LTBR) has been implicated in cancer, but its role in T-cell acute lymphoblastic leukaemia (T-ALL) has remained elusive. Here we show that the genes encoding lymphotoxin (LT)-α and LTβ (LTA, LTB) are expressed in T-ALL patient samples, mostly of the TAL/LMO molecular subtype, and in the TEL-JAK2 transgenic mouse model of cortical/mature T-ALL (Lta, Ltb). In these mice, expression of Lta and Ltb is elevated in early stage T-ALL. Surface LTα1 β2 protein is expressed in primary mouse T-ALL cells, but only in the absence of microenvironmental LTβR interaction. Indeed, surface LT expression is suppressed in leukaemic cells contacting Ltbr-expressing but not Ltbr-deficient stromal cells, both in vitro and in vivo, thus indicating that dynamic surface LT expression in leukaemic cells depends on interaction with its receptor. Supporting the notion that LT signalling plays a role in T-ALL, inactivation of Ltbr results in a significant delay in TEL-JAK2-induced leukaemia onset. Moreover, young asymptomatic TEL-JAK2;Ltbr(-/-) mice present markedly less leukaemic thymocytes than age-matched TEL-JAK2;Ltbr(+/+) mice and interference with LTβR function at this early stage delayed T-ALL development. We conclude that LT expression by T-ALL cells activates LTβR signalling in thymic stromal cells, thus promoting leukaemogenesis.
Collapse
Affiliation(s)
- Mónica T Fernandes
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | - Marinella N Ghezzo
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal.,Department of Biomedical Sciences and Medicine, University of Algarve, Faro, Portugal
| | | | - Ravi K Kalathur
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| | - Vanda Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana R Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Institute for Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | | | - Emmanuel Dejardin
- Laboratory of Molecular Immunology and Signal Transduction, GIGA-Research, University of Liège, Liège, Belgium
| | - Nuno L Alves
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Thymus Development and Function Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jacques Ghysdael
- Institut Curie-Centre de Recherche, Centre Universitaire, Orsay, France.,CNRS UMR3306, Centre Universitaire, Orsay, France.,INSERM U1005, Centre Universitaire, Orsay, France
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - José Andres Yunes
- Centro Infantil Boldrini, Campinas, SP, Brazil.,Department of Paediatrics, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nuno R dos Santos
- Centre for Biomedical Research (CBMR), University of Algarve, Faro, Portugal
| |
Collapse
|
29
|
Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C, Tran Quang C, Ghysdael J. CXCR4 Is Required for Leukemia-Initiating Cell Activity in T Cell Acute Lymphoblastic Leukemia. Cancer Cell 2015; 27:769-79. [PMID: 26058076 DOI: 10.1016/j.ccell.2015.05.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 04/05/2015] [Accepted: 05/07/2015] [Indexed: 12/21/2022]
Abstract
Impaired cell migration has been demonstrated in T cell acute lymphoblastic leukemia (T-ALL) cells upon calcineurin inactivation, among other phenotypic traits including increased apoptosis, inhibition of cell proliferation, and ultimately inhibition of leukemia-initiating cell (LIC) activity. Herein we demonstrate that the chemokine receptor CXCR4 is essential to the LIC activity of T-ALL leukemic cells both in NOTCH-induced mouse T-ALL and human T-ALL xenograft models. We further demonstrate that calcineurin regulates CXCR4 cell-surface expression in a cortactin-dependent manner, a mechanism essential to the migratory properties of T-ALL cells. Because 20%-25% of pediatric and over 50% of adult patients with T-ALL do not achieve complete remission and relapse, our results call for clinical trials incorporating CXCR4 antagonists in T-ALL treatment.
Collapse
Affiliation(s)
- Diana Passaro
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France.
| | - Marta Irigoyen
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Claire Catherinet
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Stéphanie Gachet
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Cindy Da Costa De Jesus
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Charlène Lasgi
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Christine Tran Quang
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France
| | - Jacques Ghysdael
- Institut Curie, Centre Universitaire, Bat 110, 91405 Orsay, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3306, Centre Universitaire, Bat 110, 91405 Orsay, France; Institut National de la Santé et de la Recherche Médicale, Unité 1005, Centre Universitaire, Bat 110, 91405 Orsay, France.
| |
Collapse
|
30
|
Fabbi M, Carbotti G, Ferrini S. Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J Leukoc Biol 2014; 97:665-75. [DOI: 10.1189/jlb.5ru0714-360rr] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|