1
|
Prestes JG, Carneiro L, Miiller NOR, Neundorf AKA, Pedroso CR, Braga RR, Sousa R, Vitule JRS. A systematic review of invasive non-native freshwater bivalves. Biol Rev Camb Philos Soc 2024; 99:2082-2107. [PMID: 38973333 DOI: 10.1111/brv.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.
Collapse
Affiliation(s)
- Juliani Giselli Prestes
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Natali Oliva Roman Miiller
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Ananda Karla Alves Neundorf
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Laboratory of Adaptive Biology, Department of Cell Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Clemerson Richard Pedroso
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Raul Rennó Braga
- Department of Animal and Plant Biology, State University of Londrina, Londrina, 86057-970, Brazil
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Jean Ricardo Simões Vitule
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
| |
Collapse
|
2
|
Le TTY, Kiwitt G, Nahar N, Nachev M, Grabner D, Sures B. What contributes to the metal-specific partitioning in the chub-acanthocephalan system? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106178. [PMID: 35489172 DOI: 10.1016/j.aquatox.2022.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models have been applied to simulate the absorption, distribution, metabolism, and elimination of various toxicants in fish. This approach allows for considering metal accumulation in intestinal parasites. Unlike "semi" physiologically-based models developed for metals, metal accumulation in fish was characterised based on metal-specific parameters (the fraction in blood plasma and the tissue-blood partition coefficient) and physiological characteristics of the fish (the blood flow and the tissue weight) in our PBPK model. In the model, intestinal parasites were considered a sink of metals from the host intestine. The model was calibrated with data for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticolliis. Metal concentrations in this fish-parasite system were monitored in Ag and Co treatments in duplicate during a 48-day exposure phase (Ag and Co were added to tap water at concentrations of 1 and 2 µg/L, respectively) and a 51-day depuration phase. Their concentrations in the gills increased during the exposure phase and decreased in the depuration phase. A similar pattern was observed for Ag concentrations in other chub organs, while a relatively stable pattern for Co indicates regulations in the accumulation of essential metals by chubs. The metals were taken up by the acanthocephalans at similar rate constants. These results indicate that metal availability to parasites, which is determined by the internal distribution and fate, is critical to metal accumulation in the acanthocephalans. The high concentration of Ag in the liver as well as the high rate of Ag excretion from the liver to the intestine might contribute to higher concentrations of metals in the bile complexes in the intestine, which are available to the parasites, but not to the reabsorption by the host intestine. The opposite pattern might explain the lower availability of Co to the acanthocephalans.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Gina Kiwitt
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Nazmun Nahar
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), Faculty of Biology, University of Duisburg-Essen, D-45141 Essen, Germany
| |
Collapse
|
3
|
Ekelund Ugge GMO, Jonsson A, Walstad A, Berglund O. Evaluation of transcriptional biomarkers using a high-resolution regression approach: Concentration-dependence of selected transcripts in copper-exposed freshwater mussels (Anodonta anatina). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 90:103795. [PMID: 34971800 DOI: 10.1016/j.etap.2021.103795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
We tested concentration-dependence of selected gene transcripts (cat, gst, hsp70, hsp90, mt and sod) for evaluation as biomarkers of chemical stress. Contrary to the common approach of factorial designs and few exposure concentrations, we used regression across a high-resolution concentration series. Specifically, freshwater mussels (Anodonta anatina) were acutely (96 h) exposed to Cu (13 nominal concentrations, measuring 0.13-1 600 µg/L), and transcripts were measured by RT-qPCR. In digestive glands, cat, hsp90 and mt decreased with water Cu (p < 0.05), but response magnitudes saturated at < 2-fold decreases. In gills, gst, hsp70, hsp90 and mt increased with water Cu (p < 0.05). While hsp70, hsp90 and mt exceeded 2-fold increases within the exposure range, high Cu concentrations were required (38-160 µg/L). Although gill responses were generally more robust compared to digestive glands, overall small response magnitudes and moderate sensitivity may set limit for potential application as general biomarkers of chemical stress.
Collapse
Affiliation(s)
- Gustaf M O Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden; School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, SE-541 46 Skövde, Sweden
| | - Anders Walstad
- ALS Scandinavia Toxicon AB, Rosenhällsvägen 29, SE-261 92 Härslöv, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62 Lund, Sweden
| |
Collapse
|
4
|
Le TTY, Grabner D, Nachev M, Peijnenburg WJGM, Hendriks AJ, Sures B. Modelling copper toxicokinetics in the zebra mussel, Dreissena polymorpha, under chronic exposures at various pH and sodium concentrations. CHEMOSPHERE 2021; 267:129278. [PMID: 33341731 DOI: 10.1016/j.chemosphere.2020.129278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The stenohaline zebra mussel, Dreissena polymorpha, is uniquely sensitive to the ionic composition of its aquatic environment. Waterborne copper (Cu) uptake and accumulation in zebra mussels were examined at various conditions in an environmentally relevant range in freshwater, i.e. Cu exposure levels (nominal concentrations of 25 and 50 μg/L), pH (5.8-8.3), and sodium (Na+) concentrations (up to 4.0 mM). Copper accumulation was simulated by a kinetic model covering two compartments, the gills and the remaining tissues. The Cu uptake rate constant decreased with decreasing pH from 8.3 down to 6.5, indicating interactions between H+ and Cu at uptake sites. The kinetic simulation showed dose-dependent effects of Na+ on Cu uptake. At 25 μg/L Cu, addition of Na+ at 0.5 mM significantly inhibited the Cu uptake rate, while no significant differences were found in the uptake rate upon further addition of Na+ up to a concentration of 4.0 mM. At 50 μg/L Cu, the Cu uptake rate was not influenced by Na+ addition. Calibration results exhibited dose-dependent elimination rates with more profound elimination with increasing exposure levels. With kinetic parameters calibrated at environmentally relevant conditions, in terms of pH and Na+ concentrations, the model performed well in predicting Cu accumulation based on independent data sets. Estimates of the Cu concentration in mussels were within a factor of 2 of the measurements. This demonstrates potential application of kinetic models that are calibrated in environmentally relevant freshwater conditions.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany.
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Willi J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300, RA, Leiden, the Netherlands; National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720, BA, Bilthoven, the Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525, HP, the Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
5
|
Yen Le TT, García MR, Grabner D, Nachev M, Balsa-Canto E, Hendriks AJ, Zimmermann S, Sures B. Mechanistic simulation of bioconcentration kinetics of waterborne Cd, Ag, Pd, and Pt in the zebra mussel Dreissena polymorpha. CHEMOSPHERE 2020; 242:124967. [PMID: 31677506 DOI: 10.1016/j.chemosphere.2019.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 05/21/2023]
Abstract
Mechanistic models based on chemical properties of metals and body size have received substantial attention for their potential application to various metals and to different conditions without required calibration. This advantage has been demonstrated for a number of metals, such as Cd and Ag. However, the capacity of metal-specific chemical properties to explain variations in the accumulation for platinum-group elements (PGEs) has not been investigated yet, although emission of these metals is of increasing concern. Once being released, PGEs exist in the environment in mixtures with other metals. The present study attempted to model the accumulation of Pd and Pt in mixtures with Ag and Cd in the zebra mussel (Dreissena polymorpha) from the aqueous phase; and to investigate the potential application of mechanistic models to Pd and Pt. The present study showed statistically insignificant differences in metal accumulation among size groups in a narrow range of shell length (16-22 mm). Kinetic models could simulate well the accumulation of Cd, Ag, and Pt when metal-specific responses of zebra mussels are taken into consideration. These responses include enhanced immobilisation as a detoxifying mechanism and exchange between soft tissues and shells via the extrapallial fluid. Environmental conditions, e.g. the presence of abiotic ligands such as chloride, might also play an important role in metal accumulation. Significant relationships between the absorption efficiency and the covalent index indicate the potential application of mechanistic models based on this chemical property to Pt.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany.
| | - Míriam R García
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Eva Balsa-Canto
- Process Engineering Group, Spanish Council for Scientific Research, IIM-CSIC, Vigo, 36208, Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, 6525, HP, the Netherlands
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, D-45141, Germany
| |
Collapse
|
6
|
Ekelund Ugge GMO, Jonsson A, Olsson B, Sjöback R, Berglund O. Transcriptional and biochemical biomarker responses in a freshwater mussel (Anodonta anatina) under environmentally relevant Cu exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9999-10010. [PMID: 31933076 PMCID: PMC7089896 DOI: 10.1007/s11356-020-07660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 05/09/2023]
Abstract
Molecular biomarkers, like gene transcripts or enzyme activities, are potentially powerful tools for early warning assessment of pollution. However, a thorough understanding of response and baseline variation is required to distinguish actual effects from pollution. Here, we assess the freshwater mussel Anodonta anatina as a biomarker model species for freshwater ecosystems, by testing responses of six transcriptional (cat, gst, hsp70, hsp90, mt, and sod) and two biochemical (AChE and GST) biomarkers to environmentally relevant Cu water concentrations. Mussels (n = 20), collected from a stream free from point source pollution, were exposed in the laboratory, for 96 h, to Cu treatments (< 0.2 μg/L, 0.77 ± 0.87 μg/L, and 6.3 ± 5.4 μg/L). Gills and digestive glands were extracted and analyzed for transcriptional and biochemical responses. Biological and statistical effect sizes from Cu treatments were in general small (mean log2 fold-change ≤ 0.80 and Cohen's f ≤ 0.69, respectively), and no significant treatment effects were observed. In contrast, four out of eight biomarkers (cat, gst, hsp70, and GST) showed a significant sex:tissue interaction, and additionally one (sod) showed significant overall effects from sex. Specifically, three markers in gills (cat, mt, GST) and one in digestive gland (AChE) displayed significant sex differences, independent of treatment. Results suggest that sex or tissue effects might obscure low-magnitude biomarker responses and potential early warnings. Thus, variation in biomarker baselines and response patterns needs to be further addressed for the future use of A. anatina as a biomarker model species.
Collapse
Affiliation(s)
- Gustaf Magnus Oskar Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden
| | - Björn Olsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden
| | - Robert Sjöback
- TATAA Biocenter, Odinsgatan 28, 411 03, Gothenburg, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
7
|
Le TTY, García MR, Nachev M, Grabner D, Balsa-Canto E, Hendriks AJ, Sures B. Development of a PBPK Model for Silver Accumulation in Chub Infected with Acanthocephalan Parasites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12514-12525. [PMID: 30251844 DOI: 10.1021/acs.est.8b04022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Simultaneous presence of metals and parasites in fish might lead to potential risks to human health. Parasites might influence metal accumulation and disturb detoxification in fish, thereby affecting biomarkers of fish responses as well as metal biomagnification in humans. It is, therefore, of importance to take into account parasite infection when investigating metal accumulation in fish. However, mechanisms of metal accumulation and distribution in fish-parasite systems are not integrated into current approaches. The present study proposes a new physiologically based pharmacokinetic model for mechanistic simulation of metal partitioning between intestinal parasites and their hosts. As a particular case, Ag accumulation in the system of chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis was investigated. As a novelty, fish cardiac output and organ-specific blood flow distribution were incorporated in our model. This approach distinguishes the current model from the ones developed previously. It also facilitates model extrapolation and application to varying conditions. In general, the model explained Ag accumulation in the system well, especially in chub gill, storage (including skin, muscle, and carcass), and liver. The highest concentration of Ag was found in the liver. The accumulation of Ag in the storage, liver, and gill compartments followed a similar pattern, i.e., increasing during the exposure and decreasing during the depuration. The model also generated this observed trend. However, the model had a weaker performance for simulating Ag accumulation in the intestine and the kidney. Silver accumulation in these organs was less evident with considerable variations.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Míriam R García
- Process Engineering Group , Spanish Council for Scientific Research, IIM-CSIC , 36208 Vigo , Spain
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| | - Eva Balsa-Canto
- Process Engineering Group , Spanish Council for Scientific Research, IIM-CSIC , 36208 Vigo , Spain
| | - A Jan Hendriks
- Department of Environmental Science, Faculty of Science , Radboud University Nijmegen , 6525 HP Nijmegen , The Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU) , University of Duisburg-Essen , D-45141 Essen , Germany
| |
Collapse
|
8
|
Kerambrun E, Delahaut L, Geffard A, David E. Differentiation of sympatric zebra and quagga mussels in ecotoxicological studies: A comparison of morphometric data, gene expression, and body metal concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:321-328. [PMID: 29482127 DOI: 10.1016/j.ecoenv.2018.02.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
The zebra mussel is among the best studied freshwater molluscs in ecotoxicology, but information on the quagga mussel is lacking. Considering its potential spread, we selected a river in France in which zebra and quagga mussels coexisted, and then we used genetic markers to differentiate the two species and compared morphological parameters. cDNA sequencing assays of ten genes already used in zebra mussels were performed on quagga mussels to obtain functional specific primers. Then we analyzed the expression of genes involved in cellular metabolic activities (Cytochrome-c-oxidase - cox, and ATP synthase - atp), detoxification processes (Glutathione-S-Transferase - gst), oxidative stress (Catalase - cat), and digestive functions (Amylase - amy) on the two species. Whereas morphometric analysis underlined similarities in shape between the two species, relative gene expression profiles and metal concentrations evidenced strong differences. Quagga mussels notably presented half as high concentrations in Cd and Pb, two particularly toxic elements, as zebra mussels. These results imply that i) particular attention should be paid to properly distinguish the two species considering their similar external appearance, and ii) zebra mussels cannot be replaced by quagga mussels in ecotoxicological studies without preliminary investigations on biomarker response patterns. To our knowledge, this study is the first to have undertaken such an approach in gene expression analysis in quagga mussels, and more generally to have compared such biomarker responses of zebra and quagga mussels in the field.
Collapse
Affiliation(s)
- E Kerambrun
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France.
| | - L Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| | - A Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| | - E David
- Université de Reims Champagne-Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), INERIS-URCA-ULH, France
| |
Collapse
|
9
|
Farkas A, Ács A, Vehovszky Á, Falfusynska H, Stoliar O, Specziár A, Győri J. Interspecies comparison of selected pollution biomarkers in dreissenid spp. inhabiting pristine and moderately polluted sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:760-770. [PMID: 28499224 DOI: 10.1016/j.scitotenv.2017.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
Stress biomarkers, which can outline impacts of contaminants in aquatic biota at the biochemical level, are increasingly used as early warning tools in environmental monitoring. Reliable biomarker based assessment schemes, however, request appropriate knowledge of baseline levels of selected endpoints, and the potential influence of a range of natural influencing factors (both abiotic and biotic) as well. In this study, we examined the interspecies variability of various biomarkers (metallothioneins (MT), ethoxyresorufin-O-deethylase activity (EROD), lipid peroxidation (LPO), DNA strand breaks (DNA_sb), vitellogenin-like proteins (Vtg)) in Dreissena polymorpha and Dreissena bugensis inhabiting either pristine- or moderately impacted sites of Lake Balaton (Hungary). Levels of all biomarkers considered revealed low interspecies variability in the two dreissenid species at all sampling sites, with consistently higher (but statistically insignificant) values in Dreissena polymorpha. Levels of all biomarkers varied within the two investigated seasons, with significant influence of the reproduction cycle particularly on the levels of metallothioneins and vitellogenin-like proteins. Each biomarker considered was elevated by October, with significantly higher values in the mussels inhabiting harbours. Insignificant spatial and temporal variability in the general health indicators (condition index, total protein content) of dreissenids was observed, which, in parallel with evident rise in biomarker levels, apparently suggest that the anthropogenic impacts in harbours affect mussel fitness yet at sub organismal level. Our data might serve useful basis for future environmental monitoring surveys, especially in habitats where the progressive replacement of Dreissena polymorpha by Dreissena bugensis is taking place, as the interspecies variability in susceptibility to chemical stress of the two species is well comparable.
Collapse
Affiliation(s)
- A Farkas
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary.
| | - A Ács
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - Á Vehovszky
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - H Falfusynska
- General Chemistry Department, Ternopil Medical State University, Maidan Voli, 1, Ternopil 46001, Ukraine
| | - O Stoliar
- Research Laboratory of Molecular Biology and Comparative Biochemistry, Ternopil National Pedagogical University, Kryvonosa Str., 2, Ternopil 46027, Ukraine
| | - A Specziár
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| | - J Győri
- MTA Centre for Ecological Research, Balaton Limnological Institute, Klebelsberg K. u. 3., P.O. Box 35, H-8237 Tihany, Hungary
| |
Collapse
|
10
|
Le TTY, Nachev M, Grabner D, Hendriks AJ, Sures B. Development and Validation of a Biodynamic Model for Mechanistically Predicting Metal Accumulation in Fish-Parasite Systems. PLoS One 2016; 11:e0161091. [PMID: 27548282 PMCID: PMC4993497 DOI: 10.1371/journal.pone.0161091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/31/2016] [Indexed: 11/19/2022] Open
Abstract
Because of different reported effects of parasitism on the accumulation of metals in fish, it is important to consider parasites while interpreting bioaccumulation data from biomonitoring programmes. Accordingly, the first step is to take parasitism into consideration when simulating metal bioaccumulation in the fish host under laboratory conditions. In the present study, the accumulation of metals in fish-parasite systems was simulated by a one-compartment toxicokinetic model and compared to uninfected conspecifics. As such, metal accumulation in fish was assumed to result from a balance of different uptake and loss processes depending on the infection status. The uptake by parasites was considered an efflux from the fish host, similar to elimination. Physiological rate constants for the uninfected fish were parameterised based on the covalent index and the species weight while the parameterisation for the infected fish was carried out based on the reported effects of parasites on the uptake kinetics of the fish host. The model was then validated for the system of the chub Squalius cephalus and the acanthocephalan Pomphorhynchus tereticollis following 36-day exposure to waterborne Pb. The dissolved concentration of Pb in the exposure tank water fluctuated during the exposure, ranging from 40 to 120 μg/L. Generally, the present study shows that the one-compartment model can be an effective method for simulating the accumulation of metals in fish, taking into account effects of parasitism. In particular, the predicted concentrations of Cu, Fe, Zn, and Pb in the uninfected chub as well as in the infected chub and the acanthocephalans were within one order of magnitude of the measurements. The variation in the absorption efficiency and the elimination rate constant of the uninfected chub resulted in variations of about one order of magnitude in the predicted concentrations of Pb. Inclusion of further assumptions for simulating metal accumulation in the infected chub led to variations of around two orders of magnitude in the predictions. Therefore, further research is required to reduce uncertainty while characterising and parameterising the model for infected fish.
Collapse
Affiliation(s)
- T. T. Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
| | - A. Jan Hendriks
- Department of Environmental Science, Faculty of Science, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany
- Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
11
|
Le TTY, Zimmermann S, Sures B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:257-268. [PMID: 26854695 DOI: 10.1016/j.envpol.2016.01.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/21/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Metallothionein (MT) concentrations in the whole soft tissue or in a particular tissue of bivalves have widely been used in ecotoxicological studies and biomonitoring programmes. This approach is based on the reported results on the enhancement of MT induction in bivalves in response to metal exposure. The validity of using MT induction as a biomarker is briefly assessed in the present study. The sensitivity of MT induction in these organisms is questionable due to the high basal MT level as well as the high natural variability related to the effects of a number of biotic and abiotic factors, which are not well described yet. Moreover, the relationship between exposure to metals, the toxic effects of that exposure, and the appearance of MT in soft tissue, is not well characterized. A variety of factors may influence the appearance and distribution of MT: 1) the uneven distribution of metals in particular portions of the soft tissue and in particular subcellular compartments; 2) pre-exposure to metals, perhaps at non-toxic levels; 3) metal-metal competition and metal-protein interactions; and 4) tissue-specific induction, functions, and isoforms of MT. Therefore, attention is required when using MT induction in bivalves for assessment of metal exposure or consequent toxic effects. The MT concentration can be a reliable indicator only when it is considered in relation with metal uptake kinetics and subcellular partitioning while specifying the isoform of MT synthesised and considering various confounding factors. The kinetic turnover of MT may provide useful information on metal exposure and biological effects since it covers both the synthesis and breakdown of MT as well as the chemical species of metals accumulated and MT.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Germany.
| | - Sonja Zimmermann
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Germany
| | - Bernd Sures
- Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Germany; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
12
|
Matthews J, Schipper AM, Hendriks AJ, Yen Le TT, Bij de Vaate A, van der Velde G, Leuven RSEW. A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:183-190. [PMID: 25910461 DOI: 10.1016/j.envpol.2015.03.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/18/2015] [Accepted: 03/21/2015] [Indexed: 06/04/2023]
Abstract
Bioinvasions are a major cause of biodiversity and ecosystem changes. The rapid range expansion of the invasive quagga mussel (Dreissena rostriformis bugensis) causing a dominance shift from zebra mussels (Dreissena polymorpha) to quagga mussels, may alter the risk of secondary poisoning to predators. Mussel samples were collected from various water bodies in the Netherlands, divided into size classes, and analysed for metal concentrations. Concentrations of nickel and copper in quagga mussels were significantly lower than in zebra mussels overall. In lakes, quagga mussels contained significantly higher concentrations of aluminium, iron and lead yet significantly lower concentrations of zinc66, cadmium111, copper, nickel, cobalt and molybdenum than zebra mussels. In the river water type quagga mussel soft tissues contained significantly lower concentrations of zinc66. Our results suggest that a dominance shift from zebra to quagga mussels may reduce metal exposure of predator species.
Collapse
Affiliation(s)
- Jonathan Matthews
- Radboud University, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Aafke M Schipper
- Radboud University, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - A Jan Hendriks
- Radboud University, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - T T Yen Le
- Radboud University, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Abraham Bij de Vaate
- Waterfauna Hydrobiologisch Adviesbureau, Oostrandpark 30, 8212 AP Lelystad, The Netherlands.
| | - Gerard van der Velde
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Radboud University, Institute for Water and Wetland Research, Department of Animal Ecology and Ecophysiology, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| | - Rob S E W Leuven
- Radboud University, Institute for Water and Wetland Research, Department of Environmental Science, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Le TTY, Hendriks AJ. Relationships between absorption efficiency of elements in mammals and chemical properties. Crit Rev Toxicol 2013; 43:800-9. [PMID: 23895340 DOI: 10.3109/10408444.2013.813906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Oral absorption efficiency is an important factor to consider in human risk assessment and varies widely between elements. Linking absorption efficiency to chemical properties facilitates the understanding of underlying processes and enables extrapolation across elements. In our study, oral absorption efficiency in humans was predicted for a number of elements based on their ionization energy and electronegativity. Data on oral absorption efficiency in humans were retrieved via a literature survey. A model was developed based on the assumption that ionic species readily react with biotic ligands. Accordingly, ionization energy was presumed to represent the reactivity and absorption of atoms in the gastrointestinal tract. The coefficients of the model were parameterized by fitting the quantitative relationship between absorption efficiency and ionization energy to data collected from well-standardized studies. Generally, absorption efficiency was strongly related to ionization energy, explaining 94% of the variability in absorption efficiency between elements reported by the International Commission on Radiological Protection (ICRP). In addition, the absorption efficiencies predicted based on ionization energy were within a factor of two of those given by the ICRP (ME = -0.05; RMSE = 0.31). However, the model is not applicable to alkaline metals and molybdenum because of the uniquely high solubility of their compounds or the flexible electron configuration of these elements. Approximately 56% of the variability in absorption efficiency between elements could be explained by electronegativity. These strong relationships between absorption efficiency and ionization energy and, to a lesser extent, electronegativity indicate potential for extrapolation across elements using atomic properties.
Collapse
Affiliation(s)
- T T Yen Le
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen , The Netherlands
| | | |
Collapse
|