1
|
Zhou Y, Jin W, Wu Q, Zhou Q. Acrolein: formation, health hazards and its controlling by dietary polyphenols. Crit Rev Food Sci Nutr 2024; 64:9604-9617. [PMID: 37203991 DOI: 10.1080/10408398.2023.2214625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acrolein, a highly reactive toxic aldehyde, is a common dietary and environmental contaminant which can also be generated endogenously. Exposure to acrolein has been positively associated with some pathological conditions, such as atherosclerosis, diabetes mellitus, stroke, and Alzheimer's disease. At the cellular level, acrolein induces various harmful effects, particularly protein adduction and oxidative damages. Polyphenols are a group of secondary plant metabolites ubiquitously presented in fruits, vegetables, and herbs. Recent evidence has gradually solidified the protective role of polyphenols by working as acrolein scavengers and regulator of acrolein toxicities. This was largely attributed to the ability of polyphenols as antioxidants and sacrificial nucleophiles in trapping acrolein. This review discussed the exposure and toxicity of acrolein, summarized the known and anticipated contribution of polyphenols in ameliorating acrolein contamination and its health hazards.
Collapse
Affiliation(s)
- Yue Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wendy Jin
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qingli Wu
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
2
|
Liu WS, Liang SS, Cheng MM, Wu MT, Li SY, Cheng TT, Liu TY, Tsai CY, Lai YT, Lin CH, Wang HT, Tsou HH. How renal toxins respond to renal function deterioration and oral toxic adsorbent in pH-controlled releasing capsule. ENVIRONMENTAL TOXICOLOGY 2024; 39:3930-3943. [PMID: 38572829 DOI: 10.1002/tox.24248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
The number of patients with chronic kidney disease (CKD) is increasing. Oral toxin adsorbents may provide some value. Several uremic toxins, including indoxyl sulfate (IS), p-cresol (PCS), acrolein, per- and poly-fluoroalkyl substances (PFAS), and inflammation markers (interleukin 6 [IL-6] and tumor necrosis factor [TNF]-alpha) have been shown to be related to CKD progression. A total of 81 patients taking oral activated charcoal toxin adsorbents (AC-134), which were embedded in capsules that dissolved in the terminal ileum, three times a day for 1 month, were recruited. The renal function, hemoglobulin (Hb), inflammation markers, three PFAS (PFOA, PFOS, and PFNA), and acrolein were quantified. Compared with the baseline, an improved glomerular filtration rate (GFR) and significantly lower acrolein were noted. Furthermore, the CKD stage 4 and 5 group had significantly higher concentrations of IS, PCS, IL-6, and TNF but lower levels of Hb and PFAS compared with the CKD Stage 3 group at baseline and after the intervention. Hb was increased only in the CKD Stage 3 group after the trial (p = .032). Acrolein did not differ between the different CKD stage groups. Patients with improved GFR (responders) (about 77%) and nonresponders had similar baseline GFR. Responders had higher acrolein and PFOA levels throughout the study and a more significant reduction in acrolein, indicating a better digestion function. Both the higher PFOA and lower acrolein may be related to improved eGFR (and possibly to improvements in proteinuria, which we did not measure. Proteinuria is associated with PFAS loss in the urine), AC-134 showed the potential to improve the GFR and decrease acrolein, which might better indicate renal function change. Future studies are needed with longer follow-ups.
Collapse
Affiliation(s)
- Wen-Sheng Liu
- Division of Nephrology, Department of Medicine, Taipei City Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Special Education, University of Taipei, Taipei, Taiwan
| | - Shih-Shin Liang
- Institute of Biomedical Science, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Mei Cheng
- Division of nephrology, Department of internal medicine, West Garden Hospital, Taipei, Taiwan
| | - Ming-Tsan Wu
- Department of internal medicine, Fu-Ling clinic, New Taipei City, Taiwan
| | - Szu-Yuan Li
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Division of Nephrology, and Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tien-Tien Cheng
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Yao Tsai
- Institute of Public Health, Department of Public Health, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan
- Department of Business Administration, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Yen-Ting Lai
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan
- Department of Nursing, College of Medical Technology and Nursing, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chien-Hung Lin
- School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- College of Science and Engineering, Fu Jen Catholic University, New Taipei City, Taiwan
- Division of Pediatric Immunology and Nephrology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Kim Forest Enterprise Co., Ltd., New Taipei City, Taiwan
| |
Collapse
|
3
|
Song Y, Liu D, Xie J, Xie J, Chen Y, Chen X, Hu X, Yu Q. Protective effects of EGCG on acrolein-induced Caenorhabditis elegans and its mechanism of life extension. Food Funct 2024; 15:5855-5867. [PMID: 38687276 DOI: 10.1039/d3fo05394f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
In this study, it was found that epigallocatechin-3-gallate (EGCG) could extend the lifespan of Caenorhabditis elegans (C. elegans) induced by 100 μM acrolein (ACR) at all test concentrations (300, 400, 500, 600, and 700 μM). Notably, 500 μM EGCG exhibited the most significant mean lifespan extension, increasing it by approximately 32.5%. Furthermore, 500 μM EGCG effectively reduced elevated levels of reactive oxygen species (ROS) and lipofuscin production caused by acrolein. It also bolstered the activity of antioxidant enzymes and mitigated malondialdehyde (MDA) levels compared to the ACR-only group. These effects appeared independent of dietary restrictions. Additionally, qPCR results revealed different changes in the transcription levels of 11 genes associated with antioxidative and anti-aging functions following EGCG treatment. At the expression level, GST-4::GFP, SOD-3::GFP and HSP-16.2::GFP exhibited an initial increase with ACR treatment followed by a decrease with EGCG treatment, while the expression pattern of these three GFPs remained consistent with the enzyme activity and transcription regulation level. EGCG treatment also reduced the nuclear localization of SKN-1 and DAF-16 in the MAPK and IIS pathways that were enhanced by ACR. Moreover, the longevity-promoting effects of EGCG were diminished or absent in 13 longevity gene-deletion mutants. In conclusion, EGCG demonstrates protective effects on ACR-induced C. elegans, with the IIS and MAPK pathways playing a critical role in enhancing resilience to ACR.
Collapse
Affiliation(s)
- Yiming Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Danyang Liu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jiayan Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Yi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xinyi Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Xiaobo Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Qiang Yu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
4
|
Gu H, Si B, Yang C, Jia M, Lu Y, Lv L, Guo Y. Elimination of Acrolein by Disodium 5'-Guanylate or Disodium 5'-Inosinate at High Temperature and Its Application in Roasted Pork Patty. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20314-20324. [PMID: 38078910 DOI: 10.1021/acs.jafc.3c05064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Acrolein (ACR) is a highly active, simple unsaturated aldehyde found in various high-temperature processed foods. Its long-term accumulation in the human body increases the risk of chronic diseases. Animal and plant foodstuffs are rich in disodium 5'-guanylate (GMP) and disodium 5'-inosinate (IMP), which are authorized flavor enhancers. Herein, we used liquid chromatography with tandem mass spectrometry to explore the reaction-active kinetics and pathway of the interaction between GMP/IMP and ACR and validated it in roasted pork patties. Our results suggested that GMP and IMP could efficiently eliminate ACR by forming ACR adducts (GMP-ACR, IMP-ACR). In addition, IMP exhibited a higher reaction rate, whereas GMP had a good trapping capacity at a later stage. As carriers of GMP and IMP, dried mushrooms and shrimp exhibited an effective ACR-trapping ability in the ACR model and roasted pork patty individually and in combination. Adding 10% of dried mushroom or shrimp alone or 5% of dried mushroom and shrimp in combination eliminated up to 53.9%, 55.8%, and 55.2% ACR in a roasted pork patty, respectively. This study proposed a novel strategy to eliminate the generation of ACR in roasted pork patties by adding foodstuffs rich in GMP and IMP.
Collapse
Affiliation(s)
- Huihui Gu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Bo Si
- National Liquor Product Quality Supervision and Inspection Center, Suqian Product Quality Supervision & Inspection Institute, 889 Fazhan Road, Suqian, Jiangsu 223800, People's Republic of China
| | - Chen Yang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Mengwei Jia
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| | - Yuxing Guo
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing, Jiangsu 210023, People's Republic of China
| |
Collapse
|
5
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Park SL, Le Marchand L, Cheng G, Balbo S, Chen M, Carmella SG, Thomson NM, Lee Y, Patel YM, Stram DO, Jensen J, Hatsukami DK, Murphy SE, Hecht SS. Quantitation of DNA Adducts Resulting from Acrolein Exposure and Lipid Peroxidation in Oral Cells of Cigarette Smokers from Three Racial/Ethnic Groups with Differing Risks for Lung Cancer. Chem Res Toxicol 2022; 35:1914-1922. [PMID: 35998368 PMCID: PMC10019528 DOI: 10.1021/acs.chemrestox.2c00171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Multiethnic Cohort Study has demonstrated that the risk for lung cancer in cigarette smokers among three ethnic groups is highest in Native Hawaiians, intermediate in Whites, and lowest in Japanese Americans. We hypothesized that differences in levels of DNA adducts in oral cells of cigarette smokers would be related to these differing risks of lung cancer. Therefore, we used liquid chromatography-nanoelectrospray ionization-high resolution tandem mass spectrometry to quantify the acrolein-DNA adduct (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo, 1) and the lipid peroxidation-related DNA adduct 1,N6-etheno-dAdo (εdAdo, 2) in DNA obtained by oral rinse from 101 Native Hawaiians, 101 Whites, and 79 Japanese Americans. Levels of urinary biomarkers of nicotine, acrolein, acrylonitrile, and a mixture of crotonaldehyde, methyl vinyl ketone, and methacrolein were also quantified. Whites had significantly higher levels of γ-OH-Acr-dGuo than Japanese Americans and Native Hawaiians after adjusting for age and sex. There was no significant difference in levels of this DNA adduct between Japanese Americans and Native Hawaiians, which is not consistent with the high lung cancer risk of Native Hawaiians. Levels of εdAdo were modestly higher in Whites and Native Hawaiians than in Japanese Americans. The lower level of DNA adducts in the oral cells of Japanese American cigarette smokers than Whites is consistent with their lower risk for lung cancer. The higher levels of εdAdo, but not γ-OH-Acr-dGuo, in Native Hawaiian versus Japanese American cigarette smokers suggest that lipid peroxidation and related processes may be involved in their high risk for lung cancer, but further studies are required.
Collapse
Affiliation(s)
- Sungshim L Park
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Guang Cheng
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Menglan Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven G Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicole M Thomson
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Younghan Lee
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, United States
| | - Yesha M Patel
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Joni Jensen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Dorothy K Hatsukami
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sharon E Murphy
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stephen S Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
7
|
Bellamri M, Walmsley SJ, Brown C, Brandt K, Konorev D, Day A, Wu CF, Wu MT, Turesky RJ. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells. Chem Res Toxicol 2022; 35:1863-1880. [PMID: 35877975 PMCID: PMC9665352 DOI: 10.1021/acs.chemrestox.2c00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.
Collapse
Affiliation(s)
- Madjda Bellamri
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, MN 55455
- Division of Biostatistics, Institute of Health Informatics, University of Minnesota, MN 55455
| | - Christina Brown
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Kyle Brandt
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Abderrahman Day
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Chia-Fang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Ming Tsang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| |
Collapse
|
8
|
Liu D, Cheng Y, Tang Z, Mei X, Cao X, Liu J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2021; 466:153083. [PMID: 34958888 DOI: 10.1016/j.tox.2021.153083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Acrolein is a hazardous air pollutant for humans and is responsible for many pulmonary diseases, but the underlying mechanisms have not been completely elucidated. This work is focused on the genotoxicity effects of human bronchial epithelial (BEAS-2B) cells induced by acrolein (20, 40, 80 μM). The molecular mechanism was investigated base on DNA damage and mitochondrial apoptosis pathways. The results showed that after exposure to acrolein, the cell viability, glutathione (GSH) of BEAS-2B cells were reduced. Reactive oxygen species (ROS) level significantly increased, accompanied by increased levels of DNA damage-related indicators 8-hydroxy-2 deoxyguanosine (8-OHdG), DNA content of comet tail (Tail DNA%), olive tail moment (OTM), and nucleus morphology. Cell arrested at the G2/M phase. Then, the DNA damage response (DDR) signaling pathway (Ataxia-telangiectasia-mutated (ATM) and Rad-3-related (ATR)/Chk1 and ATM/Chk2) and the consequent cell cycle checkpoints were activated. The expression of γ-H2AX was significantly increased, indicating that acrolein induced DNA double-strand breaks. Molecular docking assay showed that acrolein bound to DNA in a spontaneous process. Moreover, mitochondrial apoptosis pathway involved in apoptosis, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) content of BEAS-2B cells were significantly reduced, and the apoptosis rate was significantly increased. The protein expression of Bax/Bcl-2 and Cleaved Caspase-3 were increased, and JNK signaling pathway was activated. All the results indicated that acrolein induced DNA damage, activated DDR and mitochondrial apoptosis pathways, which might be the pivotal factors to mediate cytotoxicity in BEAS-2B cells.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
9
|
Louis LM, Kavi LK, Boyle M, Pool W, Bhandari D, De Jesús VR, Thomas S, Pollack AZ, Sun A, McLean S, Rule AM, Quirós-Alcalá L. Biomonitoring of volatile organic compounds (VOCs) among hairdressers in salons primarily serving women of color: A pilot study. ENVIRONMENT INTERNATIONAL 2021; 154:106655. [PMID: 34090205 PMCID: PMC8221536 DOI: 10.1016/j.envint.2021.106655] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 05/26/2023]
Abstract
Hairdressers are exposed to volatile organic compounds (VOCs), many of which have been linked to acute and chronic health effects. Those hairdressers serving an ethnic clientele may potentially experience disproportionate exposures from frequent use of products containing VOCs or different VOC concentrations contained in products which are marketed to the specific needs of their clientele. However, no biomonitoring studies have investigated occupational exposures in this population. In the present pilot study, we sought to characterize concentrations and exposure determinants for 28 VOC biomarkers in post-shift urine samples among 23 hairdressers primarily serving an ethnic clientele. VOC biomarker concentrations among hairdressers of color were compared to concentrations among a comparison group of 17 office workers and a representative sample of women participating in the U.S. National Health and Nutrition Examination Survey. VOC biomarkers were detected in all hairdressers with higher concentrations observed among hairdressers serving a predominantly Black versus Latino clientele, and among hairdressers overall versus office workers and women in the U.S. general population. Median biomarker concentrations for acrolein,1,3-butadiene, and xylene in hairdressers were more than twice as high as those observed among office workers. Median concentrations for 1-bromopropane, acrolein and 1,3-butadiene were more than four times higher among all hairdressers compared to those reported among women in the U.S. general population. Select salon services (e.g., sister locs, flat ironing, permanent hair coloring, permanent waves or texturizing, Brazilian blowout or keratin treatment, etc.) were also associated with higher VOC biomarker concentrations among hairdressers. This pilot study represents the first biomonitoring analysis to characterize VOC exposures among women hairdressers of color and to provide evidence that this occupational population may experience elevated VOC exposures compared to women in the U.S. general population. Results from our study represent an important first step in elucidating occupational VOC exposures in this understudied occupational group. Larger studies among a racially and ethnically diverse cohort of hairdressers are warranted to confirm our findings and inform future exposure interventions in this understudied occupational population.
Collapse
Affiliation(s)
- Lydia M Louis
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health & Engineering, Baltimore, MD, USA
| | - Lucy K Kavi
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | - Meleah Boyle
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA
| | | | - Deepak Bhandari
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Víctor R De Jesús
- Tobacco and Volatiles Branch, Division of Laboratory Sciences, National Center for Environmental Health, US Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen Thomas
- University of Maryland, School of Public Health, College Park, MD, USA; Maryland Center for Health Equity, University of Maryland, College Park, MD, USA
| | - Anna Z Pollack
- Department of Global and Community Health, College of Health and Human Services, George Mason University, Fairfax, VA, USA
| | - Angela Sun
- Maryland Center for Health Equity, University of Maryland, College Park, MD, USA
| | - Seyrona McLean
- Maryland Center for Health Equity, University of Maryland, College Park, MD, USA
| | - Ana M Rule
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health & Engineering, Baltimore, MD, USA
| | - Lesliam Quirós-Alcalá
- Johns Hopkins University, Bloomberg School of Public Health, Department of Environmental Health & Engineering, Baltimore, MD, USA; Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, MD, USA.
| |
Collapse
|
10
|
Acrolein contributes to human colorectal tumorigenesis through the activation of RAS-MAPK pathway. Sci Rep 2021; 11:12590. [PMID: 34131238 PMCID: PMC8206110 DOI: 10.1038/s41598-021-92035-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most well-known malignancies with high prevalence and poor 5-year survival. Previous studies have demonstrated that a high-fat diet (HFD) is capable of increasing the odds of developing CRC. Acrolein, an IARC group 2A carcinogen, can be formed from carbohydrates, vegetable oils, animal fats, and amino acids through the Maillard reaction during the preparation of foods. Consequently, humans are at risk of acrolein exposure through the consumption of foods rich in fat. However, whether acrolein contributes to HFD-induced CRC has not been determined. In this study, we found that acrolein induced oncogenic transformation, including faster cell cycling, proliferation, soft agar formation, sphere formation and cell migration, in NIH/3T3 cells. Using xenograft tumorigenicity assays, the acrolein-transformed NIH/3T3 clone formed tumors. In addition, cDNA microarray and bioinformatics studies by Ingenuity Pathway Analysis pointed to the fact that RAS/MAPK pathway was activated in acrolein-transformed clones that contributed to colon tumorigenesis. Furthermore, acrolein-induced DNA damages (Acr-dG adducts) were higher in CRC tumor tissues than in normal epithelial cells in CRC patients. Notably, CRC patients with higher levels of Acr-dG adducts appeared to have better prognosis. The results of this study demonstrate for the first time that acrolein is important in oncogenic transformation through activation of the RAS/MAPK signaling pathway, contributing to colon tumorigenesis.
Collapse
|
11
|
Altomare A, Baron G, Gianazza E, Banfi C, Carini M, Aldini G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol 2021; 42:101899. [PMID: 33642248 PMCID: PMC8113032 DOI: 10.1016/j.redox.2021.101899] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive carbonyl species (RCS) formed by lipidperoxidation as free forms or as enzymatic and non-enzymatic conjugates are widely used as an index of oxidative stress. Besides general measurements based on derivatizing reactions, more selective and sensitive MS based analyses have been proposed in the last decade. Untargeted and targeted methods for the measurement of free RCS and adducts have been described and their applications to in vitro and ex vivo samples have permitted the identification of many biological targets, reaction mechanisms and adducted moieties with a particular relevance to RCS protein adducts. The growing interest in protein carbonylation can be explained by considering that protein adducts are now recognized as being involved in the damaging action of oxidative stress so that their measurement is performed not only to obtain an index of lipid peroxidation but also to gain a deeper insight into the molecular mechanisms of oxidative stress. The aim of the review is to discuss the most novel analytical approaches and their application for profiling reactive carbonyl species and their enzymatic and non-enzymatic metabolites as an index of lipid-oxidation and oxidative stress. Limits and perspectives will be discussed.
Collapse
Affiliation(s)
- Alessandra Altomare
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giovanna Baron
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Erica Gianazza
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138, Milan, Italy
| | - Marina Carini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences (DISFARM), Università Degli Studi di Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| |
Collapse
|
12
|
Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020; 10:biom10111579. [PMID: 33233661 PMCID: PMC7699716 DOI: 10.3390/biom10111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.
Collapse
|
13
|
Habibagahi A, Alderman N, Kubwabo C. A review of the analysis of biomarkers of exposure to tobacco and vaping products. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4276-4302. [PMID: 32853303 DOI: 10.1039/d0ay01467b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantification of exposure to different chemicals from both combustible cigarettes and vaping products is important in providing information on the potential health risks of these products. To assess the exposure to tobacco products, biomarkers of exposure (BOEs) are measured in a variety of biological matrices. In this review paper, current knowledge on analytical methods applied to the analysis of biomarkers of exposure to tobacco products is discussed. Numerous sample preparation techniques are available for the extraction and sample clean up for the analysis of BOEs to tobacco and nicotine delivery products. Many tobacco products-related exposure biomarkers have been analyzed using different instrumental techniques, the most common techniques being gas and liquid chromatography coupled with mass spectrometry (GC-MS, GC-MS/MS and LC-MS/MS). To assess exposure to emerging tobacco products and study exposure in dual tobacco users, the list of biomarkers analyzed in urine samples has been expanded. Therefore, the current state of the literature can be used in preparing a preferred list of biomarkers based on the aim of each study. The information summarized in this review is expected to be a handy tool for researchers involved in studying exposures to tobacco products, as well as in risk assessment of biomarkers of exposure to vaping products.
Collapse
Affiliation(s)
- Arezoo Habibagahi
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | | | | |
Collapse
|
14
|
Paiano V, Maertens L, Guidolin V, Yang J, Balbo S, Hecht SS. Quantitative Liquid Chromatography-Nanoelectrospray Ionization-High-Resolution Tandem Mass Spectrometry Analysis of Acrolein-DNA Adducts and Etheno-DNA Adducts in Oral Cells from Cigarette Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:2197-2207. [PMID: 32635726 PMCID: PMC8185904 DOI: 10.1021/acs.chemrestox.0c00223] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cigarette smoking is an important source of human exposure to toxicants and carcinogens and contributes significantly to cancer morbidity and mortality worldwide. Acrolein, a widespread environmental pollutant, is present in relatively high amounts in cigarette smoke and can react directly with DNA to form DNA adducts, which serve as important biomarkers for the assessment of exposure to acrolein and its potential role in smoking related cancer. Etheno-DNA adducts are promutagenic DNA lesions that can derive from exogenous chemicals as well as endogenous sources, including lipid peroxidation. In this study, we developed a combined method for the quantitation of (6R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-6-hydroxypyrimido[1,2-a]purine-10(3H)-one (α-OH-Acr-dGuo), (8R/S)-3-(2'-deoxyribos-1'-yl)-5,6,7,8,-tetrahydro-8-hydroxypyrimido[1,2-a]purine-10(3H)-one (γ-OH-Acr-dGuo), 1,N6-etheno-dAdo (εdAdo), and 3,N4-etheno-dCyd (εdCyd) adducts in oral rinse and cytobrush DNA from smokers and nonsmokers by liquid chromatography-nanoelelctrospray ionization-high-resolution tandem mass spectrometry (LC-NSI-HRMS/MS). For oral rinse samples, there was a statistically significant difference between the levels of α-OH-Acr-dGuo, γ-OH-Acr-dGuo, εdAdo, and εdCyd in smokers (12.1 ± 17.9, 163 ± 227, 182 ± 568, and 194 ± 400 adducts/109 nucleotides, respectively) and nonsmokers (1.85 ± 2.08, 5.95 ± 4.23, 7.69 ± 11.7, and 6.07 ± 10.9 adducts/109 nucleotides, respectively). For cytobrush samples, there was a statistically significant difference between the levels of γ-OH-Acr-dGuo and εdAdo in smokers (259 ± 540 and 82.9 ± 271 adducts/109 nucleotides, respectively) and nonsmokers (7.37 ± 5.09 and 16.2 ± 30.2 adducts/109 nucleotides, respectively) but not for α-OH-Acr-dGuo and εdCyd. Our results demonstrate that oral mucosa cells are an excellent source of material for evaluating DNA adducts to be used as biomarkers of tobacco smoke exposure and molecular changes potentially related to cancer.
Collapse
Affiliation(s)
- Viviana Paiano
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Laura Maertens
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- School of Public Health, University of Minnesota, Minneapolis, MN 55455
| | | | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- School of Public Health, University of Minnesota, Minneapolis, MN 55455
- Silvia Balbo and Stephen S. Hecht contributed equally to this study
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455
- Silvia Balbo and Stephen S. Hecht contributed equally to this study
| |
Collapse
|
15
|
Ruenz M, Goerke K, Bakuradze T, Abraham K, Lampen A, Eisenbrand G, Richling E. Sustained Human Background Exposure to Acrolein Evidenced by Monitoring Urinary Exposure Biomarkers. Mol Nutr Food Res 2019; 63:e1900849. [DOI: 10.1002/mnfr.201900849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Meike Ruenz
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Katharina Goerke
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Tamara Bakuradze
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Klaus Abraham
- Department of Food SafetyGerman Federal Institute for Risk Assessment (BfR) Max‐Dohrn‐Str. 8–10 10589 Berlin Germany
| | - Alfonso Lampen
- Department of Food SafetyGerman Federal Institute for Risk Assessment (BfR) Max‐Dohrn‐Str. 8–10 10589 Berlin Germany
| | - Gerhard Eisenbrand
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Elke Richling
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| |
Collapse
|