1
|
Wan YC, Kong ZL, Wu YHS, Huang CN, Ogawa T, Lin JT, Yang DJ. Establishment of appropriate conditions for the efficient determination of multiple mycotoxins in tea samples and assessment of their drinking risks. Food Chem 2025; 463:141438. [PMID: 39353305 DOI: 10.1016/j.foodchem.2024.141438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Conditions were determined for rapid, convenient, and efficient determination of 16 common mycotoxins in tea samples. Mycotoxins in tea leaves and tea infusion samples were extracted using solid-liquid extraction/liquid-liquid extraction combined with ultrasonic-assisted extraction. The extraction solvent was 2-butanone/ethyl acetate (9/1 v/v) with 0.1 % formic acid. The established conditions enabled the analysis of these mycotoxins by ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) in 5.5 min. In addition, HPLC with a temperature-controlled fluorescence detector was able to simultaneously determine 8 mycotoxins with fluorescent properties in 10 min without derivatization. Aflatoxin M1 (2.15 and 3.01 μg/kg), fumonisin B2 (198.89 μg/kg), and zearalenone (87.54 μg/kg) could be detected in commercially available pu-erh tea, green tea, and black tea products, and their total transfer rates from the products to brewed tea infusions were 64.08-65.13 %, 90.59 %, and 25.99 %, respectively. The risks of drinking mycotoxins from these tea infusions mostly showed low levels of concern.
Collapse
Affiliation(s)
- Ying-Chun Wan
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC; Testing Laboratory, Creation Food Co. Ltd., 3F No. 9, Ln. 168, Xingshan Road, Taipei 114066, Taiwan, ROC
| | - Zwe-Lin Kong
- Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung 20224, Taiwan, ROC
| | - Yi-Hsieng Samuel Wu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Chien-Ni Huang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC
| | - Tomohisa Ogawa
- Graduate School of Agricultural Science, Tohoku University, 468-1 AzaAoba Aramaki, Aoba-ku, Sendai 980-8572, Japan
| | - Jau-Tien Lin
- Department of Medical Applied Chemistry, Chung Shan Medical University, and Department of Medical Education, Chung Shan Medical University Hospital, 110, Section 1, Jianguo N. Road, Taichung 402, Taiwan
| | - Deng-Jye Yang
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University-Yangming Campus, 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC; Department of Nutrition and Master Program of Food and Drug Safety, China Medical University, 100, Sec. 1, Economic and Trade Road, Taichung 406040, Taiwan, ROC; Department of Food Nutrition and Health Biotechnology, Asia University, 500, Lioufeng Road., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
2
|
Ljubojević Pelić D, Lazić S, Živkov Baloš M. Chemical contaminants in donkey milk: A review of literature on sources, routes and pathways of contamination, regulatory framework, health risks, and preventive measures. Heliyon 2024; 10:e39999. [PMID: 39553575 PMCID: PMC11566849 DOI: 10.1016/j.heliyon.2024.e39999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Donkey milk has garnered increasing attention due to its potential health benefits and nutritional properties, positioning it as a valuable alternative to cow's milk for specific consumer groups, such as individuals with allergies, young children, elderly populations, and those with compromised immune systems. However, the presence of chemical contaminants in donkey milk presents a significant concern for food safety and public health. This review aims to provide an assessment of the types and sources of chemical contaminants in donkey milk, including heavy metals, mycotoxins, pesticides, polychlorinated biphenyls, and antimicrobial and antiparasitic veterinary drugs. Through a comprehensive analysis of available literature, we examine the routes and pathways through which these contaminants enter the milk, their prevalence, and the associated health risks. The review also briefly discusses analytical methods for detecting these contaminants and the existing legislative framework that regulates these contaminants, underscoring its critical role in safeguarding public health and promoting safe consumption of donkey milk products. By identifying gaps in existing research and suggesting areas for further study, this review seeks to contribute to the development of more effective strategies for monitoring and mitigating chemical contamination in donkey milk, ultimately safeguarding consumer health and supporting the sustainable production of this niche dairy product.
Collapse
Affiliation(s)
| | - Sava Lazić
- Scientific Veterinary Institute “Novi Sad”, Rumenački put 20, 21000, Novi Sad, Serbia
| | - Milica Živkov Baloš
- Scientific Veterinary Institute “Novi Sad”, Rumenački put 20, 21000, Novi Sad, Serbia
| |
Collapse
|
3
|
Kibugu J, Munga L, Mburu D, Maloba F, Auma JE, Grace D, Lindahl JF. Dietary Mycotoxins: An Overview on Toxicokinetics, Toxicodynamics, Toxicity, Epidemiology, Detection, and Their Mitigation with Special Emphasis on Aflatoxicosis in Humans and Animals. Toxins (Basel) 2024; 16:483. [PMID: 39591238 PMCID: PMC11598113 DOI: 10.3390/toxins16110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are secondary metabolites of filamentous fungi and ubiquitous dietary contaminants. Aflatoxins, a group of mycotoxins with high prevalence and toxicity, have raised a high level of public health concern, the most prevalent and toxic being aflatoxin B1 (AFB1). Many aspects appertaining to AFB1 poisoning are not well understood. Yet this information is necessary to devise appropriate surveillance and mitigation strategies against human and animal aflatoxicosis. This review provides an in-depth update of work carried out on mycotoxin poisoning, particularly aflatoxicosis in humans and animals, to identify gaps in knowledge. Hypotheses explaining the functional significance of mycotoxins in fungal biology and their dietary epidemiological data are presented and briefly discussed. The toxicology of aflatoxins and the challenges of their mitigation are discussed in depth. It was concluded that the identification of potential mycotoxin-hazard-prone food items and quantification of the associated risk of cancer ailments in humans is a prime priority. There is a dearth of reliable sampling methodologies for estimating AFB1 in animal feed. Data update on AFB1 in animal feed and its implication in animal production, mitigation strategies, and elucidation of risk factors to this hazard is required. To reduce the burden of aflatoxins, surveillance employing predictive technology, and biocontrol strategies seem promising approaches.
Collapse
Affiliation(s)
- James Kibugu
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Leonard Munga
- Department of Animal Science, School of Agriculture and Environmental Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - David Mburu
- Department of Biochemistry, Microbiology and Biotechnology, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Fredrick Maloba
- Department of Zoological Sciences, School of Pure and Applied Sciences, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya;
| | - Joanna E. Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu 00902, Kenya;
| | - Delia Grace
- Department of Biosciences, International Livestock Research Institute, P.O. Box 30709, Nairobi 00100, Kenya;
- Natural Resources Institute, University of Greenwich, UK, Central Avenue, Chatham ME4 4TB, UK
| | - Johanna F. Lindahl
- Department of Animal Health and Antibiotic Strategies, Swedish Veterinary Agency, 75189 Uppsala, Sweden;
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden
| |
Collapse
|
4
|
Dadmehr M, Shalileh F, Hosseini M. Enhancing mycotoxins detection through quantum dots-based optical biosensors. NANOTECHNOLOGY 2024; 36:042004. [PMID: 39508269 DOI: 10.1088/1361-6528/ad8c4d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Quantum dot-based optical biosensors represent a significant advancement for detection of mycotoxins that are toxic secondary metabolites produced by fungi and pose serious health risk effects. This review highlights the importance of detection of filamentous fungi such as Aspergillus, Penicillium, Fusarium, Claviceps, and Alternaria in mycotoxin production, leading to contamination of agricultural products and subsequent health issues. Conventional detection methods such as thin-layer chromatography, high-performance liquid chromatography, gas chromatography, and enzyme-linked immunosorbent assay are discussed with their respective advantages and limitations. Then the innovative use of quantum dots (QDs) in fabrication of biosensors is discussed in the present review, emphasizing their unique optical properties, such as size-tunable fluorescence and high photostability. These properties enable the development of highly sensitive and specific biosensors for mycotoxin detection. The application of QD-based biosensors, based on their applied bioreceptors including antibodies, molecularly imprinted polymers and aptamer, is explored through various detection strategies and recent advancements. The review concludes by underscoring the potential of QD-based biosensors in providing portable, cost-effective, and efficient solutions for real-time monitoring of mycotoxin for enhancing food safety and protecting public health.
Collapse
Affiliation(s)
- Mehdi Dadmehr
- Department of Biology, Payame Noor University, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
6
|
Qu M, He Y, Xu W, Liu D, An C, Liu S, Liu G, Cheng F. Array-optimized artificial olfactory sensor enabling cost-effective and non-destructive detection of mycotoxin-contaminated maize. Food Chem 2024; 456:139940. [PMID: 38870807 DOI: 10.1016/j.foodchem.2024.139940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
The MobileNetV3-based improved sine-cosine algorithm (ISCA-MobileNetV3) was combined with an artificial olfactory sensor (AOS) to address the redundancy in olfactory arrays, thereby achieving low-cost and high-precision detection of mycotoxin-contaminated maize. Specifically, volatile organic compounds of maize interacted with unoptimized AOS containing eight porphyrins and eight dye-attached nanocomposites to obtain the scent fingerprints for constructing the initial data set. The optimal decision model was MobileNetV3, with more than 98.5% classification accuracy, and its output training loss would be input into the optimizer ISCA. Remarkably, the number of olfactory arrays was reduced from 16 to 6 by ISCA-MobileNetV3 with about a 1% decrease in classification accuracy. Additionally, the developed system showed that each online evaluation was less than one second on average, demonstrating outstanding real-time performance for ensuring food safety. Therefore, AOS combined with ISCA-MobileNetV3 will encourage the development of an affordable and on-site platform for maize quality detection.
Collapse
Affiliation(s)
- Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Yingchao He
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Weidong Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Da Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Changqing An
- College of Biosystems Engineering and Food Science, Zhejiang University, China
| | - Shanming Liu
- School of Mechanical and Aerospace Engineering, Jilin University, China
| | - Guang Liu
- College of Mechanical Engineering, Xinjiang University, China
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, China.
| |
Collapse
|
7
|
Aggarwal A, Mishra A, Tabassum N, Kim YM, Khan F. Detection of Mycotoxin Contamination in Foods Using Artificial Intelligence: A Review. Foods 2024; 13:3339. [PMID: 39456400 PMCID: PMC11507438 DOI: 10.3390/foods13203339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Mycotoxin contamination of foods is a major concern for food safety and public health worldwide. The contamination of agricultural commodities employed by humankind with mycotoxins (toxic secondary metabolites of fungi) is a major risk to the health of the human population. Common methods for mycotoxin detection include chromatographic separation, often combined with mass spectrometry (accurate but time-consuming to prepare the sample and requiring skilled technicians). Artificial intelligence (AI) has been introduced as a new technique for mycotoxin detection in food, providing high credibility and accuracy. This review article provides an overview of recent studies on the use of AI methods for the discovery of mycotoxins in food. The new approach demonstrated that a variety of AI technologies could be correlated. Deep learning models, machine learning algorithms, and neural networks were implemented to analyze elaborate datasets from different analytical platforms. In addition, this review focuses on the advancement of AI to work concomitantly with smart sensing technologies or other non-conventional techniques such as spectroscopy, biosensors, and imaging techniques for rapid and less damaging mycotoxin detection. We question the requirement for large and diverse datasets to train AI models, discuss the standardization of analytical methodologies, and discuss avenues for regulatory approval of AI-based approaches, among other top-of-mind issues in this domain. In addition, this research provides some interesting use cases and real commercial applications where AI has been able to outperform other traditional methods in terms of sensitivity, specificity, and time required. This review aims to provide insights for future directions in AI-enabled mycotoxin detection by incorporating the latest research results and stressing the necessity of multidisciplinary collaboration among food scientists, engineers, and computer scientists. Ultimately, the use of AI could revolutionize systems monitoring mycotoxins, improving food safety and safeguarding global public health.
Collapse
Affiliation(s)
- Ashish Aggarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India; (A.A.); (A.M.)
| | - Akanksha Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144001, Punjab, India; (A.A.); (A.M.)
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (N.T.); (Y.-M.K.)
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
8
|
Qu M, An C, Cheng F, Zhang J. Exploration of Volatileomics and Optical Properties of Fusarium graminearum-Contaminated Maize: An Application Basis for Low-Cost and Non-Destructive Detection. Foods 2024; 13:3087. [PMID: 39410125 PMCID: PMC11475652 DOI: 10.3390/foods13193087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Fusarium graminearum (F. graminearum) in maize poses a threat to grain security. Current non-destructive detection methods face limited practical applications in grain quality detection. This study aims to understand the optical properties and volatileomics of F. graminearum-contaminated maize. Specifically, the transmission and reflection spectra (wavelength range of 200-1100 nm) were used to explore the optical properties of F. graminearum-contaminated maize. Volatile organic compounds (VOCs) of F. graminearum-contaminated maize were determined by headspace solid phase micro-extraction with gas chromatography-tandem mass spectrometry. The VOCs of normal maize were mainly alcohols and ketones, while the VOCs of severely contaminated maize became organic acids and alcohols. The ultraviolet excitation spectrum of maize showed a peak redshift as fungi grew, and the intensity decreased in the 400-600 nm band. Peak redshift and intensity changes were observed in the visible/near-infrared reflectance and transmission spectra of F. graminearum-contaminated maize. Remarkably, optical imaging platforms based on optical properties were developed to ensure high-throughput detection for single-kernel maize. The developed imaging platform could achieve more than 80% classification accuracy, whereas asymmetric polarization imaging achieved more than 93% prediction accuracy. Overall, these results can provide theoretical support for the cost-effective preparation of low-cost gas sensors and high-prediction sorting equipment for maize quality detection.
Collapse
Affiliation(s)
- Maozhen Qu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Changqing An
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Fang Cheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310027, China; (M.Q.); (C.A.)
| | - Jun Zhang
- College of Mechanical and Electrical Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| |
Collapse
|
9
|
Steiner D, Bartók T, Sulyok M, Szekeres A, Varga M, Horváth L, Rost H. Global Perspectives on Mycotoxin Reference Materials (Part I): Insights from Multi-Supplier Comparison Study Including Aflatoxin B1, Deoxynivalenol and Zearalenone. Toxins (Basel) 2024; 16:397. [PMID: 39330855 PMCID: PMC11435901 DOI: 10.3390/toxins16090397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
We conducted a comprehensive examination of liquid mycotoxin reference standards. A total of 30 different standards were tested, each containing 10 samples of three distinct substances: Aflatoxin B1, Deoxynivalenol, and Zearalenone. The standards were sourced from 10 different global market leading manufacturers. To facilitate comparison, all the standard sets were adjusted to the same concentration level. The standards were analyzed using the techniques LC-MS/MS, HPLC-DAD, and LC-HRMS to assess their quality attributes. Regarding the validation of the reference values, it was observed that 30% of the suppliers provided reference standards that were either below the lower acceptance limit or above the higher acceptance limit, confirmed by both the LC-MS/MS and HPLC-DAD methods. Furthermore, a total of 12 impurities were found in the DON standards, 10 in the AFB1 standards, and 8 in the ZON standards, distributed across all the suppliers. Therefore, this study suggests relevant adjustments to the ISO 17034 standard, proposing that the purity of a raw material should be uniformly based on q-NMR analysis, as most manufacturers state the purity of their certificates is determined using HPLC-UV or LC-MS/MS. Liquid standards with a shelf life of ≤1 year should not exceed an uncertainty of 3%. Standards that have a longer shelf life should not have more than 5% uncertainty. This study also emphasizes the importance of stability. The standards should undergo continuous long-term monitoring; otherwise, products may exhibit a target value of only 80%, as seen in one instance. It is also recommended to include proof of HPLC and LC-MS/MS analyses on the certificate of each released batch of a final product.
Collapse
Affiliation(s)
- David Steiner
- LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg, Austria;
| | - Tibor Bartók
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Michael Sulyok
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz-Strasse 20, 3430 Tulln, Austria;
| | - András Szekeres
- Department of Biotechnology and Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - Mónika Varga
- Department of Biotechnology and Microbiology, University of Szeged, Közép fasor 52, 6726 Szeged, Hungary; (A.S.); (M.V.)
| | - Levente Horváth
- Fumizol Ltd., Kisfaludy u. 6/B, H-6725 Szeged, Hungary; (T.B.); (L.H.)
| | - Helmut Rost
- LVA GmbH, Magdeburggasse 10, 3400 Klosterneuburg, Austria;
| |
Collapse
|
10
|
Nazareth TDM, Soriano Pérez E, Luz C, Meca G, Quiles JM. Comprehensive Review of Aflatoxin and Ochratoxin A Dynamics: Emergence, Toxicological Impact, and Advanced Control Strategies. Foods 2024; 13:1920. [PMID: 38928866 PMCID: PMC11203094 DOI: 10.3390/foods13121920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/27/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Filamentous fungi exhibit remarkable adaptability to diverse substrates and can synthesize a plethora of secondary metabolites. These metabolites, produced in response to environmental stimuli, not only confer selective advantages but also encompass potentially deleterious mycotoxins. Mycotoxins, exemplified by those originating from Alternaria, Aspergillus, Penicillium, and Fusarium species, represent challenging hazards to both human and animal health, thus warranting stringent regulatory control. Despite regulatory frameworks, mycotoxin contamination remains a pressing global challenge, particularly within cereal-based matrices and their derived by-products, integral components of animal diets. Strategies aimed at mitigating mycotoxin contamination encompass multifaceted approaches, including biological control modalities, detoxification procedures, and innovative interventions like essential oils. However, hurdles persist, underscoring the imperative for innovative interventions. This review elucidated the prevalence, health ramifications, regulatory paradigms, and evolving preventive strategies about two prominent mycotoxins, aflatoxins and ochratoxin A. Furthermore, it explored the emergence of new fungal species, and biocontrol methods using lactic acid bacteria and essential mustard oil, emphasizing their efficacy in mitigating fungal spoilage and mycotoxin production. Through an integrative examination of these facets, this review endeavored to furnish a comprehensive understanding of the multifaceted challenges posed by mycotoxin contamination and the emergent strategies poised to ameliorate its impact on food and feed safety.
Collapse
Affiliation(s)
- Tiago de Melo Nazareth
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (E.S.P.); (C.L.); (G.M.); (J.M.Q.)
| | | | | | | | | |
Collapse
|
11
|
Lapris M, Errico M, Rocchetti G, Gallo A. The Potential of Multi-Screening Methods and Omics Technologies to Detect Both Regulated and Emerging Mycotoxins in Different Matrices. Foods 2024; 13:1746. [PMID: 38890974 PMCID: PMC11171533 DOI: 10.3390/foods13111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Mycotoxins are well-known secondary metabolites produced by several fungi that grow and occur in different crops during both pre-harvest and post-harvest conditions. The contamination and occurrence of mycotoxins currently represent some of the major issues in the entire agri-food system. The quantification of mycotoxins in different feeds and foodstuffs is extremely difficult because of the low concentration ranges; therefore, both sample collection and preparation are essential to providing accurate detection and reliable quantification. Currently, several analytical methods are available for the detection of mycotoxins in both feed and food products, and liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) represents the most reliable instrumental approach. In particular, the fast development of high-throughput methods has made it possible to screen and analyze, in the same analytical run and with high accuracy, multiple mycotoxins, such as those regulated, masked, or modified, and emerging ones. Therefore, the aim of this review is to provide an overview of the state of the art of mycotoxins occurrence, health-related concerns, and analyses, discussing the need to perform multi-screening approaches combined with omics technologies to simultaneously analyze several mycotoxins in different feed and food matrices. This approach is expected to provide more comprehensive information about the profile and distribution of emerging mycotoxins, thus enhancing the understanding of their co-occurrence and impact on the entire production chain.
Collapse
Affiliation(s)
| | | | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (M.L.); (M.E.); (A.G.)
| | | |
Collapse
|
12
|
Qu Z, Ren X, Du Z, Hou J, Li Y, Yao Y, An Y. Fusarium mycotoxins: The major food contaminants. MLIFE 2024; 3:176-206. [PMID: 38948146 PMCID: PMC11211685 DOI: 10.1002/mlf2.12112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 07/02/2024]
Abstract
Mycotoxins, which are secondary metabolites produced by toxicogenic fungi, are natural food toxins that cause acute and chronic adverse reactions in humans and animals. The genus Fusarium is one of three major genera of mycotoxin-producing fungi. Trichothecenes, fumonisins, and zearalenone are the major Fusarium mycotoxins that occur worldwide. Fusarium mycotoxins have the potential to infiltrate the human food chain via contamination during crop production and food processing, eventually threatening human health. The occurrence and development of Fusarium mycotoxin contamination will change with climate change, especially with variations in temperature, precipitation, and carbon dioxide concentration. To address these challenges, researchers have built a series of effective models to forecast the occurrence of Fusarium mycotoxins and provide guidance for crop production. Fusarium mycotoxins frequently exist in food products at extremely low levels, thus necessitating the development of highly sensitive and reliable detection techniques. Numerous successful detection methods have been developed to meet the requirements of various situations, and an increasing number of methods are moving toward high-throughput features. Although Fusarium mycotoxins cannot be completely eliminated, numerous agronomic, chemical, physical, and biological methods can lower Fusarium mycotoxin contamination to safe levels during the preharvest and postharvest stages. These theoretical innovations and technological advances have the potential to facilitate the development of comprehensive strategies for effectively managing Fusarium mycotoxin contamination in the future.
Collapse
Affiliation(s)
- Zheng Qu
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro‐ProductsShandong Academy of Agricultural SciencesJinanChina
| | - Zhaolin Du
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Jie Hou
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Ye Li
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yanpo Yao
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| | - Yi An
- Agro‐Environmental Protection InstituteMinistry of Agriculture and Rural AffairsTianjinChina
| |
Collapse
|
13
|
Bastidas-Caldes C, Vasco-Julio D, Huilca-Ibarra M, Guerrero-Freire S, Ledesma-Bravo Y, de Waard JH. Addressing the Concern of Orange-Yellow Fungus Growth on Palm Kernel Cake: Safeguarding Dairy Cattle Diets for Mycotoxin-Producing Fungi. Microorganisms 2024; 12:937. [PMID: 38792767 PMCID: PMC11124023 DOI: 10.3390/microorganisms12050937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Palm kernel cake (PKC), a byproduct of palm oil extraction, serves an important role in Ecuador's animal feed industry. The emergence of yellow-orange fungal growth in PKC on some cattle farms in Ecuador sparked concerns within the cattle industry regarding a potential mycotoxin-producing fungus on this substrate. Due to the limited availability of analytical chemistry techniques in Ecuador for mycotoxin detection, we chose to isolate and identify the fungus to determine its association with mycotoxin-producing genera. Through molecular identification via ITS region sequencing, we identified the yellow-orange fungus as the yeast Candida ethanolica. Furthermore, we isolated two other fungi-the yeast Pichia kudriavzevii, and the fungus Geotrichum candidum. Molecular identification confirmed that all three species are not classified as mycotoxin-producing fungi but in contrast, the literature indicates that all three have demonstrated antifungal activity against Aspergillus and Penicillium species, genera associated with mycotoxin production. This suggests their potential use in biocontrol to counter the colonization of harmful fungi. We discuss preventive measures against the fungal invasion of PKC and emphasize the importance of promptly identifying fungi on this substrate. Rapid recognition of mycotoxin-producing and pathogenic genera holds the promise of mitigating cattle intoxication and the dissemination of mycotoxins throughout the food chain.
Collapse
Affiliation(s)
- Carlos Bastidas-Caldes
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - David Vasco-Julio
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62050, Mexico
| | - Maria Huilca-Ibarra
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Salomé Guerrero-Freire
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
- Programa de Doctorado, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires C1063ACV, Argentina
| | - Yanua Ledesma-Bravo
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| | - Jacobus H. de Waard
- One Health Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Biotecnología, Universidad de Las Américas, Quito 170530, Ecuador; (C.B.-C.); (M.H.-I.); or (S.G.-F.); (Y.L.-B.)
| |
Collapse
|
14
|
Bahari HR, Mousavi Khaneghah A, Eş I. Upconversion nanoparticles-modified aptasensors for highly sensitive mycotoxin detection for food quality and safety. Compr Rev Food Sci Food Saf 2024; 23:e13369. [PMID: 38767851 DOI: 10.1111/1541-4337.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.
Collapse
Affiliation(s)
- Hamid-Reza Bahari
- Center of Innovation for Green and High Technologies, Tehran, Iran
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Ankara, Turkey
| | | | - Ismail Eş
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Furlong EB, Buffon JG, Cerqueira MB, Kupski L. Mitigation of Mycotoxins in Food-Is It Possible? Foods 2024; 13:1112. [PMID: 38611416 PMCID: PMC11011883 DOI: 10.3390/foods13071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Among microorganisms found in food, fungi stand out because they are adaptable and competitive in a large range of water activities, temperatures, pHs, humidities and substrate types. Besides sporulating, some species are toxigenic and produce toxic metabolites, mycotoxins, under adverse biotic and abiotic variables. Microorganisms are inactivated along the food chain, but mycotoxins have stable structures and remain in ready-to-eat food. The most prevalent mycotoxins in food, which are aflatoxins, fumonisins, ochratoxin A, patulin, tenuazonic acid, trichothecenes and zearalenone, have maximum tolerable limits (MTLs) defined as ppb and ppt by official organizations. The chronic and acute toxicities of mycotoxins and their stability are different in a chemical family. This critical review aims to discuss promising scientific research that successfully mitigated levels of mycotoxins and focus the results of our research group on this issue. It highlights the application of natural antifungal compounds, combinations of management, processing parameters and emergent technologies, and their role in reducing the levels and bioaccessibility. Despite good crop management and processing practices, total decontamination is almost impossible. Experimental evidence has shown that exposure to mycotoxins may be mitigated. However, multidisciplinary efforts need to be made to improve the applicability of successful techniques in the food supply chain to avoid mycotoxins' impact on global food insecurity.
Collapse
Affiliation(s)
| | | | | | - Larine Kupski
- Laboratory of Mycotoxins and Food Science (LAMCA), School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, km 8, s/n, Rio Grande 96203-900, Rio Grande do Sul, Brazil; (E.B.F.); (J.G.B.); (M.B.C.)
| |
Collapse
|
16
|
Okechukwu VO, Adelusi OA, Kappo AP, Njobeh PB, Mamo MA. Aflatoxins: Occurrence, biosynthesis, mechanism of action and effects, conventional/emerging detection techniques. Food Chem 2024; 436:137775. [PMID: 37866099 DOI: 10.1016/j.foodchem.2023.137775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
Aflatoxins (AFs) are toxic secondary metabolites prevalent in various food and agricultural products, posing significant challenges to global food safety. The detection and quantification of AFs through high-precision analytical techniques are crucial in mitigating AF contamination levels and associated health risks. Variousmethods,including conventional and emerging techniques, have been developed for detecting and quantifyingAFsinfood samples. This review provides an in-depth analysis of the global occurrence of AF in food commodities, covering their biosynthesis, mode of action, and effects on humans and animals. Additionally, the review discusses different conventional strategies, including chromatographic and immunochemical approaches, for AF quantification and identification in food samples. Furthermore, emerging AF detection strategies, such as solid-state gas sensors and electronic nose technologies, along with their applications, limitations, and future perspectives, were reviewed. Sample purification, along with their respective advantages and limitations, are also discussed herein.
Collapse
Affiliation(s)
- Viola O Okechukwu
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Oluwasola A Adelusi
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Abidemi P Kappo
- Department of Biochemistry, Auckland Park Kingsway Campus, University of Johannesburg, South Africa
| | - Patrick B Njobeh
- Department of Biotechnology and Food Technology, PO Box 17011, Doornfontein Campus, University of Johannesburg, South Africa
| | - Messai A Mamo
- Department of Chemical Sciences, PO Box 2028, Doornfontein Campus, University of Johannesburg, South Africa.
| |
Collapse
|
17
|
Ali S, Battaglini Franco B, Theodoro Rezende V, Gabriel Dionisio Freire L, Lima de Paiva E, Clara Fogacio Haikal M, Leme Guerra E, Eliana Rosim R, Gustavo Tonin F, Savioli Ferraz I, Antonio Del Ciampo L, Augusto Fernandes de Oliveira C. Exposure assessment of children to dietary mycotoxins: A pilot study conducted in Ribeirão Preto, São Paulo, Brazil. Food Res Int 2024; 180:114087. [PMID: 38395556 DOI: 10.1016/j.foodres.2024.114087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Exposure to mycotoxins through food is a major health concern, especially for youngsters. This study performed a preliminary investigation on children's exposure to dietary mycotoxins in Ribeirão Preto, Brazil. Sampling procedures were conducted between August and December 2022, to collect foods (N = 213) available for consumption in the households of children (N = 67), including preschoolers (aged 3-6 years, n = 21), schoolers (aged 7-10 years, n = 15), and adolescents (aged 11-17 years, n = 31) cared in the Vila Lobato Community Social Medical Center of Ribeirão Preto. Ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) was used to determine concentrations of the mycotoxins in foods. Mycotoxins measured in all foods comprised aflatoxins (AFs), fumonisins (FBs), zearalenone (ZEN), T-2 toxin, deoxynivalenol (DON) and ochratoxin A (OTA). Higher incidence and levels were found for FBs, ZEN, and DON in several commonly consumed foods. Furthermore, 32.86 % foods had two to four quantifiable mycotoxins in various combinations. The mean estimated daily intake (EDI) values were lower than the tolerable daily intake (TDI) for AFs, FBs, and ZEN, but higher than the TDI (1.0 µg/kg bw/day) for DON, hence indicating a health risk for all children age groups. Preschoolers and adolescents were exposed to DON through wheat products (EDIs: 2.696 ± 7.372 and 1.484 ± 2.395 µg/kg body weight (bw)/day, respectively), while schoolers were exposed through wheat products (EDI: 1.595 ± 1.748 µg/kg bw/day) and rice (EDI: 1.391 ± 1.876 µg/kg bw/day). The results indicate that wheat-based foods and rice may be risky to children, implying the need for stringent measures to avoid DON contamination in these products.
Collapse
Affiliation(s)
- Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| | - Bruna Battaglini Franco
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Vanessa Theodoro Rezende
- Faculty of Veterinary Medicine and Animal Science, University of São Paulo (USP) -Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Lucas Gabriel Dionisio Freire
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Esther Lima de Paiva
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Maria Clara Fogacio Haikal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Eloiza Leme Guerra
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Roice Eliana Rosim
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Fernando Gustavo Tonin
- Department of Biosystems Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil
| | - Ivan Savioli Ferraz
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Luiz Antonio Del Ciampo
- Department of Puericulture and Pediatrics, Medical School at Ribeirão Preto, University of São Paulo (USP)-Ribeirão Preto, 14051-200, SP, Brazil
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP)-Fernando Costa Campus, Pirassununga 13635-900, SP, Brazil.
| |
Collapse
|
18
|
Demir B, Yola BB, Bekerecioğlu S, Polat İ, Yola ML. A nivalenol imprinted quartz crystal microbalance sensor based on sulphur-incorporating cobalt ferrite and its application to rice samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1215-1224. [PMID: 38314668 DOI: 10.1039/d4ay00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Nivalenol as a mycotoxin pesticide is toxic to humans and animals and causes major health problems including hemorrhage, anemia, and vomiting. Thus, the need for fast and reliable analytical systems in terms of the management of health risks resulting from nivalenol exposure has increased in recent years. The aim of this study involved a novel molecularly imprinted quartz crystal microbalance sensor preparation based on sulphur-incorporating cobalt ferrite for nivalenol detection in rice samples. For this aim, cobalt ferrite and sulfur incorporated cobalt ferrite were successfully synthesized by sol-gel and calcination methods, respectively. Then, nivalenol imprinted quartz crystal microbalance chips based on cobalt ferrite and sulfur incorporated cobalt ferrite were prepared by an ultraviolet polymerization technique including N,N'-azobisisobutyronitrile as the initiator, ethylene glycol dimethacrylate as the cross-linker, methacryloylamidoglutamic acid as the monomer, and nivalenol as the analyte. After some spectroscopic, electrochemical and microscopic characterization studies, the developed sensor was applied to rice grain samples for the determination of nivalenol. The linearity of the prepared sensor was observed to be 1.0-10.0 ng L-1 and the limit of quantification and detection limit were found to be 1.0 and 0.33 ng L-1, respectively. Finally, the high selectivity, repeatability, and stability of the prepared sensor based on sulphur-incorporating cobalt ferrite and a molecularly imprinted polymer can ensure safe food consumption worldwide.
Collapse
Affiliation(s)
- Betül Demir
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, 27000, Turkey.
| | - Bahar Bankoğlu Yola
- Department of Engineering Basic Sciences, Faculty of Engineering and Natural Sciences, Gaziantep Islam Science and Technology University, Gaziantep, 27000, Turkey
| | - Sena Bekerecioğlu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, 27000, Turkey.
| | - İlknur Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, 27000, Turkey.
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep, 27000, Turkey.
| |
Collapse
|
19
|
Yang J, Li W, Li H, Wang X, Xu K, Li Q, Zheng T, Li J. Highly Sensitive Microarray Immunoassay for Multiple Mycotoxins on Engineered 3D Porous Silicon SERS Substrate with Silver Nanoparticle Magnetron Sputtering. Anal Chem 2024; 96:2425-2434. [PMID: 38291775 DOI: 10.1021/acs.analchem.3c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
A high-throughput, rapid, and highly sensitive surface-enhanced Raman spectroscopy (SERS) microarray for screening multiple mycotoxins has been developed on a three-dimensional silver nanoparticle porous silicon (3D AgNP-Psi) SERS substrate, which was easy to be engineered by electrochemical etching and magnetron sputtering technology. The etching current density, etching waveform, and target material for magnetron sputtering have been investigated to obtain an optimal 3D SERS substrate. The optimized 3D AgNP-Psi SERS substrate showed an enhancement factor of 2.3 × 107 at 400 mA/cm2 constant current density etching for 20 s and Ag target magnetron sputtering for 200 nm thickness on the surface of Psi. The simulation electric field distribution showed the near-field enhancement can reach 3× higher than that of AuNPs. A protein microarray has been designed to screen multiple mycotoxins by AuNP Raman tags and a competitive immunoassay protocol on the surface of the 3D SERS substrate. The SERS protein microarray displayed wide linear detection ranges of 0.001-100 ng/mL for ochratoxin A, 0.01-100 ng/mL for aflatoxin B1, 0.001-10 ng/mL for deoxynivalenol, along with pg/mL low limit of detection, good recovery rates, repeatability, and reproducibility. The 3D SERS protein microarray is easily engineered and has a great potential application in medicine, environment, and food industry fields.
Collapse
Affiliation(s)
- Jing Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wei Li
- Medical Imaging Center, the First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Hao Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiu Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Kaisong Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
20
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Innovative approaches for mycotoxin detection in various food categories. AMB Express 2024; 14:7. [PMID: 38216801 PMCID: PMC10786816 DOI: 10.1186/s13568-024-01662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/14/2024] Open
Abstract
Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any processing phase before or after harvest. Animals and humans who consume MTs-contaminated food or feed may experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, developing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, and future directions of conventional detection methods versus innovative methods have also been highlighted and discussed.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Organization of African Unity St., Ain Shams University, Abbassia, PO: 11566, Cairo, Egypt.
| |
Collapse
|
21
|
Boshra MH, El-Housseiny GS, Farag MMS, Aboshanab KM. Evaluation of ELISA and immunoaffinity fluorometric analytical tools of four mycotoxins in various food categories. AMB Express 2023; 13:123. [PMID: 37922052 PMCID: PMC10624774 DOI: 10.1186/s13568-023-01629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 11/05/2023] Open
Abstract
Mycotoxins (MTs) are secondary toxic metabolites that can contaminate food, impacting quality and safety, leading to various negative health effects and serious pathological consequences conferring urgent need to evaluate and validate the currently standard methods used in their analysis. Therefore, this study was aimed to validate ELISA and VICAM immunoaffinity fluorometric, the two common methods used to monitor the level of MTs according to the Egyptian Organization for Standardization and Quality Control. A total of 246 food samples were collected and tested for Aflatoxins (196 samples), Ochratoxin A (139), Zearalenone (70), and Deoxynivalenol (100) using both analytical methods. Results showed that aflatoxins exceeded limits in 42.9, 100, and 13.3% of oily seeds, dried fruits, and chili and spices, respectively. For ochratoxin A, 3.9% of Gramineae and 8% of spices and chili (locally sourced) exceeded the limits, while 17.6% of imported pasta and noodles exceeded the limits for deoxynivalenol. Significant differences for the aflatoxins and ochratoxin A detection among different categories of chocolate, dried fruits, and oily seeds (p-value < 0.05). No zearalenone contamination was detected in the exported, imported, and locally sourced categories. No deoxynivalenol contamination was detected in the tested Gramineae category. In contrast, for pasta and noodles, the imported samples exhibited the highest contamination rate (above the upper limit of 750 µg/kg) with 17.6% of the samples testing positive for deoxynivalenol with no significant difference among different sample categories of Gramineae, pasta, and noodles (p-value > 0.05). In conclusion, our study found no significant differences between the ELISA and immunoaffinity fluorometric analysis in the detection of the respective MTs in various food categories and therefore, they can substitute each other whenever necessary. However, significant differences were observed among different food categories, particularly the local and imported ones, highlighting the urgent need for strict and appropriate control measures to minimize the risk of MTs adverse effects.
Collapse
Affiliation(s)
- Marina H Boshra
- Department of Mycotoxins, Central Public Health Laboratories (CPHL), Ministry of Health, Cairo, Egypt
| | - Ghadir S El-Housseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mohammed M S Farag
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
22
|
Dib AA, Assaf JC, Debs E, Khatib SE, Louka N, Khoury AE. A comparative review on methods of detection and quantification of mycotoxins in solid food and feed: a focus on cereals and nuts. Mycotoxin Res 2023; 39:319-345. [PMID: 37523055 DOI: 10.1007/s12550-023-00501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Many emerging factors and circumstances urge the need to develop and optimize the detection and quantification techniques of mycotoxins in solid food and feed. The diversity of mycotoxins, which have different properties and affinities, makes the standardization of the analytical procedures and the adoption of a single protocol that covers the attributes of all mycotoxins a tedious or even an impossible mission. Several modifications and improvements have been undergone in order to optimize the performance of these methods including the extraction solvents, the extraction methods, the clean-up procedures, and the analytical techniques. The techniques range from the rapid screening methods, which lack sensitivity and specificity such as TLC, to a spectrum of more advanced protocols, namely, ELISA, HPLC, and GC-MS and LC-MS/MS. This review aims at assessing the current studies related to these analytical techniques of mycotoxins in solid food and feed. It discusses and evaluates, through a critical approach, various sample treatment techniques, and provides an in-depth examination of different mycotoxin detection methods. Furthermore, it includes a comparison of their actual accuracy and a thorough analysis of the observed benefits and drawbacks.
Collapse
Affiliation(s)
- Alaa Abou Dib
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
| | - Jean Claude Assaf
- Department of Chemical Engineering, Faculty of Engineering, University of Balamand, P.O. Box 100, Tripoli, Lebanon
| | - Espérance Debs
- Department of Biology, Faculty of Arts and Sciences, University of Balamand, P.O. Box 100, Tripoli, 1300, Lebanon
| | - Sami El Khatib
- Department of Food Sciences and Technology, Faculty of Arts and Sciences, Bekaa Campus, Lebanese International University, Khiyara, 1108, Bekaa, Lebanon
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally, Kuwait
| | - Nicolas Louka
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon
| | - André El Khoury
- Centre d'Analyses Et de Recherche (CAR), Faculté Des Sciences, Unité de Recherche Technologies Et Valorisation Agro-Alimentaire (UR-TVA), Université Saint-Joseph de Beyrouth, Campus Des Sciences Et TechnologiesMar Roukos, Matn, 1104-2020, Lebanon.
| |
Collapse
|
23
|
Silva Â, Mateus ARS, Barros SC, Silva AS. Ergot Alkaloids on Cereals and Seeds: Analytical Methods, Occurrence, and Future Perspectives. Molecules 2023; 28:7233. [PMID: 37894711 PMCID: PMC10609535 DOI: 10.3390/molecules28207233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Ergot alkaloids are secondary metabolites resulting from fungi of the genus Claviceps that have proven to be highly toxic. These mycotoxins commonly infect cereal crops such as wheat, rye, barley, and oats. Due to the increase worldwide consumption of cereal and cereal-based products, the presence of ergot alkaloids in food presents a concern for human safety. For this reason, it is essential to develop several analytical methods that allow the detection of these toxic compounds. This review compiles and discusses the most relevant studies and methods used in the detection and quantification of ergot alkaloids. Moreover, the decontamination techniques are also addressed, with special attention to sorting, cleaning, frying, baking, peeling, and ammonization methods, as they are the only ones already applied to ergot alkaloids.
Collapse
Affiliation(s)
- Ângela Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
| | - Ana Rita Soares Mateus
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal;
| | - Sílvia Cruz Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., 4485-655 Vila do Conde, Portugal;
| | - Ana Sanches Silva
- University of Coimbra, Faculty of Pharmacy, Polo III, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; (Â.S.); (A.R.S.M.)
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, 4501-401 Oporto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
24
|
da Silva LAGA, Piacentini KC, Caramês ETDS, Silva NCC, Wawroszová S, Běláková S, Rocha LDO. Quantitative PCR (qPCR) for estimating the presence of Fusarium and its mycotoxins in barley grains. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2023; 40:1369-1387. [PMID: 37640447 DOI: 10.1080/19440049.2023.2250474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
Members within the Fusarium sambucinum species complex (FSAMSC) are able to produce mycotoxins, such as deoxynivalenol (DON), nivalenol (NIV), zearalenone (ZEN) and enniatins (ENNs) in food products. Consequently, alternative methods for assessing the levels of these mycotoxins are relevant for quick decision-making. In this context, qPCR based on key mycotoxin biosynthetic genes could aid in determining the toxigenic fungal biomass, and could therefore infer mycotoxin content. The aim of this study was to verify the use of qPCR as a technique for estimating DON, NIV, ENNs and ZEN, as well as Fusarium graminearum sensu lato (s.l.) and F. poae in barley grains. For this purpose, 53 barley samples were selected for mycobiota, mycotoxin and qPCR analyses. ENNs were the most frequent mycotoxins, followed by DON, ZEN and NIV. 83% of the samples were contaminated by F. graminearum s.l. and 51% by F. poae. Pearson correlation analysis showed significant correlations for TRI12/15-ADON with DON, ESYN1 with ENNs, TRI12/15-ADON and ZEB1 with F. graminearum s.l., as well as ESYN1 and TRI12/NIV with F. poae. Based on the results, qPCR could be useful for the assessment of Fusarium presence, and therefore, provide an estimation of its mycotoxins' levels from the same sample.
Collapse
Affiliation(s)
| | - Karim Cristina Piacentini
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | - Simona Wawroszová
- Regional Department Brno, Central Institute for Supervising and Testing in Agriculture, National Reference Laboratory, Brno, Czech Republic
| | - Sylvie Běláková
- Malting Institute Brno, Research Institute of Brewing and Malting, Brno, Czech Republic
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition (DECAN), State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
25
|
Lima da Silva J, Lombardi S, Castaldo L, Morelli E, Garda-Buffon J, Izzo L, Ritieni A. Multi-Mycotoxin Analysis in Italian Grains Using Ultra-High-Performance Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry. Toxins (Basel) 2023; 15:562. [PMID: 37755988 PMCID: PMC10535900 DOI: 10.3390/toxins15090562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Mycotoxins are a major source of contamination in cereals, posing risks to human health and causing significant economic losses to the industry. A comprehensive strategy for the analysis of 21 mycotoxins in Italian cereal grain samples (n = 200) was developed using a simple and quick sample preparation method combined with ultra-high-performance liquid chromatography coupled with quadrupole Orbitrap high-resolution mass spectrometry (UHPLC Q-Orbitrap HRMS). The proposed method showed some advantages, such as multi-mycotoxin analyses with simple sample preparation, fast determination, and high sensitivity. The analysis of the sample revealed the presence of 11 mycotoxins, with α-zearalenol being the most frequently detected, while deoxynivalenol exhibited the highest contamination level. Furthermore, co-occurrence was identified in 15.5% of the samples under analysis. Among these, 13% of the samples reported the simultaneous presence of two mycotoxins, while 2.5% showed the co-occurrence of three mycotoxins. Currently, there has been a renewed interest in guaranteeing the quality and safety of products intended for human consumption. This study holds significant value due to its ability to simultaneously detect multiple mycotoxins within a complex matrix. Furthermore, it provides findings regarding the occurrence and co-occurrence of emerging mycotoxins that currently lack regulation under the existing European Commission Regulation.
Collapse
Affiliation(s)
- Juliane Lima da Silva
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande 96203-900, RS, Brazil; (J.L.d.S.); (J.G.-B.)
| | - Sonia Lombardi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Luigi Castaldo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Elena Morelli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Jaqueline Garda-Buffon
- School of Chemistry and Food, Federal University of Rio Grande, Av. Itália, Km 8, Rio Grande 96203-900, RS, Brazil; (J.L.d.S.); (J.G.-B.)
| | - Luana Izzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (L.C.); (E.M.)
| |
Collapse
|
26
|
Xie H, Li Y, Li J, Chen Y, Li J, Kuang L, Shah Bacha SA, Zhang T, Chao Y. Mycotoxin Determination in Peaches and Peach Products with a Modified QuEChERS Extraction Procedure Coupled with UPLC-MS/MS Analysis. Foods 2023; 12:3216. [PMID: 37685149 PMCID: PMC10487233 DOI: 10.3390/foods12173216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Peaches are the most significant temperate fruit crop worldwide. However, peach fruits are susceptible to fungal and mycotoxin contamination. Consequently, monitoring the residual levels of multiple mycotoxins in peaches and related products is essential. In this study, a novel method based on QuEChERS extraction, followed by ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) detection, was developed for analyzing 14 mycotoxins in peaches and peach products from China. Matrix-matched calibrations were employed to accurately quantify the mycotoxins and compensate for matrix effects. Recoveries for the target analytes ranged from 84.6% to 117.6%, with intra-day and inter-day precision below 20%. The limits of quantification were 2 or 5 μg/L for the 14 mycotoxins. This method was utilized to detect the presence of target mycotoxins in 109 fresh peaches, 100 diseased peaches, and 89 peach products from China. Six mycotoxins were identified in the rotten parts of the diseased peaches, with concentrations ranging from 5.2 to 1664.3 µg/kg. In the remaining parts of the diseased peach samples, only two toxins, alternariol (AOH) and alternariol monomethyl ether (AME), were quantified at levels of 15.3 µg/kg and 15.5 µg/kg, respectively. No mycotoxins were detected in fresh peaches. For peach products, all contamination levels were below the quantitative limits and significantly lower than the maximum legal limits established for the products.
Collapse
Affiliation(s)
- Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinping Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Jiaxing Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| | - Jing Li
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Lixue Kuang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Syed Asim Shah Bacha
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China
| | - Tiejun Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
27
|
Hernández-Martínez SP, Delgado-Cedeño A, Ramos-Zayas Y, Franco-Molina MA, Méndez-Zamora G, Marroquín-Cardona AG, Kawas JR. Aluminosilicates as a Double-Edged Sword: Adsorption of Aflatoxin B 1 and Sequestration of Essential Trace Minerals in an In Vitro Gastrointestinal Poultry Model. Toxins (Basel) 2023; 15:519. [PMID: 37755945 PMCID: PMC10534799 DOI: 10.3390/toxins15090519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxins can cause intoxication and poisoning in animals and humans. Among these molecules, aflatoxin B1 (AFB1) is the most dangerous because of its carcinogenic and mutagenic properties. To mitigate these effects, clay adsorbents are commonly included in the diet of animals to adsorb the carcinogens and prevent their absorption in the gastrointestinal tract. In this study, four clays, three smectites (C-1, C-2, and C-3), and one zeolite (C-4), were compared as adsorbents of AFB1 and trace inorganic nutrients using an in vitro gastrointestinal model for poultry. Characterization of the clays using Fourier transform infrared spectroscopy revealed characteristic bands of smectites in C-1, C-2, and C-3 (stretching vibrations of Si-O, Al-O-Si, and Si-O-Si). The C-4 presented bands related to the bending vibration of structural units (Si-O-Si and Al-O-Si). X-ray diffraction analysis showed that C-1 is a montmorillonite, C-2 is a beidellite, C-3 is a beidellite-Ca-montmorillonite, and C-4 is a clinoptilolite. The elemental compositions of the clays showed alumina, silica, iron, calcium, and sodium contents. The cation exchange capacity was higher in C-3 clay (60.2 cmol(+)/kg) in contrast with the other clays. The AFB1 adsorption of C-1 was the highest (98%; p ˂ 0.001), followed by C-2 (94%). However, all the clays also sequestered trace inorganic nutrients (Fe, Mn, Zn, and Se). Both smectites, montmorillonite and beidellite, were the most suitable for use as adsorbents of AFB1.
Collapse
Affiliation(s)
- Sara Paola Hernández-Martínez
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| | | | - Yareellys Ramos-Zayas
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico
| | | | - Gerardo Méndez-Zamora
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
| | | | - Jorge R. Kawas
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Escobedo 66050, Nuevo León, Mexico; (S.P.H.-M.); (G.M.-Z.)
- MNA de México, Juárez 67250, Nuevo León, Mexico; (A.D.-C.); (Y.R.-Z.)
| |
Collapse
|
28
|
Nešić K, Habschied K, Mastanjević K. Modified Mycotoxins and Multitoxin Contamination of Food and Feed as Major Analytical Challenges. Toxins (Basel) 2023; 15:511. [PMID: 37624268 PMCID: PMC10467123 DOI: 10.3390/toxins15080511] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Mycotoxins, as natural products of molds, are often unavoidable contaminants of food and feed, to which the increasingly evident climate changes contribute a large part. The consequences are more or less severe and range from economic losses to worrying health problems to a fatal outcome. One of the best preventive approaches is regular monitoring of food and feed for the presence of mycotoxins. However, even under conditions of frequent, comprehensive, and conscientious controls, the desired protection goal may not be achieved. In fact, it often happens that, despite favorable analytical results that do not indicate high mycotoxin contamination, symptoms of their presence occur in practice. The most common reasons for this are the simultaneous presence of several different mycotoxins whose individual content does not exceed the detectable or prescribed values and/or the alteration of the form of the mycotoxin, which renders it impossible to be analytically determined using routine methods. When such contaminated foods enter a living organism, toxic effects occur. This article aims to shed light on the above problems in order to pay more attention to them, work to reduce their impact, and, eventually, overcome them.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Smolućska 11, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
29
|
Sun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D. A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 2023; 10:1244459. [PMID: 37593680 PMCID: PMC10428016 DOI: 10.3389/fnut.2023.1244459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/18/2023] [Indexed: 08/19/2023] Open
Abstract
Food safety is a widespread global concern with the emergence of foodborne diseases. Thus, establishing accurate and sensitive detection methods of harmful contaminants in different food matrices is essential to address and prevent the associated health risks. Among various analytical tools, mass spectrometry (MS) can quantify multiple impurities simultaneously due to high resolution and accuracy and can achieve non-target profiling of unknown pollutants in food. Therefore, MS has been widely used for determination of hazardous contaminants [e.g., mycotoxin, pesticide and veterinary drug residues, polychlorinated biphenyls (PCBs), dioxins, acrylamide, perfluorinated compounds (PFCs) and p-Phenylenediamine compounds (PPDs) in food samples]. This work summarizes MS applications in detecting harmful contaminants in food matrices, discusses advantages of MS for food safety study, and provides a perspective on future directions of MS development in food research. With the persistent occurrence of novel contaminants, MS will play a more and more critical role in food analysis.
Collapse
Affiliation(s)
- Qiannan Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Food Laboratory of Zhongyuan, Zhengzhou University, Zhengzhou, Henan, China
| | - Yide Dong
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Xu Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| | - Shijiao Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou, Henan, China
| | - Dan Yin
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
30
|
Achiro E, Okidi L, Echodu R, Alarakol SP, Anena J, Ongeng D. Prevalence of aflatoxin along processing points of locally made complementary food formulae in northern Uganda: Safety and children's exposure across seasons. Heliyon 2023; 9:e18564. [PMID: 37560682 PMCID: PMC10407127 DOI: 10.1016/j.heliyon.2023.e18564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
Aflatoxin contamination along the processing points of locally made complementary food composite needs to be ascertained and minimized to reduce exposure to weaning children. The study established the concentrations of total aflatoxin (TAF) and aflatoxin B1 (AFB1) along the processing points of locally made malted millet sesame soybean composite (MMSSC) across season one (wet) and season two (dry) and determined children's exposure to them. A total of 363 samples were collected in 2019. TAF and AFB1 concentrations were determined quantitatively using an enzyme-linked immunosorbent assay (ELISA). Consequently, exposure of individual children was assessed as Estimated Daily Intake (EDI), (ng kg-1 bw day-1). All the samples along the processing points had detectable concentrations of TAF and AFB1 ranging from 0.578 μg kg-1 to 1.187 μg kg-1 and 0.221 μg kg-1 to 0.649 μg kg-1 respectively. Contamination was highest in raw materials; soybean (Glycine max) > sesame (Sesamum indicum), followed by stored composite, freshly prepared composite, and least in millet (Eleusine coracana). Contamination varied significantly across seasons with the wet season having higher contamination than the dry season at P = 0.05. All samples (100%) were within the European Commission (EC) acceptable maximum tolerable level for TAF and AFB1 (4 μg kg-1 and 2 μg kg-1) respectively for processed foods for general consumption. But were below the EU acceptable maximum tolerable level for TAF and AFB1 (0.4 μg kg-1 and 0.1 μg kg-1) respectively for processed baby foods cereals. However, all were within the United States- Food and Drug Authority (US-FDA) and East African Community (EAC) set maximum acceptable limit of 20 μg kg-1 for TAFs, 10 μg kg-1 and 5 μg kg-1 for TAF and AFB1 respectively. Conversely, exposure to these toxins was much higher than the Provisional Maximum Tolerable Dietary Intake (PMTDI) of 0.4 ng kg-1 bw day-1 to 1.0 ng kg-1 bw day-1. A significant difference in exposure to both toxins was observed with the weight. The age of 5 months was the most exposed. A concerted effort is needed to reduce children's exposure to MMSSC to TAF and AFB1, taking sesame and soybean as priority ingredients and proper storage based on season to control contamination.
Collapse
Affiliation(s)
- Eunice Achiro
- Department of Food Science and Postharvest Technology, Faculty of Agriculture and Environment, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Lawrence Okidi
- Department of Food Science and Postharvest Technology, Faculty of Agriculture and Environment, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, P. O. Box 166 Gulu University, Gulu, Uganda
| | - Simon Peter Alarakol
- Department of Medical Biochemistry, Faculty of Medicine, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Juliet Anena
- Department of Food Science and Postharvest Technology, Faculty of Agriculture and Environment, Gulu University, P. O. Box 166, Gulu, Uganda
| | - Duncan Ongeng
- Department of Food Science and Postharvest Technology, Faculty of Agriculture and Environment, Gulu University, P. O. Box 166, Gulu, Uganda
| |
Collapse
|
31
|
Mohamed HMA, Haziri I, Saied AA, Dhama K, Al-Said AA, Abdou SE, Kamaly HF, Abd-Elhafeez HH. Molecular characterization of gliotoxin-producing Aspergillus fumigatus in dairy cattle feed. Vet World 2023; 16:1636-1646. [PMID: 37766716 PMCID: PMC10521192 DOI: 10.14202/vetworld.2023.1636-1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/12/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Several strains of Aspergillus fumigatus produce mycotoxins that affect the health and productivity of dairy cattle, and their presence in dairy cattle feed is a serious concern. This study aimed to determine the densities of A. fumigatus and gliotoxin in commercial dairy feed. Materials and Methods More than 60 dairy feed samples were examined for fungal contamination, specifically for A. fumigatus, using phenotypic approaches and DNA sequencing of the internal transcribed spacer (ITS) and β-tubulin regions. Thin-layer chromatography and high-performance liquid chromatography (HPLC) were used to assess gliotoxin production in A. fumigatus. Real-time polymerase chain reaction (RT-PCR) was used to investigate the expression of gliZ, which was responsible for gliotoxin production. High-performance liquid chromatography was used to detect gliotoxin in feed samples. Results Aspergillus was the most commonly identified genus (68.3%). Aspergillus fumigatus was isolated from 18.3% of dairy feed samples. Only four of the 11 A. fumigatus isolates yielded detectable gliotoxins by HPLC. In total, 7/11 (43.7%) feed samples tested had gliotoxin contamination above the threshold known to induce immunosuppressive and apoptotic effects in vitro. The HPLC-based classification of isolates as high, moderate, or non-producers of gliotoxin was confirmed by RT-PCR, and the evaluation of gliZ expression levels corroborated this classification. Conclusion The identification of A. fumigatus from animal feed greatly depended on ITS and β-tubulin sequencing. Significant concentrations of gliotoxin were found in dairy cattle feed, and its presence may affect dairy cow productivity and health. Furthermore, workers face contamination risks when handling and storing animal feed.
Collapse
Affiliation(s)
- Hams M. A. Mohamed
- Department of Microbiology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Imer Haziri
- Department of Veterinary Medicine, Faculty of Agriculture and Veterinary, University of Prishtina “Hasan Prishtina”, 10000 Pristina, Kosovo
| | - AbdulRahman A. Saied
- National Food Safety Authority, Aswan Branch, Aswan 81511, Egypt
- Ministry of Tourism and Antiquities, Aswan Office, Aswan 81511, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar-243122, Bareilly, Uttar Pradesh, India
| | - Amal A. Al-Said
- Department of Mycology, Animal Health Research Institute, Agriculture Research Center (ARC), P.O. 12618, Gizza
| | - Suzan E. Abdou
- Biochemistry Unit, Animal Health Research Institute Agriculture Research Center (ARC), P.O. 12618, Gizza
| | - Heba F. Kamaly
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Hanan H. Abd-Elhafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
32
|
Rahi S, Lanjekar V, Ghormade V. Rationally designed peptide conjugated to gold nanoparticles for detection of aflatoxin B1 in point-of-care dot-blot assay. Food Chem 2023; 413:135651. [PMID: 36787667 DOI: 10.1016/j.foodchem.2023.135651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Aflatoxin B1 (AFB1) is a hepatotoxic and carcinogenic food contaminant. Although on-site paper-based detection is sensitive it depends on expensive antibodies which are difficult to raise against mycotoxins. Here, we rationally designed a high binding octapeptide, N-KSGKSKPR-C peptide for AFB1 detection, by molecular docking, as confirmed by indirect ELISA (Kd 323 nM). Further, conjugation of octapeptide with gold nanoparticles (26 nm) permitted its use as a visual detection agent in rapid, sensitive dot-blot assay (LOD 0.39 μg/kg). The assay displayed negligible cross-reactivity with co-contaminating mycotoxins. AFB1 recovery from spiked wheat sample was comparable by dot-blot (78-91 %) and HPLC (65-87 %). Evaluation of dot-blot using certified reference material and 146 food and feed samples showed high correlation R2 = 0.87 with HPLC. The assay displayed high accuracy (91 %), sensitivity (71 %) and specificity (96.5 %). Therefore, the developed dot-blot assay holds promise for monitoring AFB1 contamination in food and feed.
Collapse
Affiliation(s)
- Shraddha Rahi
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vikram Lanjekar
- Bioenergy Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
33
|
Vila-López MV, Pallarés N, Ferrer E, Tolosa J. Mycotoxin Determination and Occurrence in Pseudo-Cereals Intended for Food and Feed: A Review. Toxins (Basel) 2023; 15:379. [PMID: 37368680 DOI: 10.3390/toxins15060379] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Nowadays, pseudo-cereals' consumption is increasing due to their health benefits as they possess an excellent nutrient profile. Whole pseudo-cereal grains are rich in a wide range of compounds, namely flavonoids, phenolic acids, fatty acids, and vitamins with known beneficial effects on human and animal health. Mycotoxins are common contaminants in cereals and by-products; however, the study of their natural occurrence in pseudo-cereals is currently scarce. Pseudo-cereals are similar to cereal grains; thus, mycotoxin contamination is expected to occur in pseudo-cereals. Indeed, mycotoxin-producing fungi have been reported in these matrices and, consequently, mycotoxin contents have been reported too, especially in buckwheat samples, where ochratoxin A and deoxynivalenol reached levels up to 1.79 μg/kg and 580 μg/kg, respectively. In comparison to cereal contamination, mycotoxin levels detected in pseudo-cereal samples are lower; however, more studies are necessary in order to describe the mycotoxin pattern in these samples and to establish maximum levels that ensure human and animal health protection. In this review, mycotoxin occurrence in pseudo-cereal samples as well as the main extraction methods and analytical techniques to determine them are described, showing that mycotoxins can be present in pseudo-cereal samples and that the most employed techniques for their determination are liquid and gas chromatography coupled to different detectors.
Collapse
Affiliation(s)
- María Vanessa Vila-López
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Noelia Pallarés
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Emilia Ferrer
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| | - Josefa Tolosa
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain
| |
Collapse
|
34
|
Vardali S, Papadouli C, Rigos G, Nengas I, Panagiotaki P, Golomazou E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023; 28:2519. [PMID: 36985489 PMCID: PMC10053411 DOI: 10.3390/molecules28062519] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Low-cost plant-based sources used in aquaculture diets are prone to the occurrence of animal feed contaminants, which may in certain conditions affect the quality and safety of aquafeeds. Mycotoxins, a toxic group of small organic molecules produced by fungi, comprise a frequently occurring plant-based feed contaminant in aquafeeds. Mycotoxin contamination can potentially cause significant mortality, reduced productivity, and higher disease susceptibility; thus, its timely detection is crucial to the aquaculture industry. The present review summarizes the methodological advances, developed mainly during the past decade, related to mycotoxin detection in aquafeed ingredients, namely analytical, chromatographic, and immunological methodologies, as well as the use of biosensors and spectroscopic methods which are becoming more prevalent. Rapid and accurate mycotoxin detection is and will continue to be crucial to the food industry, animal production, and the environment, resulting in further improvements and developments in mycotoxin detection techniques.
Collapse
Affiliation(s)
- Sofia Vardali
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Christina Papadouli
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - George Rigos
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Ioannis Nengas
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 46.7 km Athens-Sounion, 19013 Attiki, Greece
| | - Panagiota Panagiotaki
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| | - Eleni Golomazou
- Department of Ichthyology and Aquatic Environment—Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, 38446 Volos, Greece
| |
Collapse
|
35
|
Wang L, Cao H, Jiang H, Fang Y, Jiang D. A novel 3D bio-printing “liver lobule” microtissue biosensor for the detection of AFB1. Food Res Int 2023; 168:112778. [PMID: 37120227 DOI: 10.1016/j.foodres.2023.112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
In this paper, a novel "liver lobule" microtissue biosensor based on 3D bio-printing is developed to rapidly determine aflatoxin B1 (AFB1). Methylacylated Hyaluronic acid (HAMA) hydrogel, HepG2 cells, and carbon nanotubes are used to construct "liver lobule" models. In addition, 3D bio-printing is used to perform high-throughput and standardized preparation in order to simulate the organ morphology and induce functional formation. Afterwards, based on the electrochemical rapid detection technology, a 3D bio-printed "liver lobule" microtissue is immobilized on the screen-printed electrode, and the mycotoxin is detected by differential pulse voltammetry (DPV). The DPV response increases with the concentration of AFB1 in the range of 0.1-3.5 μg/mL. The linear detection range is 0.1-1.5 μg/mL and the calculated lowest detection limit is 0.039 μg/mL. Thus, this study develops a new mycotoxin detection method based on the 3D printing technology, which has high stability and reproducibility. It has wide application prospects in the field of detection and evaluation of food hazards.
Collapse
Affiliation(s)
- Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hanwen Cao
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Hui Jiang
- Key Laboratory of Detection and Traceability Technology of Foodborne Pathogenic Bacteria for Jiangsu Province Market Regulation, Nanjing Institute for Food and Drug Control, Nanjing, Jiangsu 210038, PR China
| | - Yan Fang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Donglei Jiang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| |
Collapse
|
36
|
Cheli F, Ottoboni M, Fumagalli F, Mazzoleni S, Ferrari L, Pinotti L. E-Nose Technology for Mycotoxin Detection in Feed: Ready for a Real Context in Field Application or Still an Emerging Technology? Toxins (Basel) 2023; 15:146. [PMID: 36828460 PMCID: PMC9958648 DOI: 10.3390/toxins15020146] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Mycotoxin risk in the feed supply chain poses a concern to animal and human health, economy, and international trade of agri-food commodities. Mycotoxin contamination in feed and food is unavoidable and unpredictable. Therefore, monitoring and control are the critical points. Effective and rapid methods for mycotoxin detection, at the levels set by the regulations, are needed for an efficient mycotoxin management. This review provides an overview of the use of the electronic nose (e-nose) as an effective tool for rapid mycotoxin detection and management of the mycotoxin risk at feed business level. E-nose has a high discrimination accuracy between non-contaminated and single-mycotoxin-contaminated grain. However, the predictive accuracy of e-nose is still limited and unsuitable for in-field application, where mycotoxin co-contamination occurs. Further research needs to be focused on the sensor materials, data analysis, pattern recognition systems, and a better understanding of the needs of the feed industry for a safety and quality management of the feed supply chain. A universal e-nose for mycotoxin detection is not realistic; a unique e-nose must be designed for each specific application. Robust and suitable e-nose method and advancements in signal processing algorithms must be validated for specific needs.
Collapse
Affiliation(s)
- Federica Cheli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| | - Matteo Ottoboni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Francesca Fumagalli
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Sharon Mazzoleni
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luca Ferrari
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
| | - Luciano Pinotti
- Department of Veterinary Medicine and Animal Science, University of Milan, 26900 Lodi, Italy
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20100 Milan, Italy
| |
Collapse
|
37
|
Sadiq Z, Safiabadi Tali SH, Hajimiri H, Al-Kassawneh M, Jahanshahi-Anbuhi S. Gold Nanoparticles-Based Colorimetric Assays for Environmental Monitoring and Food Safety Evaluation. Crit Rev Anal Chem 2023; 54:2209-2244. [PMID: 36629748 DOI: 10.1080/10408347.2022.2162331] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recent years have witnessed an exponential increase in the research on gold nanoparticles (AuNPs)-based colorimetric sensors to revolutionize point-of-use sensing devices. Hence, this review is compiled focused on current progress in the design and performance parameters of AuNPs-based sensors. The review begins with the characteristics of AuNPs, followed by a brief explanation of synthesis and functionalization methods. Then, the mechanisms of AuNPs-based sensors are comprehensively explained in two broad categories based on the surface plasmon resonance (SPR) characteristics of AuNPs and their peroxidase-like catalytic properties (nanozyme). SPR-based colorimetric sensors further categorize into aggregation, anti-aggregation, etching, growth-mediated, and accumulation-based methods depending on their sensing mechanisms. On the other hand, peroxidase activity-based colorimetric sensors are divided into two methods based on the expression or inhibition of peroxidase-like activity. Next, the analytes in environmental and food samples are classified as inorganic, organic, and biological pollutants, and recent progress in detection of these analytes are reviewed in detail. Finally, conclusions are provided, and future directions are highlighted. Improving the sensitivity, reproducibility, multiplexing capabilities, and cost-effectiveness for colorimetric detection of various analytes in environment and food matrices will have significant impact on fast testing of hazardous substances, hence reducing the pollution load in environment as well as rendering food contamination to ensure food safety.
Collapse
Affiliation(s)
- Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Hasti Hajimiri
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Muna Al-Kassawneh
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering and Computer Science, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
38
|
Bacha SAS, Li Y, Nie J, Xu G, Han L, Farooq S. Comprehensive review on patulin and Alternaria toxins in fruit and derived products. FRONTIERS IN PLANT SCIENCE 2023; 14:1139757. [PMID: 37077634 PMCID: PMC10108681 DOI: 10.3389/fpls.2023.1139757] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Mycotoxins are toxic secondary metabolites produced by certain fungi, which can contaminate various food commodities, including fruits and their derived products. Patulin and Alternaria toxins are among the most commonly encountered mycotoxins in fruit and their derived products. In this review, the sources, toxicity, and regulations related to these mycotoxins, as well as their detection and mitigation strategies are widely discussed. Patulin is a mycotoxin produced mainly by the fungal genera Penicillium, Aspergillus, and Byssochlamys. Alternaria toxins, produced by fungi in the Alternaria genus, are another common group of mycotoxins found in fruits and fruit products. The most prevalent Alternaria toxins are alternariol (AOH) and alternariol monomethyl ether (AME). These mycotoxins are of concern due to their potential negative effects on human health. Ingesting fruits contaminated with these mycotoxins can cause acute and chronic health problems. Detection of patulin and Alternaria toxins in fruit and their derived products can be challenging due to their low concentrations and the complexity of the food matrices. Common analytical methods, good agricultural practices, and contamination monitoring of these mycotoxins are important for safe consumption of fruits and derived products. And Future research will continue to explore new methods for detecting and managing these mycotoxins, with the ultimate goal of ensuring the safety and quality of fruits and derived product supply.
Collapse
Affiliation(s)
- Syed Asim Shah Bacha
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Yinping Li
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Jiyun Nie, ; Yinping Li,
| | - Guofeng Xu
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| | - Lingxi Han
- College of Horticulture, Qingdao Agricultural University/Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Saqib Farooq
- Laboratory of Quality & Safety Risk Assessment for Fruit, Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, China
| |
Collapse
|
39
|
Geicu OI, Bilteanu L, Stanca L, Ionescu Petcu A, Iordache F, Pisoschi AM, Serban AI. Composition-Based Risk Estimation of Mycotoxins in Dry Dog Foods. Foods 2022; 12:110. [PMID: 36613326 PMCID: PMC9818488 DOI: 10.3390/foods12010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The risk of mycotoxins co-occurrence in extrusion-produced dry foods increases due to their composition based on various grains and vegetables. This study aimed to validate a risk estimation for the association between ingredients and the ELISA-detected levels of DON, FUM, ZEA, AFs, T2, and OTA in 34 dry dog food products. The main ingredients were corn, beet, and oil of different origins (of equal frequency, 79.41%), rice (67.6%), and wheat (50%). DON and FUM had the strongest positive correlation (0.635, p = 0.001). The presence of corn in the sample composition increased the median DON and ZEA levels, respectively, by 99.45 μg/kg and 65.64 μg/kg, p = 0.011. In addition to DON and ZEA levels, integral corn presence increased the FUM median levels by 886.61 μg/kg, p = 0.005. For corn gluten flour-containing samples, DON, FUM, and ZEA median differences still existed, and OTA levels also differed by 1.99 μg/kg, p < 0.001. Corn gluten flour presence was strongly associated with DON levels > 403.06 μg/kg (OR = 38.4, RR = 9.90, p = 0.002), FUM levels > 1097.56 μg/kg (OR = 5.56, RR = 1.45, p = 0.048), ZEA levels > 136.88 μg/kg (OR = 23.00, RR = 3.09, p = 0.002), and OTA levels > 3.93 μg/kg (OR = 24.00, RR = 3.09, p = 0.002). Our results suggest that some ingredients or combinations should be avoided due to their risk of increasing mycotoxin levels.
Collapse
Affiliation(s)
- Ovidiu Ionut Geicu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Liviu Bilteanu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
- Molecular Nanotechnology Laboratory, National Institute for Research and Development in Microtechnologies, 126A, Erou Iancu Nicolae Street, 077190 Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Adriana Ionescu Petcu
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Florin Iordache
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Aurelia Magdalena Pisoschi
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
| | - Andreea Iren Serban
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Blvd. Splaiul Independentei, 050095 Bucharest, Romania
| |
Collapse
|
40
|
Recent trends in analysis of mycotoxins in food using carbon-based nanomaterials. J Food Drug Anal 2022; 30:562-589. [PMID: 36753363 PMCID: PMC9910300 DOI: 10.38212/2224-6614.3437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Mycotoxins (MYTs), a class of low molecular weight secondary metabolites produced by filamentous fungi in food and feed, pose serious global threat to both human health and world economy. Due to their mutagenic, teratogenic, carcinogenic and immunosuppressive effects, the International Agency for Research on Cancer has classified various MYTs under Group 1 to 3 category with aflatoxins being designated under Group 1 category (carcinogenic to humans). Also, the presence of MYTs in trace amounts in diverse food matrices necessitates exploration of highly sensitive methods for onsite analysis. Although conventional chromatographic methods are highly sensitive, they are expensive, tedious and cannot be applied for rapid onsite analysis. In recent years the application of nanomaterials especially carbon-based nanomaterials (CNMs) in the fabrication of low-cost and miniaturized electrochemical and optical sensors has enabled rapid onsite analysis of MYTs with high sensitivity and specificity. Moreover, the CNMs are employed as effective solid phase extraction (SPE) adsorbents possessing high specific surface area for effective enrichment of MYTs to improve the sensitivity of chromatographic methods for MYT analysis in food. This article aims to overview the recent trends in the application of CNMs as SPE adsorbents for sample pretreatment in chromatographic methods as well as in the fabrication of highly sensitive electrochemical and optical sensors for rapid analysis of MYTs in food. Initially, the efficiency of various functionalized CNMs developed recently as adsorbent in packed SPE cartridges and dispersive SPE adsorbent/purification powder is discussed. Then, their application in the development of various electrochemical immunosensors involving functionalized carbon nanotubes/nanofibers, graphene oxide, reduced graphene oxide and graphene quantum dots is summarized. In addition, the recent trends in the use of CNMs for fabrication of electrochemical and fluorescence aptasensors as well as some other colorimetry, fluorometry, surface-enhanced Raman spectroscopy and electrochemical based sensors are compared and tabulated. Collectively, this review article can provide a research update on analysis of MYTs by carbon-based nanomaterials paving a way for identifying future perspectives.
Collapse
|
41
|
Recent advances in immunoassay-based mycotoxin analysis and toxicogenomic technologies. J Food Drug Anal 2022; 30:549-561. [PMID: 36753365 PMCID: PMC9910299 DOI: 10.38212/2224-6614.3430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
The co-occurrence and accumulation of mycotoxin in food and feed constitutes a major issue to food safety, food security, and public health. Accurate and sensitive mycotoxins analysis can avoid toxin contamination as well as reduce food wastage caused by false positive results. This mini review focuses on the recent advance in detection methods for multiple mycotoxins, which mainly depends on immunoassay technologies. Advance immunoassay technologies integrated in mycotoxin analysis enable simultaneous detection of multiple mycotoxins and enhance the outcomes' quality. It highlights toxicogenomic as novel approach for hazard assessment by utilizing computational methods to map molecular events and biological processes. Indeed, toxicogenomic is a powerful tool to understand health effects from mycotoxin exposure as it offers insight on the mechanisms by which mycotoxins exposures cause diseases.
Collapse
|
42
|
Llorens Castelló P, Sacco MA, Aquila I, Moltó Cortés JC, Juan García C. Evaluation of Zearalenones and Their Metabolites in Chicken, Pig and Lamb Liver Samples. Toxins (Basel) 2022; 14:toxins14110782. [PMID: 36422956 PMCID: PMC9692590 DOI: 10.3390/toxins14110782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Zearalenone (ZON), zearalanone (ZAN) and their phase I metabolites: α-zearalenol (α-ZOL), β-zearalenol (β-ZOL), α-zearalalanol (α-ZAL) and β-zearalalanol (β-ZAL) are compounds with estrogenic activity that are metabolized and distributed by the circulatory system in animals and can access the food chain through meat products from livestock. Furthermore, biomonitoring of zearalenones in biological matrices can provide useful information to directly assess mycotoxin exposure; therefore, their metabolites may be suitable biomarkers. The aim of this study was to determine the presence of ZON, ZAN and their metabolites in alternative biological matrices, such as liver, from three different animals: chicken, pig and lamb, in order to evaluate their exposure. A solid-liquid extraction procedure coupled to a GC-MS/MS analysis was performed. The results showed that 69% of the samples were contaminated with at least one mycotoxin or metabolite at varying levels. The highest value (max. 152.62 ng/g of β-ZOL) observed, and the most contaminated livers (42%), were the chicken liver samples. However, pig liver samples presented a high incidence of ZAN (33%) and lamb liver samples presented a high incidence of α-ZOL (40%). The values indicate that there is exposure to these mycotoxins and, although the values are low (ranged to 0.11-152.6 ng/g for α-ZOL and β-ZOL, respectively), analysis and continuous monitoring are necessary to avoid exceeding the regulatory limits and to control the presence of these mycotoxins in order to protect animal and human health.
Collapse
Affiliation(s)
- Paula Llorens Castelló
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Matteo Antonio Sacco
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Isabella Aquila
- Institute of Legal Medicine, Department of Medical and Surgical Sciences, “Magna Graecia”, Università degli Studi “Magna Graecia” di Catanzaro, 88100 Catanzaro, Italy
| | - Juan Carlos Moltó Cortés
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | - Cristina Juan García
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
- Correspondence:
| |
Collapse
|
43
|
Tan H, Zhou H, Guo T, Zhou Y, Wang S, Liu X, Zhang Y, Ma L. Matrix-associated mycotoxins in foods, cereals and feedstuffs: A review on occurrence, detection, transformation and future challenges. Crit Rev Food Sci Nutr 2022; 64:3206-3219. [PMID: 36205056 DOI: 10.1080/10408398.2022.2131724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Matrix-associated mycotoxins that bind with macromolecular components through covalent or non-covalent interactions easily occur in various cereals, cereal-based products, and cereal-based feedstuff. They are "masked" by macro-components, causing the underestimation of total exposure risk of mycotoxins. Most of the current reports focus on the free and modified mycotoxins, while the matrix-associated forms are ignored but still can exert toxic effects after ingestion. In this paper, current researches and future prospects of matrix-associated mycotoxins are reviewed. Especially, a focus is set on the transformation of matrix-associated mycotoxins with their free forms during metabolism and food processing. Enzymes, temperature and pH levels during food processing can induce the interconversion of matrix-associated mycotoxins with free mycotoxins. Furthermore, the analytical methods targeted on matrix-associated mycotoxins are discussed. Due to the lack of efficient methods releasing the mycotoxins from matrix, the standard analytical methods has not developed so far. Also, we further analyzed the challenges of matrix-associated mycotoxins about variety, occurrence, toxicity and transformation, exposure assessment, which contributes to establish preventive measures to control their hazards for consumers. Overall, this overview is significant for perfecting risk assessment, as well as developing effective prevention and control actions to matrix-associated mycotoxins.
Collapse
Affiliation(s)
- Hongxia Tan
- College of Food Science, Southwest University, Chongqing, P.R. China
| | - Hongyuan Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ting Guo
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Ying Zhou
- College of Food Science, Southwest University, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| | - Shuo Wang
- College of Food Science, Southwest University, Chongqing, P.R. China
- School of Medicine, Tianjin Key Lab Food Science and Health, Nankai University, Tianjin, P.R. China
| | - Xiaozhu Liu
- Foshan Micro Wonders Biotechnology Co., Ltd, Guangdong, P.R. China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, P.R. China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, P.R. China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, P.R. China
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, P.R. China
| |
Collapse
|
44
|
Santos AR, Carreiró F, Freitas A, Barros S, Brites C, Ramos F, Sanches Silva A. Mycotoxins Contamination in Rice: Analytical Methods, Occurrence and Detoxification Strategies. Toxins (Basel) 2022; 14:647. [PMID: 36136585 PMCID: PMC9504649 DOI: 10.3390/toxins14090647] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022] Open
Abstract
The prevalence of mycotoxins in the environment is associated with potential crop contamination, which results in an unavoidable increase in human exposure. Rice, being the second most consumed cereal worldwide, constitutes an important source of potential contamination by mycotoxins. Due to the increasing number of notifications reported, and the occurrence of mycotoxins at levels above the legislated limits, this work intends to compile the most relevant studies and review the main methods used in the detection and quantification of these compounds in rice. The aflatoxins and ochratoxin A are the predominant mycotoxins detected in rice grain and these data reveal the importance of adopting safety storage practices that prevent the growth of producing fungi from the Aspergillus genus along all the rice chain. Immunoaffinity columns (IAC) and QuECHERS are the preferred methods for extraction and purification and HPLC-MS/MS is preferred for quantification purposes. Further investigation is still required to establish the real exposition of these contaminants, as well as the consequences and possible synergistic effects due to the co-occurrence of mycotoxins and also for emergent and masked mycotoxins.
Collapse
Affiliation(s)
- Ana Rita Santos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
| | - Filipa Carreiró
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Sílvia Barros
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Fernando Ramos
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, REQUIMTE/LAQV, R. D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Av. da República, 2780-157 Oeiras, Portugal
- Centre for Animal Science Studies (CECA), ICETA, University of Porto, 4501-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| |
Collapse
|
45
|
Adeyeye SAO, Ashaolu TJ, Idowu-Adebayo F. Mycotoxins: Food Safety, Consumer Health and Africa’s Food Security. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1957952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- S. A. O Adeyeye
- Department of Food Technology, Hindustan Institute of Technology and Science, Hindustan University, Chennai, Tamil Nadu, India
| | - T. J Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, Viet Nam
| | - F Idowu-Adebayo
- Department of Food Science & Technology, Federal University, Oye-Ekiti, Nigeria
- Food Quality & Design Group, Wageningen University and Research, The Netherlands
| |
Collapse
|
46
|
Camardo Leggieri M, Mazzoni M, Bertuzzi T, Moschini M, Prandini A, Battilani P. Electronic Nose for the Rapid Detection of Deoxynivalenol in Wheat Using Classification and Regression Trees. Toxins (Basel) 2022; 14:toxins14090617. [PMID: 36136555 PMCID: PMC9506558 DOI: 10.3390/toxins14090617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Mycotoxin represents a significant concern for the safety of food and feed products, and wheat represents one of the most susceptible crops. To manage this issue, fast, reliable, and low-cost test methods are needed for regulated mycotoxins. This study aimed to assess the potential use of the electronic nose for the early identification of wheat samples contaminated with deoxynivalenol (DON) above a fixed threshold. A total of 214 wheat samples were collected from commercial fields in northern Italy during the periods 2014−2015 and 2017−2018 and analyzed for DON contamination with a conventional method (GC-MS) and using a portable e-nose “AIR PEN 3” (Airsense Analytics GmbH, Schwerin, Germany), equipped with 10 metal oxide sensors for different categories of volatile substances. The Machine Learning approach “Classification and regression trees” (CART) was used to categorize samples according to four DON contamination thresholds (1750, 1250, 750, and 500 μg/kg). Overall, this process yielded an accuracy of >83% (correct prediction of DON levels in wheat samples). These findings suggest that the e-nose combined with CART can be an effective quick method to distinguish between compliant and DON-contaminated wheat lots. Further validation including more samples above the legal limits is desirable before concluding the validity of the method.
Collapse
Affiliation(s)
- Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - Marco Mazzoni
- Department of Livestock Population Genomics, University of Hohenheim, Garbenstraβe 17, 70599 Stuttgart, Germany
| | - Terenzio Bertuzzi
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - Maurizio Moschini
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - Aldo Prandini
- Department of Animal Science, Food, and Nutrition, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
- Correspondence: ; Tel.: +39-0523-599254
| |
Collapse
|
47
|
Acuña-Gutiérrez C, Jiménez VM, Müller J. Occurrence of mycotoxins in pulses. Compr Rev Food Sci Food Saf 2022; 21:4002-4017. [PMID: 35876644 DOI: 10.1111/1541-4337.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 01/28/2023]
Abstract
Pulses, dry grains of the Fabaceae family used for food and feed, are particularly important agricultural products with increasing commercial and nutritional relevance. Similar to other plant commodities, pulses can be affected by fungi in the field and during postharvest. Some of these fungi produce mycotoxins, which can seriously threaten human and animal health by causing acute poisoning and chronic effects. In this review, information referring to the analysis and occurrence of these compounds in pulses is summarized. An overview of the aims pursued, and of the methodologies employed for mycotoxin analysis in the different reports is presented, followed by a comprehensive review of relevant articles on mycotoxins in pulses, categorized according to the geographical region, among other considerations. Moreover, special attention was given to the effect of climatic conditions on microorganism infestation and mycotoxin accumulation. Furthermore, the limited literature available was considered to look for possible correlations between the degree of fungal infection and the mycotoxin incidence in pulses. In addition, the potential effect of certain phenolic compounds on reducing fungi infestation and mycotoxin accumulation was reviewed with examples on beans. Emphasis was also given to a specific group of mycotoxins, the phomopsins, that mainly impact lupin. Finally, the negative consequences of mycotoxin accumulation on the physiology and development of contaminated seeds and seedlings are presented, focusing on the few reports available on pulses. Given the agricultural and nutritional potential that pulses offer for human well-being, their promotion should be accompanied by attention to food safety issues, and mycotoxins might be among the most serious threats. Practical Application: According to the manuscript template available in the website, this section is for "JFS original research manuscripts ONLY; optional". Since we are publishing in CRFSFS this requirement will not be done.
Collapse
Affiliation(s)
- Catalina Acuña-Gutiérrez
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany.,CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Víctor M Jiménez
- CIGRAS, Universidad de Costa Rica, San Pedro, Costa Rica.,IIA, Universidad de Costa Rica, San Pedro, Costa Rica
| | - Joachim Müller
- Institute of Agricultural Engineering Tropics and Subtropics Group (440e), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
48
|
Qu M, Tian S, Yu H, Liu D, Zhang C, He Y, Cheng F. Single-kernel classification of deoxynivalenol and zearalenone contaminated maize based on visible light imaging under ultraviolet light excitation combined with polarized light imaging. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
49
|
Owolabi IO, Kolawole O, Jantarabut P, Elliott CT, Petchkongkaew A. The importance and mitigation of mycotoxins and plant toxins in Southeast Asian fermented foods. NPJ Sci Food 2022; 6:39. [PMID: 36045143 PMCID: PMC9433409 DOI: 10.1038/s41538-022-00152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
Fermented foods (ffs) and beverages are widely consumed in Southeast Asia (SEA) for their nutritional balance, flavor, and food security. They serve as vehicles for beneficial microorganisms performing a significant role in human health. However, there are still major challenges concerning the safety of ffs and beverages due to the presence of natural toxins. In this review, the common toxins found in traditional ffs in SEA are discussed with special reference to mycotoxins and plant toxins. Also, mitigation measures for preventing risks associated with their consumption are outlined. Ochratoxin, citrinin, aflatoxins were reported to be major mycotoxins present in SEA ffs. In addition, soybean-based ff food products were more vulnerable to mycotoxin contaminations. Common plant toxins recorded in ffs include cyanogenic glycosides, oxalates, phytates and saponins. Combined management strategies such as pre-harvest, harvest and post-harvest control and decontamination, through the integration of different control methods such as the use of clean seeds, biological control methods, fermentation, appropriate packaging systems, and controlled processing conditions are needed for the safe consumption of indigenous ffs in SEA.
Collapse
Affiliation(s)
- Iyiola O Owolabi
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Oluwatobi Kolawole
- Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Phantakan Jantarabut
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand
| | - Christopher T Elliott
- International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand.,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University, 99 Mhu 18, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,International Joint Research Center on Food Security (IJC-FOODSEC), 113 Thailand Science Park, Phahonyothin Road, Khong Luang, Pathum Thani, 12120, Thailand. .,Institute for Global Food Security, School of Biological Science, Queen's University Belfast, 19 Chlorine Gardens Belfast, BT9 5DL, Belfast, Northern Ireland.
| |
Collapse
|
50
|
Feng J, Xue Y, Wang X, Song Q, Wang B, Ren X, Zhang L, Liu Z. Sensitive, simultaneous and quantitative detection of deoxynivalenol and fumonisin B 1 in the water environment using lateral flow immunoassay integrated with smartphone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155354. [PMID: 35460773 DOI: 10.1016/j.scitotenv.2022.155354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Deoxynivalenol (DON) and fumonisin B1 (FB1), as a group of highly toxic secondary metabolites, have become a potential source of water environmental pollutants. To minimize two mycotoxins exposure to consumers, a dual lateral flow immunoassay (LFIA) integrated with the smartphone was reported for simultaneous and quantitative detection of DON and FB1 in the water environment. The significantly improved sensitivity was contributed to a smartphone-based device with the ability to image and analyze results. Under optimized conditions, the detection limits of DON and FB1 were calculated to be 3.46 and 2.65 ng/mL, which were approximately 25 and 10 folds lower than those of the visual detection of the LFIA. This method showed good specificity and a good dynamic linear detection for DON and FB1. The recoveries of DON and FB1 were evaluated by the spiked lake water, river water, and pond water, ranging from 92.47% to 106.2% with the relative standard deviation under 9.13%. Moreover, the results of the developed LFIA showed a high correlation with enzyme-linked immunosorbent assay (ELISA) results, with a correlation coefficient of 0.999 for DON and 0.996 for FB1, respectively. To sum up, the developed LFIA provides a promising platform for sensitive, simultaneous, quantitative, and on-site detection of DON and FB1 in the water environment.
Collapse
Affiliation(s)
- Jiankun Feng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuan Xue
- Guizhou Anshun Tobacco Co., Ltd., Anshun 561000, China
| | - Xinwei Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingsong Song
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Baojian Wang
- Shandong Linyi Tobacco Co., Ltd., Linyi 276000, China
| | - Xuexiang Ren
- Institute of Protection and Agro-Products Safety, Anhui Academy of Agricultural Science, Hefei 230031, China.
| | - Leigang Zhang
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhenjiang Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|