1
|
Flores-Ramírez AY, González-Estrada RR, Chacón-López MA, García-Magaña MDL, Montalvo-González E, Álvarez-López A, Rodríguez-López A, López-García UM. Detection of foodborne pathogens in contaminated food using nanomaterial-based electrochemical biosensors. Anal Biochem 2024; 693:115600. [PMID: 38964698 DOI: 10.1016/j.ab.2024.115600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
Foodborne pathogens are a grave concern for the for food, medical, environmental, and economic sectors. Their ease of transmission and resistance to treatments, such as antimicrobial agents, make them an important challenge. Food tainted with these pathogens is swiftly rejected, and if ingested, can result in severe illnesses and even fatalities. This review provides and overview of the current status of various pathogens and their metabolites transmitted through food. Despite a plethora of studies on treatments to eradicate and inhibit these pathogens, their indiscriminate use can compromise the sensory properties of food and lead to contamination. Therefore, the study of detection methods such as electrochemical biosensors has been proposed, which are devices with advantages such as simplicity, fast response, and sensitivity. However, these biosensors may also present some limitations. In this regard, it has been reported that nanomaterials with high conductivity, surface-to-volume ratio, and robustness have been observed to improve the detection of foodborne pathogens or their metabolites. Therefore, in this work, we analyze the detection of pathogens transmitted through food and their metabolites using electrochemical biosensors based on nanomaterials.
Collapse
Affiliation(s)
- Ana Yareli Flores-Ramírez
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Ramsés Ramón González-Estrada
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Martina Alejandra Chacón-López
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - María de Lourdes García-Magaña
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Efigenia Montalvo-González
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico
| | - Alejandra Álvarez-López
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Campus Aeropuerto, Centro Universitario, Cerro de las Campanas, C.P. 76010, Santiago de Querétaro, Querétaro, Mexico
| | - Aarón Rodríguez-López
- Universidad Politécnica de Santa Rosa Jáuregui, Carretera Federal 57, Querétaro-San Luis Potosí km 31-150, Parque Industrial Querétaro, C.P. 76220, Santiago de Querétaro, Querétaro, Mexico.
| | - Ulises Miguel López-García
- Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico # 2595, Col. Lagos del country, C.P. 63175, Tepic, Nayarit, Mexico.
| |
Collapse
|
2
|
Baek UB, Kim HY. Current Status of Non-Thermal Sterilization by Pet Food Raw Ingredients. Food Sci Anim Resour 2024; 44:967-987. [PMID: 39246541 PMCID: PMC11377211 DOI: 10.5851/kosfa.2024.e63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, as the concept of pet food that satisfies both nutritional needs and the five senses has evolved, so too has the demand for effective pet food non-thermal sterilization methods. Prominent non-thermal technologies include high-pressure processing, plasma, and radiation, which are favored for their ability to preserve nutrients, avoid residues, and minimize compositional changes, thereby maintaining quality and sensory properties. However, to assess their effectiveness on pet food, it is essential to optimize operational parameters such as pressure levels, plasma intensity, radiation dosage, and temperature. Further studies are needed to evaluate microbial sterilization efficacy and sensory attributes. This exploration is expected to lay the groundwork for preventing zoonotic diseases and improving the production of high-quality pet food.
Collapse
Affiliation(s)
- Ui-Bin Baek
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
| | - Hack-Youn Kim
- Department of Animal Resources Science, Kongju National University, Yesan 32439, Korea
- Resource Science Research Institute, Kongju National University, Yesan 32439, Korea
| |
Collapse
|
3
|
Chen BR, Roobab U, Madni GM, Abdi G, Zeng XA, Aadil RM. A review of emerging applications of ultrasonication in Comparison with non-ionizing technologies for meat decontamination. ULTRASONICS SONOCHEMISTRY 2024; 108:106962. [PMID: 38943850 PMCID: PMC11261440 DOI: 10.1016/j.ultsonch.2024.106962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/01/2024]
Abstract
Meat is highly susceptible to contamination with harmful microorganisms throughout the production, processing, and storage chain, posing a significant public health risk. Traditional decontamination methods like chemical sanitizers and heat treatments often compromise meat quality, generate harmful residues, and require high energy inputs. This necessitates the exploration of alternative non-ionizing technologies for ensuring meat safety and quality. This review provides a comprehensive analysis of the latest advancements, limitations, and future prospects of non-ionizing technologies for meat decontamination, with a specific focus on ultrasonication. It further investigates the comparative advantages and disadvantages of ultrasonication against other prominent non-ionizing technologies such as microwaves, ultraviolet (UV) light, and pulsed light. Additionally, it explores the potential of integrating these technologies within a multi-hurdle strategy to achieve enhanced decontamination across the meat surface and within the matrix. While non-ionizing technologies have demonstrated promising results in reducing microbial populations while preserving meat quality attributes, challenges remain. These include optimizing processing parameters, addressing regulatory considerations, and ensuring cost-effectiveness for large-scale adoption. Combining these technologies with other methods like antimicrobial agents, packaging, and hurdle technology holds promise for further enhancing pathogen elimination while safeguarding meat quality.
Collapse
Affiliation(s)
- Bo-Ru Chen
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, 15551 Al‑Ain, United Arab Emirates.
| | - Ghulam Muhammad Madni
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169 Iran.
| | - Xin-An Zeng
- Department of Food Science, Foshan University, Foshan, Guangdong 528000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong 528225, China.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
4
|
Chu Z, Wang H, Dong B. Research on Food Preservation Based on Antibacterial Technology: Progress and Future Prospects. Molecules 2024; 29:3318. [PMID: 39064897 PMCID: PMC11279653 DOI: 10.3390/molecules29143318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The nutrients present in food are not only prone to a series of physicochemical reactions but also provide conditions for the growth and reproduction of foodborne microorganisms. In recent years, many innovative methods from different fields have been introduced into food preservation, which extends the shelf life while maximizing the preservation of the original ingredients and properties of food. In this field, there is a lack of a systematic summary of new technologies emerging. In view of this, we overview the innovative methods applied to the field of food preservation in recent 3 years, focusing on a variety of technological approaches such as antimicrobial photodynamic therapy based on nanotechnology, electromagnetic radiation sterilization based on radiation technology, and antimicrobial peptides based on biomolecules. We also discuss the preservation mechanism and the application of the different methods to specific categories of products. We evaluated their advantages and limitations in the food industry, describing their development prospects. In addition, as microorganisms are the main causes of food spoilage, our review also has reference significance for clinical antibacterial treatment.
Collapse
Affiliation(s)
- Zejing Chu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China;
| | - Biao Dong
- College of Electronic Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Dietert RR, Dietert JM. Examining Sound, Light, and Vibrations as Tools to Manage Microbes and Support Holobionts, Ecosystems, and Technologies. Microorganisms 2024; 12:905. [PMID: 38792734 PMCID: PMC11123986 DOI: 10.3390/microorganisms12050905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
The vast array of interconnected microorganisms across Earth's ecosystems and within holobionts has been called the "Internet of Microbes." Bacteria and archaea are masters of energy and information collection, storage, transformation, and dissemination using both "wired" and wireless (at a distance) functions. Specific tools affecting microbial energy and information functions offer effective strategies for managing microbial populations within, between, and beyond holobionts. This narrative review focuses on microbial management using a subset of physical modifiers of microbes: sound and light (as well as related vibrations). These are examined as follows: (1) as tools for managing microbial populations, (2) as tools to support new technologies, (3) as tools for healing humans and other holobionts, and (4) as potential safety dangers for microbial populations and their holobionts. Given microbial sensitivity to sound, light, and vibrations, it is critical that we assign a higher priority to the effects of these physical factors on microbial populations and microbe-laden holobionts. We conclude that specific sound, light, and/or vibrational conditions are significant therapeutic tools that can help support useful microbial populations and help to address the ongoing challenges of holobiont disease. We also caution that inappropriate sound, light, and/or vibration exposure can represent significant hazards that require greater recognition.
Collapse
Affiliation(s)
- Rodney R. Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
6
|
Wai HH, Shiekh KA, Jafari S, Kijpatanasilp I, Assatarakul K. Ultraviolet irradiation as alternative non-thermal cold pasteurization to improve quality and microbiological parameters of mango juice during cold storage. Int J Food Microbiol 2024; 415:110632. [PMID: 38428167 DOI: 10.1016/j.ijfoodmicro.2024.110632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
The objectives of this research were to study the effect of UV irradiation on quality characteristics of mango juice during cold storage. Mango juice exposed to UV radiation was also used to determine zero-order and first-order kinetic models of microbial (total plate count, yeast and mold count, and Escherichia coli) reduction. According to the microbiological results, UV light at 120 J/cm2 caused a 5.19 log reduction. It was found that microbial inactivation of all tested microorganisms followed first-order kinetic model. The treatments did not differ significantly in terms of the quality metrics. L*, b*, pH, total soluble solid, total phenolic compound, total flavonoid content, and antioxidant activity as measured by the DPPH and FRAP assay all tended to decline during storage at 4 °C, whereas a*, ∆E, titratable acidity, total plate count, yeast and mold count, as well as the total plate count, had an increasing trend. During storage at 4 °C, UV irradiation increased the shelf life of mango juice by about 14 days compared to the control sample. In conclusion, this study demonstrated the potential of UV treatment as an alternative to thermal pasteurization for preserving mango juice quality and safety while also prolonging shelf life.
Collapse
Affiliation(s)
- Htay Htay Wai
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Small Scale Industries Department, Ministry of Cooperatives and Rural Development, Nay Pyi Taw 15011, Myanmar
| | - Khursheed Ahmad Shiekh
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saeid Jafari
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isaya Kijpatanasilp
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitipong Assatarakul
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Al Naggar Y, Taha IM, Taha EKA, Zaghlool A, Nasr A, Nagib A, Elhamamsy SM, Abolaban G, Fahmy A, Hegazy E, Metwaly KH, Zahra AA. Gamma irradiation and ozone application as preservation methods for longer-term storage of bee pollen. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25192-25201. [PMID: 38462566 PMCID: PMC11023998 DOI: 10.1007/s11356-024-32801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Bee pollen is a healthy product with a good nutritional profile and therapeutic properties. Its high moisture content, however, promotes the growth of bacteria, molds, and yeast during storage commonly result in product degradation. Therefore, the aim of this study is to assess the effectiveness of gamma irradiation (GI) and ozone (OZ) as bee pollen preservation methods for longer storage time, as well as whether they are influenced by pollen species. To do that, GI at a dosage of 2.5, 5.0, and 7.5 kGy was applied at a rate of 0.68 kGy/h and OZ application at a concentration of 0.01, 0.02, and 0.03 g/m3 was applied for one time for 6 h, to Egyptian clover and maize bee pollen, then stored at ambient temperature for 6 months. We then determined the total phenolic content (TPC) and antioxidant activity of treated and non-treated pollen samples at 0, 3, and 6 months of storage. Total bacteria, mold, and yeast count were also evaluated at 0, 2, 4, and 6 months. Statistical analyses revealed that, TPC, antioxidant, and microbial load of both clover and maize pollen samples were significantly (p < 0.05) affected by both treatment and storage time and their interaction. Both methods were extremely effective at preserving the antioxidant properties of pollen samples after 6 months of storage at room temperature. Furthermore, the highest concentrations of both GI and OZ applications completely protected pollen samples from mold and yeast while decreasing bacterial contamination. GI at the highest dose (7.5 KGy) was found to be more effective than other GI doses and OZ application in preserving biologically active compounds and lowering the microbial count of pollen samples for 6 months. As a result, we advise beekeepers to use GI at this dose for longer-term storage.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Center of Bee Research and its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.
| | - Ibrahim M Taha
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - El-Kazafy A Taha
- Department of Economic Entomology, Faculty of Agriculture, Kafr Elsheikh University, Kafr Elsheikh, 33516, Egypt
| | - Ayman Zaghlool
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali Nasr
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ashraf Nagib
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Sam M Elhamamsy
- Department of Biochemistry, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gomaa Abolaban
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Alaa Fahmy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
- Petrochemicals Department, Faculty of Engineering, Pharos University in Alexandria, Alexandria, Egypt
| | - Eslam Hegazy
- Department of Food Irradiation, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, 11787, Egypt
| | - Khaled H Metwaly
- Center of Plasma Technology, Al-Azhar University, Cairo, 11884, Egypt
| | - Abdullah A Zahra
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| |
Collapse
|
8
|
Olaimat AN, Taybeh AO, Al-Nabulsi A, Al-Holy M, Hatmal MM, Alzyoud J, Aolymat I, Abughoush MH, Shahbaz H, Alzyoud A, Osaili T, Ayyash M, Coombs KM, Holley R. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life (Basel) 2024; 14:190. [PMID: 38398699 PMCID: PMC10890126 DOI: 10.3390/life14020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Human viruses and viruses from animals can cause illnesses in humans after the consumption of contaminated food or water. Contamination may occur during preparation by infected food handlers, during food production because of unsuitably controlled working conditions, or following the consumption of animal-based foods contaminated by a zoonotic virus. This review discussed the recent information available on the general and clinical characteristics of viruses, viral foodborne outbreaks and control strategies to prevent the viral contamination of food products and water. Viruses are responsible for the greatest number of illnesses from outbreaks caused by food, and risk assessment experts regard them as a high food safety priority. This concern is well founded, since a significant increase in viral foodborne outbreaks has occurred over the past 20 years. Norovirus, hepatitis A and E viruses, rotavirus, astrovirus, adenovirus, and sapovirus are the major common viruses associated with water or foodborne illness outbreaks. It is also suspected that many human viruses including Aichi virus, Nipah virus, tick-borne encephalitis virus, H5N1 avian influenza viruses, and coronaviruses (SARS-CoV-1, SARS-CoV-2 and MERS-CoV) also have the potential to be transmitted via food products. It is evident that the adoption of strict hygienic food processing measures from farm to table is required to prevent viruses from contaminating our food.
Collapse
Affiliation(s)
- Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Asma’ O. Taybeh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
| | - Murad Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
| | - Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Jihad Alzyoud
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (J.A.); (I.A.)
| | - Mahmoud H. Abughoush
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (M.A.-H.); (M.H.A.)
- Science of Nutrition and Dietetics Program, College of Pharmacy, Al Ain University, Abu Dhabi P.O. Box 64141, United Arab Emirates
| | - Hafiz Shahbaz
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Anas Alzyoud
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Tareq Osaili
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan; (A.O.T.); (A.A.-N.); (T.O.)
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain 53000, United Arab Emirates;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Richard Holley
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
9
|
Wang K, Pang X, Zeng Z, Xiong H, Du J, Li G, Baidoo IK. Research on irradiated food status and consumer acceptance: A Chinese perspective. Food Sci Nutr 2023; 11:4964-4974. [PMID: 37701237 PMCID: PMC10494638 DOI: 10.1002/fsn3.3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/22/2023] [Accepted: 05/31/2023] [Indexed: 09/14/2023] Open
Abstract
China is currently the world's largest producer of food irradiation. Despite the long-standing (about 100 years) evidence supporting the safety of food irradiation, consumers' acceptance of irradiated foods remains limited. This study aimed to investigate the development of food irradiation in China and identify the barriers that keep consumers away from irradiated foods. This was accomplished by exploring the relevant policies of food irradiation, the size and distribution of irradiation facilities in China, and analyzing their relationships between consumer characteristics and the acceptance of irradiated food. To achieve these objectives, we conducted an online survey of participants from Hubei, China (N = 264). The results reveal that irradiation facilities are mainly distributed in large coastal cities such as the Bohai Bay, the Yangtze River Delta, and the Greater Bay Area. Furthermore, the study identified that consumer' acceptance of irradiated food is directly related to their level of understanding. Approximately 22% of the sampled consumers reported that they would not accept that they have consumed irradiated food and most of them (41%) stated that they would not purchase irradiated food if they were aware of buying irradiated food. Specifically, consumers expressed discomfort with consuming irradiated food under unknown circumstances. This trend is more prevalent among female, low-educated, and older consumers, with 40% of the sampled population indicating that they would not buy irradiated food. Given the strong correlation between knowledge and acceptance of irradiated foods, the study suggests that policy reform should prioritize enhancing the understanding of irradiated food, particularly among female, low-educated, and older consumers.
Collapse
Affiliation(s)
- Ke Wang
- School of Nuclear Technology and Chemistry & Biology and Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsHubei University of Science and TechnologyXianningChina
| | - Xinxin Pang
- China Isotope & Radiation CorporationBeijingChina
| | - Zhengkui Zeng
- School of Nuclear Technology and Chemistry & Biology and Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsHubei University of Science and TechnologyXianningChina
| | - Houhua Xiong
- School of Nuclear Technology and Chemistry & Biology and Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsHubei University of Science and TechnologyXianningChina
| | - Jifu Du
- School of Nuclear Technology and Chemistry & Biology and Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsHubei University of Science and TechnologyXianningChina
| | - Gang Li
- CNNC High Energy Equipment (Tianjin) Co., LtdTianjinChina
| | - Isaac Kwasi Baidoo
- Nuclear Reactors Research CentreNational Nuclear Research InstituteLegonGhana
| |
Collapse
|
10
|
Yu H, Zhang J, Zhao Y, Li H, Chen Y, Zhu J. Effects of specific doses of E-beam irradiation which inactivated SARS-CoV-2 on the nutrition and quality of Atlantic salmon. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:1351-1358. [PMID: 38620800 PMCID: PMC9671704 DOI: 10.1016/j.fshw.2022.10.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The contamination of Atlantic salmon with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has impeded the development of the cold-chain food industry and posed possible risks to the population. Electron beam (E-beam) irradiation under 2, 4, 7, and 10 kGy can effectively inactivate SARS-CoV-2 in cold-chain seafood. However, there are few statistics about the quality changes of salmon exposed to these irradiation dosages. This work demonstrated that E-beam irradiation at dosages capable of killing SARS-CoV-2 induced lipid oxidation, decreased vitamin A content, and increased some amino acids and ash content. In addition, irradiation altered the textural features of salmon, such as its hardness, resilience, cohesiveness, and chewiness. The irradiation considerably affected the L*, a*, and b* values of salmon, with the L* value increasing and a*, b* values decreasing. There was no significant difference in the sensory evaluation of control and irradiated salmon. It was shown that irradiation with 2-7 kGy E-beam did not significantly degrade quality. The inactivation of SARS-CoV-2 in salmon is advised at a dose of 2 kGy.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Junhui Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yan Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Honghao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Yixuan Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Gorman S. The inhibitory and inactivating effects of visible light on SARS-CoV-2: A narrative update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2023; 15:100187. [PMID: 37288364 PMCID: PMC10207839 DOI: 10.1016/j.jpap.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
Prior to the coronavirus disease-19 (COVID-19) pandemic, the germicidal effects of visible light (λ = 400 - 700 nm) were well known. This review provides an overview of new findings that suggest there are direct inactivating effects of visible light - particularly blue wavelengths (λ = 400 - 500 nm) - on exposed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virions, and inhibitory effects on viral replication in infected cells. These findings complement emerging evidence that there may be clinical benefits of orally administered blue light for limiting the severity of COVID-19. Possible mechanisms of action of blue light (e.g., regulation of reactive oxygen species) and important mediators (e.g., melatonin) are discussed.
Collapse
Affiliation(s)
- Shelley Gorman
- Telethon Kids Institute, University of Western Australia, PO Box 855, Perth, Western Australia 6872, Australia
| |
Collapse
|
12
|
Indiarto R, Irawan AN, Subroto E. Meat Irradiation: A Comprehensive Review of Its Impact on Food Quality and Safety. Foods 2023; 12:1845. [PMID: 37174383 PMCID: PMC10178114 DOI: 10.3390/foods12091845] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Food irradiation is a proven method commonly used for enhancing the safety and quality of meat. This technology effectively reduces the growth of microorganisms such as viruses, bacteria, and parasites. It also increases the lifespan and quality of products by delaying spoilage and reducing the growth of microorganisms. Irradiation does not affect the sensory characteristics of meats, including color, taste, and texture, as long as the appropriate dose is used. However, its influence on the chemical and nutritional aspects of meat is complex as it can alter amino acids, fatty acids, and vitamins as well as generate free radicals that cause lipid oxidation. Various factors, including irradiation dose, meat type, and storage conditions, influence the impact of these changes. Irradiation can also affect the physical properties of meat, such as tenderness, texture, and water-holding capacity, which is dose-dependent. While low irradiation doses potentially improve tenderness and texture, high doses negatively affect these properties by causing protein denaturation. This research also explores the regulatory and public perception aspects of food irradiation. Although irradiation is authorized and controlled in many countries, its application is controversial and raises concerns among consumers. Food irradiation is reliable for improving meat quality and safety but its implication on the chemical, physical, and nutritional properties of products must be considered when determining the appropriate dosage and usage. Therefore, more research is needed to better comprehend the long-term implications of irradiation on meat and address consumer concerns.
Collapse
Affiliation(s)
- Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | | | | |
Collapse
|
13
|
Munir MT, Mtimet N, Guillier L, Meurens F, Fravalo P, Federighi M, Kooh P. Physical Treatments to Control Clostridium botulinum Hazards in Food. Foods 2023; 12:foods12081580. [PMID: 37107375 PMCID: PMC10137509 DOI: 10.3390/foods12081580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Clostridium botulinum produces Botulinum neurotoxins (BoNTs), causing a rare but potentially deadly type of food poisoning called foodborne botulism. This review aims to provide information on the bacterium, spores, toxins, and botulisms, and describe the use of physical treatments (e.g., heating, pressure, irradiation, and other emerging technologies) to control this biological hazard in food. As the spores of this bacterium can resist various harsh environmental conditions, such as high temperatures, the thermal inactivation of 12-log of C. botulinum type A spores remains the standard for the commercial sterilization of food products. However, recent advancements in non-thermal physical treatments present an alternative to thermal sterilization with some limitations. Low- (<2 kGy) and medium (3-5 kGy)-dose ionizing irradiations are effective for a log reduction of vegetative cells and spores, respectively; however, very high doses (>10 kGy) are required to inactivate BoNTs. High-pressure processing (HPP), even at 1.5 GPa, does not inactivate the spores and requires heat combination to achieve its goal. Other emerging technologies have also shown some promise against vegetative cells and spores; however, their application to C. botulinum is very limited. Various factors related to bacteria (e.g., vegetative stage, growth conditions, injury status, type of bacteria, etc.) food matrix (e.g., compositions, state, pH, temperature, aw, etc.), and the method (e.g., power, energy, frequency, distance from the source to target, etc.) influence the efficacy of these treatments against C. botulinum. Moreover, the mode of action of different physical technologies is different, which provides an opportunity to combine different physical treatment methods in order to achieve additive and/or synergistic effects. This review is intended to guide the decision-makers, researchers, and educators in using physical treatments to control C. botulinum hazards.
Collapse
Affiliation(s)
- Muhammad Tanveer Munir
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Narjes Mtimet
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | | | - François Meurens
- INRAE, Oniris, BIOEPAR, 44307 Nantes, France
- Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC J2S 2M2, Canada
| | - Phillipe Fravalo
- Chaire Agroalimentaire du Cnam, Conservatoire des Arts et Métiers, EPN7, 22440 Ploufragan, France
| | - Michel Federighi
- EnvA, Unit of Hygiene, Quality and Food Safety, 94700 Maisons-Alfort, France
- Anses, Laboratory of Food Safety, 94700 Maisons-Alfort, France
| | - Pauline Kooh
- Anses, Unit UERALIM, 94700 Maisons-Alfort, France
| |
Collapse
|
14
|
Shen Q, Zhong T. Did Household Income Loss Have an Immediate Impact on Animal-Source Foods Consumption during the Early Stage of the COVID-19 Pandemic? Foods 2023; 12:1424. [PMID: 37048245 PMCID: PMC10093368 DOI: 10.3390/foods12071424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
The outbreak of COVID-19 in 2020 caused extensive impact on household income and foods consumption. However, little attention has been paid to the immediate impact of income loss on animal-source foods consumption in the early stage of the COVID-19 pandemic. This paper aims to narrow this gap, and a total of 1301 valid samples of household food consumption surveys in Wuhan and Nanjing were obtained through specially designed online questionnaires. The surveys show that there were 69.6% (Wuhan) and 42.2% (Nanjing) of surveyed households whose animal-source foods consumption were affected, and there were 47.4% (Wuhan) and 18.9% (Nanjing) of surveyed households who suffered income loss. Furthermore, this paper makes an empirical study on the linkage between income loss and animal-source foods consumption. The results show that the pandemic affected household income, resulting in an immediate impact on animal-source foods consumption. This immediate impact may have been due to the combination of price increases, income loss and insufficient savings, which led to a "perfect storm" for animal-source foods consumption. Moreover, household income loss affected various animal-source foods consumption differently. For households suffering income losses, the odds of pork, beef and mutton, poultry, aquatic products, eggs and dairy products consumption being affected were increased by a factor of 1.894, 2.140, 2.773, 2.345, 1.802, 2.835, respectively, holding other variables constant. The results may be related to residents' consumption habits and food prices. During the COVID-19 pandemic, the reduction of animal-source foods consumption may have led to a state of tension concerning an increase in the development of nutrition intake and health, which may have led to increased food security risks.
Collapse
Affiliation(s)
| | - Taiyang Zhong
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| |
Collapse
|
15
|
Sürücü AM, Subaşı S, Danish A, Gencel O, Subaşı A, Ozbakkaloglu T. Mechanical and radiation shielding properties of
SWCNT
reinforced polymer/glass fiber fabric‐based nanocomposite containing different filler materials: A comparative study. J Appl Polym Sci 2022. [DOI: 10.1002/app.53483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ali Murat Sürücü
- Composite Materials Technology Division Düzce University Düzce Turkey
| | - Serkan Subaşı
- Engineering Faculty, Civil Engineering Department Düzce University Düzce Turkey
| | - Aamar Danish
- Ingram School of Engineering Texas State University San Marcos Texas USA
| | - Osman Gencel
- Engineering Faculty, Civil Engineering Department Bartin University Bartin Turkey
| | - Azime Subaşı
- Gümüşova Vocational School, Metallurgy Department Düzce University Düzce Turkey
| | - Togay Ozbakkaloglu
- Ingram School of Engineering Texas State University San Marcos Texas USA
| |
Collapse
|
16
|
Han I, Mumtaz S, Choi EH. Nonthermal Biocompatible Plasma Inactivation of Coronavirus SARS-CoV-2: Prospects for Future Antiviral Applications. Viruses 2022; 14:2685. [PMID: 36560689 PMCID: PMC9785490 DOI: 10.3390/v14122685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic has placed a massive impact on global civilization. Finding effective treatments and drugs for these viral diseases was crucial. This paper outlined and highlighted key elements of recent advances in nonthermal biocompatible plasma (NBP) technology for antiviral applications. We searched for papers on NBP virus inactivation in PubMed ePubs, Scopus, and Web of Science databases. The data and relevant information were gathered in order to establish a mechanism for NBP-based viral inactivation. NBP has been developed as a new, effective, and safe strategy for viral inactivation. NBP may be used to inactivate viruses in an ecologically friendly way as well as activate animal and plant viruses in a number of matrices. The reactive species have been shown to be the cause of viral inactivation. NBP-based disinfection techniques provide an interesting solution to many of the problems since they are simply deployable and do not require the resource-constrained consumables and reagents required for traditional decontamination treatments. Scientists are developing NBP technology solutions to assist the medical community in dealing with the present COVID-19 outbreak. NBP is predicted to be the most promising strategy for battling COVID-19 and other viruses in the future.
Collapse
Affiliation(s)
- Ihn Han
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
- Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eun Ha Choi
- Department of Plasma Bio-Display, Kwangwoon University, Seoul 01897, Republic of Korea
- Plasma Bioscience Research Center (PBRC), Applied Plasma Medicine Center, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
17
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
Soto‐Reyes N, Sosa‐Morales ME, Rojas‐Laguna R, López‐Malo A. Advances in radio frequency pasteurisation equipment for liquid foods: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15662] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nohemí Soto‐Reyes
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| | - María Elena Sosa‐Morales
- División de Ciencias de la Vida Departamento de Alimentos Posgrado en Biociencias Universidad de Guanajuato Campus Irapuato‐Salamanca Irapuato GTO 36500 Mexico
| | - Roberto Rojas‐Laguna
- División de Ingenierías Departamento de Ingeniería Electrónica Universidad de Guanajuato Campus Irapuato‐Salamanca Salamanca GTO 36600 Mexico
| | - Aurelio López‐Malo
- Universidad de las Américas Puebla Ex˗Hacienda Sta. Catarina Mártir San Andrés Cholula Puebla PUE 72810 Mexico
| |
Collapse
|