1
|
Usha Satheesan S, Chowdhury S, Kolthur-Seetharam U. Metabolic and circadian inputs encode anticipatory biogenesis of hepatic fed microRNAs. Life Sci Alliance 2024; 7:e202302180. [PMID: 38408795 PMCID: PMC10897495 DOI: 10.26508/lsa.202302180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024] Open
Abstract
Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.
Collapse
Affiliation(s)
- Sandra Usha Satheesan
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shreyam Chowdhury
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ullas Kolthur-Seetharam
- https://ror.org/03ht1xw27 Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- https://ror.org/03ht1xw27 Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, India
| |
Collapse
|
2
|
Yao X, Wang Y, Wang L, Cao M, Chen A, Zhang X. Expression patterns of serum MicroRNAs related to endothelial dysfunction in patients with subclinical hypothyroidism. Front Endocrinol (Lausanne) 2022; 13:981622. [PMID: 36147570 PMCID: PMC9485940 DOI: 10.3389/fendo.2022.981622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Increasing evidence has shown that elevated Thyroid stimulating hormone (TSH) levels are positively correlated with atherosclerosis (ATH) in patients with subclinical hypothyroidism (SCH). Some researchers found that the dysfunction of Endothelial Cells (ECs) in SCH plays an important role in the pathogenesis of ATH in SCH, but the association remains controversial. OBJECTIVES To determine the expression profiles of serum microRNAs critical to the function of Endothelial cells (ECs) may help reanalyze the possible mechanism underlying ATH in SCH and the association between ATH and SCH. METHODS We used qRT-PCR to perform microRNA profiling and analysis in normal control subjects (NC), patients with SCH alone (SCH), patients with SCH and ATH (SCH+ATH), and patients with ATH without SCH (ATH). RESULTS Both miR-221-3p and miR-222-3p showed a decreasing expression trend between the SCH and SCH+ATH groups. In addition, miR-126-3p and miR-150-5p showed a stepwise decrease from the NC to SCH groups and then to the SCH+ATH or ATH group. miR-21-5p was unregulated in the SCH, SCH+ATH, and ATH groups. Furthermore, elevated levels of miR-21-5p in SCH+ATH group were higher than SCH and ATH group. No differences were found in the levels of miR-150, miR-126, miR-221 and miR-222 between the ATH and the SCH+ATH subjects. CONCLUSIONS miR-21-5p may be involved in the atherosclerosis process in patients with SCH (SCH and SCH+ATH groups). miR-150-5p may be sensitive risk markers for predicting endothelial dysfunction in patients with ATH (ATH and SCH+ATH groups).
Collapse
Affiliation(s)
- Xuelin Yao
- Shandong Academy of Medical Sciences, Shandong First Medical University, Taian, China
| | - Ying Wang
- Department of Endocrinology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Li Wang
- Department of Pharmacy, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Aifang Chen
- Ultrasound Department, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Aifang Chen, ; Xinhuan Zhang,
| | - Xinhuan Zhang
- Department of Endocrinology, the Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Aifang Chen, ; Xinhuan Zhang,
| |
Collapse
|
3
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
4
|
Parizadeh SM, Jafarzadeh-Esfehani R, Ghandehari M, Hasanzadeh M, Parizadeh SMR, Hassanian SM, Rezaei-Kalat A, Aghabozorgi AS, Rahimi-Kakhki R, Zargaran B, Ferns GA, Avan A. Circulating and Tissue microRNAs as Biomarkers for Ovarian Cancer Prognosis. Curr Drug Targets 2020; 20:1447-1460. [PMID: 31284859 DOI: 10.2174/1389450120666190708100308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/09/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
Ovarian cancer (OC) is one of the most common cancers globally with a high rate of cancer- associated mortality. OC may be classified into epithelial cell neoplasms, germ cell neoplasms and stromal cell neoplasms. The five-year survival in the early and advanced stages of disease is approximately 90% and 15%, respectively. microRNAs are short, single-stranded, non-coding ribonucleic acid (RNA). miRNAs play critical roles in post transcriptionally regulations of gene expression. miRNAs are found in different tissues and body fluids. In carcinogenesis the expression of miRNAs are altered. Recent studies have revealed that there is a relationship between alteration of miRNAs expression and the prognosis of patients with OC. The aim of this review was to summarize the findings of recent studies that have investigated the expression of circulating and tissue miRNAs as novel biomarkers in the prognosis of OC.
Collapse
Affiliation(s)
| | - Reza Jafarzadeh-Esfehani
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Ghandehari
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran
| | - Malihe Hasanzadeh
- Department of Gynecology Oncology, Woman Health Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Rezaei-Kalat
- Department of Psychiatry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirsaeed Sabeti Aghabozorgi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Rana Rahimi-Kakhki
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bita Zargaran
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of medical sciences, Mashhad, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Ali Ahmed E, A. Abd El-bast S, A. Mohamed M, Swellam M. Clinical Impact of Oncomirs 221 and 222 on Breast Cancer Diagnosis. ASIA-PACIFIC JOURNAL OF ONCOLOGY 2020:1-9. [DOI: 10.32948/ajo.2020.07.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
Abstract
Background Dysregulation of miRNAs, non-coding RNAs of 18-25 ( ̴ 22nt), is a hallmark of malignancies among them is breast cancer. The present study aimed to investigate the expression levels of circulating oncomiRNAs (miRNA-221and miRNA-222) as a minimally non-invasive method for early detection of breast cancer as compared to tumor markers (CEA, CA15.3).
Materials and methods MiRNA-221 and miRNA-222 expression levels were determined using quantitative real-time polymerase chain reaction (qPCR) in serum samples from three groups: primary breast cancer patients (n = 44), benign breast lesion patients (n = 25), and healthy individuals as control group (n = 19). Their diagnostic efficacy and relation with clinicopathological data were analyzed.
Results MiRNA-221 and miRNA-222 expression and tumor markers reported significant increase in their mean levels in breast cancer group as compared to the benign breast lesions or control individuals. Among clinicopathological factors, miRs reported significant relation with pathological types, clinical staging, histological grading and hormonal status, while CEA and CA15.3 did not revealed significance with these factors. The diagnostic efficacy for investigated miRNAs was superior to tumor markers especially for detection of early stages and low grade tumors.
Conclusion MiRNA-221 and miRNA-222 were superior over tumor markers for early detection of breast cancer especially those at high risk as primarybreast cancer patients with early stage or low grade tumors.
Collapse
Affiliation(s)
- Elham Ali Ahmed
- Zoology Department, Faculty of Science (Girls), Al-Azhar University
| | - Sohair A. Abd El-bast
- Biochemistry Division, Chemistry Department, Faculty of Science (Girls), Al-Azhar University
| | | | | |
Collapse
|
6
|
Role of miR-221/222 in Tumor Development and the Underlying Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:7252013. [PMID: 31929798 PMCID: PMC6942871 DOI: 10.1155/2019/7252013] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022]
Abstract
MicroRNA-221/222 (miRNA-221/222, miR-221/222) is a noncoding microRNA which is widely distributed in eukaryotic organisms and deeply involved in the posttranscriptional regulation of gene expressions. According to recent studies, abnormal expressions of miR-221/222 are closely related to the occurrence and development of various kinds of malignant tumors. The role of miR-221/222 in tumor development and their potential molecular mechanism in various cancers, including liver cancer, colorectal cancer, cervical cancer, ovarian cancer, and endometrial carcinoma, are summarized and reviewed in this paper. Moreover, the potential translational biomarker role of abnormal miR-221/222 level in tumor or blood circulation for tumor diagnosis is also discussed.
Collapse
|
7
|
Shi Y, Gao S, Zheng Y, Yao M, Ruan F. LncRNA CASC15 Functions As An Unfavorable Predictor Of Ovarian Cancer Prognosis And Inhibits Tumor Progression Through Regulation Of miR-221/ARID1A Axis. Onco Targets Ther 2019; 12:8725-8736. [PMID: 31695430 PMCID: PMC6815787 DOI: 10.2147/ott.s219900] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background LncRNA cancer susceptibility candidate 15 (CASC15) has been demonstrated to act as an oncogene in different cancers; however, its role in ovarian cancer remains elusive. Methods Quantitative real-time PCR (qRT-PCR) was performed to examine the expression of lncRNA CASC15. Kaplan–Meier survival analysis was performed to evaluate the prognostic significance of lncRNA CASC15. CCK-8, soft-agar colony-formation, flow cytometry, transwell migration and invasion assays were used to analyze the biological behavior of lncRNA CASC5 in ovarian cancer. Furthermore, the potential mechanism of lncRNA CAC15 was investigated by bioinformatics analysis, luciferase reporter assay, and biotin pull-down assay. Results In this study, we found that the expression of CASC15 was lower in ovarian cancer tissues and cells by qRT-PCR. In addition, low expression of CASC15 was closely correlated with advanced TNM stage, moderate/poor differentiation, and larger size. Moreover, Kaplan–Meier survival analysis showed that patients with low CASC15 expression level had poorer overall survival and progression-free survival than those with high CASC15 expression. Meanwhile, ROC analysis found that CASC15 had diagnostic values to distinguish tumor tissues from nontumorous tissues. Overexpression of CASC15 prohibited the malignancy of ovarian cancer cells, including proliferation, colony formation, cell cycle, migration, and invasion, and promoted cell apoptosis. In addition, bioinformatics analysis, luciferase reporter assay, and biotin pull-down assay confirmed that CASC15 straightly interacted with miR-221. We also observed that ARID1A was a downstream target of miR-221 and CASC15 subsequently exerted its tumor-suppressive effects by regulating the expression of ARID1A in ovarian cancer cells. Conclusion Overall, this study firstly elucidated that CASC15 could play a tumor-suppressive role in ovarian cancer by the regulation of CASC15/miR-221/ARID1A axis, which may provide a ponderable prognostic biomarker and promising therapeutic target for treatment of patients with ovarian cancer.
Collapse
Affiliation(s)
- Yin Shi
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Shanshan Gao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Ying Zheng
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Mukun Yao
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| | - Fan Ruan
- Department of Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
8
|
Singh A, Gupta S, Sachan M. Epigenetic Biomarkers in the Management of Ovarian Cancer: Current Prospectives. Front Cell Dev Biol 2019; 7:182. [PMID: 31608277 PMCID: PMC6761254 DOI: 10.3389/fcell.2019.00182] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer (OC) causes significant morbidity and mortality as neither detection nor screening of OC is currently feasible at an early stage. Difficulty to promptly diagnose OC in its early stage remains challenging due to non-specific symptoms in the early-stage of the disease, their presentation at an advanced stage and poor survival. Therefore, improved detection methods are urgently needed. In this article, we summarize the potential clinical utility of epigenetic signatures like DNA methylation, histone modifications, and microRNA dysregulation, which play important role in ovarian carcinogenesis and discuss its application in development of diagnostic, prognostic, and predictive biomarkers. Molecular characterization of epigenetic modification (methylation) in circulating cell free tumor DNA in body fluids offers novel, non-invasive approach for identification of potential promising cancer biomarkers, which can be performed at multiple time points and probably better reflects the prevailing molecular profile of cancer. Current status of epigenetic research in diagnosis of early OC and its management are discussed here with main focus on potential diagnostic biomarkers in tissue and body fluids. Rapid and point of care diagnostic applications of DNA methylation in liquid biopsy has been precluded as a result of cumbersome sample preparation with complicated conventional methods of isolation. New technologies which allow rapid identification of methylation signatures directly from blood will facilitate sample-to answer solutions thereby enabling next-generation point of care molecular diagnostics. To date, not a single epigenetic biomarker which could accurately detect ovarian cancer at an early stage in either tissue or body fluid has been reported. Taken together, the methodological drawbacks, heterogeneity associated with ovarian cancer and non-validation of the clinical utility of reported potential biomarkers in larger ovarian cancer populations has impeded the transition of epigenetic biomarkers from lab to clinical settings. Until addressed, clinical implementation as a diagnostic measure is a far way to go.
Collapse
Affiliation(s)
- Alka Singh
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George Medical University, Lucknow, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
9
|
Kim SW, Jo A, Im J, Lee HE, Kim HS. Expression analysis of miR-221-3p and its target genes in horses. Genes Genomics 2019; 41:459-465. [PMID: 30604147 DOI: 10.1007/s13258-018-00778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
BACKGROUND A microRNA (miRNA) is a small non-coding RNA (ncRNA) approximately 20 nucleotides long and it affects gene expression through mRNA cleavage or translational repression. Horses (Equus caballus) have been domesticated and bred to enhance their speed for racing. It has been studied extensively with genetic diversity, origins and evolution. OBJECTIVES We examined expression patterns of miR-221-3p and its target gene CDKN1C in various horse tissues. METHODS We used bioinformatic tools to examine target gene, seed region and evolutionary conservation of miR-221-3p. The expression patterns of miR-221-3p and its target gene CDKN1C were analyzed by quantitative polymerase chain reaction (qPCR). RESULTS Among eight tissues of horse, miR-221-3p was highly expressed in cerebellum and spleen. On the other hand, only medulla was highly expressed in CDKN1C gene. CONCLUSION Our study provides expression data of miR-221-3p and CDKN1C gene in horse and suggests the fundamental information for future studies in relation to functional importance.
Collapse
Affiliation(s)
- So-Won Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Ara Jo
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jennifer Im
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea
| | - Hee-Eun Lee
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea.,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan, 46241, Republic of Korea. .,Institute of Systems Biology, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
10
|
Hu XH, Zhao ZX, Dai J, Geng DC, Xu YZ. MicroRNA-221 regulates osteosarcoma cell proliferation, apoptosis, migration, and invasion by targeting CDKN1B/p27. J Cell Biochem 2018; 120:4665-4674. [PMID: 30582227 DOI: 10.1002/jcb.27755] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs, miR) are of critical importance in growth and metastasis of cancer cells; however, the underlying functions of miRNAs in osteosarcoma (OS) remain largely unknown. This study was aimed to elucidate the role of miR-221 in regulating the biological behavior of OS cells. The proliferation ability was examined by cell counting kit-8 (CCK-8) and cell cycle assay. The abilities of cell migration, invasion, and apoptosis were monitored by transwell assay and flow cytometry, respectively. The effect of miR-221 on cyclin-dependent kinase inhibitor 1B (CDKN1B) expression was evaluated by luciferase assays, real-time polymerase chain reaction, and Western blot analysis. We found that miR-221 was elevated in OS cell lines compared with the normal osteoblastic cell line. Transfection of the miR-221 inhibitor into MG63 and U-2OS cell lines obviously suppressed cell proliferation, migration, and invasion, which is accompanied with cell cycle arrest in G0/G1 phase. Furthermore, luciferase reporter assays indicated that CDKN1B is directly targeted by miR-221 in OS cells. Knockdown of CDKN1B inhibited the effects of miR-221 inhibitor, along with decreased Bax and caspase-3 and increased cyclin E, cyclin D1, Bcl-2, Snail, and Twist1 expression. The results suggested that miR-221 might act as a potentially useful target for treatment of OS.
Collapse
Affiliation(s)
- Xiao-Hui Hu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Ze-Xue Zhao
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Jian Dai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - De-Chun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yao-Zeng Xu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Genetic and Epigenetic Control of CDKN1C Expression: Importance in Cell Commitment and Differentiation, Tissue Homeostasis and Human Diseases. Int J Mol Sci 2018; 19:ijms19041055. [PMID: 29614816 PMCID: PMC5979523 DOI: 10.3390/ijms19041055] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/31/2018] [Accepted: 03/31/2018] [Indexed: 12/28/2022] Open
Abstract
The CDKN1C gene encodes the p57Kip2 protein which has been identified as the third member of the CIP/Kip family, also including p27Kip1 and p21Cip1. In analogy with these proteins, p57Kip2 is able to bind tightly and inhibit cyclin/cyclin-dependent kinase complexes and, in turn, modulate cell division cycle progression. For a long time, the main function of p57Kip2 has been associated only to correct embryogenesis, since CDKN1C-ablated mice are not vital. Accordingly, it has been demonstrated that CDKN1C alterations cause three human hereditary syndromes, characterized by altered growth rate. Subsequently, the p57Kip2 role in several cell phenotypes has been clearly assessed as well as its down-regulation in human cancers. CDKN1C lies in a genetic locus, 11p15.5, characterized by a remarkable regional imprinting that results in the transcription of only the maternal allele. The control of CDKN1C transcription is also linked to additional mechanisms, including DNA methylation and specific histone methylation/acetylation. Finally, long non-coding RNAs and miRNAs appear to play important roles in controlling p57Kip2 levels. This review mostly represents an appraisal of the available data regarding the control of CDKN1C gene expression. In addition, the structure and function of p57Kip2 protein are briefly described and correlated to human physiology and diseases.
Collapse
|
12
|
Tian S, Zhang M, Chen X, Liu Y, Lou G. MicroRNA-595 sensitizes ovarian cancer cells to cisplatin by targeting ABCB1. Oncotarget 2018; 7:87091-87099. [PMID: 27893429 PMCID: PMC5349973 DOI: 10.18632/oncotarget.13526] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/09/2016] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is among the leading cause of cancer-related deaths in females. In this study, we demonstrated that miR-595 expression was downregulated in the ovarian cancer tissues and cell lines. miR-595 expression was lower in the lymph node metastases tissues than in the primary ovarian cancer tissues and normal tissues. Furthermore, miR-595 overexpression suppressed the ovarian cancer cell proliferation, colony formation and invasion and promoted the sensitivity of ovarian cancer cell to cisplatin. We identified ABCB1 as a direct target gene of miR-595 in the ovarian cancer cell. ABCB1 expression was upregulated in the ovarian cancer tissues and cell lines. Morevoer, the expression level of ABCB1 was inversely correlated with miR-595 in the ovarian cancer tissues. In addition, overexpression of ABCB1 decreased the miR-595-overexpressing HO8910PM and SKOV-3 cell sensitivity to cisplatin. Ectopic expression of ABCB1 promoted the miR-595-overexpressing HO8910PM and SKOV-3 cell proliferation, colony formation and invasion. These data suggested that miR-595 acted a tumor suppressor role in ovarian cancer development and increased the sensitivity of ovarian cancer to cisplatin.
Collapse
Affiliation(s)
- Songyu Tian
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Mingyue Zhang
- Department of Anaesthesiology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Xiuwei Chen
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Yunduo Liu
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| | - Ge Lou
- Department of Gynecology Oncology, Cancer Hospital of Harbin Medical University, Harin, 150081, Heilongjiang, China
| |
Collapse
|
13
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
14
|
Samuel P, Carter DRF. The Diagnostic and Prognostic Potential of microRNAs in Epithelial Ovarian Carcinoma. Mol Diagn Ther 2017; 21:59-73. [PMID: 27718164 DOI: 10.1007/s40291-016-0242-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ovarian cancer causes more than 100,000 deaths globally per year. Despite intensive research efforts, there has been little improvement in the overall survival of patients over the past three decades. Most patients are not diagnosed until the cancer is at an advanced stage, by which time their chances of still being alive after 5 years are appallingly low. Attempts to extend life in these patients have been, for the most part, unsuccessful. This owes partly to the lack of suitable biomarkers for stratifying patients at the molecular level, into responders and non-responders. This would lead to more drugs being shown to have a clinical benefit and being approved for use in subgroups of patients. There is also a desperate need for improved biomarkers for earlier detection of ovarian cancer; if the disease is detected sooner there is a significantly improved outlook. In this review, we outline the evidence that microRNAs are deregulated in ovarian cancer, what this can tell us about tumour progression and how it could be used to improve patient stratification in clinical trials. We also describe the potential for circulating microRNAs, both associated with proteins or carried in vesicles, to be used as diagnostics for earlier detection or as biomarkers for informing clinicians on the prognosis and best treatment of ovarian cancer.
Collapse
Affiliation(s)
- Priya Samuel
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - David Raul Francisco Carter
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| |
Collapse
|
15
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. Cell Oncol (Dordr) 2017; 40:105-118. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco.
- Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
16
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
17
|
El Bairi K, Kandhro AH, Gouri A, Mahfoud W, Louanjli N, Saadani B, Afqir S, Amrani M. Emerging diagnostic, prognostic and therapeutic biomarkers for ovarian cancer. CELLULAR ONCOLOGY (DORDRECHT) 2016. [PMID: 27981507 DOI: 10.1007/s13402-016-0309-1]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND In spite of various treatment options currently available, ovarian cancer (OC) still remains a leading cause of death in women world-wide. Diagnosis at an early stage is one of the most important factors that determines survival. Current clinical diagnostic tools have, however, a limited efficacy in early OC detection. Therefore, there is a critical need for new (early) diagnostic biomarkers and tools. Through advances in genomic, proteomic and metabolomic techniques, several novel molecular OC biomarkers have recently been identified. These biomarkers are currently subject to validation. In addition, integration of genomic, proteomic and metabolomic data, in conjunction with epidemiologic and clinical data, is considered essential for obtaining useful results. Interesting recent work has already shown that specific diagnostic biomarkers, such as BRCA mutations, may have profound therapeutic implications. Here, we review the current state of OC research through literature and database searches, with a focus on various recently identified biomarkers via different technologies for the (early) diagnosis, prognosis and treatment of OC. CONCLUSIONS Multi-biomarker panels accompanied by a meticulous determination of their sensitivity and specificity, as well their validation, using multivariate analyses will be critical for its clinical application, including early OC detection and tailor-made OC treatment.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and Pharmacy, Oujda, Morocco. .,Independent Research Team in Cancer Biology and Bioactive Compounds, Mohammed 1st University, Oujda, Morocco.
| | - Abdul Hafeez Kandhro
- Department of Biochemistry, Healthcare Molecular and Diagnostic Laboratory, Hyderabad, Pakistan
| | - Adel Gouri
- Laboratory of Medical Biochemistry, Ibn Rochd University Hospital, Annaba, Algeria
| | - Wafaa Mahfoud
- Laboratory of Biology and Health, URAC-34, Faculty of Science Ben Msik, University Hassan II, Mohammedia, Casablanca, Morocco
| | | | - Brahim Saadani
- IVF center IRIFIV, Clinique des Iris, Casablanca, Morocco
| | - Said Afqir
- Department of Medical Oncology, Mohamed 1st University Hospital, Oujda, Morocco
| | - Mariam Amrani
- Equipe de Recherche ONCOGYMA, Faculty of Medicine, Pathology Department, National Institute of Oncology, Université Mohamed V, Rabat, Morocco
| |
Collapse
|
18
|
Szajnik M, Czystowska-Kuźmicz M, Elishaev E, Whiteside TL. Biological markers of prognosis, response to therapy and outcome in ovarian carcinoma. Expert Rev Mol Diagn 2016; 16:811-26. [PMID: 27268121 DOI: 10.1080/14737159.2016.1194758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ovarian cancer (OvCa) is among the most common types of cancer and is the leading cause of death from gynecological malignancies in western countries. Cancer biomarkers have a potential for improving the management of OvCa patients at every point from screening and detection, diagnosis, prognosis, follow up, response to therapy and outcome. AREAS COVERED The literature search has indicated a number of candidate biomarkers have recently emerged that could facilitate the molecular definition of OvCa, providing information about prognosis and predicting response to therapy. These potentially promising biomarkers include immune cells and their products, tumor-derived exosomes, nucleic acids and epigenetic biomarkers. Expert commentary: Although most of the biomarkers available today require prospective validation, the development of noninvasive liquid biopsy-based monitoring promises to improve their utility for evaluations of prognosis, response to therapy and outcome in OvCa.
Collapse
Affiliation(s)
- Marta Szajnik
- a Department of Gynecology and Gynecologic Oncology , Military Institute of Medicine , Warsaw , Poland.,b Department of Immunology, Centre of Biostructure Research , Medical University of Warsaw , Warsaw , Poland
| | | | - Esther Elishaev
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA
| | - Theresa L Whiteside
- c Department of Pathology , University of Pittsburgh, School of Medicine , Pittsburgh , PA , USA.,d University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| |
Collapse
|
19
|
Elliott DM, Nagarkatti M, Nagarkatti PS. 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther 2016; 357:177-87. [PMID: 26818958 PMCID: PMC4809322 DOI: 10.1124/jpet.115.226563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022] Open
Abstract
3,39-Diindolylmethane (DIM), a natural indole found in cruciferous vegetables, has significant anti-cancer and anti-inflammatory properties. In this current study, we investigated the effects of DIM on acute lung injury (ALI) induced by exposure to staphylococcal enterotoxin B (SEB). We found that pretreatment of mice with DIM led to attenuation of SEB-induced inflammation in the lungs, vascular leak, and IFN-g secretion. Additionally, DIM could induce cell-cycle arrest and cell death in SEB-activated T cells in a concentration-dependent manner. Interestingly, microRNA (miRNA) microarray analysis uncovered an altered miRNA profile in lung-infiltrating mononuclear cells after DIM treatment of SEB-exposed mice. Moreover, computational analysis of miRNA gene targets and regulation networks indicated that DIM alters miRNA in the cell death and cell-cycle progression pathways. Specifically, DIM treatment significantly downregulated several miRNA and a correlative increase associated gene targets. Furthermore, overexpression and inhibition studies demonstrated that DIM-induced cell death, at least in part, used miR-222. Collectively, these studies demonstrate for the first time that DIM treatment attenuates SEB-induced ALI and may do so through the induction of microRNAs that promote apoptosis and cell-cycle arrest in SEB-activated T cells.
Collapse
|
20
|
Yan H, Chen Y, Zhou S, Li C, Gong G, Chen X, Wang T, Chen S, Sha Z. Expression Profile Analysis of miR-221 and miR-222 in Different Tissues and Head Kidney Cells of Cynoglossus semilaevis, Following Pathogen Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:37-48. [PMID: 26420296 DOI: 10.1007/s10126-015-9668-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
Half-smooth tongue sole (Cynoglossus semilaevis) is an important marine commercial fish species in China, which suffers from widespread disease outbreaks. Recently, in this regard, our group identified immune-related microRNAs (miRNAs) of C. semilaevis following Vibrio anguillarum infection. Furthermore, miRNA microarray was utilized to characterize the immune roles of important miRNA candidates in response to bacterial infection. Therefore, in the present study, we characterized miR-221 and miR-222 and profiled their expression after challenge. Here, miR-221 and miR-222 precursors were predicted to have a typical hairpin structure. Both miRNAs were expressed in a broad range of tissues in C. semilaevis, while miR-221 and miR-222 were significantly differentially expressed in the immune tissues of C. semilaevis among three small RNA libraries [control group (CG), bacteria-challenged fish without obvious symptoms of infection (NOSG), and bacteria-challenged fish with obvious symptoms of infection (HOSG)]. In order to further characterize and understand the immune response of miR-221 and miR-222, therefore, we profiled miR-221 and miR-222 expression in selected immune tissues after challenge with V. anguillarum. Both miR-221 and miR-222 were upregulated in the liver and spleen, while different expression patterns were observed in the head kidney. In addition, in half-smooth tongue sole head kidney cell line after challenge with lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (poly I:C), peptidoglycan (PGN), and red-spotted grouper nervous necrosis virus (RGNNV), both miR-221 and miR-222 showed significant difference in expression response to pathogen. Meanwhile, the target gene of miR-221 and miR-222 was predicted, which indicated that tumor necrosis factor receptor-associated factor 6 (TRAF6) and interleukin-1 beta (IL-1β) were the target genes of miR-221 and miR-222, respectively. Collectively, these findings indicated that miR-221 and miR-222 have putative roles in innate immune response during C. semilaevis exposure to pathogens. Our findings could expand the knowledge of immune function of C. semilaevis miRNA and guide future studies on C. semilaevis immunity.
Collapse
Affiliation(s)
- Hui Yan
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Yadong Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Shun Zhou
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Chao Li
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Guangye Gong
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Xuejie Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Tianzi Wang
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
| | - Songlin Chen
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China
| | - Zhenxia Sha
- Key Lab for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071, People's Republic of China.
- Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266200, People's Republic of China.
| |
Collapse
|
21
|
Mirzaei H, Mirzaei H, Yazdi F, Salehi R. SiRNA and epigenetic aberrations in ovarian cancer. J Cancer Res Ther 2016; 12:498-508. [DOI: 10.4103/0973-1482.153661] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Shi C, Zhang Z. miR-761 inhibits tumor progression by targeting MSI1 in ovarian carcinoma. Tumour Biol 2015; 37:5437-43. [PMID: 26563371 DOI: 10.1007/s13277-015-4377-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022] Open
Abstract
Increasing evidences have revealed that microRNAs regulate various biological processes. However, the roles of miR-761 have not been investigated in ovarian cancer. Here, we found that miR-761 expression was significantly lower in ovarian cancer tissues than in their paired noncancerous tissues. Further study revealed that miR-761 overexpression inhibited the ovarian cancer cell proliferation and invasion. Mechanistically, we demonstrated that the oncogenic properties of miR-761 in ovarian cancer were mediated in part by regulating MSI1 expression. miR-761 and MSI1 are inversely expressed in ovarian cancer tissues. In conclusion, we demonstrated that miR-761 repressed ovarian cancer proliferation and invasion by targeting MSI1.
Collapse
Affiliation(s)
- Can Shi
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
23
|
Hu P, Feng B, Wang G, Ning B, Jia T. Microarray based analysis of gene regulation by microRNA in intervertebral disc degeneration. Mol Med Rep 2015; 12:4925-30. [PMID: 26134418 PMCID: PMC4581765 DOI: 10.3892/mmr.2015.4022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 06/11/2015] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to explore the underlying mechanism of the development of intervertebral disc degeneration (IDD) by bioinformatics based on microarray datasets. GSE 19943 and GSE 34095 datasets downloaded from Gene Expression Omnibus data were used to screen the differentially expressed genes (DEGs) in IDD. The correlation between microRNAs and target genes was investigated using different algorithms. The underlying molecular mechanisms of the target genes were then explored using Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology function enrichment analysis. A total of 9 differentially expressed microRNAs, including 3 down- and 6 upregulated microRNAs and 850 DEGs were identified in tissue from patients with IDD. Two regulation networks of the target genes by microRNAs were constructed, including 33 upregulated microRNA-target gene pairs and 4 downregulated microRNA-target gene pairs. Certain target genes had been demonstrated to be involved in IDD progression via various pathways, including in the cell cycle and pathways in cancer. In addition, two important microRNAs (microRNA-222 and microRNA-589) were identified that were pivotal for the development of IDD, and their target genes, CDKNAB and SMAD4. In conclusion, a comprehensive miRNA-target gene regulatory network was constructed, which was found to be important in IDD progression.
Collapse
Affiliation(s)
- Peng Hu
- Department of Orthopedics, Jinan Central Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Feng
- Department of Neurology, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Guanglin Wang
- Department of Spine, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Bin Ning
- Department of Orthopedics, Jinan Central Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tanghong Jia
- Department of Orthopedics, Jinan Central Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
24
|
Krakowsky RHE, Tollefsbol TO. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer. Front Nutr 2015; 2:16. [PMID: 26075205 PMCID: PMC4445322 DOI: 10.3389/fnut.2015.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/02/2015] [Indexed: 12/21/2022] Open
Abstract
Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level.
Collapse
Affiliation(s)
- Rosanna H E Krakowsky
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Department of Biochemistry, University of Leipzig , Leipzig , Germany
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Center for Healthy Ageing, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Cancer Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham , Birmingham, AL , USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
25
|
Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, Xiao C, Bezzerides V, Boström P, Che L, Zhang C, Spiegelman BM, Rosenzweig A. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 2015; 21:584-95. [PMID: 25863248 PMCID: PMC4393846 DOI: 10.1016/j.cmet.2015.02.014] [Citation(s) in RCA: 288] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/17/2015] [Accepted: 02/13/2015] [Indexed: 01/26/2023]
Abstract
Exercise induces physiological cardiac growth and protects the heart against pathological remodeling. Recent work suggests exercise also enhances the heart's capacity for repair, which could be important for regenerative therapies. While microRNAs are important in certain cardiac pathologies, less is known about their functional roles in exercise-induced cardiac phenotypes. We profiled cardiac microRNA expression in two distinct models of exercise and found microRNA-222 (miR-222) was upregulated in both. Downstream miR-222 targets modulating cardiomyocyte phenotypes were identified, including HIPK1 and HMBOX1. Inhibition of miR-222 in vivo completely blocked cardiac and cardiomyocyte growth in response to exercise while reducing markers of cardiomyocyte proliferation. Importantly, mice with inducible cardiomyocyte miR-222 expression were resistant to adverse cardiac remodeling and dysfunction after ischemic injury. These studies implicate miR-222 as necessary for exercise-induced cardiomyocyte growth and proliferation in the adult mammalian heart and show that it is sufficient to protect the heart against adverse remodeling.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Junjie Xiao
- Regeneration Lab and Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Han Zhu
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Xin Wei
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Colin Platt
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Federico Damilano
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Chunyang Xiao
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Vassilios Bezzerides
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Cardiovascular Department of Boston Children's Hospital and Harvard Medical School, Boston, MA 02215, USA
| | - Pontus Boström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lin Che
- Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Chunxiang Zhang
- Rush Medical College, Rush University, Chicago, IL 60612, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, 02115, USA
| | - Anthony Rosenzweig
- Cardiovascular Division of the Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA; Massachusetts General Hospital Cardiovascular Division and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
26
|
The role of microRNAs in ovarian cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:249393. [PMID: 25295252 PMCID: PMC4177088 DOI: 10.1155/2014/249393] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/22/2014] [Accepted: 08/27/2014] [Indexed: 12/19/2022]
Abstract
Ovarian cancer is the most lethal of malignant gynecological tumors. Its lethality may be due to difficulties in detecting it at an early stage and lack of effective treatments for patients with an advanced or recurrent status. Therefore, there is a strong need for prognostic and predictive markers to diagnose it early and to help optimize and personalize treatment. MicroRNAs are noncoding RNAs that regulate target genes posttranscriptionally. They are involved in carcinogenesis, cell cycle, apoptosis, proliferation, invasion, metastasis, and chemoresistance. The dysregulation of microRNAs is involved in the initiation and progression of human cancers including ovarian cancer, and strong evidence that microRNAs can act as oncogenes or tumor suppressor genes has emerged. Several microRNA signatures that are unique to ovarian cancer have been proposed, and serum-circulating microRNAs have the potential to be useful diagnostic and prognostic biomarkers. Various microRNAs such as those in the miR-200 family, the miR-199/214 cluster, or the let-7 paralogs have potential as therapeutic targets for disseminated or chemoresistant ovarian tumors. Although many obstacles need to be overcome, microRNA therapy could be a powerful tool for ovarian cancer prevention and treatment. In this review, we discuss the emerging roles of microRNAs in various aspects of ovarian cancer.
Collapse
|
27
|
Vilming Elgaaen B, Olstad OK, Haug KBF, Brusletto B, Sandvik L, Staff AC, Gautvik KM, Davidson B. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker. BMC Cancer 2014; 14:80. [PMID: 24512620 PMCID: PMC3928323 DOI: 10.1186/1471-2407-14-80] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 02/07/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions. METHODS Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously. RESULTS Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC. CONCLUSIONS Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs. miR-200 family members, targeting EMT drivers, were mostly overexpressed in both subgroups, among which miR-200c-3p was associated with survival in HGSC patients. A set of miRNAs differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several interactions between miRNAs and mRNAs in HGSC were mapped.
Collapse
Affiliation(s)
- Bente Vilming Elgaaen
- Department of Gynecological Oncology, Oslo University Hospital (OUH), The Norwegian Radium Hospital, Postbox 4953 Nydalen 0424, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Pallante P, Battista S, Pierantoni GM, Fusco A. Deregulation of microRNA expression in thyroid neoplasias. Nat Rev Endocrinol 2014; 10:88-101. [PMID: 24247220 DOI: 10.1038/nrendo.2013.223] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a class of powerful gene expression regulators. Acting at the post-transcriptional level, miRNAs modulate the expression of at least one-third of the mRNAs that are encoded by the human genome. The expression of a single gene can be regulated by several miRNAs, and every miRNA has more than one target gene. Thus, the miRNA regulatory circuit, which affects essential cellular functions, is of enormous complexity. Moreover, a fundamental role for miRNAs has been determined in the onset and progression of human cancers. Here, we summarize the main alterations in miRNA expression that have been identified in thyroid neoplasias and examine the mechanisms through which miRNA deregulation might promote thyroid cell transformation. We also discuss how the emerging knowledge on miRNA deregulation could be harnessed for the diagnosis and treatment of thyroid neoplasias.
Collapse
Affiliation(s)
- Pierlorenzo Pallante
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Sabrina Battista
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Giovanna Maria Pierantoni
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| | - Alfredo Fusco
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale (IEOS) "G. Salvatore", Consiglio Nazionale delle Ricerche (CNR), c/o Dipartimento di Medicina Molecolare e Biotecnologie Mediche (DMMBM), Università degli Studi di Napoli "Federico II", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
29
|
Yang J, Zhang JY, Chen J, Xu Y, Song NH, Yin CJ. Prognostic role of microRNA-221 in various human malignant neoplasms: a meta-analysis of 20 related studies. PLoS One 2014; 9:e87606. [PMID: 24475314 PMCID: PMC3903772 DOI: 10.1371/journal.pone.0087606] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/23/2013] [Indexed: 12/19/2022] Open
Abstract
Background MicroRNA-221 (miR-221) has been shown to play an important role in cancer prognosis. In order to evaluate the predictive value of miR-221, we compiled the evidence from 20 eligible studies to perform a meta-analysis. Design All of relevant studies were identified by searching PubMed, Embase, and Web of Science, and were assessed by further quality evaluation. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of total and stratified analyses, for overall survival (OS) and recurrence-free survival (RFS), were calculated to investigate the association between high miR-221 expression and cancer prognosis. Results We found that high miR-221 expression can predict a poor OS in malignant tumors (pooled HR = 1.55, P = 0.017) but has no significant association with RFS (pooled HR = 1.02, P = 0.942). Further in stratified analyses, high miR-221 expression was significantly associated with a poor OS in Asians (pooled HR = 2.04, P = 0.010) or serum/ plasma subgroup (pooled HR = 2.28, P<0.001), and even showed significantly poor OS (pooled HR = 1.80, P<0.001) and RFS (pooled HR = 2.43, P = 0.010) in hepatocellular carcinoma (HCC) subgroup, but was correlated to a favorable RFS in prostate cancer subgroup (pooled HR = 0.51, P = 0.004). Conclusions Our findings demonstrate that miR-221 is more suitable to predict cancer prognosis in Asians, and it is a promising prognostic biomarker for HCC. The detection of miR-221 in serum or plasma samples may make it become an effective method for monitoring patients' prognosis and assessing therapeutic efficacy in the future.
Collapse
Affiliation(s)
- Jie Yang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia-yi Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Chen
- Department of General Surgery, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Xu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning-hong Song
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang-jun Yin
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
30
|
Abstract
MicroRNAs (miRNAs) are 18- to 22-nucleotide-long, single-stranded, noncoding RNAs that regulate important biological processes including differentiation, proliferation, and response to cellular stressors such as hypoxia, nutrient depletion, and traversion of the cell cycle by controlling protein expression within the cell. Many investigators have profiled cancer tissue and serum miRNAs to identify potential therapeutic targets, understand the pathways involved in tumorigenesis, and identify diagnostic tumor signatures. In the setting of pancreatic cancer, obtaining pancreatic tissue is invasive and impractical for early diagnosis. Several groups have profiled miRNAs that are present in the blood as a means to diagnose tumor progression and predict prognosis/survival or drug resistance. Several miRNA signatures found in pancreatic tissue and the peripheral blood, as well as the pathways that are associated with pancreatic cancer, are reviewed here in detail. Three miRNA biomarkers (miR-21, miR-155, and miR-200) have been repetitively identified in both pancreatic cancer tissue and patients' blood. Those miRNAs regulate and are regulated by the central genetic and epigenetic changes observed in pancreatic cancer including p53, transforming growth factor β, p16(INK4A), BRCA1/2, and Kras. These miRNAs are involved in DNA repair, cell cycle, and cell invasion and also play important roles in promoting metastases.
Collapse
|
31
|
Sun C, Li N, Zhou B, Yang Z, Ding D, Weng D, Meng L, Wang S, Zhou J, Ma D, Chen G. miR-222 is upregulated in epithelial ovarian cancer and promotes cell proliferation by downregulating P27 kip1.. Oncol Lett 2013; 6:507-512. [PMID: 24137356 PMCID: PMC3789083 DOI: 10.3892/ol.2013.1393] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/14/2013] [Indexed: 01/11/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the leading cause of female reproductive system cancer mortality in females. The majority of cases of ovarian carcinomas are not identified until a late stage. Identifying the molecular changes that occur during the development and progression of ovarian cancer is an urgent requirement. MicroRNAs (miRNAs) have been identified as gene expression regulators that induce mRNA degradation or translation blockade through pairing to the 3′ untranslated region (3-‘UTR) of the target mRNAs. In the present study, miR-222 was observed to be frequently upregulated in ovarian cancer. miR-222 upregulation induced an enhancement of ovarian cancer cell proliferation potential, possibly by downregulating its target, P27Kip1. A bioinformatic analysis showed that the 3′-UTR of the P27Kip1 mRNA contained a highly-conserved putative miR-222 binding site. Luciferase reporter assays demonstrated that P27Kip1 was a direct target of miR-222. Consistently, there was an inverse correlation between the P27Kip1 and miR-222 expression levels in the ovarian cancer cell lines and tissues. Overall, the present results suggest that miR-222 upregulation in human ovarian cancer may promote ovarian cancer cell proliferation during ovarian carcinogenesis.
Collapse
Affiliation(s)
- Chaoyang Sun
- Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sundarbose K, Kartha RV, Subramanian S. MicroRNAs as Biomarkers in Cancer. Diagnostics (Basel) 2013; 3:84-104. [PMID: 26835669 PMCID: PMC4665585 DOI: 10.3390/diagnostics3010084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/28/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules, which in recent years have emerged to have enormous potential as biomarkers. Recently, there have been significant developments in understanding miRNA biogenesis, their regulatory mechanisms and role in disease process, and their potential as effective therapies. The identification of miRNAs as biomarkers provides possibilities for development of less or non-invasive and more specific methods for monitoring tumor growth and progression. This review summarizes the recent developments in methods to detect and quantitate miRNAs in body fluids and their applications as biomarkers in cancers. The prospect of miRNAs as potential diagnostic and prognostic biomarkers with clinical applications is significant as more evidence points to their central role in cancer pathobiology.
Collapse
Affiliation(s)
- Kamini Sundarbose
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Reena V Kartha
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Subbaya Subramanian
- Division of Basic and Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
33
|
Velu VK, Ramesh R, Srinivasan A. Circulating MicroRNAs as Biomarkers in Health and Disease. J Clin Diagn Res 2012; 6:1791-5. [PMID: 23373057 PMCID: PMC3552233 DOI: 10.7860/jcdr/2012/4901.2653] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/12/2012] [Indexed: 01/07/2023]
Abstract
In the recent years, circulating nucleic acids have emerged as new biomarkers. Among these, microRNAs(miRNA) have evolved as promising and potential markers of both physiological and pathological conditions. MiRNA are transcribed from DNA like the other mRNA molecules. Their secretions and functions have to be still explored in humans, though many theories have been proposed. It is a small non coding RNA which plays an important role in the regulation of the gene expression, cell-cell communication, cell division and apoptosis. MiRNAs are stable and tissue specific and they can be identified and quantitated, which make them ideal biomarkers. This review highlights the secretion,mechanism of action and the role of miRNA in the diagnosis and the management of different disease conditions.
Collapse
Affiliation(s)
| | - R. Ramesh
- Professor & Head, Department of Biochemistry
| | - A.R. Srinivasan
- Professor, Department of Biochemistry, Mahatma Gandhi Medical College and Research Institute, Puducherry, Pin Code – 607 402, India
| |
Collapse
|
34
|
Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ, Dwyer RM. Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One 2012; 7:e50459. [PMID: 23226290 PMCID: PMC3511577 DOI: 10.1371/journal.pone.0050459] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/22/2012] [Indexed: 01/01/2023] Open
Abstract
MiRNAs are key regulators of tumorigenesis that are aberrantly expressed in the circulation and tissue of patients with cancer. The aim of this study was to determine whether miRNA dysregulation in the circulation reflected similar changes in tumour tissue. Athymic nude mice (n = 20) received either a mammary fat pad (n = 8, MFP), or subcutaneous (n = 7, SC) injection of MDA-MB-231 cells. Controls received no tumour cells (n = 5). Tumour volume was monitored weekly and blood sampling performed at weeks 1, 3 and 6 following tumour induction (total n = 60). Animals were sacrificed at week 6 and tumour tissue (n = 15), lungs (n = 20) and enlarged lymph nodes (n = 3) harvested. MicroRNAs were extracted from all samples (n = 98) and relative expression quantified using RQ-PCR. MiR-221 expression was significantly increased in tumour compared to healthy tissue (p<0.001). MiR-10b expression was significantly higher in MFP compared to SC tumours (p<0.05), with the highest levels detected in diseased lymph nodes (p<0.05). MiR-10b was undetectable in the circulation, with no significant change in circulating miR-221 expression detected during disease progression. MiR-195 and miR-497 were significantly decreased in tumour tissue (p<0.05), and also in the circulation of animals 3 weeks following tumour induction (p<0.05). At both tissue and circulating level, a positive correlation was observed between miR-497 and miR-195 (r = 0.61, p<0.001; r = 0.41, p<0.01 respectively). This study highlights the distinct roles of miRNAs in circulation and tissue. It also implicates miRNAs in disease dissemination and progression, which may be important in systemic therapy and biomarker development.
Collapse
Affiliation(s)
- Peadar S. Waters
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Ailbhe M. McDermott
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Deirdre Wall
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Helen M. Heneghan
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Nicola Miller
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - John Newell
- HRB Clinical Research Facility, National University of Galway, Galway, Ireland
- School of Mathematics, Statistics and Applied Mathematics, National University of Galway, Galway, Ireland
| | - Michael J. Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Roisin M. Dwyer
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
35
|
Lee H, Park CS, Deftereos G, Morihara J, Stern JE, Hawes SE, Swisher E, Kiviat NB, Feng Q. MicroRNA expression in ovarian carcinoma and its correlation with clinicopathological features. World J Surg Oncol 2012; 10:174. [PMID: 22925189 PMCID: PMC3449188 DOI: 10.1186/1477-7819-10-174] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Background MicroRNA (miRNA) expression is known to be deregulated in ovarian carcinomas. However, limited data is available about the miRNA expression pattern for the benign or borderline ovarian tumors as well as differential miRNA expression pattern associated with histological types, grades or clinical stages in ovarian carcinomas. We defined patterns of microRNA expression in tissues from normal, benign, borderline, and malignant ovarian tumors and explored the relationship between frequently deregulated miRNAs and clinicopathologic findings, response to therapy, survival, and association with Her-2/neu status in ovarian carcinomas. Methods We measured the expression of nine miRNAs (miR-181d, miR-30a-3p, miR-30c, miR-30d, miR-30e-3p, miR-368, miR-370, miR-493-5p, miR-532-5p) in 171 formalin-fixed, paraffin-embedded ovarian tissue blocks as well as six normal human ovarian surface epithelial (HOSE) cell lines using Taqman-based real-time PCR assays. Her-2/neu overexpression was assessed in ovarian carcinomas (n = 109 cases) by immunohistochemistry analysis. Results Expression of four miRNAs (miR-30c, miR-30d, miR-30e-3p, miR-370) was significantly different between carcinomas and benign ovarian tissues as well as between carcinoma and borderline tissues. An additional three miRNAs (miR-181d, miR-30a-3p, miR-532-5p) were significantly different between borderline and carcinoma tissues. Expression of miR-532-5p was significantly lower in borderline than in benign tissues. Among ovarian carcinomas, expression of four miRNAs (miR-30a-3p, miR-30c, miR-30d, miR-30e-3p) was lowest in mucinous and highest in clear cell samples. Expression of miR-30a-3p was higher in well-differentiated compared to poorly differentiated tumors (P = 0.02), and expression of miR-370 was higher in stage I/II compared to stage III/IV samples (P = 0.03). In multivariate analyses, higher expression of miR-181d, miR-30c, miR-30d, and miR-30e-3p was associated with significantly better disease-free or overall survival. Finally, lower expression of miR-30c, miR-30d, miR-30e-3p and miR-532-5p was significantly associated with overexpression of Her-2/neu. Conclusions Aberrant expression of miRNAs is common in ovarian tumor suggesting involvement of miRNA in ovarian tumorigenesis. They are associated with histology, clinical stage, survival and oncogene expression in ovarian carcinoma.
Collapse
Affiliation(s)
- Heejeong Lee
- Department of Pathology, College of Medicine, The Catholic University of Korea, Bucheon, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhang L, Jamaluddin MS, Weakley SM, Yao Q, Chen C. Roles and mechanisms of microRNAs in pancreatic cancer. World J Surg 2011; 35:1725-31. [PMID: 21222121 DOI: 10.1007/s00268-010-0952-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pancreatic cancer (PC) is an aggressive malignancy with poor survival. The discovery of microRNAs (miRNAs) has provided a new opportunity to study the disease. Thus far, altered expression of miRNAs has been reported in a wide range of malignancies, including PC, and some miRNAs are associated with PC cell proliferation, invasion, chemoresistance, and patient survival. This review summarizes recent advances with respect to the roles and mechanisms of miRNAs in PC and discusses potential clinical applications.
Collapse
Affiliation(s)
- Lidong Zhang
- Michael E. DeBakey Department of Surgery, Molecular Surgeon Research Center, Baylor College of Medicine, One Baylor Plaza, Mail stop BCM391, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|
37
|
Zhang S, Li Q, Liu J, Zhou XJ. A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. ACTA ACUST UNITED AC 2011; 27:i401-9. [PMID: 21685098 PMCID: PMC3117336 DOI: 10.1093/bioinformatics/btr206] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Motivation: It is well known that microRNAs (miRNAs) and genes work cooperatively to form the key part of gene regulatory networks. However, the specific functional roles of most miRNAs and their combinatorial effects in cellular processes are still unclear. The availability of multiple types of functional genomic data provides unprecedented opportunities to study the miRNA–gene regulation. A major challenge is how to integrate the diverse genomic data to identify the regulatory modules of miRNAs and genes. Results: Here we propose an effective data integration framework to identify the miRNA–gene regulatory comodules. The miRNA and gene expression profiles are jointly analyzed in a multiple non-negative matrix factorization framework, and additional network data are simultaneously integrated in a regularized manner. Meanwhile, we employ the sparsity penalties to the variables to achieve modular solutions. The mathematical formulation can be effectively solved by an iterative multiplicative updating algorithm. We apply the proposed method to integrate a set of heterogeneous data sources including the expression profiles of miRNAs and genes on 385 human ovarian cancer samples, computationally predicted miRNA–gene interactions, and gene–gene interactions. We demonstrate that the miRNAs and genes in 69% of the regulatory comodules are significantly associated. Moreover, the comodules are significantly enriched in known functional sets such as miRNA clusters, GO biological processes and KEGG pathways, respectively. Furthermore, many miRNAs and genes in the comodules are related with various cancers including ovarian cancer. Finally, we show that comodules can stratify patients (samples) into groups with significant clinical characteristics. Availability: The program and supplementary materials are available at http://zhoulab.usc.edu/SNMNMF/. Contact:xjzhou@usc.edu; zsh@amss.ac.cn Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shihua Zhang
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
38
|
Rengaraj D, Lee BR, Lee SI, Seo HW, Han JY. Expression patterns and miRNA regulation of DNA methyltransferases in chicken primordial germ cells. PLoS One 2011; 6:e19524. [PMID: 21559294 PMCID: PMC3086922 DOI: 10.1371/journal.pone.0019524] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 04/06/2011] [Indexed: 12/21/2022] Open
Abstract
DNA methylation is widespread in most species, from bacteria to mammals, and is crucial for genomic imprinting, gene expression, and embryogenesis. DNA methylation occurs via two major classes of enzymatic reactions: maintenance-type methylation catalyzed by DNA (cytosine-5-)-methyltransferase (DNMT) 1, and de novo methylation catalyzed by DNMT 3 alpha (DNMT3A) and -beta (DNMT3B). The expression pattern and regulation of DNMT genes in primordial germ cells (PGCs) and germ line cells has not been sufficiently established in birds. Therefore, we employed bioinformatics, RT-PCR, real-time PCR, and in situ hybridization analyses to examine the structural conservation and conserved expression patterns of chicken DNMT family genes. We further examined the regulation of a candidate de novo DNA methyltransferase gene, cDNMT3B by cotransfection of cDNMT3B 3'UTR- and cDNMT3B 3'UTR-specific miRNAs through a dual fluorescence reporter assay. All cDNMT family members were differentially detected during early embryonic development. Of interest, cDNMT3B expression was highly detected in early embryos and in PGCs. During germ line development and sexual maturation, cDNMT3B expression was reestablished in a female germ cell-specific manner. In the dual fluorescence reporter assay, cDNMT3B expression was significantly downregulated by four miRNAs: gga-miR-15c (25.82%), gga-miR-29b (30.01%), gga-miR-383 (30.0%), and gga-miR-222 (31.28%). Our data highlight the structural conservation and conserved expression patterns of chicken DNMTs. The miRNAs investigated in this study may induce downregulation of gene expression in chicken PGCs and germ cells.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Bo Ram Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sang In Lee
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Hee Won Seo
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jae Yong Han
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Translational application of epigenetic alterations: ovarian cancer as a model. FEBS Lett 2011; 585:2112-20. [PMID: 21402071 DOI: 10.1016/j.febslet.2011.03.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/12/2022]
Abstract
Cancer is a disease initiated and driven by the accumulation and interplay of genetic and epigenetic mutations of genes involved in the regulation of cell growth and signaling. Dysregulation of these genes and pathways in a cell leads to a growth advantage and clonal expansion. The epigenetic alterations involved in the initiation and progression of cancer are DNA methylation and histone modifications which interact to remodel chromatin, as well as RNA interference. These alterations can be used as candidate targets in molecular tests for risk, early detection, prognosis, prediction of response to therapy, and monitoring, as well as new therapeutic targets in cancer. In this review, we discuss the rationale, studies to date, and issues in the translational application of epigenetics using epithelial ovarian cancer as a specific example of all types of cancer.
Collapse
|
40
|
Brase JC, Wuttig D, Kuner R, Sültmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 2010; 9:306. [PMID: 21110877 PMCID: PMC3002336 DOI: 10.1186/1476-4598-9-306] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/26/2010] [Indexed: 02/06/2023] Open
Abstract
Human serum and other body fluids are rich resources for the identification of novel biomarkers, which can be measured in routine clinical diagnosis. microRNAs are small non-coding RNA molecules, which have an important function in regulating RNA stability and gene expression. The deregulation of microRNAs has been linked to cancer development and tumor progression. Recently, it has been reported that serum and other body fluids contain sufficiently stable microRNA signatures. Thus, the profiles of circulating microRNAs have been explored in a variety of studies aiming at the identification of novel non-invasive biomarkers. In this review, we discuss recent findings indicating that circulating microRNAs are useful as non-invasive biomarkers for different tumor types. Additionally, we summarize the knowledge about the mechanism of microRNA release and the putative functional roles of circulating microRNAs. Although several challenges remain to be addressed, circulating microRNAs have the potential to be useful for the diagnosis and prognosis of cancer diseases.
Collapse
Affiliation(s)
- Jan C Brase
- Working Group Cancer Genome Research, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|
41
|
Brase JC, Wuttig D, Kuner R, Sültmann H. Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 2010. [PMID: 21110877 DOI: 10.1186/1476-4598-9-306;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human serum and other body fluids are rich resources for the identification of novel biomarkers, which can be measured in routine clinical diagnosis. microRNAs are small non-coding RNA molecules, which have an important function in regulating RNA stability and gene expression. The deregulation of microRNAs has been linked to cancer development and tumor progression. Recently, it has been reported that serum and other body fluids contain sufficiently stable microRNA signatures. Thus, the profiles of circulating microRNAs have been explored in a variety of studies aiming at the identification of novel non-invasive biomarkers. In this review, we discuss recent findings indicating that circulating microRNAs are useful as non-invasive biomarkers for different tumor types. Additionally, we summarize the knowledge about the mechanism of microRNA release and the putative functional roles of circulating microRNAs. Although several challenges remain to be addressed, circulating microRNAs have the potential to be useful for the diagnosis and prognosis of cancer diseases.
Collapse
Affiliation(s)
- Jan C Brase
- Working Group Cancer Genome Research, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | |
Collapse
|