1
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
2
|
Bu G, Lin Y, Liu J, Yu P, Yong T, Yang M, Huang L, Han X, Du X, Kong F, Huang A, Zeng X, Meng F. Evidence for progesterone acting as an inhibitor of stress axis via stimulating pituitary neuropeptide B/W receptor 2 (NPBWR2) expression in chickens. J Steroid Biochem Mol Biol 2023; 226:106218. [PMID: 36368625 DOI: 10.1016/j.jsbmb.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
In vertebrates, the hypothalamus-pituitary-adrenal gland (HPA) axis is the main endocrine pathway regulating the stress response, thus also called the stress axis. It has been well-accepted that the stress axis is tightly controlled by both hypothalamic stimulators and inhibitors [e.g. corticotropin (ACTH)-releasing inhibitory factor (CRIF)]. However, the identity of authentic CRIF remains unclear for decades. Recently, neuropeptide W (NPW) was proved to be the physiological CRIF in chickens. Together with its functional receptor (NPBWR2), they play critical roles in attenuating the activity of the chicken stress axis. Because increasing pieces of evidence suggested that sex steroids could regulate the stress axis, using chicken as a model, we investigated whether the newly identified CRIF and its receptor are under the control of sex steroids in this study. Our results showed that: (1) expression of NPW-NPBWR2 in the hypothalamus-pituitary axis was sexually dimorphic and developmental stage-dependent; (2) progesterone (P4), rather than 17β-estradiol (E2) and dihydrotestosterone (DHT), could dose- and time-dependently upregulate NPBWR2 expression, which was accompanied with the decrease of ACTH synthesis and secretion, in cultured pituitary cells; (3) intraperitoneal injection of P4 could elevate the mRNA level of pituitary NPBWR2; (4) P4-stimulated NPBWR2 expression was relevant to both nPR-mediated genomic action and mPRs-triggered nongenomic route associated with MEK/ERK, PI3K/AKT cascade, and calcium influx. To our knowledge, our results discover a novel route of sex steroids in modulating the stress axis of chickens, which lays a foundation to reveal the complicated interaction network between reproduction and stress axes in chickens.
Collapse
Affiliation(s)
- Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| | - Ying Lin
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Jianfeng Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Pan Yu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Tao Yong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Linyan Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| |
Collapse
|
3
|
Ohkuma M, Maruyama T, Ishii T, Igarashi N, Azuma K, Inoue T, Obata R, Miyachi EI, Kaneda M. Effects of Progesterone and Other Gonadal Hormones on Glutamatergic Circuits in the Retina. J NIPPON MED SCH 2023; 90:333-345. [PMID: 37690823 DOI: 10.1272/jnms.jnms.2023_90-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
BACKGROUND Gonadal hormones function in the retina; however, their targets have not yet been identified. Therefore, the present study examined the effects of progesterone and other gonadal hormones on glutamatergic circuits in the retina. METHODS Extracellular glutamate concentrations, which correspond to the amount of glutamate released, were examined using an enzyme-linked fluorescent assay system. The activity of glutamatergic synapses between bipolar cells and ganglion cells was investigated using a patch clamp technique. Changes in retinal thickness during pregnancy were assessed using optical coherence tomography (OCT) images. RESULTS Progesterone and pregnenolone sulfate increased extracellular glutamate concentrations, whereas estrogen and testosterone did not. Progesterone increased the activity of glutamatergic synapses between bipolar cells and ganglion cells. A temporal decrease in the thickness of the peripheral retina was observed in the 1st trimester. CONCLUSIONS Progesterone, but not estrogen or testosterone, activated glutamate release in the mouse retina. Increases in the concentration of progesterone during pregnancy did not induce any detectable change in retinal thickness.
Collapse
Affiliation(s)
| | - Takuma Maruyama
- Department of Physiology, Nippon Medical School
- Present address: Department of Physiology, Division of Neurophysiology, School of Medicine, Tokyo Women's Medical University
| | | | - Nozomi Igarashi
- Department of Ophthalmology, Faculty of Medicine, Tokyo University
| | - Keiko Azuma
- Department of Ophthalmology, Faculty of Medicine, Tokyo University
| | - Tatsuya Inoue
- Department of Ophthalmology, School of Medicine, Yokohama City University
| | - Ryo Obata
- Department of Ophthalmology, Faculty of Medicine, Tokyo University
| | | | | |
Collapse
|
4
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
5
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
6
|
Xia Z, Xiao J, Chen Q. Solving the Puzzle: What Is the Role of Progestogens in Neovascularization? Biomolecules 2021; 11:1686. [PMID: 34827682 PMCID: PMC8615949 DOI: 10.3390/biom11111686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/30/2022] Open
Abstract
Ovarian sex steroids can modulate new vessel formation and development, and the clarification of the underlying mechanism will provide insight into neovascularization-related physiological changes and pathological conditions. Unlike estrogen, which mainly promotes neovascularization through activating classic post-receptor signaling pathways, progesterone (P4) regulates a variety of downstream factors with angiogenic or antiangiogenic effects, exerting various influences on neovascularization. Furthermore, diverse progestins, the synthetic progesterone receptor (PR) agonists structurally related to P4, have been used in numerous studies, which could contribute to unequal actions. As a result, there have been many conflicting observations in the past, making it difficult for researchers to define the exact role of progestogens (PR agonists including naturally occurring P4 and synthetic progestins). This review summarizes available evidence for progestogen-mediated neovascularization under physiological and pathological circumstances, and attempts to elaborate their functional characteristics and regulatory patterns from a comprehensive perspective.
Collapse
Affiliation(s)
| | | | - Qiong Chen
- Department of Geriatrics, Xiangya Hospital of Central South University, Changsha 410008, China; (Z.X.); (J.X.)
| |
Collapse
|
7
|
Cantonero C, Salido GM, Rosado JA, Redondo PC. PGRMC1 Inhibits Progesterone-Evoked Proliferation and Ca 2+ Entry Via STIM2 in MDA-MB-231 Cells. Int J Mol Sci 2020; 21:ijms21207641. [PMID: 33076541 PMCID: PMC7589959 DOI: 10.3390/ijms21207641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) has been shown to regulate some cancer hallmarks. Progesterone (P4) evokes intracellular calcium (Ca2+) changes in the triple-negative breast cancer cell lines (MDA-MB-231, MDA-MB-468, and BT-20) and in other breast cancer cell lines like the luminal MCF7 cells. PGRMC1 expression is elevated in MDA-MB-231 and MCF7 cells as compared to non-tumoral MCF10A cell line, and PGRMC1 silencing enhances P4-evoked Ca2+ mobilization. Here, we found a new P4-dependent Ca2+ mobilization pathway in MDA-MB-231 cells and other triple-negative breast cancer cells, as well as in MCF7 cells that involved Stromal interaction molecule 2 (STIM2), Calcium release-activated calcium channel protein 1 (Orai1), and Transient Receptor Potential Channel 1 (TRPC1). Stromal interaction molecule 1 (STIM1) was not involved in this novel Ca2+ pathway, as evidenced by using siRNA STIM1. PGRMC1 silencing reduced the negative effect of P4 on cell proliferation and cell death in MDA-MB-231 cells. In line with the latter observation, Nuclear Factor of Activated T-Cells 1 (NFAT1) nuclear accumulation due to P4 incubation for 48 h was enhanced in cells transfected with the small hairpin siRNA against PGRMC1 (shPGRMC1). These results provide evidence for a novel P4-evoked Ca2+ entry pathway that is downregulated by PGRMC1.
Collapse
|
8
|
Islam MS, Afrin S, Jones SI, Segars J. Selective Progesterone Receptor Modulators-Mechanisms and Therapeutic Utility. Endocr Rev 2020; 41:bnaa012. [PMID: 32365199 PMCID: PMC8659360 DOI: 10.1210/endrev/bnaa012] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/30/2020] [Indexed: 02/07/2023]
Abstract
Selective progesterone receptor modulators (SPRMs) are a new class of compounds developed to target the progesterone receptor (PR) with a mix of agonist and antagonist properties. These compounds have been introduced for the treatment of several gynecological conditions based on the critical role of progesterone in reproduction and reproductive tissues. In patients with uterine fibroids, mifepristone and ulipristal acetate have consistently demonstrated efficacy, and vilaprisan is currently under investigation, while studies of asoprisnil and telapristone were halted for safety concerns. Mifepristone demonstrated utility for the management of endometriosis, while data are limited regarding the efficacy of asoprisnil, ulipristal acetate, telapristone, and vilaprisan for this condition. Currently, none of the SPRMs have shown therapeutic success in treating endometrial cancer. Multiple SPRMs have been assessed for efficacy in treating PR-positive recurrent breast cancer, with in vivo studies suggesting a benefit of mifepristone, and multiple in vitro models suggesting the efficacy of ulipristal acetate and telapristone. Mifepristone, ulipristal acetate, vilaprisan, and asoprisnil effectively treated heavy menstrual bleeding (HBM) in patients with uterine fibroids, but limited data exist regarding the efficacy of SPRMs for HMB outside this context. A notable class effect of SPRMs are benign, PR modulator-associated endometrial changes (PAECs) due to the actions of the compounds on the endometrium. Both mifepristone and ulipristal acetate are effective for emergency contraception, and mifepristone was approved by the US Food and Drug Administration (FDA) in 2012 for the treatment of Cushing's syndrome due to its additional antiglucocorticoid effect. Based on current evidence, SPRMs show considerable promise for treatment of several gynecologic conditions.
Collapse
Affiliation(s)
- Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - Sara Isabel Jones
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women’s Health Research, Johns Hopkins Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
González SL, Coronel MF, Raggio MC, Labombarda F. Progesterone receptor-mediated actions and the treatment of central nervous system disorders: An up-date of the known and the challenge of the unknown. Steroids 2020; 153:108525. [PMID: 31634489 DOI: 10.1016/j.steroids.2019.108525] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/09/2019] [Indexed: 01/04/2023]
Abstract
Progesterone has been shown to exert a wide range of remarkable protective actions in experimental models of central nervous system injury or disease. However, the intimate mechanisms involved in each of these beneficial effects are not fully depicted. In this review, we intend to give the readers a thorough revision on what is known about the participation of diverse receptors and signaling pathways in progesterone-mediated neuroprotective, pro-myelinating and anti-inflammatory outcomes, as well as point out to novel regulatory mechanisms that could open new perspectives in steroid-based therapies.
Collapse
Affiliation(s)
- Susana L González
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina.
| | - María F Coronel
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ Pilar, Buenos Aires, Argentina
| | - María C Raggio
- Laboratorio de Nocicepción y Dolor Neuropático, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Florencia Labombarda
- Laboratorio de Bioquímica Neuroendócrina, Instituto de Biología y Medicina Experimental, CONICET, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina; Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, C1121ABG Buenos Aires, Argentina
| |
Collapse
|
10
|
Li X, Liu J, Hoh J, Liu J. Müller cells in pathological retinal angiogenesis. Transl Res 2019; 207:96-106. [PMID: 30639368 DOI: 10.1016/j.trsl.2018.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/06/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023]
Abstract
Müller cells are the major glial cells spanning the entire layer of the retina and maintaining retinal structure. Under pathological conditions, Müller cells are involved in retinal angiogenesis, a process of growing new blood vessels from pre-existing capillaries. In response to hypoxia, high glucose, and inflammation conditions, multiple signaling pathways are activated in Müller cells, followed by the increased production of proangiogenic factors including vascular endothelial growth factor, basic fibroblast growth factor, matrix metalloproteinases, Netrin-4, and angiopoietin-like 4. Expression of antiangiogenic factors is also downregulated in Müller cells. Besides, proliferation and dedifferentiation of Müller cells facilitates retinal angiogenesis. In this review, we summarized molecular mechanisms of Müller cells-related retinal angiogenesis. The potential of Müller cells as a therapeutic target for retinal angiogenesis was also discussed.
Collapse
Affiliation(s)
- Xiaorui Li
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China; Taishan Medical College, Taian, China
| | - Jing Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| | - Josephine Hoh
- Department of Epidemiology and Public Health, Department of Ophthalmology and Visual Science, Yale University, New Haven, Connecticut
| | - Ju Liu
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
11
|
Benlloch-Navarro S, Trachsel-Moncho L, Fernández-Carbonell Á, Olivar T, Soria JM, Almansa I, Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J Steroid Biochem Mol Biol 2019; 189:291-301. [PMID: 30654106 DOI: 10.1016/j.jsbmb.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/07/2019] [Accepted: 01/13/2019] [Indexed: 01/20/2023]
Abstract
The interactions between steroid gonadal hormones and the retina (a part of the visual system and the central nervous system (CNS)) have received limited attention and beneficial effects of these hormones in retinal diseases is controversial. Retinitis pigmentosa (RP) is the most common cause of retinal hereditary blindness and to date no treatment is available. However, results regarding the effects of progesterone on the progression of RP are promising. With the idea of demonstrating if the progesterone retinal protection in RP is related to its possible anti-inflammatory properties, we have administered orally progesterone to rd10 mice, an animal model of RP. We observed that progesterone decreased photoreceptors cell death, reactive gliosis and the increase in microglial cells caused by RP. We also examined the expression of neuronal and inducible nitric oxide synthase (nNOS and iNOS), the enzyme responsible for NO production. The results demonstrated a decrease in nNOS expression only in control mice treated with progesterone. Inflammation has been related with an increase in lipid peroxidation. Noticeably progesterone administration was able to diminish retinal malondialdehyde (MDA, a lipid peroxidation product) concentrations in rd10 mice. Altogether, we can conclude that progesterone could be a good therapeutic option not only in RP but also for other retinal diseases that have been associated with inflammation and lipid peroxidation.
Collapse
Affiliation(s)
- Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Laura Trachsel-Moncho
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | | | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - José Miguel Soria
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain; Instituto de Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain.
| |
Collapse
|
12
|
Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants (Basel) 2019; 8:antiox8030053. [PMID: 30832304 PMCID: PMC6466531 DOI: 10.3390/antiox8030053] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress has been documented to be a key factor in the cause and progression of different retinal diseases. Oxidative cellular unbalance triggers a sequence of reactions which prompt cell degeneration and retinal dysfunction, both hallmarks of several retinal pathologies. There is no effective treatment, yet, for many retinal diseases. Antioxidant treatment have been pointed out to be an encouraging palliative treatment; the beneficial effects documented involve slowing the progression of the disease, a reduction of cell degeneration, and improvement of retinal functions. There is a vast information corpus on antioxidant candidates. In this review, we expose three of the main antioxidant treatments, selected for their promising results that has been reported to date. Recently, the sulforaphane, an isothiocyanate molecule, has been unveiled as a neuroprotective candidate, by its antioxidant properties. Progesterone, a neurosteroid has been proposed to be a solid and effective neuroprotective agent. Finally, the lipoic acid, an organosulfur compound, is a well-recognized antioxidant. All of them, have been tested and studied on different retinal disease models. In this review, we summarized the published results of these works, to offer a general view of the current antioxidant treatment advances, including the main effects and mechanisms described.
Collapse
|
13
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
14
|
Ramírez-Lamelas DT, Benlloch-Navarro S, López-Pedrajas R, Gimeno-Hernández R, Olivar T, Silvestre D, Miranda M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front Pharmacol 2018; 9:469. [PMID: 29867476 PMCID: PMC5954235 DOI: 10.3389/fphar.2018.00469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/23/2018] [Indexed: 01/27/2023] Open
Abstract
Retinitis pigmentosa (RP) is a group of inherited retinopathies characterized by photoreceptors death. Our group has shown the positive progesterone (P4) actions on cell death progression in an experimental model of RP. In an effort to enhance the beneficial effects of P4, the aim of this study was to combine P4 treatment with an antioxidant [lipoic acid (LA)] in the rd1 mice. rd1 and control mice were treated with 100 mg/kg body weight of P4, LA, or a combination of both on postnatal day 7 (PN7), 9, and 11, and were sacrificed at PN11. The administration of LA and/or P4 diminishes cell death in rd1 retinas. The effect obtained after the combined administration of LA and P4 is higher than the one obtained with LA or P4 alone. The three treatments decreased GFAP staining, however, in the far peripheral retina, and the two treatments that offered better results were LA and LA plus P4. LA or LA plus P4 increased retinal glutathione (GSH) concentration in the rd1 mice. Although LA and P4 are able to protect photoreceptors from death in rd1 mice retinas, a better effectiveness is achieved when administering LA and P4 at the same time.
Collapse
Affiliation(s)
- Dolores T Ramírez-Lamelas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Soledad Benlloch-Navarro
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Rosa López-Pedrajas
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Roberto Gimeno-Hernández
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Teresa Olivar
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Dolores Silvestre
- Departamento Farmacia, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - María Miranda
- Departamento Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain.,Instituto de Ciencias Biomédicas, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| |
Collapse
|
15
|
Tsai HW, Ho CL, Cheng SW, Lin YJ, Chen CC, Cheng PN, Yen CJ, Chang TT, Chiang PM, Chan SH, Ho CH, Chen SH, Wang YW, Chow NH, Lin JC. Progesterone receptor membrane component 1 as a potential prognostic biomarker for hepatocellular carcinoma. World J Gastroenterol 2018; 24:1152-1166. [PMID: 29563759 PMCID: PMC5850134 DOI: 10.3748/wjg.v24.i10.1152] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the clinicopathological significance of progesterone receptor membrane component 1 (PGRMC1) and PGRMC2 in hepatocellular carcinoma (HCC).
METHODS We performed immunohistochemical staining to evaluate the estrogen receptor (ER), progesterone receptor (PR), PGRMC1, and PGRMC2 in a clinical cohort consisting of 89 paired HCC and non-tumor liver samples. We also analyzed HCC data (n = 373) from The Cancer Genome Atlas (TCGA). We correlated the expression status of PGRMC1 and PGRMC2 with clinicopathological indicators and the clinical outcomes of the HCC patients. We knocked down or overexpressed PGRMC1 in HCC cell lines to evaluate its biological significance in HCC cell proliferation, differentiation, migration, and invasion.
RESULTS We found that few HCC cases expressed ER (5.6%) and PR (4.5%). In contrast, most HCC cases expressed PGRMC1 (89.9%) and PGRMC2 (100%). PGRMC1 and PGRMC2 exhibited significantly lower expression in tumor tissue than in non-tumor tissue (P < 0.001). Lower PGRMC1 expression in HCC was significantly associated with higher serum alpha-fetoprotein expression (P = 0.004), poorer tumor differentiation (P = 0.045) and liver capsule penetration (P = 0.038). Low PGRMC1 expression was an independent predictor for worse disease-free survival (P = 0.002, HR = 2.384, CI: 1.377-4.128) in our cases, as well as in the TCGA cohort (P < 0.001, HR = 2.857, CI: 1.781-4.584). The expression of PGRMC2 did not relate to patient outcome. PGRMC1 knockdown promoted a poorly differentiated phenotype and proliferation of HCC cells in vitro, while PGRMC1 overexpression caused the opposite effects.
CONCLUSION PGRMC1 is a non-classical hormonal receptor that negatively regulates hepatocarcinogenesis. PGRMC1 down-regulation is associated with progression of HCC and is a poor prognostic indicator.
Collapse
Affiliation(s)
- Hung-Wen Tsai
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chung-Liang Ho
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Wen Cheng
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yih-Jyh Lin
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chou-Cheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Pin-Nan Cheng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Chia-Jui Yen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Ting-Tsung Chang
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shih-Huang Chan
- Department of Statistics, College of Management, National Cheng Kung University, Tainan 70403, Taiwan
| | - Cheng-Hsun Ho
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Shu-Hui Chen
- Department of Chemistry, College of Sciences, National Cheng Kung University, Tainan 70403, Taiwan
| | - Yi-Wen Wang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| | - Jou-Chun Lin
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan
| |
Collapse
|
16
|
Allen RS, Sayeed I, Oumarbaeva Y, Morrison KC, Choi PH, Pardue MT, Stein DG. Progesterone treatment shows greater protection in brain vs. retina in a rat model of middle cerebral artery occlusion: Progesterone receptor levels may play an important role. Restor Neurol Neurosci 2018; 34:947-963. [PMID: 27802245 DOI: 10.3233/rnn-160672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVE To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. METHODS MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. RESULTS Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. CONCLUSION Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.
Collapse
Affiliation(s)
- Rachael S Allen
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Yuliya Oumarbaeva
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | | | - Paul H Choi
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Clark NC, Pru CA, Yee SP, Lydon JP, Peluso JJ, Pru JK. Conditional Ablation of Progesterone Receptor Membrane Component 2 Causes Female Premature Reproductive Senescence. Endocrinology 2017; 158:640-651. [PMID: 28005395 PMCID: PMC5460782 DOI: 10.1210/en.2016-1701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/21/2016] [Indexed: 01/04/2023]
Abstract
The nonclassical progesterone receptors progesterone receptor membrane component (PGRMC) 1 and PGRMC2 have been implicated in regulating cell survival of endometrial and ovarian cells in vitro and are abundantly expressed in these cell types. The objective of this study was to determine if Pgrmc1 and Pgrmc2 are essential for normal female reproduction. To accomplish this objective, Pgrmc1 and/or Pgrmc2 floxed mice (Pgrmc2fl/fl and Pgrmc1/2fl/fl) were crossed with Pgr-cre mice, which resulted in the conditional ablation of Pgrmc1 and/or Pgrmc2 from female reproductive tissues (i.e.,Pgrmc2d/d and Pgrmc1/2d/d mice). A breeding trial revealed that conditional ablation of Pgrmc2 initially led to subfertility, with Pgrmc2d/d female mice producing 47% fewer pups/litter than Pgrmc2fl/fl mice (P = 0.001). Pgrmc2d/d mice subsequently underwent premature reproductive senescence by parities 2 to 5, producing 37.8% fewer litters overall during the trial compared with Pgrmc2fl/fl mice (P = 0.020). Similar results were observed with Pgrmc1/2d/d mice. Based on ovarian morphology and serum P4, the subfertility/infertility was not due to faulty ovulation or luteal insufficiency. Rather an analysis of midgestation implantation sites revealed that postimplantation embryonic death was the major cause of the subfertility/infertility. As with our previous report of Pgrmc1d/d mice, Pgrmc2d/d and Pgrmc1/2d/d mice developed endometrial cysts consistent with accelerated aging of this tissue. Given the timing of postimplantation embryonic demise, uterine decidualization may be disrupted in mice deficient in PGRMC2 or PGRMC1/2. Overall, this study revealed that Pgrmc1 and/or Pgrmc2 are required for the maintenance of uterine histoarchitecture and normal female reproductive lifespan.
Collapse
Affiliation(s)
- Nicole C. Clark
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Cindy A. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| | - Siu-Pok Yee
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - John J. Peluso
- Departments of Cell Biology and Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, Connecticut 06030; and
| | - James K. Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164;
| |
Collapse
|
18
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
19
|
Yu P, Zhang Z, Li S, Wen X, Quan W, Tian Q, Chen J, Zhang J, Jiang R. Progesterone modulates endothelial progenitor cell (EPC) viability through the CXCL12/CXCR4/PI3K/Akt signalling pathway. Cell Prolif 2016; 49:48-57. [PMID: 26818151 DOI: 10.1111/cpr.12231] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Progesterone treatment can effectively increase levels of circulating endothelial progenitor cells (EPCs) and improve neurological functional outcome in a traumatic brain injury (TBI) rat model. However, the mechanisms of progesterone's effects on EPC viability remain elusive. The CXCL12/CXCR4 (CXC chemokine ligand 12/CXC chemokine receptor 4) signalling pathway regulates cell proliferation; we hypothesize that it mediates progesterone-induced EPC viability. MATERIALS AND METHODS EPCs were isolated from bone marrow-derived mononuclear cells (BM-MNCs) and treated with progesterone (5, 10 and 100 nm). MTS assay was used to investigate EPC viability. Protein expression was examined by Western blotting, ELISA assay and flow cytometry. Cell membrane and cytoplasm proteins were extracted with membrane and cytoplasm protein extraction kits. CXCR4 antagonist (AMD3100) and phosphatidylinositol 3-kinases (PI3K) antagonist (LY294002) were used to characterize underlying mechanisms. RESULTS Progesterone-induced EPC viability was time- and dose-dependent. Administration of progesterone facilitated EPC viability and increased expression of CXCL12 and phosphorylated Akt (also known as protein kinase B, pAkt) activity (P < 0.05). Progesterone did not regulate CXCR4 protein expression in cultured EPC membranes or cytoplasm. However, progesterone-induced EPC viability was significantly attenuated by AMD3100 or LY294002. Inhibition of the signalling pathway with AMD3100 and LY294002 subsequently reduced progesterone-induced CXCL12/CXCR4/PI3K/pAkt signalling activity. CONCLUSIONS The CXCL12/CXCR4/PI3K/pAkt signalling pathway increased progesterone-induced EPC viability.
Collapse
Affiliation(s)
- Peng Yu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Zhifei Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Shengjie Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Xiaolong Wen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Wei Quan
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Qilong Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Jieli Chen
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, 48202, USA
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, 300052, China.,Tianjin Neurological Institute, Tianjin, 300052, China.,Key Laboratory of Post-Neurotrauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China
| |
Collapse
|
20
|
Clark NC, Friel AM, Pru CA, Zhang L, Shioda T, Rueda BR, Peluso JJ, Pru JK. Progesterone receptor membrane component 1 promotes survival of human breast cancer cells and the growth of xenograft tumors. Cancer Biol Ther 2016; 17:262-71. [PMID: 26785864 DOI: 10.1080/15384047.2016.1139240] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Triple negative breast cancers (TNBCs) are highly aggressive and grow in response to sex steroid hormones despite lacking expression of the classical estrogen (E2) and progesterone (P4) receptors. Since P4 receptor membrane component 1 (PGRMC1) is expressed in breast cancer tumors and is known to mediate P4-induced cell survival, this study was designed to determine the expression of PGRMC1 in TNBC tumors and the involvement of PGRMC1 in regulating proliferation and survival of TNBC cells in vitro and the growth of TNBC tumors in vivo. For the latter studies, the MDA-MB-231 (MDA) cell line derived from TNBC was used. These cells express PGRMC1 but lack expression of the classical P4 receptor. A lentiviral-based shRNA approach was used to generate a stably transfected PGRMC1-deplete MDA line for comparison to the PGRMC1-intact MDA line. The present studies demonstrate that PGRMC1: 1) is expressed in TNBC cells; 2) mediates the ability of P4 to suppress TNBC cell mitosis in vitro; 3) is required for P4 to reduce the apoptotic effects of doxorubicin in vitro; and 4) facilitates TNBC tumor formation and growth in vivo. Taken together, these findings indicate that PGRMC1 plays an important role in regulating the growth and survival of TNBC cells in vitro and ultimately in the formation and development of these tumors in vivo. Thus, PGRMC1 may be a therapeutic target for TNBCs.
Collapse
Affiliation(s)
- Nicole C Clark
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Anne M Friel
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Cindy A Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| | - Ling Zhang
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Toshi Shioda
- c Massachusetts General Hospital Cancer Center and Harvard Medical School , Charlestown , MA , USA
| | - Bo R Rueda
- b Vincent Center for Reproductive Biology and Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - John J Peluso
- d Departments of Obstetrics and Gynecology and Cell Biology , University of Connecticut Health Center , Farmington , CT , USA
| | - James K Pru
- a Department of Animal Sciences , School of Molecular Biosciences, Center for Reproductive Biology, Washington State University , Pullman , WA , USA
| |
Collapse
|
21
|
Li X, Rhee DK, Malhotra R, Mayeur C, Hurst LA, Ager E, Shelton G, Kramer Y, McCulloh D, Keefe D, Bloch KD, Bloch DB, Peterson RT. Progesterone receptor membrane component-1 regulates hepcidin biosynthesis. J Clin Invest 2015; 126:389-401. [PMID: 26657863 DOI: 10.1172/jci83831] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/05/2015] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated by the membrane iron exporter ferroportin and its regulatory peptide hormone hepcidin. The hepcidin/ferroportin axis is considered a promising therapeutic target for the treatment of diseases of iron overload or deficiency. Here, we conducted a chemical screen in zebrafish to identify small molecules that decrease ferroportin protein levels. The chemical screen led to the identification of 3 steroid molecules, epitiostanol, progesterone, and mifepristone, which decrease ferroportin levels by increasing the biosynthesis of hepcidin. These hepcidin-inducing steroids (HISs) did not activate known hepcidin-inducing pathways, including the BMP and JAK/STAT3 pathways. Progesterone receptor membrane component-1 (PGRMC1) was required for HIS-dependent increases in hepcidin biosynthesis, as PGRMC1 depletion in cultured hepatoma cells and zebrafish blocked the ability of HISs to increase hepcidin mRNA levels. Neutralizing antibodies directed against PGRMC1 attenuated the ability of HISs to induce hepcidin gene expression. Inhibiting the kinases of the SRC family, which are downstream of PGRMC1, blocked the ability of HISs to increase hepcidin mRNA levels. Furthermore, HIS treatment increased hepcidin biosynthesis in mice and humans. Together, these data indicate that PGRMC1 regulates hepcidin gene expression through an evolutionarily conserved mechanism. These studies have identified drug candidates and potential therapeutic targets for the treatment of diseases of abnormal iron metabolism.
Collapse
|
22
|
Jackson ACW, Roche SL, Byrne AM, Ruiz-Lopez AM, Cotter TG. Progesterone receptor signalling in retinal photoreceptor neuroprotection. J Neurochem 2015; 136:63-77. [PMID: 26447367 DOI: 10.1111/jnc.13388] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/29/2015] [Accepted: 10/02/2015] [Indexed: 11/29/2022]
Abstract
'Norgestrel', a synthetic form of the female hormone progesterone has been identified as potential drug candidate for the treatment of the degenerative eye disease retinitis pigmentosa. However, to date, no work has looked at the compound's specific cellular target. Therefore, this study aimed to identify the receptor target of Norgestrel and begin to examine its potential mechanism of action in the retina. In this work, we identify and characterize the expression of progesterone receptors present in the C57 wild type and rd10 mouse model of retinitis pigmentosa. Classical progesterone receptors A and B (PR A/B), progesterone receptor membrane components 1 and 2 (PGRMC1, PGRMC2) and membrane progesterone receptors α, β and γ were found to be expressed. All receptors excluding PR A/B were also found in the 661W photoreceptor cell line. PGRMC1 is a key regulator of apoptosis and its expression is up-regulated in the degenerating rd10 mouse retina. Activated by Norgestrel through nuclear trafficking, siRNA knock down of PGRMC1 abrogated the protective properties of Norgestrel on damaged photoreceptors. Furthermore, specific inhibition of PGRMC1 by AG205 blocked Norgestrel-induced protection in stressed retinal explants. Therefore, we conclude that PGRMC1 is crucial to the neuroprotective effects of Norgestrel on stressed photoreceptors. The synthetic progestin 'Norgestrel' has been identified as a potential therapeutic for the treatment of Retinitis Pigmentosa, a degenerative eye disease. However, the mechanism behind this neuroprotection is currently unknown. In this work, we identify 'Progesterone Receptor Membrane Component 1' as the major progesterone receptor eliciting the protective effects of Norgestrel, both in vitro and ex vivo. This furthers our understanding of Norgestrel's molecular mechanism, which we hope will help bring Norgestrel one step closer to the clinic.
Collapse
Affiliation(s)
- Alice C Wyse Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland
| |
Collapse
|
23
|
Yenerel NM, Küçümen RB. Pregnancy and the Eye. Turk J Ophthalmol 2015; 45:213-219. [PMID: 27800235 PMCID: PMC5082244 DOI: 10.4274/tjo.43815] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/17/2014] [Indexed: 12/01/2022] Open
Abstract
Pregnancy causes significant changes in all systems of the body. Although most of them are physiological, they may also lead to pathological consequences. The resulting pathological changes may occur for the first time or existing diseases affected by pregnancy can become more serious or change course. Diseases specific only to pregnancy may arise. Like all systems of the body, the visual system is also affected by pregnancy, developing a wide range of physiological and pathological changes. Knowing the ocular physiological changes and diagnosing eye diseases that may develop during pregnancy, and preventing and treating these diseases is crucial to ensure the baby's healthy development. Therefore, we have reviewed the conditions that an ophthalmologist should recognize, follow-up, and pay attention to during treatment and summarized them under the topic "pregnancy and the eye".
Collapse
Affiliation(s)
| | - Raciha Beril Küçümen
- Yeditepe University Faculty of Medicine, Department of Ophthalmology, İstanbul, Turkey
| |
Collapse
|
24
|
Allen RS, Olsen TW, Sayeed I, Cale HA, Morrison KC, Oumarbaeva Y, Lucaciu I, Boatright JH, Pardue MT, Stein DG. Progesterone treatment in two rat models of ocular ischemia. Invest Ophthalmol Vis Sci 2015; 56:2880-91. [PMID: 26024074 DOI: 10.1167/iovs.14-16070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. METHODS Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. RESULTS Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. CONCLUSIONS Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone.
Collapse
Affiliation(s)
- Rachael S Allen
- Emergency Medicine Emory University, Atlanta, Georgia, United States 2Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Timothy W Olsen
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Iqbal Sayeed
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Heather A Cale
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | | | - Yuliya Oumarbaeva
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Irina Lucaciu
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Donald G Stein
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| |
Collapse
|
25
|
Neubauer H, Chen R, Schneck H, Knorrp T, Templin MF, Fehm T, Cahill MA, Seeger H, Yu Q, Mueck AO. New insight on a possible mechanism of progestogens in terms of breast cancer risk. Horm Mol Biol Clin Investig 2015; 6:185-92. [PMID: 25961254 DOI: 10.1515/hmbci.2010.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 12/13/2010] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Progestogens influence mammary gland development and probably breast cancer tumorigenesis by regulating a broad spectrum of physiological processes. We investigated receptor membrane-initiated actions of progestogens in MCF-7 breast cancer cells overexpressing progesterone receptor membrane component 1 (PGRMC1). DESIGN MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA) and overexpression of PGRMC1 was verified by immune fluorescent analysis and Western blot. To test the effects of progestogens on cell proliferation, MCF-7 and MCF-7/PGRMC1-3HA cells were stimulated with a membrane-impermeable progesterone: BSA-fluorescein-isothiocyanate conjugate (P4-BSA-FITC), unconjugated progesterone (P4), medroxyprogesterone acetate (MPA), norethisterone (NET) and drospirenone (DRSP). Furthermore, reverse phase protein technology was applied to identify modified downstream signaling. RESULTS Progesterone did not elicit any proliferative effect on MCF-7/PGRMC1-3HA cells. By contrast, P4-BSA-FITC, DRSP, MPA and NET significantly triggered proliferation of MCF-7/PGRMC1-3HA cells, the effect being more pronounced for NET. Almost no effect of progestogens on proliferation was observed in MCF-7 cells. In MCF-7/PGRMC1-3HA cells, expression of Erk1/2 was significantly reduced by 40% compared to MCF-7 cells. CONCLUSIONS Our data indicate that PGRMC1 mediates a progestogen-dependent proliferative signal in MCF-7 cells. Of significant interest is that progesterone and synthetic progestins that are used for hormone therapy are different in their proliferative effects on MCF-7 and MCF-7/PGRMC1-3HA cells. Progesterone appears to act neutrally, whereas MPA, NET and DRSP trigger proliferation and thus might increase breast cancer risk. The data presented are very important in terms of the positive results of progestogens and breast cancer risk in clinical studies so far.
Collapse
|
26
|
|
27
|
|
28
|
Mueck AO, Ruan X, Seeger H, Fehm T, Neubauer H. Genomic and non-genomic actions of progestogens in the breast. J Steroid Biochem Mol Biol 2014; 142:62-7. [PMID: 23994274 DOI: 10.1016/j.jsbmb.2013.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 08/07/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Evidence is growing that progestogens may enhance breast cancer risk under hormone therapy in the postmenopause or hormonal contraception. However, differences may exist within the progestogen class and certain progestogens may have a higher potency in terms of breast cancer risk. The mechanism(s) by which these progestogens might influence breast cancer risk appear to be mediated via genomic and/or non-genomic effects triggered by activated progestogen receptors. In general, regulation of gene expression by progestogen receptors seems to be a multifactorial process involving both actions which often converge. In the present review, we describe the known genomic and non-genomic effects in the breast, especially focusing on the progestins. This article is part of a Special Issue entitled 'Menopause'.
Collapse
Affiliation(s)
- A O Mueck
- University Women's Hospital, Tübingen, Germany.
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics&Gynecology Hospital, Capital Medical University, Beijing, China
| | - H Seeger
- University Women's Hospital, Tübingen, Germany
| | - T Fehm
- Department of Gynecology and Obstetrics, University Düsseldorf, Germany
| | - H Neubauer
- Department of Gynecology and Obstetrics, University Düsseldorf, Germany
| |
Collapse
|
29
|
Petersen SL, Intlekofer KA, Moura-Conlon PJ, Brewer DN, Del Pino Sans J, Lopez JA. Nonclassical progesterone signalling molecules in the nervous system. J Neuroendocrinol 2013; 25:991-1001. [PMID: 23763432 DOI: 10.1111/jne.12060] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 11/26/2022]
Abstract
Progesterone (P4) regulates a wide range of cognitive, neuroendocrine, neuroimmune and neuroprotective functions. Therefore, it is not surprising that this ovarian hormone acts through multiple receptors. Ever since the 1980s, studies investigating the neural effects of P4 have focused mainly on genomic and nongenomic actions of the classical progestin receptor (PGR). More recently, two groups of nonclassical P4 signalling molecules have been identified: (i) the class II progestin and adipoQ receptor (PAQR) family, which includes PAQR 5, 6, 7, 8 and 9, also called membrane progestin receptor α (mPRα; PAQR7), mPRβ (PAQR8), mPRγ (PAQR5), mPRδ (PAQR6) and mPRε (PAQR9), and (ii) the b5-like haeme/steroid-binding protein family, which includes progesterone receptor membrane component 1 (Pgrmc1), Pgrmc2, neudesin and neuferricin. In this review, we describe the structures, neuroanatomical localisation and signalling mechanisms of these molecules. We also discuss gonadotrophin-releasing hormone regulation as an example of a physiological function regulated by multiple progesterone receptors but through different mechanisms.
Collapse
Affiliation(s)
- S L Petersen
- Veterinary and Animal Sciences Department, University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | | | | | | |
Collapse
|
30
|
Singh M, Su C, Ng S. Non-genomic mechanisms of progesterone action in the brain. Front Neurosci 2013; 7:159. [PMID: 24065876 PMCID: PMC3776940 DOI: 10.3389/fnins.2013.00159] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/19/2013] [Indexed: 01/10/2023] Open
Abstract
Progesterone is a gonadal steroid hormone whose physiological effects extend well beyond the strict confines of reproductive function. In fact, progesterone can have important effects on a variety of tissues, including the bone, the heart and the brain. Mechanistically, progesterone has been thought to exert its effects through the progesterone receptor (PR), a member of the nuclear steroid hormone superfamily, and as such, acts through specific progesterone response elements (PRE) within the promoter region of target genes to regulate transcription of such genes. This has been often described as the “genomic” mechanism of progesterone action. However, just as progesterone has a diverse range of tissue targets, the mechanisms through which progesterone elicits its effects are equally diverse. For example, progesterone can activate alternative receptors, such as membrane-associated PRs (distinct from the classical PR), to elicit the activation of several signaling pathways that in turn, can influence cell function. Here, we review various non-nuclear (i.e., non-genomic) signaling mechanisms that progesterone can recruit to elicit its effects, focusing our discussion primarily on those signaling mechanisms by which progesterone influences cell viability in the brain.
Collapse
Affiliation(s)
- Meharvan Singh
- Department of Pharmacology and Neuroscience, Center FOR HER, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth Fort Worth, TX, USA
| | | | | |
Collapse
|
31
|
Neubauer H, Ma Q, Zhou J, Yu Q, Ruan X, Seeger H, Fehm T, Mueck AO. Possible role of PGRMC1 in breast cancer development. Climacteric 2013; 16:509-13. [PMID: 23758160 DOI: 10.3109/13697137.2013.800038] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Hormone therapy may increase the risk of breast cancer. Thus, especially the addition of synthetic progestins may play a decisive role according to the results of clinical studies. Overexpression of a special receptor, i.e. the progesterone receptor membrane component-1 (PGRMC1), may offer a potential new pathway to explain the observed increase in breast cancer risk in the combined arm of the Women's Health Initiative. PGRMC1 is expressed in breast cancer tissue and may be important in tumorigenesis. The expression of PGRMC1 in breast cancer tissue is significantly different from that in normal mammary glands. Certain synthetic progestins can increase the proliferation of PGRMC1-overexpressing breast cancer cells and may thus be involved in tumorigenesis, while progesterone and certain synthetic progestins such as nomegestrol or chlormadinone acetate react neutrally. Our investigations point towards an important role of estrogen receptor-α in the signaling cascade, resulting in the proliferative effect induced by progestins. Thus, activation of PGRMC1 may explain the increased breast cancer risk observed during treatment with certain progestins. Very recently, PGRMC1 was investigated in serum samples of lung cancer patients and matched healthy patients; significantly higher concentrations were shown in the cancer patients. Therefore, PGRMC1 might be a predictor for other cancers as well but, according to clinical trials, its importance for a possible screening tool, particularly for breast cancer risk during hormone therapy, seems of interest.
Collapse
Affiliation(s)
- H Neubauer
- University Women's Hospital , Düsseldorf , Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Yousuf S, Atif F, Sayeed I, Wang J, Stein DG. Post-stroke infections exacerbate ischemic brain injury in middle-aged rats: immunomodulation and neuroprotection by progesterone. Neuroscience 2012; 239:92-102. [PMID: 23079632 DOI: 10.1016/j.neuroscience.2012.10.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 09/26/2012] [Accepted: 10/05/2012] [Indexed: 01/22/2023]
Abstract
We investigated the effect of delayed, prolonged systemic inflammation on stroke outcomes and progesterone (P4) neuroprotection in middle-aged rats. After transient middle cerebral artery occlusion/reperfusion (MCAO) surgery, rats received P4 (8 or 16 mg/kg) or vehicle injections at 2h, 6h and every 24h until day 7 post-occlusion. At 24h post-injury systemic inflammation was induced by giving three doses of lipopolysaccharide (LPS; 50 μg/kg, at 4h intervals) to model post-stroke infections. We measured serum brain-derived neurotrophic factor (BDNF), pro-inflammatory cytokines, and behavioral parameters at multiple times. Serum BDNF levels decreased more in the vehicle+LPS group compared to vehicle-alone at 3 and 7 days post-injury (P<0.05). Vehicle-alone showed a significant increase in interleukin-1β, interleukin-6, and tumor necrosis factor alpha levels at different times following stroke and these levels were further elevated in the vehicle+LPS group. P4 at both doses produced a significant (P<0.05) decline in cytokine levels compared to vehicle and vehicle+LPS. P4 restored BDNF levels at 3 and 7 days post-stroke (P<0.05). Behavioral assessment (rotarod, grip strength, sensory neglect and locomotor activity tests) at 3, 5 and 7 days post-stroke revealed that the vehicle group had significant (P<0.05) deficits in all tests compared to intact controls, and performance was worse in the vehicle+LPS group. P4 at both doses produced significant functional improvement on all tests. Systemic inflammation did not show an additive effect on infarct volume but P4 at both doses showed significant infarct reduction. We suggest that post-stroke infection exacerbates stroke outcomes and P4 exerts neuroprotective/modulatory effects through its systemic anti-inflammatory and BDNF regulatory actions.
Collapse
Affiliation(s)
- S Yousuf
- Department of Emergency Medicine, Brain Research Laboratory, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
33
|
Su C, Cunningham RL, Rybalchenko N, Singh M. Progesterone increases the release of brain-derived neurotrophic factor from glia via progesterone receptor membrane component 1 (Pgrmc1)-dependent ERK5 signaling. Endocrinology 2012; 153:4389-400. [PMID: 22778217 PMCID: PMC3423611 DOI: 10.1210/en.2011-2177] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progesterone (P4) is cytoprotective in various experimental models, but our understanding of the mechanisms involved is still incomplete. Our laboratory has implicated brain-derived neurotrophic factor (BDNF) signaling as an important mediator of P4's protective actions. We have shown that P4 increases the expression of BDNF, an effect mediated by the classical P4 receptor (PR), and that the protective effects of P4 were abolished using inhibitors of Trk receptor signaling. In an effort to extend our understanding of the interrelationship between P4 and BDNF signaling, we determined whether P4 influenced BDNF release and examined the role of the classical PR and a putative membrane PR, progesterone receptor membrane component-1 (Pgrmc1), as mediators of this response. Given recent data from our laboratory that supported the role of ERK5 in BDNF release, we also tested whether P4-induced BDNF release was mediated by ERK5. In this study, we found that P4 and the membrane-impermeable P4 (P4-BSA) both induced BDNF release from cultured C6 glial cells and primary astrocytes. Both these cells lack the classical nuclear/intracellular PR but express high levels of membrane-associated PR, including Pgrmc1. Using RNA interference-mediated knockdown of Pgrmc1 expression, we determined that P4-induced BDNF release was dependent on the expression of Pgrmc1, although pharmacological inhibition of the PR failed to alter the effects of P4. Furthermore, the BDNF release elicited by P4 was mediated by ERK5, and not ERK1/2. Collectively, our data describe that P4 elicits an increase in BDNF release from glia via a Pgrmc1-induced ERK5 signaling mechanism and identify Pgrmc1 as a potential therapeutic target for future hormone-based drug development for the treatment of such degenerative diseases as Alzheimer's disease as well as other diseases wherein neurotrophin dysregulation is noted.
Collapse
Affiliation(s)
- Chang Su
- Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center at Fort Worth, 3400 Camp Bowie Boulevard, Fort Worth, Texas 76107, USA
| | | | | | | |
Collapse
|
34
|
Calcium mediates high glucose-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells through CaMKII-CREB pathway. Acta Pharmacol Sin 2012; 33:1030-6. [PMID: 22796763 DOI: 10.1038/aps.2012.61] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To investigate the effects of high glucose (HG) medium on expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in cultured rat retinal Müller cells and to determine the signaling pathways mediating the effects. METHODS Primary cultures of retinal Müller cells were prepared from Sprague-Dawley rats, and incubated in a medium containg HG (30 mmol/L) in the presence of the membrane-permeable Ca(2+) chelator BAPTA-AM (10 μmol/L) or the CaMKII inhibitor KN93 (10 μmol/L). The levels of CaMKII, p-CaMKII, CREB, p-CREB, HIF-1α, and VEGF proteins were measured with Western blotting, while HIF-1á and VEGF mRNA levels were determined using real-time RT-PCR. RESULTS The stimulation of retinal Müller cell with HG for 24 h remarkably increased the expression levels of HIF-1α and VEGF. These responses were significantly inhibited in the presence of BAPTA-AM or KN93. Both BAPTA-AM and KN93 also significantly inhibited HG-induced phosphorylation of CaMKII and CREB in the cultured retinal Müller cells. Transfection of the cultured retinal Müller cells with antisense CREB oligonucleotide (300 nmol/L) was similarly effective in blocking the HG-induced increase of HIF-1α and VEGF. CONCLUSION HG-induced HIF-1α and VEGF expression in cultured rat retinal Müller cells depends on intracellular free Ca(2+) and activation of CaMKII-CREB pathway. The activation of CaMKII-CREB pathway by HG may be a possible mechanism underlying the pathogenesis of diabetic retinopathy.
Collapse
|
35
|
Ishrat T, Sayeed I, Atif F, Hua F, Stein DG. Progesterone is neuroprotective against ischemic brain injury through its effects on the phosphoinositide 3-kinase/protein kinase B signaling pathway. Neuroscience 2012; 210:442-50. [PMID: 22450229 DOI: 10.1016/j.neuroscience.2012.03.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 02/20/2012] [Accepted: 03/07/2012] [Indexed: 12/18/2022]
Abstract
We tested the hypothesis that the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway mediates some of the neuroprotective effects of progesterone (PROG) after ischemic stroke. We examined whether PROG acting through the PI3K/Akt pathway could affect the expression of vascular endothelial growth factor (VEGF) and brain-derived neurotrophic factor (BDNF). Rats underwent permanent focal cerebral ischemia by electrocoagulation and received intraperitoneal injections of PROG (8 mg/kg) or vehicle at 1 h post-occlusion and subcutaneous injections at 6, 24, and 48 h. PAkt/Akt levels, apoptosis and apoptosis-related proteins (phosphorylated Bcl-2-associated death promoter (pBAD), BAD, caspase-3, and cleaved caspase-3) were analyzed by TUNEL assays, Western blotting and immunohistochemistry at 24 h post-pMCAO. VEGF and BDNF were analyzed at 24, 72 h and 14 days post-pMCAO with Western blots. Following pMCAO, PROG treatment significantly (P<0.05) reduced ischemic lesion size and edema. Treatment with PROG significantly (P<0.05) decreased VEGF at 24 and 72 h but increased VEGF expression 14 days after injury. The treatment also increased BDNF, and attenuated apoptosis by increasing Akt phosphorylation compared with vehicle alone. The selective PI3K inhibitor wortmannin compromised PROG-induced neuroprotective effects and reduced the elevation of pAkt levels in the ischemic penumbra. Our findings lead us to suggest that the PI3K/Akt pathway can play a role in mediating the neuroprotective effects of PROG after stroke by altering the expression of trophic factors in the brain.
Collapse
Affiliation(s)
- T Ishrat
- Department of Emergency Medicine, Emory University School of Medicine, 1365 B Clifton Road, Suite 5100, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
36
|
Doonan F, Cotter TG. Norgestrel may be a potential therapy for retinal degenerations. Expert Opin Investig Drugs 2012; 21:579-81. [DOI: 10.1517/13543784.2012.667400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Francesca Doonan
- University College Cork, Biosciences Research Institute, Biochemistry Department, Cell Development and Disease Laboratory,
Cork, Ireland ;
| | - Thomas G Cotter
- University College Cork, Biosciences Research Institute, Biochemistry Department, Cell Development and Disease Laboratory,
Cork, Ireland ;
| |
Collapse
|
37
|
Mao JF, Liu SZ, Qin WJ, Xiang Q. Modulation of TGFβ(2) and dopamine by PKC in retinal Müller cells of guinea pig myopic eye. Int J Ophthalmol 2011; 4:357-60. [PMID: 22553680 DOI: 10.3980/j.issn.2222-3959.2011.04.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/10/2011] [Indexed: 11/02/2022] Open
Abstract
AIM To investigate the effect of protein kinase C (PKC) on transforming growth factor-β(2) (TGFβ(2)) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ(2) and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography-electrochemical detection in suspensions. RESULTS After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ(2) expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P<0.05). After PKC activated by PMA, TGFβ(2) and TH content were up-regulated with the increase of dopamine content (P<0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ(2) and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P<0.05). CONCLUSION TGFβ(2) and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig.
Collapse
Affiliation(s)
- Jun-Feng Mao
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China
| | | | | | | |
Collapse
|
38
|
Doonan F, O’Driscoll C, Kenna P, Cotter TG. Enhancing survival of photoreceptor cells in vivo using the synthetic progestin Norgestrel. J Neurochem 2011; 118:915-27. [DOI: 10.1111/j.1471-4159.2011.07354.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Zhang Z, Yang R, Zhou R, Li L, Sokabe M, Chen L. Progesterone promotes the survival of newborn neurons in the dentate gyrus of adult male mice. Hippocampus 2010; 20:402-12. [PMID: 19475650 DOI: 10.1002/hipo.20642] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This study investigated the effects of progesterone (P4) on the production and survival of neurons in the hippocampal dentate gyrus of adult male mice. The administration of P4 (4 mg/kg) for 3 consecutive days beginning on the 0-2nd day after the first BrdU-injection (BrdU-D(0-2)) produced an approximately twofold increase in the number of 28- and 56-day-old BrdU(+) cells in comparison to the controls, whereas it did not alter the number of 24/48-h-old BrdU(+) cells. P4 preferentially promoted the survival of newborn neurons when administered at BrdU-D(5-7), but not at BrdU-D(10-12) and BrdU-D(15-17). Androstenedione (Ad), testosterone (TE), or estradiol (E2) at the same-dose of P4, when administered at BrdU-D(0-2), could not replicate the effect of P4, while the inhibition of 5alpha-reductase by finasteride did not affect the P4-action, indicating that the P4-effect is exerted by P4 itself but not by its metabolites. On the other hand, the P4R antagonist RU486 partially suppressed the P4-effect, while inhibitors for Src, MEK, or PI3K totally suppressed the P4-effect. Finally, the P4-enhanced survival of newborn neurons was accompanied by a potentiation of spatial learning and memory, which was P4R-dependent. These findings suggest that P4 enhances the survival of newborn neurons through P4R and/or the Src-ERK and PI3K pathways independent of its influence on cell proliferation, which is well correlated with the potentiated spatial cognitive function of P4-treated animals.
Collapse
Affiliation(s)
- Zhuo Zhang
- Laboratory of Reproductive Medicine, Nanjing Medical University, Jiangsu, China
| | | | | | | | | | | |
Collapse
|
40
|
Amorim MA, Guerra-Araiza C, Garcia-Segura LM. Progesterone as a regulator of phosphorylation in the central nervous system. Horm Mol Biol Clin Investig 2010; 4:601-7. [DOI: 10.1515/hmbci.2010.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 11/15/2022]
Abstract
AbstractProgesterone exerts a variety of actions in the central nervous system under physiological and pathological conditions. As in other tissues, progesterone acts in the brain through classical progesterone receptors and through alternative mechanisms. Here, we review the role of progesterone as a regulator of kinases and phosphatases, such as extracellular-signal regulated kinases, phosphoinositide 3-kinase, Akt, glycogen synthase kinase 3, protein phosphatase 2A and phosphatase and tensin homolog deleted on chromosome 10. In addition, we analyzed the effects of progesterone on the phosphorylation of Tau, a protein that is involved in microtubule stabilization in neurons.
Collapse
|
41
|
|
42
|
Peluso JJ, Gawkowska A, Liu X, Shioda T, Pru JK. Progesterone receptor membrane component-1 regulates the development and Cisplatin sensitivity of human ovarian tumors in athymic nude mice. Endocrinology 2009; 150:4846-54. [PMID: 19797399 DOI: 10.1210/en.2009-0730] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To determine whether progesterone receptor membrane component 1 (PGRMC1) regulates the development and cisplatin (CDDP)-sensitivity of human ovarian tumors, PGRMC1 was depleted from a human ovarian cancer cell line, dsRed-SKOV-3 cells, using a short hairpin RNA knockdown approach. Compared with parental dsRed-SKOV-3 cells, the PGRMC1-deplete cells grew slower in vitro and did not show progesterone's (P4) antiapoptotic effect. In fact, P4 induced apoptosis in PGRMC1-deplete cells in a dose-dependent manner. When transplanted into the peritoneum of athymic nude mice, parental dsRed-SKOV-3 cells developed numerous tumors, which were classified as either typical or oxyphilic clear cell tumors. CDDP increased the percentage of apoptotic nuclei in typical clear cell tumors and P4 attenuated CDDP-induced apoptosis. In contrast, the percentage of apoptotic nuclei in oxyphilic clear cell tumors was low (< or =1%) and was not significantly affected by CDDP and/or P4. Compared with tumors derived from parental dsRed SKOV-3 cells, PGRMC1-deplete tumors: 1) developed in fewer mice, 2) formed less frequently, 3) appeared smaller, and 4) resulted in fewer oxyphilic clear cell tumors. These PGRMC1-deplete tumors were not responsive to CDDP's apoptotic effects. The failure to respond to CDDP could be due to their poorly developed microvasculature system as judged by percentage of CD31-stained endothelial cells and/or their increased expression of ATP-binding cassette transporters, which are involved in drug resistance. Taken together, these findings indicate that PGRMC1 plays an essential role in the development and CDDP sensitivity of human ovarian tumors.
Collapse
Affiliation(s)
- John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA.
| | | | | | | | | |
Collapse
|
43
|
Neubauer H, Adam G, Seeger H, Mueck AO, Solomayer E, Wallwiener D, Cahill MA, Fehm T. Membrane-initiated effects of progesterone on proliferation and activation of VEGF in breast cancer cells. Climacteric 2009; 12:230-9. [PMID: 19340614 DOI: 10.1080/13697130802635637] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Progesterone influences mammary gland development and probably breast cancer tumorigenesis and functions by regulating a broad spectrum of physiological processes. We investigated receptor membrane-initiated actions of progesterone in MCF-7 breast cancer cells via progesterone receptor membrane component 1 (PGRMC1). DESIGN AND METHOD The expression of PGRMC1 in breast cancer was verified by immune fluorescent analysis of paraffin sections. MCF-7 cells were transfected with PGRMC1 (wild type) or PGRMC1 variants. These cells were stimulated with a membrane-impermeable progesterone (P4) conjugate (P4-BSA-fluorescein isothiocyanate, P4-BSA-FITC, 10(-6) mol/l) or unconjugated progesterone (P4, 10(-6) mol/l) in the presence or absence of the progesterone receptor blocker RU-486 (10(-6) mol/l). Additionally, the effects on the expression of vascular endothelial growth factor A (VEGF-A) were determined using quantitative real-time polymerase chain reaction. RESULTS PGRMC1 is perinuclearly localized in breast cancer cells. Western Blot analysis suggests that PGRMC1 is phosphorylated at serine 180. MCF-7-PGRMC1 (S180A) cells show an approximately 35% increase in proliferation after incubation with P4-BSA-FITC compared to MCF-7 control and MCF-7-PGRMC1 (wild type) cells. This effect cannot be blocked by RU-486. P4 reduced proliferation of MCF-7-PGRMC1 cells by approximately 10% compared to untreated controls. P4-BSA-FITC treatment led to a roughly three-fold activation of VEGF-A gene expression compared to MCF-7 cells. CONCLUSION PGRMC1 is expressed in breast cancer tissue and mediates an RU-486-independent proliferative signal. It might also contribute to VEGF-induced neovascularization in tumor tissue. Thus, screening for PGRMC1 expression might be of interest to identify women with a higher expression of PGRMC1 and who might thus be susceptible for breast cancer development under hormone replacement therapy.
Collapse
Affiliation(s)
- H Neubauer
- Department of Obstetrics and Gynecology, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vitreous vascular endothelial growth factor level during gestation. Arch Gynecol Obstet 2009; 281:417-21. [DOI: 10.1007/s00404-009-1144-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 05/28/2009] [Indexed: 01/20/2023]
|
45
|
Guerra-Araiza C, Amorim MA, Pinto-Almazán R, González-Arenas A, Campos MG, Garcia-Segura LM. Regulation of the phosphoinositide-3 kinase and mitogen-activated protein kinase signaling pathways by progesterone and its reduced metabolites in the rat brain. J Neurosci Res 2009; 87:470-81. [DOI: 10.1002/jnr.21848] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Neubauer H, Clare SE, Wozny W, Schwall GP, Poznanovic S, Stegmann W, Vogel U, Sotlar K, Wallwiener D, Kurek R, Fehm T, Cahill MA. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast Cancer Res 2008; 10:R85. [PMID: 18922159 PMCID: PMC2614521 DOI: 10.1186/bcr2155] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 08/15/2008] [Accepted: 10/15/2008] [Indexed: 12/22/2022] Open
Abstract
Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of comedo type, PGRMC1 was expressed in glucose transporter 1 negative or positive poorly oxygenated cells surrounding the necrotic core, surrounded by a more distal halo of ER-positive cells. Conclusions PGRMC1 phosphorylation may be involved in the clinical differences that underpin breast tumors of differing ER status.
Collapse
Affiliation(s)
- Hans Neubauer
- Department of Obstetrics and Gynecology, University of Tuebingen, Calwerstrasse, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|