1
|
Aladev SD, Sokolov DK, Strokotova AV, Kazanskaya GM, Volkov AM, Aidagulova SV, Grigorieva EV. Multiple Administration of Dexamethasone Possesses a Deferred Long-Term Effect to Glycosylated Components of Mouse Brain. Neurol Int 2024; 16:790-803. [PMID: 39051219 PMCID: PMC11270268 DOI: 10.3390/neurolint16040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Glucocorticoids are used during glioblastoma treatment to prevent the cerebral edema effect surrounding normal brain tissue. The aim of our study was to investigate the long-term effects of multiple administrations of glucocorticoids onto the glycosylated components (proteoglycans and glycosaminoglycans) of normal brain extracellular matrix and the glucocorticoid receptor (GR, Nr3c1) in an experimental model in vivo. Two-month-old male C57Bl/6 mice (n = 90) were injected intraperitoneally with various doses of dexamethasone (DXM) (1; 2.5 mg/kg) for 10 days. The mRNA levels of the GR, proteoglycans core proteins, and heparan sulfate metabolism-involved genes were determined at the 15th, 30th, 60th, and 90th days by a real-time RT-PCR. The glycosaminoglycans content was studied using dot blot and staining with Alcian blue. A DXM treatment increased total GAG content (2-fold), whereas the content of highly sulfated glycosaminoglycans decreased (1.5-2-fold). The mRNA level of the heparan sulfate metabolism-involved gene Hs3St2 increased 5-fold, the mRNA level of Hs6St2 increased6-7-fold, and the mRNA level of proteoglycan aggrecan increased 2-fold. A correlation analysis revealed an association between the mRNA level of the GR and the mRNA level of 8 of the 14 proteoglycans-coding and 4 of the 13 heparan sulfate metabolism-involved genes supporting GR involvement in the DXM regulation of the expression of these genes. In summary, multiple DXM administrations led to an increase in the total GAG content and reorganized the brain extracellular matrix in terms of its glycosylation pattern.
Collapse
Affiliation(s)
- Stanislav D. Aladev
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Dmitry K. Sokolov
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Anastasia V. Strokotova
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| | - Galina M. Kazanskaya
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia;
| | - Alexander M. Volkov
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia;
| | - Svetlana V. Aidagulova
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
- Laboratory of Cellular Biology, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | - Elvira V. Grigorieva
- Institute of Molecular Biology and Biophysics FRC FTM, Novosibirsk 630117, Russia; (D.K.S.); (A.V.S.); (G.M.K.); (S.V.A.); (E.V.G.)
| |
Collapse
|
2
|
Liu J, Guo Y, Zhang Y, Zhao X, Fu R, Hua S, Xu S. Astrocytes in ischemic stroke: Crosstalk in central nervous system and therapeutic potential. Neuropathology 2024; 44:3-20. [PMID: 37345225 DOI: 10.1111/neup.12928] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
In the central nervous system (CNS), a large group of glial cells called astrocytes play important roles in both physiological and disease conditions. Astrocytes participate in the formation of neurovascular units and interact closely with other cells of the CNS, such as microglia and neurons. Stroke is a global disease with high mortality and disability rate, most of which are ischemic stroke. Significant strides in understanding astrocytes have been made over the past few decades. Astrocytes respond strongly to ischemic stroke through a process known as activation or reactivity. Given the important role played by reactive astrocytes (RAs) in different spatial and temporal aspects of ischemic stroke, there is a growing interest in the potential therapeutic role of astrocytes. Currently, interventions targeting astrocytes, such as mediating astrocyte polarization, reducing edema, regulating glial scar formation, and reprogramming astrocytes, have been proven in modulating the progression of ischemic stroke. The aforementioned potential interventions on astrocytes and the crosstalk between astrocytes and other cells of the CNS will be summarized in this review.
Collapse
Affiliation(s)
- Jueling Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxiao Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rong Fu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shengyu Hua
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shixin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
3
|
Zare L, Rezaei S, Esmaeili E, Khajeh K, Javan M. Targeted drug delivery into glial scar using CAQK peptide in a mouse model of multiple sclerosis. Brain Commun 2023; 5:fcad325. [PMID: 38107502 PMCID: PMC10724044 DOI: 10.1093/braincomms/fcad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/01/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023] Open
Abstract
In multiple sclerosis, lesions are formed in various areas of the CNS, which are characterized by reactive gliosis, immune cell infiltration, extracellular matrix changes and demyelination. CAQK peptide (peptide sequence: cysteine-alanine-glutamine-lysine) was previously introduced as a targeting peptide for the injured site of the brain. In the present study, we aimed to develop a multifunctional system using nanoparticles coated by CAQK peptide, to target the demyelinated lesions in animal model of multiple sclerosis. We investigated the binding of fluorescein amidite-labelled CAQK and fluorescein amidite-labelled CGGK (as control) on mouse brain sections. Then, the porous silicon nanoparticles were synthesized and coupled with fluorescein amidite-labelled CAQK. Five days after lysolecithin-induced demyelination, male mice were intravenously injected with methylprednisolone-loaded porous silicon nanoparticles conjugated to CAQK or the same amount of free methylprednisolone. Our results showed that fluorescein amidite-labelled CAQK recognizes demyelinated lesions in brain sections of animal brains injected with lysolecithin. In addition, intravenous application of methylprednisolone-loaded nanoparticle porous silicon conjugated to CAQK at a single dose of 0.24 mg reduced the levels of microglial activation and astrocyte reactivation in the lesions of mouse corpus callosum after 24 and 48 h. No significant effect was observed following the injection of the same dose of free methylprednisolone. CAQK seems a potential targeting peptide for delivering drugs or other biologically active chemicals/reagents to the CNS of patients with multiple sclerosis. Low-dose methylprednisolone in this targeted drug delivery system showed significant beneficial effect.
Collapse
Affiliation(s)
- Leila Zare
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Safoura Rezaei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Elaheh Esmaeili
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
| | - Khosro Khajeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box 14115-154, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- Institute for Brain and Cognition, Tarbiat Modares University, P.O. Box 14115-331, Tehran, Iran
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver V6T1Z4, British Columbia, Canada
| |
Collapse
|
4
|
Sokolov DK, Shevelev OB, Khotskina AS, Tsidulko AY, Strokotova AV, Kazanskaya GM, Volkov AM, Kliver EE, Aidagulova SV, Zavjalov EL, Grigorieva EV. Dexamethasone Inhibits Heparan Sulfate Biosynthetic System and Decreases Heparan Sulfate Content in Orthotopic Glioblastoma Tumors in Mice. Int J Mol Sci 2023; 24:10243. [PMID: 37373391 DOI: 10.3390/ijms241210243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with a high probability of recurrence, despite active chemoradiotherapy with temozolomide (TMZ) and dexamethasone (DXM). These systemic drugs affect the glycosylated components of brain tissue involved in GB development; however, their effects on heparan sulfate (HS) remain unknown. Here, we used an animal model of GB relapse in which SCID mice first received TMZ and/or DXM (simulating postoperative treatment) with a subsequent inoculation of U87 human GB cells. Control, peritumor and U87 xenograft tissues were investigated for HS content, HS biosynthetic system and glucocorticoid receptor (GR, Nr3c1). In normal and peritumor brain tissues, TMZ/DXM administration decreased HS content (5-6-fold) but did not affect HS biosynthetic system or GR expression. However, the xenograft GB tumors grown in the pre-treated animals demonstrated a number of molecular changes, despite the fact that they were not directly exposed to TMZ/DXM. The tumors from DXM pre-treated animals possessed decreased HS content (1.5-2-fold), the inhibition of HS biosynthetic system mainly due to the -3-3.5-fold down-regulation of N-deacetylase/N-sulfotransferases (Ndst1 and Ndst2) and sulfatase 2 (Sulf2) expression and a tendency toward a decreased expression of the GRalpha but not the GRbeta isoform. The GRalpha expression levels in tumors from DXM or TMZ pre-treated mice were positively correlated with the expression of a number of HS biosynthesis-involved genes (Ext1/2, Ndst1/2, Glce, Hs2st1, Hs6st1/2), unlike tumors that have grown in intact SCID mice. The obtained data show that DXM affects HS content in mouse brain tissues, and GB xenografts grown in DXM pre-treated animals demonstrate attenuated HS biosynthesis and decreased HS content.
Collapse
Affiliation(s)
- Dmitry K Sokolov
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Oleg B Shevelev
- Institute of Cytology and Genetics, Novosibirsk 630090, Russia
| | | | - Alexandra Y Tsidulko
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Anastasia V Strokotova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Galina M Kazanskaya
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| | - Alexander M Volkov
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Evgenii E Kliver
- E.N. Meshalkin National Medical Research Center, Novosibirsk 630055, Russia
| | - Svetlana V Aidagulova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
- Laboratory of Cell Biology, Novosibirsk State Medical University, Novosibirsk 630091, Russia
| | | | - Elvira V Grigorieva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk 630117, Russia
| |
Collapse
|
5
|
Aladev SD, Sokolov DK, Strokotova AV, Kazanskaya GM, Volkov AM, Politko MO, Shahmuradova AI, Kliver EE, Tsidulko AY, Aidagulova SV, Grigorieva EV. Dexamethasone effects on the expression and content of glycosylated components of mouse brain tissue. ADVANCES IN MOLECULAR ONCOLOGY 2023. [DOI: 10.17650/2313-805x-2023-10-1-25-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Introduction. Glucocorticoids are actively used in the treatment of various diseases, however their long-term use leads to numerous negative side-effects, the molecular mechanisms of which remain poorly understood.Aim. Study of the short-term (1–10 days) effects of various doses of dexamethasone (Dex) (0,1–10 mg/kg) on the expression of the glucocorticoid receptor (GR, Nr3c1), core proteins of main proteoglycans and heparan sulfate metabolism-involved genes, as well as the content of carbohydrate macromolecules of glycosaminoglycans in the brain tissue of experimental animals.Materials and methods. In the study, C57Bl/6 mice were used. The expression of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes was determined by real-time polymerase chain reaction with reverse transcription. The content and localization of GR protein molecule were studied by Western blot and immunohistochemical analysis, and the glycosaminoglycan content was determined by dot-blot analysis and Alcian Blue staining.Results. It was shown that a single Dex administration leads to fast (1–3 days) short-term activation of GR expression (+1.5 times, p <0.05), proteoglycan’s genes (syndecan-3, Sdc3; perlecan, Hspg2; phosphacan, Ptprz1; neurocan, Ncan; +2–3-fold; p <0.05) and heparan sulfate-metabolism-involved genes (Ndst1, Glce, Hs2st1, Hs6st1, Sulf1 / 2; +1.5–2-fold; p <0.05) in the mouse brain, with a return to control values by 7–10 days after Dex administration. At the same time, the effect of Dex on carbohydrate macromolecules of glycosaminoglycans was more delayed and stable, increasing the content of low-sulfated glycosaminoglycans in the brain tissue in a dose-dependent manner starting from day 1 after Dex administration. Highly-sulfated glycosaminoglycans showed more delayed response to Dex administration, and an increase in their content was observed only at higher doses (2.5 and 10 mg/kg) and only on 7–10 days after its administration, apparently, mainly due to an increase in heparan sulfate content.Conclusion. In general, the effect of a single injection of Dex on the transcriptional activity of GR, proteoglycan core proteins and heparan sulfate metabolism-involved genes were short-termed, and the genes expression quickly returned to the normal levels. However, even a single use of Dex significantly increased the content of total as well as highly sulfated glycosaminoglycans in the mouse brain tissue, which can lead to the changes in the composition and structure of the brain tissue, as well as its functional characteristics.
Collapse
Affiliation(s)
- S. D. Aladev
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - D. K. Sokolov
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. V. Strokotova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - G. M. Kazanskaya
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - M. O. Politko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - A. I. Shahmuradova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | | | - A. Y. Tsidulko
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| | - S. V. Aidagulova
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation; Novosibirsk State Medical University
| | - E. V. Grigorieva
- Institute of Molecular Biology and Biophysics of the Federal Research Center for Fundamental and Translational Medicine, Ministry of Science and Higher Education of the Russian Federation
| |
Collapse
|
6
|
Strokotova AV, Grigorieva EV. Glucocorticoid Effects on Proteoglycans and Glycosaminoglycans. Int J Mol Sci 2022; 23:ijms232415678. [PMID: 36555315 PMCID: PMC9778983 DOI: 10.3390/ijms232415678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Glucocorticoids are steroid hormones that play diverse roles in numerous normal and pathological processes. They are actively used to treat a wide variety of diseases, including neurodegenerative and inflammatory diseases, cancers, and COVID-19, among others. However, the long-term use of glucocorticoids is associated with numerous side effects. Molecular mechanisms of these negative side effects are not completely understood. Recently, arguments have been made that one such mechanisms may be related to the influence of glucocorticoids on O-glycosylated components of the cell surface and extracellular matrix, in particular on proteoglycans and glycosaminoglycans. The potential toxic effects of glucocorticoids on these glycosylated macromolecules are particularly meaningful for brain physiology because proteoglycans/glycosaminoglycans are the main extracellular components of brain tissue. Here, we aim to review the known effects of glucocorticoids on proteoglycan expression and glycosaminoglycan content in different tissues, with a specific focus on the brain.
Collapse
|
7
|
Tang B, Han J, Wang F, Li X, Zhao C. GR-α and GR-β mRNA levels in peripheral blood mononuclear cells of acute myelitis patients can assist in the identification of glucocorticoid sensitivity and are correlated with glucocorticoid therapeutic effect. Ann Hum Genet 2022; 86:268-277. [PMID: 35730764 DOI: 10.1111/ahg.12472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022]
Abstract
Acute myelitis (AM) is a rare neuro-immune spinal cord disease. This study sought to explore the transcription level of glucocorticoid (GC) receptors α and β (GR-α/GR-β) in peripheral blood mononuclear cells (PBMCs) and their correlation with GC efficacy and sensitivity in AM patients. AM patients were grouped into the GC-sensitive group (N = 80) and GC-refractory group (N = 67). The GR-α and GR-β mRNA levels in PBMCs were detected. The differentiating value of GR-α, GR-β, and GR-α + GR-β on GC sensitivity and resistance in AM patients was assessed. The independent correlation between GR-α and GR-β mRNA levels and GC sensitivity in AM patients,t and the correlation between GR-α and GR-β mRNA levels and spinal function after GC treatment were analyzed. GR-α mRNA level in PBMCs of GC-refractory patients was lower than that of GC-sensitive patients, while GR-β mRNA level was higher than that of GC-sensitive patients. GR-α + GR-β mRNA had a high diagnostic value for GC sensitivity and resistance in AM patients (area under the ROC curve = 0.881, sensitivity = 79.1%, specificity = 85.0%). GR-α and GR-β mRNA levels were independently correlated with GC sensitivity. GR-α and GR-β mRNA levels were correlated with the spinal function of AM patients after GC treatment. Overall, GR-α and GR-β mRNA levels in PBMCs of AM patients can assist in the identification of GC sensitivity and are correlated with GC efficacy.
Collapse
Affiliation(s)
- Bolin Tang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Jun Han
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Fen Wang
- Department of Neurology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Xiang Li
- Department of Pediatrics, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Chaoyang Zhao
- Department of Pharmacy, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| |
Collapse
|
8
|
Yu G, Zhang Y, Ning B. Reactive Astrocytes in Central Nervous System Injury: Subgroup and Potential Therapy. Front Cell Neurosci 2022; 15:792764. [PMID: 35002629 PMCID: PMC8733560 DOI: 10.3389/fncel.2021.792764] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic central nervous system (CNS) injury, which includes both traumatic brain injury (TBI) and spinal cord injury (SCI), is associated with irreversible loss of neurological function and high medical care costs. Currently, no effective treatment exists to improve the prognosis of patients. Astrocytes comprise the largest population of glial cells in the CNS and, with the advancements in the field of neurology, are increasingly recognized as having key functions in both the brain and the spinal cord. When stimulated by disease or injury, astrocytes become activated and undergo a series of changes, including alterations in gene expression, hypertrophy, the loss of inherent functions, and the acquisition of new ones. Studies have shown that astrocytes are highly heterogeneous with respect to their gene expression profiles, and this heterogeneity accounts for their observed context-dependent phenotypic diversity. In the inured CNS, activated astrocytes play a dual role both as regulators of neuroinflammation and in scar formation. Identifying the subpopulations of reactive astrocytes that exert beneficial or harmful effects will aid in deciphering the pathological mechanisms underlying CNS injuries and ultimately provide a theoretical basis for the development of effective strategies for the treatment of associated conditions. Following CNS injury, as the disease progresses, astrocyte phenotypes undergo continuous changes. Although current research methods do not allow a comprehensive and accurate classification of astrocyte subpopulations in complex pathological contexts, they can nonetheless aid in understanding the roles of astrocytes in disease. In this review, after a brief introduction to the pathology of CNS injury, we summarize current knowledge regarding astrocyte activation following CNS injury, including: (a) the regulatory factors involved in this process; (b) the functions of different astrocyte subgroups based on the existing classification of astrocytes; and (c) attempts at astrocyte-targeted therapy.
Collapse
Affiliation(s)
- GuiLian Yu
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Zhang
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Ning
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Kim WK, Kim WH, Kweon OK, Kang BJ. Heat-Shock Proteins Can Potentiate the Therapeutic Ability of Cryopreserved Mesenchymal Stem Cells for the Treatment of Acute Spinal Cord Injury in Dogs. Stem Cell Rev Rep 2022; 18:1461-1477. [PMID: 35001344 DOI: 10.1007/s12015-021-10316-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are applied in the treatment of spinal cord injury (SCI) because of their neural tissue restoring ability. In the clinical setting, intravenous injection of cryopreserved cells is essential for the immediate treatment of SCI, exhibiting the disadvantage of reduced cell properties. METHODS In this study, we potentiated the characteristics of cryopreserved MSCs by heat-shock (HS) treatment to induce the expression of HS protein (HSP) HSP70/HSP27 and further improved antioxidant capacity by overexpressing HSP32 (heme oxygenase-1 [HO-1]). We randomly assigned 12 beagle dogs with acute SCI into three groups and transplanted cells intravenously: (i) F-MSCs (MSCs in frozen/thawed conditions); (ii) F-HSP-MSCs (HS-treated MSCs in frozen/thawed conditions); and (iii) F-HSP-HO-MSCs (HO-1-overexpressing and HS-treated MSCs in frozen/thawed conditions). RESULTS The potentiated MSCs exhibited increased growth factor-, anti-inflammatory-, antioxidant-, homing- and stemness-related gene expression. In the animal experiments, the HSP-induced groups showed significant improvement in hind-limb locomotion, highly expressed neural markers, less intervened fibrotic changes, and improved myelination. In particular, the HO-1-overexpression group was more prominent, controlling the initial inflammatory response with high antioxidant capabilities, suggesting that antioxidation was important to prevent secondary injury. Accordingly, HSPs not only successfully increased the ability of frozen MSCs but also demonstrated excellent neural protection and regeneration capacity in the case of acute SCI. CONCLUSIONS The application of HSP-induced cryopreserved MSCs in first-aid treatment for acute SCI is considered to help early neural sparing and further hind-limb motor function restoration.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea. .,BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Zou HJ, Guo SW, Zhu L, Xu X, Liu JB. Methylprednisolone Induces Neuro-Protective Effects via the Inhibition of A1 Astrocyte Activation in Traumatic Spinal Cord Injury Mouse Models. Front Neurosci 2021; 15:628917. [PMID: 34135725 PMCID: PMC8200570 DOI: 10.3389/fnins.2021.628917] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/24/2021] [Indexed: 11/13/2022] Open
Abstract
Traumatic spinal cord injury (TSCI) leads to pathological changes such as inflammation, edema, and neuronal apoptosis. Methylprednisolone (MP) is a glucocorticoid that has a variety of beneficial effects, including decreasing inflammation and ischemic reaction, as well as inhibiting lipid peroxidation. However, the efficacy and mechanism of MP in TSCI therapy is yet to be deciphered. In the present study, MP significantly attenuated the apoptotic effects of H2O2 in neuronal cells. Western blot analysis demonstrated that the levels of apoptotic related proteins, Bax and cleaved caspase-3, were reduced while levels of anti-apoptotic Bcl-2 were increased. In vivo TUNEL assays further demonstrated that MP effectively protected neuronal cells from apoptosis after TSCI, and was consistent with in vitro studies. Furthermore, we demonstrated that MP could decrease expression levels of IBA1, Il-1α, TNFα, and C3 and suppress A1 neurotoxic reactive astrocyte activation in TSCI mouse models. Neurological function was evaluated using the Basso Mouse Scale (BMS) and Footprint Test. Results demonstrated that the neurological function of MP-treated injured mice was significantly increased. In conclusion, our study demonstrated that MP could attenuate astrocyte cell death, decrease microglia activation, suppress A1 astrocytes activation, and promote functional recovery after acute TSCI in mouse models.
Collapse
Affiliation(s)
- Hong-Jun Zou
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), Changzhou, China
| | - Shi-Wu Guo
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), Changzhou, China
| | - Lin Zhu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), Changzhou, China
| | - Xu Xu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), Changzhou, China
| | - Jin-Bo Liu
- Department of Spinal Surgery, The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), Changzhou, China
| |
Collapse
|
11
|
Deng LX, Liu NK, Wen RN, Yang SN, Wen X, Xu XM. Laminin-coated multifilament entubulation, combined with Schwann cells and glial cell line-derived neurotrophic factor, promotes unidirectional axonal regeneration in a rat model of thoracic spinal cord hemisection. Neural Regen Res 2021; 16:186-191. [PMID: 32788475 PMCID: PMC7818857 DOI: 10.4103/1673-5374.289436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Biomaterial bridging provides physical substrates to guide axonal growth across the lesion. To achieve efficient directional guidance, combinatory strategies using permissive matrix, cells and trophic factors are necessary. In the present study, we evaluated permissive effect of poly (acrylonitrile-co-vinyl chloride) guidance channels filled by different densities of laminin-precoated unidirectional polypropylene filaments combined with Schwann cells, and glial cell line-derived neurotrophic factor for axonal regeneration through a T10 hemisected spinal cord gap in adult rats. We found that channels with filaments significantly reduced the lesion cavity, astrocytic gliosis, and inflammatory responses at the graft-host boundaries. The laminin coated low density filament provided the most favorable directional guidance for axonal regeneration which was enhanced by co-grafting of Schwann cells and glial cell line-derived neurotrophic factor. These results demonstrate that the combinatorial strategy of filament-filled guiding scaffold, adhesive molecular laminin, Schwann cells, and glial cell line-derived neurotrophic factor, provides optimal topographical cues in stimulating directional axonal regeneration following spinal cord injury. This study was approved by Indiana University Institutional Animal Care and Use Committees (IACUC #:11011) on October 29, 2015.
Collapse
Affiliation(s)
- Ling-Xiao Deng
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ryan Ning Wen
- Maggie L. Walker Governor's School, Richmond, VA, USA
| | - Shuang-Ni Yang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xuejun Wen
- Institute for Engineering and Medicine, Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
12
|
Rassy D, Bárcena B, Pérez-Osorio IN, Espinosa A, Peón AN, Terrazas LI, Meneses G, Besedovsky HO, Fragoso G, Sciutto E. Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice With Experimental Autoimmune Encephalitis. J Neuropathol Exp Neurol 2020; 79:226-237. [PMID: 31886871 DOI: 10.1093/jnen/nlz128] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 11/23/2019] [Indexed: 12/29/2022] Open
Abstract
Relapsing-remitting multiple sclerosis, the most common form, is characterized by acute neuroinflammatory episodes. In addition to continuous disease-modifying therapy, these relapses require treatment to prevent lesion accumulation and progression of disability. Intravenous methylprednisolone (1-2 g for 3-5 days) is the standard treatment for relapses. However, this treatment is invasive, requires hospitalization, leads to substantial systemic exposure of glucocorticoids, and can only reach modest concentrations in the central nervous system (CNS). Intranasal delivery may represent an alternative to deliver relapse treatment directly to the CNS with higher concentrations and reducing side effects. Histopathological analysis revealed that intranasal administration of methylprednisolone to mice with experimental autoimmune encephalomyelitis (EAE) suppressed the neuroinflammatory peak, and reduced immune cell infiltration and demyelination in the CNS similarly to intravenous administration. Treatment also downregulated Iba1 and GFAP expression. A similar significant reduction of IL-1β, IL-6, IL-17, IFN-γ, and TNF-α levels in the spinal cord was attained in both intranasal and intravenously treated mice. No damage in the nasal cavity was found after intranasal administration. This study demonstrates that intranasal delivery of methylprednisolone is as efficient as the intravenous route to treat neuroinflammation in EAE.
Collapse
Affiliation(s)
- Dunia Rassy
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Brandon Bárcena
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Iván Nicolás Pérez-Osorio
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Alejandro Espinosa
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | | | - Luis I Terrazas
- Unidad de Biomedicina.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Gabriela Meneses
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Hugo O Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany
| | - Gladis Fragoso
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Edda Sciutto
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| |
Collapse
|
13
|
Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. Int J Mol Sci 2020; 21:E659. [PMID: 31963888 PMCID: PMC7013533 DOI: 10.3390/ijms21020659] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a traumatic lesion that causes disability with temporary or permanent sensory and/or motor deficits. The pharmacological approach still in use for the treatment of SCI involves the employment of corticosteroid drugs. However, SCI remains a very complex disorder that needs future studies to find effective pharmacological treatments. SCI actives a strong inflammatory response that induces a loss of neurons followed by a cascade of events that lead to further spinal cord damage. Many experimental studies demonstrate the therapeutic effect of stem cells in SCI due to their capacity to differentiate into neuronal cells and by releasing neurotrophic factors. Therefore, they appear to be a valid strategy to use in the field of regenerative medicine. The purpose of this paper is to provide an overview of clinical trials, recorded in clinical trial.gov during 2005-2019, aimed to evaluate the use of stem cell-based therapy in SCI. The results available thus far show the safety and efficacy of stem cell therapy in patients with SCI. However, future trials are needed to investigate the safety and efficacy of stem cell transplantation.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| |
Collapse
|
14
|
Williams S, Ghosh C. Neurovascular glucocorticoid receptors and glucocorticoids: implications in health, neurological disorders and drug therapy. Drug Discov Today 2019; 25:89-106. [PMID: 31541713 DOI: 10.1016/j.drudis.2019.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/12/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Glucocorticoid receptors (GRs) are ubiquitous transcription factors widely studied for their role in controlling events related to inflammation, stress and homeostasis. Recently, GRs have reemerged as crucial targets of investigation in neurological disorders, with a focus on pharmacological strategies to direct complex mechanistic GR regulation and improve therapy. In the brain, GRs control functions necessary for neurovascular integrity, including responses to stress, neurological changes mediated by the hypothalamic-pituitary-adrenal axis and brain-specific responses to corticosteroids. Therefore, this review will examine GR regulation at the neurovascular interface in normal and pathological conditions, pharmacological GR modulation and glucocorticoid insensitivity in neurological disorders.
Collapse
Affiliation(s)
- Sherice Williams
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Chaitali Ghosh
- Brain Physiology Laboratory/Cerebrovascular Research, Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine and Biomedical Engineering at Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
15
|
Vidal PM, Ulndreaj A, Badner A, Hong J, Fehlings MG. Methylprednisolone treatment enhances early recovery following surgical decompression for degenerative cervical myelopathy without compromise to the systemic immune system. J Neuroinflammation 2018; 15:222. [PMID: 30081922 PMCID: PMC6080373 DOI: 10.1186/s12974-018-1257-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Degenerative cervical myelopathy (DCM) is caused by degenerative or congenital changes to the discs and soft tissues of the cervical spine, which leads to chronic compression of the spinal cord. The current treatment for moderate to severe DCM consists of surgical decompression, which, while effective in most cases, can result in neuroinflammation and spinal cord reperfusion injury, leading to perioperative neurological complications and suboptimal neurological recovery. The primary objective of this study was to assess, in a translationally relevant animal model of DCM, the efficacy of perioperative methylprednisolone (MP) in enhancing neurological recovery and to evaluate its effect on the inflammatory response following decompression. Methods DCM was induced in C57BL/6 mice. Briefly, an aromatic polyether material was implanted underneath the C5-C6 laminae to cause progressive compression of the cervical spinal cord due to focal ossification. Decompressive surgery was undertaken at 12 weeks post initial biomaterial implantation. Animals received one dose of MP (30 mg/kg) or vehicle 30 min before decompression and at 2 weeks after decompression. Acute analysis of secreted cytokines and spinal cord microvasculature was complemented with immunohistochemistry for glial and neuronal cell markers. Locomotor outcomes were measured using the CatWalk system. The composition of circulating white blood cells was analyzed by flow cytometry. Results A single dose of MP before decompression significantly sped locomotor recovery (*p < 0.05) and reduced the incidence of perioperative motor complications, without affecting the composition of circulating white blood cells. Histological assessment of the spinal cord showed significant neuronal preservation and a modest reduction in parenchymal inflammation. Conclusions Our data suggest that MP reduces perioperative neurological complications following decompressive surgery for DCM by protecting neurons from inflammation, without compromising the composition of circulating immune cells. We propose that MP, which is commonly used for neurological disorders including spinal cord injury, be considered as a perioperative adjunct to decompressive surgery to attenuate neurological complications.
Collapse
Affiliation(s)
- Pia M Vidal
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Laboratory of Neuroimmunology, Fundación Ciencia & Vida, Santiago, Chile
| | - Antigona Ulndreaj
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Division of Genetics & Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada. .,Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, Ontario, Canada. .,Head, Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Hsu SS, Jan CR, Liang WZ. Evaluation of cytotoxicity of propofol and its related mechanism in glioblastoma cells and astrocytes. ENVIRONMENTAL TOXICOLOGY 2017; 32:2440-2454. [PMID: 28804952 DOI: 10.1002/tox.22458] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Propofol (2,6-diisopropylphenol), one of the extensively and commonly used anesthetic agents, has been shown to affect the biological behavior of various models. Previous researches have shown that propofol-induced cytotoxicity might cause anticancer effect in different cells. However, the mechanisms underlying the effect of propofol on cytotoxicity is still elusive in human glioblastoma cells. The aims of this study were to evaluate effects of propofol on cytotoxicity, cell cycle distribution and ROS production, and establish the relationship between oxidative stress and cytotoxicity in GBM 8401 human glioblastoma cells and DI TNC1 rat astrocytes. Propofol (20-30 μM) concentration-dependently induced cytotoxicity, cell cycle arrest, and increased ROS production in GBM 8401 cells but not in DI TNC1 cells. In GBM 8401 cells, propofol induced G2/M phase cell arrest, which affected the CDK1, cyclin B1, p53, and p21 protein expression levels. Furthermore, propofol induced oxygen stresses by increasing O2- and H2 O2 levels but treatment with the antioxidant N-acetylcysteine (NAC) partially reversed propofol-regulated antioxidative enzyme levels (superoxide dismutase, catalase, and glutathione peroxidase). Most significantly, propofol induced apoptotic effects by decreasing Bcl-2 but increasing Bax, cleaved caspase-9/caspase-3 levels, which were partially reversed by NAC. Moreover, the pancaspase inhibitor Z-VAD-FMK also partially prevented propofol-induced apoptosis. Together, in GBM 8401 cells but not in DI TNC1 cells, propofol activated ROS-associated apoptosis that involved cell cycle arrest and caspase activation. These findings indicate that propofol not only can be an anesthetic agent which reduces pain but also has the potential to be used for the treatment of human glioblastoma.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
- Department of Surgery, National Defense Medical Center, Taipei, Taiwan, 114, Republic of China
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, 813, Republic of China
| |
Collapse
|
17
|
Peixoto-Santos JE, Kandratavicius L, Velasco TR, Assirati JA, Carlotti CG, Scandiuzzi RC, Salmon CEG, Santos ACD, Leite JP. Individual hippocampal subfield assessment indicates that matrix macromolecules and gliosis are key elements for the increased T2 relaxation time seen in temporal lobe epilepsy. Epilepsia 2016; 58:149-159. [PMID: 27864825 DOI: 10.1111/epi.13620] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Increased T2 relaxation time is often seen in temporal lobe epilepsy (TLE) with hippocampal sclerosis. Water content directly affects the effective T2 in a voxel. Our aim was to evaluate the relation between T2 values and two molecules associated with brain water homeostasis aquaporin 4 (AQP4) and chondroitin sulfate proteoglycan (CSPG), as well as cellular populations in the hippocampal region of patients with TLE. METHODS Hippocampal T2 imaging and diffusion tensor imaging (DTI) were obtained from 42 drug-resistant patients with TLE and 20 healthy volunteers (radiologic controls, RCs). A similar protocol (ex vivo) was applied to hippocampal sections from the same TLE cases and 14 autopsy control hippocampi (histologic and radiologic controls, HRCs), and each hippocampal subfield was evaluated. Hippocampal sections from TLE cases and HRC controls were submitted to immunohistochemistry for neurons (neuron nuclei [NeuN]), reactive astrocytes (glial fibrillary acidic protein [GFAP]), activated microglia (human leukocyte antigen-D-related [HLA-DR]), polarized AQP4, and CSPG. RESULTS Patients with TLE had higher in vivo and ex vivo hippocampal T2 relaxation time. Hippocampi from epilepsy cases had lower neuron density, higher gliosis, decreased AQP4 polarization, and increased CSPG immunoreactive area. In vivo relaxation correlated with astrogliosis in the subiculum and extracellular CSPG in the hilus. Ex vivo T2 relaxation time correlated with astrogliosis in the hilus, CA4, and subiculum, and with microgliosis in CA1. The difference between in vivo and ex vivo relaxation ratio correlated with mean diffusivity and with the immunopositive area for CSPG in the hilus. SIGNIFICANCE Our data indicate that astrogliosis, microgliosis, and CSPG expression correlate with the increased T2 relaxation time seen in the hippocampi of patients with TLE.
Collapse
Affiliation(s)
- Jose Eduardo Peixoto-Santos
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Ludmyla Kandratavicius
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Tonicarlo Rodrigues Velasco
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Alberto Assirati
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Gilberto Carlotti
- Department of Surgery and Anatomy, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Renata Caldo Scandiuzzi
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos Ernesto Garrido Salmon
- Department of Physics and Mathematics, Faculty of Philosophy, Science and Languages of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Antonio Carlos Dos Santos
- Department of Internal Medicine, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Joao Pereira Leite
- Department of Neurosciences and Behavioral Sciences, Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
18
|
Cheng S, Gao W, Xu X, Fan H, Wu Y, Li F, Zhang J, Zhu X, Zhang Y. Methylprednisolone sodium succinate reduces BBB disruption and inflammation in a model mouse of intracranial haemorrhage. Brain Res Bull 2016; 127:226-233. [PMID: 27746369 DOI: 10.1016/j.brainresbull.2016.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/20/2016] [Accepted: 10/12/2016] [Indexed: 01/30/2023]
Abstract
Inflammation and disruption of the blood-brain barrier (BBB) cause oedema and secondary brain injury after intracranial haemorrhage (ICH), which is closely related to patient prognosis. Methylprednisolone sodium succinate (MPSS), a well-known immunosuppressive agent, is widely applied in many diseases to inhibit inflammation. In this study, we investigated the effect of MPSS on inflammation and disruption of the BBB in a model mouse of ICH. ICH was induced by injecting collagenase into the right striatum of male C57/BL mice. Permeability of BBB was measured with Evans Blue assay and brain oedema was detected by measurement of brain water content. Expressions of NF-κB, TLR4, occludin, ZO-1, IL-1β, TNF-α, Bax, and Bcl-2 were determined by Western Blot. Neutrophils, microglia were measured by immunohistochemistry staining, neuronal apoptosis was measured by TUNEL and NeuN co-stained. Administration of MPSS post-ICH significantly reduced permeability of the BBB and brain oedema and upregulated expression of ZO-1 and Occludin. MPSS inhibited inflammatory responses, including reducing proinflammatory cytokines (IL-1β, TNF-α), suppressing infiltration of neutrophils and activation of microglia. This was accompanied by attenuated activation of the TLR4/NF-κB signalling pathway. In addition, MPSS reduced neuronal apoptosis through increasing Bcl-2 expression and reducing Bax expression. MPSS suppressed inflammatory responses, attenuated disruption of the BBB and reduced neuronal apoptosis, contributing to reduction of secondary brain injury after ICH. These results suggest that MPSS may be a potential therapy for ICH.
Collapse
Affiliation(s)
- Shiqi Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China
| | - WeiWei Gao
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Xin Xu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Hengyi Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China
| | - Yingang Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Fei Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin 300052, People's Republic of China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China.
| | - Yan Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
19
|
Diniz DG, de Oliveira MA, de Lima CM, Fôro CAR, Sosthenes MCK, Bento-Torres J, da Costa Vasconcelos PF, Anthony DC, Diniz CWP. Age, environment, object recognition and morphological diversity of GFAP-immunolabeled astrocytes. Behav Brain Funct 2016; 12:28. [PMID: 27719674 PMCID: PMC5056502 DOI: 10.1186/s12993-016-0111-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/22/2016] [Indexed: 12/12/2022] Open
Abstract
Background Few studies have explored the glial response to a standard environment and how the response may be associated with age-related cognitive decline in learning and memory. Here we investigated aging and environmental influences on hippocampal-dependent tasks and on the morphology of an unbiased selected population of astrocytes from the molecular layer of dentate gyrus, which is the main target of perforant pathway. Results Six and twenty-month-old female, albino Swiss mice were housed, from weaning, in a standard or enriched environment, including running wheels for exercise and tested for object recognition and contextual memories. Young adult and aged subjects, independent of environment, were able to distinguish familiar from novel objects. All experimental groups, except aged mice from standard environment, distinguish stationary from displaced objects. Young adult but not aged mice, independent of environment, were able to distinguish older from recent objects. Only young mice from an enriched environment were able to distinguish novel from familiar contexts. Unbiased selected astrocytes from the molecular layer of the dentate gyrus were reconstructed in three-dimensions and classified using hierarchical cluster analysis of bimodal or multimodal morphological features. We found two morphological phenotypes of astrocytes and we designated type I the astrocytes that exhibited significantly higher values of morphological complexity as compared with type II. Complexity = [Sum of the terminal orders + Number of terminals] × [Total branch length/Number of primary branches]. On average, type I morphological complexity seems to be much more sensitive to age and environmental influences than that of type II. Indeed, aging and environmental impoverishment interact and reduce the morphological complexity of type I astrocytes at a point that they could not be distinguished anymore from type II. Conclusions We suggest these two types of astrocytes may have different physiological roles and that the detrimental effects of aging on memory in mice from a standard environment may be associated with a reduction of astrocytes morphological diversity. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0111-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Guerreiro Diniz
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil.,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK
| | - Marcus Augusto de Oliveira
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - Camila Mendes de Lima
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - César Augusto Raiol Fôro
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - Marcia Consentino Kronka Sosthenes
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | - João Bento-Torres
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil
| | | | - Daniel Clive Anthony
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigações Em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Rua dos Mundurucus 4487, Guamá, Belém, Pará, CEP 66073-000, Brazil. .,Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford, England, UK.
| |
Collapse
|
20
|
Mbori NJR, Chuan XY, Feng QX, Alizada M, Zhan J. Evaluation of the Combination of Methylprednisolone and Tranilast after Spinal Cord Injury in Rat Models. J Korean Neurosurg Soc 2016; 59:334-40. [PMID: 27446512 PMCID: PMC4954879 DOI: 10.3340/jkns.2016.59.4.334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/04/2016] [Accepted: 03/28/2016] [Indexed: 11/28/2022] Open
Abstract
Objective The aim of our study was to evaluate the neuroprotective functions of the combination therapy using methylprednisolone (MP) and tranilast (TR) after spinal cord injury (SCI) in adult rats. Methods Spinal cord compression injury model was achieved using Yasargil aneurysm clip. Rats were divided into control group, MP group, TR group, and combination therapy group using TR and MP. Rat models were assessed for locomotor functional recovery using Basso, Beattie, and Bresnahan (BBB) score, spinal cord water content and myeloperoxidase (MPO) activity 24 hours post SCI, haematoxylin and eosin staining and glial fibrillary acid protein (GFAP) staining at 7 and 14 days post SCI. Results The spinal cord water content and MPO activity in the combination therapy group was significantly lower than the control group and the individual therapy groups p<0.05. The combination therapy group had significantly higher BBB scores than control group and individual therapy groups (p<0.05). At one week after SCI, GFAP expression in the combination group was significantly lower than the control group (p<0.05) but there was no significant difference compared to the individual therapy groups (p>0.05). At 2 weeks after SCI there was a slight decrease in GFAP expression compared to the first week but the difference was not statistically significant (p>0.05), GFAP expression between the groups was not statistically significant p>0.05. Conclusion Combining MP and TR is therapeutically more effective in improving functional recovery, inhibiting inflammation and glial scar formation after acute SCI.
Collapse
Affiliation(s)
- Ngwayi James Reeves Mbori
- Department of Orthopedic Surgery (Unit III), First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi City, China
| | - Xie Yun Chuan
- Department of Orthopedic Surgery (Unit III), First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi City, China
| | - Qiao Xiao Feng
- Department of Orthopedic Surgery (Unit III), First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi City, China
| | - Mujahid Alizada
- Department of Neurosurgery, First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi City, China
| | - Jing Zhan
- Department of Orthopedic Surgery (Unit III), First Affiliated Hospital of Jiamusi University, Heilongjiang Province, Jiamusi City, China
| |
Collapse
|
21
|
Astrocytic GAP43 Induced by the TLR4/NF-κB/STAT3 Axis Attenuates Astrogliosis-Mediated Microglial Activation and Neurotoxicity. J Neurosci 2016; 36:2027-43. [PMID: 26865625 DOI: 10.1523/jneurosci.3457-15.2016] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Growth-associated protein 43 (GAP43), a protein kinase C (PKC)-activated phosphoprotein, is often implicated in axonal plasticity and regeneration. In this study, we found that GAP43 can be induced by the endotoxin lipopolysaccharide (LPS) in rat brain astrocytes both in vivo and in vitro. The LPS-induced astrocytic GAP43 expression was mediated by Toll-like receptor 4 and nuclear factor-κB (NF-κB)- and interleukin-6/signal transducer and activator of transcription 3 (STAT3)-dependent transcriptional activation. The overexpression of the PKC phosphorylation-mimicking GAP43(S41D) (constitutive active GAP43) in astrocytes mimicked LPS-induced process arborization and elongation, while application of a NF-κB inhibitory peptide TAT-NBD or GAP43(S41A) (dominant-negative GAP43) or knockdown of GAP43 all inhibited astrogliosis responses. Moreover, GAP43 knockdown aggravated astrogliosis-induced microglial activation and expression of proinflammatory cytokines. We also show that astrogliosis-conditioned medium from GAP43 knock-down astrocytes inhibited GAP43 phosphorylation and axonal growth, and increased neuronal damage in cultured rat cortical neurons. These proneurotoxic effects of astrocytic GAP43 knockdown were accompanied by attenuated glutamate uptake and expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in LPS-treated astrocytes. The regulation of EAAT2 expression involves actin polymerization-dependent activation of the transcriptional coactivator megakaryoblastic leukemia 1 (MKL1), which targets the serum response elements in the promoter of rat Slc1a2 gene encoding EAAT2. In sum, the present study suggests that astrocytic GAP43 mediates glial plasticity during astrogliosis, and provides beneficial effects for neuronal plasticity and survival and attenuation of microglial activation. SIGNIFICANCE STATEMENT Astrogliosis is a complex state in which injury-stimulated astrocytes exert both protective and harmful effects on neuronal survival and plasticity. In this study, we demonstrated for the first time that growth-associated protein 43 (GAP43), a well known growth cone protein that promotes axonal regeneration, can be induced in rat brain astrocytes by the proinflammatory endotoxin lipopolysaccharide via both nuclear factor-κB and signal transducer and activator of transcription 3-mediated transcriptional activation. Importantly, LPS-induced GAP43 mediates plastic changes of astrocytes while attenuating astrogliosis-induced microglial activation and neurotoxicity. Hence, astrocytic GAP43 upregulation may serve to indicate beneficial astrogliosis after CNS injury.
Collapse
|
22
|
Galuppo M, Rossi A, Giacoppo S, Pace S, Bramanti P, Sautebin L, Mazzon E. Use of Mometasone furoate in prolonged treatment of experimental spinal cord injury in mice: A comparative study of three different glucocorticoids. Pharmacol Res 2015; 99:316-28. [DOI: 10.1016/j.phrs.2015.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 12/27/2022]
|
23
|
Tang P, Zhang Y, Chen C, Ji X, Ju F, Liu X, Gan WB, He Z, Zhang S, Li W, Zhang L. In vivo two-photon imaging of axonal dieback, blood flow, and calcium influx with methylprednisolone therapy after spinal cord injury. Sci Rep 2015; 5:9691. [PMID: 25989524 PMCID: PMC4437044 DOI: 10.1038/srep09691] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/17/2015] [Indexed: 12/30/2022] Open
Abstract
Severe spinal cord injury (SCI) can cause neurological dysfunction and paralysis. However, the early dynamic changes of neurons and their surrounding environment after SCI are poorly understood. Although methylprednisolone (MP) is currently the standard therapeutic agent for treating SCI, its efficacy remains controversial. The purpose of this project was to investigate the early dynamic changes and MP's efficacy on axonal damage, blood flow, and calcium influx into axons in a mouse SCI model. YFP H-line and Thy1-GCaMP transgenic mice were used in this study. Two-photon microscopy was used for imaging of axonal dieback, blood flow, and calcium influx post-injury. We found that MP treatment attenuated progressive damage of axons, increased blood flow, and reduced calcium influx post-injury. Furthermore, microglia/macrophages accumulated in the lesion site after SCI and expressed the proinflammatory mediators iNOS, MCP-1 and IL-1β. MP treatment markedly inhibited the accumulation of microglia/macrophages and reduced the expression of the proinflammatory mediators. MP treatment also improved the recovery of behavioral function post-injury. These findings suggest that MP exerts a neuroprotective effect on SCI treatment by attenuating progressive damage of axons, increasing blood flow, reducing calcium influx, and inhibiting the accumulation of microglia/macrophages after SCI.
Collapse
Affiliation(s)
- Peifu Tang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Yiling Zhang
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Chao Chen
- 1] Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853 [2] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Xinran Ji
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| | - Furong Ju
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Xingyu Liu
- Beijing YouAn Hospital, Capital Medical University, Beijing, China, 100069
| | - Wen-Biao Gan
- 1] Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055 [2] Skirball Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA, 10016
| | - Zhigang He
- F.M. Kirby Program in Neuroscience, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, China, 73000
| | - Wei Li
- Key Laboratory of Chemical Genomics, Shenzhen Graduate School, Peking University, Shenzhen, China, 518055
| | - Lihai Zhang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China, 100853
| |
Collapse
|
24
|
Papastefanaki F, Matsas R. From demyelination to remyelination: the road toward therapies for spinal cord injury. Glia 2015; 63:1101-25. [PMID: 25731941 DOI: 10.1002/glia.22809] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022]
Abstract
Myelin integrity is crucial for central nervous system (CNS) physiology while its preservation and regeneration after spinal cord injury (SCI) is key to functional restoration. Disturbance of nodal organization acutely after SCI exposes the axon and triggers conduction block in the absence of overt demyelination. Oligodendrocyte (OL) loss and myelin degradation follow as a consequence of secondary damage. Here, we provide an overview of the major biological events and underlying mechanisms leading to OL death and demyelination and discuss strategies to restrain these processes. Another aspect which is critical for SCI repair is the enhancement of endogenously occurring spontaneous remyelination. Recent findings have unveiled the complex roles of innate and adaptive immune responses in remyelination and the immunoregulatory potential of the glial scar. Moreover, the intimate crosstalk between neuronal activity, oligodendrogenesis and myelination emphasizes the contribution of rehabilitation to functional recovery. With a view toward clinical applications, several therapeutic strategies have been devised to target SCI pathology, including genetic manipulation, administration of small therapeutic molecules, immunomodulation, manipulation of the glial scar and cell transplantation. The implementation of new tools such as cellular reprogramming for conversion of one somatic cell type to another or the use of nanotechnology and tissue engineering products provides additional opportunities for SCI repair. Given the complexity of the spinal cord tissue after injury, it is becoming apparent that combinatorial strategies are needed to rescue OLs and myelin at early stages after SCI and support remyelination, paving the way toward clinical translation.
Collapse
Affiliation(s)
- Florentia Papastefanaki
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, Athens, 11521, Greece
| | | |
Collapse
|
25
|
Deng WP, Yang CC, Yang LY, Chen CWD, Chen WH, Yang CB, Chen YH, Lai WFT, Renshaw PF. Extracellular matrix-regulated neural differentiation of human multipotent marrow progenitor cells enhances functional recovery after spinal cord injury. Spine J 2014; 14:2488-99. [PMID: 24792783 PMCID: PMC4692164 DOI: 10.1016/j.spinee.2014.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/01/2014] [Accepted: 04/15/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Recent advanced studies have demonstrated that cytokines and extracellular matrix (ECM) could trigger various types of neural differentiation. However, the efficacy of differentiation and in vivo transplantation has not yet thoroughly been investigated. PURPOSE To highlight the current understanding of the effects of ECM on neural differentiation of human bone marrow-derived multipotent progenitor cells (MPCs), regarding state-of-art cure for the animal with acute spinal cord injury (SCI), and explore future treatments aimed at neural repair. STUDY DESIGN A selective overview of the literature pertaining to the neural differentiation of the MSCs and experimental animals aimed at improved repair of SCI. METHODS Extracellular matrix proteins, tenascin-cytotactin (TN-C), tenascin-restrictin (TN-R), and chondroitin sulfate (CS), with the cytokines, nerve growth factor (NGF)/brain-derived neurotrophic factor (BDNF)/retinoic acid (RA) (NBR), were incorporated to induce transdifferentiation of human MPCs. Cells were treated with NBR for 7 days, and then TN-C, TN-R, or CS was added for 2 days. The medium was changed every 2 days. Twenty-four animals were randomly assigned to four groups with six animals in each group: one experimental and three controls. Animals received two (bilateral) injections of vehicle, MPCs, NBR-induced MPCs, or NBR/TN-C-induced MPCs into the lesion sites after SCI. Functional assessment was measured using the Basso, Beattie, and Bresnahan locomotor rating score. Data were analyzed using analysis of variance followed by Student-Newman-Keuls (SNK) post hoc tests. RESULTS Results showed that MPCs with the transdifferentiation of human MPCs to neurons were associated with increased messenger-RNA (mRNA) expression of neuronal markers including nestin, microtubule-associated protein (MAP) 2, glial fibrillary acidic protein, βIII tubulin, and NGF. Greater amounts of neuronal morphology appeared in cultures incorporated with TN-C and TN-R than those with CS. The addition of TN-C enhanced mRNA expressions of MAP2, βIII tubulin, and NGF, whereas TN-R did not significantly change. Conversely, CS exposure decreased MAP2, βIII tubulin, and NGF expressions. The TN-C-treated MSCs significantly and functionally repaired SCI-induced rats at Day 42. Present results indicate that ECM components, such as tenascins and CS in addition to cytokines, may play functional roles in regulating neurogenesis by human MPCs. CONCLUSIONS These findings suggest that the combined use of TN-C, NBR, and human MPCs offers a new feasible method for nerve repair.
Collapse
Affiliation(s)
- Win-Ping Deng
- Graduate Institute of Biomedical Materials and Engineering, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Chi-Chiang Yang
- Department of Neurology, Tungs’ Taichung Metroharbor Hospital, 699 Taiwan Blvd. 8 Sec., Taitung, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Chun-Wei D. Chen
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 415 E. 68th Street, New York 10065, NY, USA
| | - Wei-Hong Chen
- Graduate Institute of Biomedical Materials and Engineering, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Charn-Bing Yang
- Orthopedic Section Department, New Taipei City Hospital, 198 Yin-His Rd., Banquiao District, New Taipei City, Taiwan
| | - Yu-Hsin Chen
- Department of Physiology, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan
| | - Wen-Fu T. Lai
- Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, 415 E. 68th Street, New York 10065, NY, USA,International Center of Nano Biomedicine Research, Taipei Medical University, 250 Wu-Hsing Street, Taipei, Taiwan,Brain McLean Imaging Center, McLean Hospital/Harvard Medical School, 115 Mill Strret, Belmont 02115, MA, USA,Corresponding author. Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan. Tel.: (886)2-23916632; fax: (886)2-23967262. (W.-F.T. Lai)
| | - Perry F. Renshaw
- The Brain Institute, The University of Utah, 201 Presidents Cir, Salt Lake City 84112, UT, USA
| |
Collapse
|
26
|
Wu J, Jiang H, Bi Q, Luo Q, Li J, Zhang Y, Chen Z, Li C. Apamin-Mediated Actively Targeted Drug Delivery for Treatment of Spinal Cord Injury: More Than Just a Concept. Mol Pharm 2014; 11:3210-22. [DOI: 10.1021/mp500393m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jin Wu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Hong Jiang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Qiuyan Bi
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Qingsong Luo
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Jianjun Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Yan Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Zhangbao Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing, 400715, P. R. China
| |
Collapse
|
27
|
Yin Y, Zhang X, Li Z, Deng L, Jiao G, Zhang B, Xie P, Mu H, Qiao W, Zou J. Glucocorticoid receptor β regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/TCF transcriptional activity. Neurobiol Dis 2013; 59:165-76. [PMID: 23906498 DOI: 10.1016/j.nbd.2013.07.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 07/03/2013] [Accepted: 07/17/2013] [Indexed: 11/16/2022] Open
Abstract
Astrocytes react to central nervous system (CNS) injury and participate in gliotic responses, imparting negative, as well as positive effects on axonal regeneration. Despite the considerable biochemical and morphological changes astrocytes undergo following insult, and the known influence of steroids on glial activation, details surrounding glucocorticoid receptor expression and activity are lacking. Such mechanistic information is essential for advancing and enhancing therapies in the treatment of CNS injuries. Using an in vitro wound-healing assay, we found glucocorticoid receptor β (GRβ), not GRα, is upregulated and acts as a regulator of gliosis after injury. In addition, our results suggest that GRβ interacts with β-catenin and is a necessary component for proliferation and migration in both injured astrocytes and glioma cells. Further analysis indicated GRβ/β-catenin interaction as a key modulator of astrocyte reactivity through sustained Wnt/β-catenin/TCF signaling in its dominant-negative effect on GRα mediated trans-repression by a GSK-3β-independent manner. These findings expand our knowledge of the mechanism of GRβ action in promoting astrocyte proliferation and migration following injury and in glioma. This information furthers our understanding the function of glucocorticoid receptor in CNS injury and disease, as well as in the basic biochemical responses astrocytes undergo in response to injury and glioma pathogenesis.
Collapse
Affiliation(s)
- Ying Yin
- Department of Clinical Laboratory Science, Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China; Wuxi Clinical Science Research Institute, Wuxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bharne AP, Upadhya MA, Shelkar GP, Singru PS, Subhedar NK, Kokare DM. Neuroprotective effect of cocaine- and amphetamine-regulated transcript peptide in spinal cord injury in mice. Neuropharmacology 2013; 67:126-35. [DOI: 10.1016/j.neuropharm.2012.10.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 10/13/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
|
29
|
Cerqueira SR, Oliveira JM, Silva NA, Leite-Almeida H, Ribeiro-Samy S, Almeida A, Mano JF, Sousa N, Salgado AJ, Reis RL. Microglia response and in vivo therapeutic potential of methylprednisolone-loaded dendrimer nanoparticles in spinal cord injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:738-749. [PMID: 23161735 DOI: 10.1002/smll.201201888] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Indexed: 06/01/2023]
Abstract
The control and manipulation of cells that trigger secondary mechanisms following spinal cord injury (SCI) is one of the first opportunities to minimize its highly detrimental outcomes. Herein, the ability of surface-engineered carboxymethylchitosan/polyamidoamine (CMCht/PAMAM) dendrimer nanoparticles to intracellularly deliver methylprednisolone (MP) to glial cells, allowing a controlled and sustained release of this corticosteroid in the injury site, is investigated. The negatively charged MP-loaded CMCht/PAMAM dendrimer nanoparticles with sizes of 109 nm enable a MP sustained release, which is detected for a period of 14 days by HPLC. In vitro studies in glial primary cultures show that incubation with 200 μg mL(-1) nanoparticles do not affect the cells' viability or proliferation, while allowing the entire population to internalize the nanoparticles. At higher concentrations, microglial cell viability is proven to be affected in response to the MP amount released. Following lateral hemisection lesions in rats, nanoparticle uptake by the spinal tissue is observed 3 h after administration. Moreover, significant differences in the locomotor output between the controls and the MP-loaded nanoparticle-treated animals one month after the lesion are observed. Therefore, MP-loaded CMCht/PAMAM dendrimer nanoparticles may prove to be useful in the reduction of the secondary injury following SCI.
Collapse
Affiliation(s)
- Susana R Cerqueira
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Frota de Almeida MN, de Siqueira Mendes FDCC, Gurgel Felício AP, Falsoni M, Ferreira de Andrade ML, Bento-Torres J, da Costa Vasconcelos PF, Perry VH, Picanço-Diniz CW, Kronka Sosthenes MC. Spatial memory decline after masticatory deprivation and aging is associated with altered laminar distribution of CA1 astrocytes. BMC Neurosci 2012; 13:23. [PMID: 22376223 PMCID: PMC3355053 DOI: 10.1186/1471-2202-13-23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 02/29/2012] [Indexed: 01/27/2023] Open
Abstract
Background Chewing imbalances are associated with neurodegeneration and are risk factors for senile dementia in humans and memory deficits in experimental animals. We investigated the impact of long-term reduced mastication on spatial memory in young, mature and aged female albino Swiss mice by stereological analysis of the laminar distribution of CA1 astrocytes. A soft diet (SD) was used to reduce mastication in the experimental group, whereas the control group was fed a hard diet (HD). Assays were performed in 3-, 6- and 18-month-old SD and HD mice. Results Eating a SD variably affected the number of astrocytes in the CA1 hippocampal field, and SD mice performed worse on water maze memory tests than HD mice. Three-month-old mice in both groups could remember/find a hidden platform in the water maze. However, 6-month-old SD mice, but not HD mice, exhibited significant spatial memory dysfunction. Both SD and HD 18-month-old mice showed spatial memory decline. Older SD mice had astrocyte hyperplasia in the strata pyramidale and oriens compared to 6-month-old mice. Aging induced astrocyte hypoplasia at 18 months in the lacunosum-moleculare layer of HD mice. Conclusions Taken together, these results suggest that the impaired spatial learning and memory induced by masticatory deprivation and aging may be associated with altered astrocyte laminar distribution and number in the CA1 hippocampal field. The underlying molecular mechanisms are unknown and merit further investigation.
Collapse
Affiliation(s)
- Marina Negrão Frota de Almeida
- Universidade Federal do Pará-UFPA, Instituto de Ciências Biológicas, Laboratório de Investigações em Neurodegeneração e Infecção, Hospital Universitário João de Barros Barreto, Belém, PA, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Cizkova D, Novotna I, Slovinska L, Vanicky I, Jergova S, Rosocha J, Radonak J. Repetitive Intrathecal Catheter Delivery of Bone Marrow Mesenchymal Stromal Cells Improves Functional Recovery in a Rat Model of Contusive Spinal Cord Injury. J Neurotrauma 2011; 28:1951-61. [DOI: 10.1089/neu.2010.1413] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Dasa Cizkova
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivana Novotna
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Lucia Slovinska
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Stanislava Jergova
- The Miami Project to Cure Paralysis, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jan Rosocha
- Tissue Bank, Faculty of Medicine, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| | - Jozef Radonak
- I Surgical Clinic, P.J. Safarik University, and L. Pasteur Faculty Hospital, Kosice, Slovakia
| |
Collapse
|
32
|
Lin MS, Lee YH, Chiu WT, Hung KS. Curcumin Provides Neuroprotection After Spinal Cord Injury. J Surg Res 2011; 166:280-9. [DOI: 10.1016/j.jss.2009.07.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/23/2009] [Accepted: 07/03/2009] [Indexed: 01/12/2023]
|
33
|
Miljković D, Timotijević G, Stojković MM. Astrocytes in the tempest of multiple sclerosis. FEBS Lett 2011; 585:3781-8. [DOI: 10.1016/j.febslet.2011.03.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Revised: 03/21/2011] [Accepted: 03/23/2011] [Indexed: 12/11/2022]
|
34
|
Salgado AJ, Oliveira JM, Pirraco RP, Pereira VH, Fraga JS, Marques AP, Neves NM, Mano JF, Reis RL, Sousa N. Carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles in central nervous systems-regenerative medicine: effects on neuron/glial cell viability and internalization efficiency. Macromol Biosci 2011; 10:1130-40. [PMID: 20602413 DOI: 10.1002/mabi.201000005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The applicability of CMCht/PAMAM dendrimer nanoparticles for CNS applications was investigated. AFM and TEM observations revealed that the nanoparticles possessed a nanosphere-like shape with a size from 22.0 to 30.7 nm. The nanoparticles could be bound to fluorescent-probe FITC for tracing purposes. Post-natal hippocampal neurons and cortical glial cells were both able to internalize the FITC-labeled CMCht/PAMAM dendrimer nanoparticles with high efficiency. The percentage of positive cells internalizing the nanoparticles varied, reaching a peak after 48 h of incubation. Further experiments for periods up to 7 d revealed that the periodical addition of FITC-labelled CMCht/PAMAM dendrimer nanoparticles was needed to maintain the overall percentage of cells internalizing them. Finally, it was also observed that cell viability was not significantly affected by the incubation of dendrimer nanoparticles.
Collapse
Affiliation(s)
- António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Diniz DG, Foro CAR, Rego CMD, Gloria DA, de Oliveira FRR, Paes JMP, de Sousa AA, Tokuhashi TP, Trindade LS, Turiel MCP, Vasconcelos EGR, Torres JB, Cunnigham C, Perry VH, Vasconcelos PFDC, Diniz CWP. Environmental impoverishment and aging alter object recognition, spatial learning, and dentate gyrus astrocytes. Eur J Neurosci 2010; 32:509-19. [PMID: 20704596 DOI: 10.1111/j.1460-9568.2010.07296.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Environmental and age-related effects on learning and memory were analysed and compared with changes observed in astrocyte laminar distribution in the dentate gyrus. Aged (20 months) and young (6 months) adult female albino Swiss mice were housed from weaning either in impoverished conditions or in enriched conditions, and tested for episodic-like and water maze spatial memories. After these behavioral tests, brain hippocampal sections were immunolabeled for glial fibrillary acid protein to identify astrocytes. The effects of environmental enrichment on episodic-like memory were not dependent on age, and may protect water maze spatial learning and memory from declines induced by aging or impoverished environment. In the dentate gyrus, the number of astrocytes increased with both aging and enriched environment in the molecular layer, increased only with aging in the polymorphic layer, and was unchanged in the granular layer. We suggest that long-term experience-induced glial plasticity by enriched environment may represent at least part of the circuitry groundwork for improvements in behavioral performance in the aged mice brain.
Collapse
Affiliation(s)
- Daniel G Diniz
- Universidade Federal do Pará-UFPA, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chi GF, Kim MR, Kim DW, Jiang MH, Son Y. Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol 2010; 222:304-17. [DOI: 10.1016/j.expneurol.2010.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 02/07/2023]
|
37
|
Christie SD, Comeau B, Myers T, Sadi D, Purdy M, Mendez I. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg Focus 2009; 25:E5. [PMID: 18980479 DOI: 10.3171/foc.2008.25.11.e5] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Oxidative stress leading to lipid peroxidation is a major cause of secondary injury following spinal cord injury (SCI). The objectives of this study were to determine the duration of lipid peroxidation following acute SCI and the efficacy of short-and long-term administration of methylprednisolone on decreasing lipid peroxidation. METHODS A total of 226 female Wistar rats underwent clip-compression induced SCI. In the first part of the study, spinal cords of untreated rats were assayed colorimetrically for malondialdehyde (MDA) to determine lipid peroxidation levels at various time points between 0 and 10 days. In the second part of the study, animals were treated with methylprednisolone for either 24 hours or 7 days. Control animals received equal volumes of normal saline. Treated and control rats were killed at various time points between 0 and 7 days. RESULTS The MDA levels initially peaked 4 hours postinjury. By 12 hours, the MDA levels returned to baseline. A second increase was observed from 24 hours to 5 days. Both peak values differed statistically from the trough values (p < 0.008). The methylprednisolone reduced MDA levels (p < 0.04) within 12 hours of injury. No effect was seen at 24 hours or later. CONCLUSIONS The results of this study indicate that oxidative stress persists for 5 days following SCI in rats, and although methylprednisolone reduces MDA levels within the first 12 hours, it has no effect on the second lipid peroxidation peak.
Collapse
Affiliation(s)
- Sean D Christie
- Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | |
Collapse
|