1
|
Herrera-Astorga L, Silva S, Berrosteguieta I, Rosillo JC, Fernández AS. Müller glia in short-term dark adaptation of the Austrolebias charrua retina: Cell proliferation and cytoarchitecture. Exp Cell Res 2024; 444:114394. [PMID: 39722301 DOI: 10.1016/j.yexcr.2024.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Fish with unique life cycles offer valuable insights into retinal plasticity, revealing mechanisms of environmental adaptation, cell proliferation, and thus, potentially regeneration. The variability of the environmental factors to which Austrolebias annual fishes are exposed has acted as a strong selective pressure shaping traits such as nervous system plasticity. This has contributed to adaptation to their extreme conditions including the decreased luminosity as ponds dry out. In particular, the retina of A. charrua has been shown to respond to 30 days of decreased luminosity by exacerbating cell proliferation Now, we aimed to determine the cellular component of the retina involved in shorter-term responses. To this end, we performed 5-bromo-2'-deoxyuridine (BrdU) experiments, exposing adult fish to a short period (11 days) of constant darkness. Strikingly, in control conditions, neurogenesis in the inner nuclear and ganglion cell layer in the differentiated retina was detected. In constant darkness, we observed an effect on inner nuclear layer cell proliferation and changes in retinal cytoarchitecture of the retina with cell clusters located in the inner plexiform layer. Additionally, increased BLBP (brain lipid-binding protein) presence was detected in darkness, which has been previously associated with immature and reactivated Müller glia. Thus, our results suggest that the A. charrua retina can respond to environmental changes via rapid activation of progenitor cells in the INL, namely the Müller glia This leads us to hypothesize, that cell proliferation and neurogenesis might contribute to the responses to the functional needs of organisms, potentially playing an adaptive role.
Collapse
Affiliation(s)
- Laura Herrera-Astorga
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| | - Stephanie Silva
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Inés Berrosteguieta
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay.
| | - Juan Carlos Rosillo
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800, Montevideo, Uruguay.
| | - Anabel Sonia Fernández
- Departamento de Neurociencias Integrativas y Computacionales, Lab. Neurobiología Comparada, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida. Italia 3318, 11600, Montevideo, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
2
|
Guo P, Mao L, Chen Y, Lee CN, Cardilla A, Li M, Bartosovic M, Deng Y. Multiplexed spatial mapping of chromatin features, transcriptome, and proteins in tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612892. [PMID: 39345645 PMCID: PMC11429933 DOI: 10.1101/2024.09.13.612892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The phenotypic and functional states of a cell are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome, and metabolome. Spatial omics approaches have enabled the capture of information from different molecular layers directly in the tissue context. However, current technologies are limited to map one to two modalities at the same time, providing an incomplete representation of cellular identity. Such data is inadequate to fully understand complex biological systems and their underlying regulatory mechanisms. Here we present spatial-Mux-seq, a multi-modal spatial technology that allows simultaneous profiling of five different modalities, including genome-wide profiles of two histone modifications and open chromatin, whole transcriptome, and a panel of proteins at tissue scale and cellular level in a spatially resolved manner. We applied this technology to generate multi-modal tissue maps in mouse embryos and mouse brains, which discriminated more cell types and states than unimodal data. We investigated the spatiotemporal relationship between histone modifications, chromatin accessibility, gene and protein expression in neuron differentiation revealing the relationship between tissue organization, function, and gene regulatory networks. We were able to identify a radial glia spatial niche and revealed spatially changing gradient of epigenetic signals in this region. Moreover, we revealed previously unappreciated involvement of repressive histone marks in the mouse hippocampus. Collectively, the spatial multi-omics approach heralds a new era for characterizing tissue and cellular heterogeneity that single modality studies alone could not reveal.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally
| | - Liran Mao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- These authors contributed equally
| | - Yufan Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Chin Nien Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelysia Cardilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Mingyao Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marek Bartosovic
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Yanxiang Deng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Jing N, Du X, Liang Y, Tao Z, Bao S, Xiao H, Dong B, Gao WQ, Fang YX. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility. J Exp Clin Cancer Res 2024; 43:144. [PMID: 38745318 PMCID: PMC11094950 DOI: 10.1186/s13046-024-03064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Neuroendocrine prostate cancer (NEPC) is a lethal subset of prostate cancer which is characterized by neuroendocrine differentiation and loss of androgen receptor (AR) signaling. Growing evidence reveals that cell lineage plasticity is crucial in the failure of NEPC therapies. Although studies suggest the involvement of the neural transcription factor PAX6 in drug resistance, its specific role in NEPC remains unclear. METHODS The expression of PAX6 in NEPC was identified via bioinformatics and immunohistochemistry. CCK8 assay, colony formation assay, tumorsphere formation assay and apoptosis assay were used to illustrate the key role of PAX6 in the progression of in vitro. ChIP and Dual-luciferase reporter assays were conducted to confirm the binding sequences of AR in the promoter region of PAX6, as well as the binding sequences of PAX6 in the promoter regions of STAT5A and MET. For in vivo validation, the xenograft model representing NEPC subtype underwent pathological analysis to verify the significant role of PAX6 in disease progression. Complementary diagnoses were established through public clinical datasets and transcriptome sequencing of specific cell lines. ATAC-seq was used to detect the chromatin accessibility of specific cell lines. RESULTS PAX6 expression was significantly elevated in NEPC and negatively regulated by AR signaling. Activation of PAX6 in non-NEPC cells led to NE trans-differentiation, while knock-down of PAX6 in NEPC cells inhibited the development and progression of NEPC. Importantly, loss of AR resulted in an enhanced expression of PAX6, which reprogramed the lineage plasticity of prostate cancer cells to develop NE phenotypes through the MET/STAT5A signaling pathway. Through ATAC-seq, we found that a high expression level of PAX6 elicited enhanced chromatin accessibility, mainly through attenuation of H4K20me3, which typically causes chromatin silence in cancer cells. CONCLUSION This study reveals a novel neural transcription factor PAX6 could drive NEPC progression and suggest that it might serve as a potential therapeutic target for the management of NEPC.
Collapse
Affiliation(s)
- Nan Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xinxing Du
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - ZhenKeke Tao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shijia Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huixiang Xiao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Baijun Dong
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Med-X Research Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Yu-Xiang Fang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
4
|
Li L, Li J, Yuan L. A direct interaction between CENTLEIN and RABIN8 is required for primary cilium formation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1434-1444. [PMID: 37475549 PMCID: PMC10520482 DOI: 10.3724/abbs.2023064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Primary cilia are formed in nearly all growth-arrested cells and are essential for mammalian development and tissue homeostasis. Defects in primary cilia result in a range of disorders in humans, named ciliopathies. The spatiotemporal localization of RABIN8 on the pericentrosome is an early step in ciliogenesis. Here, we show that CENTLEIN depletion causes the persistent accumulation of RABIN8 on the pericentrosome and primary cilium loss in hTERT-immortalized retinal pigment epithelial cells and murine embryonic fibroblasts. CENTLEIN interacts with RABIN8 directly. A stretch of a 31-amino acid sequence located in the 200‒230 region of the RABIN8 GEF domain is responsible for its physical interaction with CENTLEIN, while expression of the full-length but not the internal deletion lacking the RABIN8-binding site of CENTLEIN largely rescues the ciliogenesis defect provoked by CENTLEIN depletion. Expression of activated RAB8A partially reverses cilium loss in CENTLEIN-null RPE1 cells, so the functional importance of the CENTLEIN-RABIN8 interaction is defined.
Collapse
Affiliation(s)
- Liansheng Li
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| | - Junlin Li
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| | - Li Yuan
- />Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijing101408China
| |
Collapse
|
5
|
Maalouf KE, Vaine CA, Frederick DM, Yoshinaga A, Obuchi W, Mahjoum S, Nieland L, Al Ali J, Bragg DC, Breakefield XO, Breyne K. Tracking human neurologic disease status in mouse brain/plasma using reporter-tagged, EV-associated biomarkers. Mol Ther 2023; 31:2206-2219. [PMID: 37198883 PMCID: PMC10362415 DOI: 10.1016/j.ymthe.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/17/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a retrotransposon insertion in intron 32 of the TAF1 gene. This insertion causes mis-splicing of intron 32 (TAF1-32i) and reduced TAF1 levels. TAF1-32i transcript is unique to XDP patient cells and can be detected in their extracellular vesicles (EVs). We engrafted patient and control iPSC-derived neural progenitor cells (hNPCs) into the striatum of mice. To track TAF1-32i transcript spread by EVs, we transduced the brain-implanted hNPCs with a lentiviral construct called ENoMi, which consists of a re-engineered tetraspanin scaffold tagged with bioluminescent and fluorescent reporter proteins under an EF-1α promoter. Alongside this improved detection in ENoMi-hNPCs-derived EVs, their surface allows specific immunocapture purification, thereby facilitating TAF1-32i analysis. Using this ENoMi-labeling method, TAF1-32i was demonstrated in EVs released from XDP hNPCs implanted in mouse brains. Post-implantation of ENoMi-XDP hNPCs, TAF1-32i transcript was retrieved in EVs isolated from mouse brain and blood, and levels increased over time in plasma. We compared and combined our EV isolation technique to analyze XDP-derived TAF1-32i with other techniques, including size exclusion chromatography and Exodisc. Overall, our study demonstrates the successful engraftment of XDP patient-derived hNPCs in mice as a tool for monitoring disease markers with EVs.
Collapse
Affiliation(s)
- Katia E Maalouf
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Christine A Vaine
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Dawn M Frederick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Akiko Yoshinaga
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Wataru Obuchi
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shadi Mahjoum
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lisa Nieland
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jamal Al Ali
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Xandra O Breakefield
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA 02129, USA; Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
| | - Koen Breyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
6
|
Wenger A, Karlsson I, Kling T, Carén H. CRISPR-Cas9 knockout screen identifies novel treatment targets in childhood high-grade glioma. Clin Epigenetics 2023; 15:80. [PMID: 37161535 PMCID: PMC10170782 DOI: 10.1186/s13148-023-01498-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/03/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Brain tumours are the leading cause of cancer-related death in children, and there is no effective treatment. A growing body of evidence points to deregulated epigenetics as a tumour driver, particularly in paediatric cancers as they have relatively few genomic alterations, and key driver mutations have been identified in histone 3 (H3). Cancer stem cells (CSC) are implicated in tumour development, relapse and therapy resistance and thus particularly important to target. We therefore aimed to identify novel epigenetic treatment targets in CSC derived from H3-mutated high-grade glioma (HGG) through a CRISPR-Cas9 knockout screen. RESULTS The knockout screen identified more than 100 novel genes essential for the growth of CSC derived from paediatric HGG with H3K27M mutation. We successfully validated 12 of the 13 selected hits by individual knockout in the same two CSC lines, and for the top six hits we included two additional CSC lines derived from H3 wild-type paediatric HGG. Knockout of these genes led to a significant decrease in CSC growth, and altered stem cell and differentiation markers. CONCLUSIONS The screen robustly identified essential genes known in the literature, but also many novel genes essential for CSC growth in paediatric HGG. Six of the novel genes (UBE2N, CHD4, LSM11, KANSL1, KANSL3 and EED) were validated individually thus demonstrating their importance for CSC growth in H3-mutated and wild-type HGG. These genes should be further studied and evaluated as novel treatment targets in paediatric HGG.
Collapse
Affiliation(s)
- Anna Wenger
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Ida Karlsson
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Teresia Kling
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1F, 405 30, Gothenburg, Sweden.
| |
Collapse
|
7
|
Zhang D, Deng Y, Kukanja P, Agirre E, Bartosovic M, Dong M, Ma C, Ma S, Su G, Bao S, Liu Y, Xiao Y, Rosoklija GB, Dwork AJ, Mann JJ, Leong KW, Boldrini M, Wang L, Haeussler M, Raphael BJ, Kluger Y, Castelo-Branco G, Fan R. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 2023; 616:113-122. [PMID: 36922587 PMCID: PMC10076218 DOI: 10.1038/s41586-023-05795-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Emerging spatial technologies, including spatial transcriptomics and spatial epigenomics, are becoming powerful tools for profiling of cellular states in the tissue context1-5. However, current methods capture only one layer of omics information at a time, precluding the possibility of examining the mechanistic relationship across the central dogma of molecular biology. Here, we present two technologies for spatially resolved, genome-wide, joint profiling of the epigenome and transcriptome by cosequencing chromatin accessibility and gene expression, or histone modifications (H3K27me3, H3K27ac or H3K4me3) and gene expression on the same tissue section at near-single-cell resolution. These were applied to embryonic and juvenile mouse brain, as well as adult human brain, to map how epigenetic mechanisms control transcriptional phenotype and cell dynamics in tissue. Although highly concordant tissue features were identified by either spatial epigenome or spatial transcriptome we also observed distinct patterns, suggesting their differential roles in defining cell states. Linking epigenome to transcriptome pixel by pixel allows the uncovering of new insights in spatial epigenetic priming, differentiation and gene regulation within the tissue architecture. These technologies are of great interest in life science and biomedical research.
Collapse
Affiliation(s)
- Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Pathology and Laboratory Medicine, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eneritz Agirre
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Marek Bartosovic
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mingze Dong
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Shuozhen Bao
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Liya Wang
- AtlasXomics, Inc., New Haven, CT, USA
| | | | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Deng Y, Bartosovic M, Ma S, Zhang D, Kukanja P, Xiao Y, Su G, Liu Y, Qin X, Rosoklija GB, Dwork AJ, Mann JJ, Xu ML, Halene S, Craft JE, Leong KW, Boldrini M, Castelo-Branco G, Fan R. Spatial profiling of chromatin accessibility in mouse and human tissues. Nature 2022; 609:375-383. [PMID: 35978191 PMCID: PMC9452302 DOI: 10.1038/s41586-022-05094-1] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 07/08/2022] [Indexed: 12/12/2022]
Abstract
Cellular function in tissue is dependent on the local environment, requiring new methods for spatial mapping of biomolecules and cells in the tissue context1. The emergence of spatial transcriptomics has enabled genome-scale gene expression mapping2-5, but the ability to capture spatial epigenetic information of tissue at the cellular level and genome scale is lacking. Here we describe a method for spatially resolved chromatin accessibility profiling of tissue sections using next-generation sequencing (spatial-ATAC-seq) by combining in situ Tn5 transposition chemistry6 and microfluidic deterministic barcoding5. Profiling mouse embryos using spatial-ATAC-seq delineated tissue-region-specific epigenetic landscapes and identified gene regulators involved in the development of the central nervous system. Mapping the accessible genome in the mouse and human brain revealed the intricate arealization of brain regions. Applying spatial-ATAC-seq to tonsil tissue resolved the spatially distinct organization of immune cell types and states in lymphoid follicles and extrafollicular zones. This technology progresses spatial biology by enabling spatially resolved chromatin accessibility profiling to improve our understanding of cell identity, cell state and cell fate decision in relation to epigenetic underpinnings in development and disease.
Collapse
Affiliation(s)
- Yanxiang Deng
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Marek Bartosovic
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sai Ma
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Di Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Petra Kukanja
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Yang Xiao
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yang Liu
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Xiaoyu Qin
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Gorazd B Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Macedonian Academy of Sciences & Arts, Skopje, Republic of Macedonia
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| | - Mina L Xu
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph E Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden.
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Khateb M, Perovanovic J, Ko KD, Jiang K, Feng X, Acevedo-Luna N, Chal J, Ciuffoli V, Genzor P, Simone J, Haase AD, Pourquié O, Dell'Orso S, Sartorelli V. Transcriptomics, regulatory syntax, and enhancer identification in mesoderm-induced ESCs at single-cell resolution. Cell Rep 2022; 40:111219. [PMID: 35977485 DOI: 10.1016/j.celrep.2022.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 11/03/2022] Open
Abstract
Embryonic stem cells (ESCs) can adopt lineage-specific gene-expression programs by stepwise exposure to defined factors, resulting in the generation of functional cell types. Bulk and single-cell-based assays were employed to catalog gene expression, histone modifications, chromatin conformation, and accessibility transitions in ESC populations and individual cells acquiring a presomitic mesoderm fate and undergoing further specification toward myogenic and neurogenic lineages. These assays identified cis-regulatory regions and transcription factors presiding over gene-expression programs occurring at defined ESC transitions and revealed the presence of heterogeneous cell populations within discrete ESC developmental stages. The datasets were employed to identify previously unappreciated genomic elements directing the initial activation of Pax7 and myogenic and neurogenic gene-expression programs. This study provides a resource for the discovery of genomic and transcriptional features of pluripotent, mesoderm-induced ESCs and ESC-derived cell lineages.
Collapse
Affiliation(s)
- Mamduh Khateb
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Jelena Perovanovic
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Kyung Dae Ko
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Xuesong Feng
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Natalia Acevedo-Luna
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Jérome Chal
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | - Veronica Ciuffoli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - James Simone
- FlowCytometry Section, NIAMS, NIH, Bethesda, MD, USA
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Boston, MA, USA
| | | | - Vittorio Sartorelli
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA.
| |
Collapse
|
10
|
Shafi O, Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/signaling pathways in GBM development: a systematic review. World J Surg Oncol 2022; 20:146. [PMID: 35538578 PMCID: PMC9087910 DOI: 10.1186/s12957-022-02602-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/15/2022] [Indexed: 02/16/2023] Open
Abstract
Background Glioblastoma is one of the most aggressive tumors. The etiology and the factors determining its onset are not yet entirely known. This study investigates the origins of GBM, and for this purpose, it focuses primarily on developmental gliogenic processes. It also focuses on the impact of the related neurogenic developmental processes in glioblastoma oncogenesis. It also addresses why glial cells are at more risk of tumor development compared to neurons. Methods Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving glioblastoma, gliogenesis, neurogenesis, stemness, neural stem cells, gliogenic signaling and pathways, neurogenic signaling and pathways, and astrocytogenic genes. Results The origin of GBM is dependent on dysregulation in multiple genes and pathways that accumulatively converge the cells towards oncogenesis. There are multiple layers of steps in glioblastoma oncogenesis including the failure of cell fate-specific genes to keep the cells differentiated in their specific cell types such as p300, BMP, HOPX, and NRSF/REST. There are genes and signaling pathways that are involved in differentiation and also contribute to GBM such as FGFR3, JAK-STAT, and hey1. The genes that contribute to differentiation processes but also contribute to stemness in GBM include notch, Sox9, Sox4, c-myc gene overrides p300, and then GFAP, leading to upregulation of nestin, SHH, NF-κB, and others. GBM mutations pathologically impact the cell circuitry such as the interaction between Sox2 and JAK-STAT pathway, resulting in GBM development and progression. Conclusion Glioblastoma originates when the gene expression of key gliogenic genes and signaling pathways become dysregulated. This study identifies key gliogenic genes having the ability to control oncogenesis in glioblastoma cells, including p300, BMP, PAX6, HOPX, NRSF/REST, LIF, and TGF beta. It also identifies key neurogenic genes having the ability to control oncogenesis including PAX6, neurogenins including Ngn1, NeuroD1, NeuroD4, Numb, NKX6-1 Ebf, Myt1, and ASCL1. This study also postulates how aging contributes to the onset of glioblastoma by dysregulating the gene expression of NF-κB, REST/NRSF, ERK, AKT, EGFR, and others.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
11
|
Paredes MF, Mora C, Flores-Ramirez Q, Cebrian-Silla A, Del Dosso A, Larimer P, Chen J, Kang G, Gonzalez Granero S, Garcia E, Chu J, Delgado R, Cotter JA, Tang V, Spatazza J, Obernier K, Ferrer Lozano J, Vento M, Scott J, Studholme C, Nowakowski TJ, Kriegstein AR, Oldham MC, Hasenstaub A, Garcia-Verdugo JM, Alvarez-Buylla A, Huang EJ. Nests of dividing neuroblasts sustain interneuron production for the developing human brain. Science 2022; 375:eabk2346. [PMID: 35084970 DOI: 10.1126/science.abk2346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human cortex contains inhibitory interneurons derived from the medial ganglionic eminence (MGE), a germinal zone in the embryonic ventral forebrain. How this germinal zone generates sufficient interneurons for the human brain remains unclear. We found that the human MGE (hMGE) contains nests of proliferative neuroblasts with ultrastructural and transcriptomic features that distinguish them from other progenitors in the hMGE. When dissociated hMGE cells are transplanted into the neonatal mouse brain, they reform into nests containing proliferating neuroblasts that generate young neurons that migrate extensively into the mouse forebrain and mature into different subtypes of functional interneurons. Together, these results indicate that the nest organization and sustained proliferation of neuroblasts in the hMGE provide a mechanism for the extended production of interneurons for the human forebrain.
Collapse
Affiliation(s)
- Mercedes F Paredes
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Cristina Mora
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | | | - Arantxa Cebrian-Silla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Ashley Del Dosso
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Phil Larimer
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Jiapei Chen
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Gugene Kang
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Susana Gonzalez Granero
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Eric Garcia
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Julia Chu
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Ryan Delgado
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA
| | - Jennifer A Cotter
- Department of Pathology, Children's Hospital Los Angeles, and Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | - Vivian Tang
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Julien Spatazza
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Kirsten Obernier
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Jaime Ferrer Lozano
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - Maximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain.,Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Julia Scott
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA
| | - Colin Studholme
- Biomedical Image Computing Group, Departments of Pediatrics, Bioengineering, and Radiology, University of Washington, Seattle, WA 98195, USA.,Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.,Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Anatomy and Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA 94143, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco, CA 94143, USA.,Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Michael C Oldham
- Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Andrea Hasenstaub
- Department of Otolaryngology, University of California, San Francisco, CA 94143, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València-Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Valencia, Spain
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Eric J Huang
- Eli and Edythe Broad Institute for Stem Cell Research and Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA.,Developmental and Stem Cell Graduate Program, University of California, San Francisco, CA 94143, USA.,Department of Pathology, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
12
|
Aygün N, Elwell AL, Liang D, Lafferty MJ, Cheek KE, Courtney KP, Mory J, Hadden-Ford E, Krupa O, de la Torre-Ubieta L, Geschwind DH, Love MI, Stein JL. Brain-trait-associated variants impact cell-type-specific gene regulation during neurogenesis. Am J Hum Genet 2021; 108:1647-1668. [PMID: 34416157 PMCID: PMC8456186 DOI: 10.1016/j.ajhg.2021.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Interpretation of the function of non-coding risk loci for neuropsychiatric disorders and brain-relevant traits via gene expression and alternative splicing quantitative trait locus (e/sQTL) analyses is generally performed in bulk post-mortem adult tissue. However, genetic risk loci are enriched in regulatory elements active during neocortical differentiation, and regulatory effects of risk variants may be masked by heterogeneity in bulk tissue. Here, we map e/sQTLs, and allele-specific expression in cultured cells representing two major developmental stages, primary human neural progenitors (n = 85) and their sorted neuronal progeny (n = 74), identifying numerous loci not detected in either bulk developing cortical wall or adult cortex. Using colocalization and genetic imputation via transcriptome-wide association, we uncover cell-type-specific regulatory mechanisms underlying risk for brain-relevant traits that are active during neocortical differentiation. Specifically, we identified a progenitor-specific eQTL for CENPW co-localized with common variant associations for cortical surface area and educational attainment.
Collapse
Affiliation(s)
- Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Angela L Elwell
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael J Lafferty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kerry E Cheek
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenan P Courtney
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jessica Mory
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ellie Hadden-Ford
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Oleh Krupa
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Luis de la Torre-Ubieta
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Geschwind
- Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Barone C, Buccarelli M, Alessandrini F, Pagin M, Rigoldi L, Sambruni I, Favaro R, Ottolenghi S, Pallini R, Ricci-Vitiani L, Malatesta P, Nicolis SK. Sox2-dependent maintenance of mouse oligodendroglioma involves the Sox2-mediated downregulation of Cdkn2b, Ebf1, Zfp423, and Hey2. Glia 2020; 69:579-593. [PMID: 32975900 DOI: 10.1002/glia.23914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/06/2023]
Abstract
Cancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain gliomas, and is essential to maintain CSC. In mouse high-grade glioma pHGG cells in culture, Sox2 deletion causes cell proliferation arrest and inability to reform tumors after transplantation in vivo; in Sox2-deleted cells, 134 genes are derepressed. To identify genes mediating Sox2 deletion effects, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Ebf1, Hey2, Zfp423, and Cdkn2b, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis of each gene, individually or in combination (Ebf1 + Cdkn2b), significantly antagonized the proliferation arrest caused by Sox2 deletion. The same genes also repressed clonogenicity in primary human glioblastoma-derived CSC-like lines. These experiments identify a network of critical tumor suppressive Sox2-targets whose inhibition by Sox2 is involved in glioma CSC maintenance, defining new potential therapeutic targets.
Collapse
Affiliation(s)
- Cristiana Barone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Mariachiara Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Alessandrini
- Dipartimento di Medicina Sperimentale, Università di Genova, and Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Miriam Pagin
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Rigoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Irene Sambruni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Rebecca Favaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Sergio Ottolenghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Malatesta
- Dipartimento di Medicina Sperimentale, Università di Genova, and Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Silvia K Nicolis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
14
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
15
|
Docampo-Seara A, Lanoizelet M, Lagadec R, Mazan S, Candal E, Rodríguez MA. Mitral cell development in the olfactory bulb of sharks: evidences of a conserved pattern of glutamatergic neurogenesis. Brain Struct Funct 2019; 224:2325-2341. [PMID: 31203451 PMCID: PMC6698271 DOI: 10.1007/s00429-019-01906-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/07/2019] [Indexed: 12/18/2022]
Abstract
In mammals, the development of the olfactory bulb (OB) relies in part on the expression of transcription factors involved in the specifications/differentiation of glutamatergic cells. In a previous study from our group, a high molecular similarity was reported between mammals and cartilaginous fishes regarding the neurogenic mechanisms underlying the development of glutamatergic cells in the telencephalon. However, information about the transcriptional program operating in the development of the glutamatergic system (mainly represented by mitral cells) in the OB is lacking in the catshark Scyliorhinus canicula, a cartilaginous fish. Using immunohistochemistry and in situ hybridization techniques, we have found that, previously to the appearance of the olfactory primordium (OP), proliferating cells expressing Pax6 with molecular hallmarks of progenitor radial glia were located in the ventrolateral pallial ventricular zone. Later in development, when the OP is recognizable, a stream of Pax6-positive cells were observed between the ventricular zone and the OP, where transcription factors involved in mitral cell development in mammals (ScTbr2, ScNeuroD, Tbr1) are expressed. Later in development, these transcription factors became expressed in a layered-like structure where ScVglut1, a marker of mitral cells, is also present. Our data suggest that the transcriptional program related with the specification/differentiation of glutamatergic cells in the telencephalon has been conserved throughout the evolution of vertebrates. These results, in combination with previous studies concerning GABAergic neurogenesis in sharks, have evidenced that the OB of mammals and sharks shares similarities in the timing and molecular programs of development.
Collapse
Affiliation(s)
- A Docampo-Seara
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M Lanoizelet
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls sur Mer, France
| | - R Lagadec
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls sur Mer, France
| | - S Mazan
- CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR7232, Observatoire Océanologique, Banyuls sur Mer, France
| | - E Candal
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - M A Rodríguez
- Departamento de Bioloxía Funcional, Centro de Investigación en Bioloxía (CIBUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
16
|
Cellular Changes in Injured Rat Spinal Cord Following Electrical Brainstem Stimulation. Brain Sci 2019; 9:brainsci9060124. [PMID: 31142050 PMCID: PMC6628227 DOI: 10.3390/brainsci9060124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/06/2023] Open
Abstract
Spinal cord injury (SCI) is a major cause of disability and pain, but little progress has been made in its clinical management. Low-frequency electrical stimulation (LFS) of various anti-nociceptive targets improves outcomes after SCI, including motor recovery and mechanical allodynia. However, the mechanisms of these beneficial effects are incompletely delineated and probably multiple. Our aim was to explore near-term effects of LFS in the hindbrain's nucleus raphe magnus (NRM) on cellular proliferation in a rat SCI model. Starting 24 h after incomplete contusional SCI at C5, intermittent LFS at 8 Hz was delivered wirelessly to NRM. Controls were given inactive stimulators. At 48 h, 5-bromodeoxyuridine (BrdU) was administered and, at 72 h, spinal cords were extracted and immunostained for various immune and neuroglial progenitor markers and BrdU at the level of the lesion and proximally and distally. LFS altered cell marker counts predominantly at the dorsal injury site. BrdU cell counts were decreased. Individually and in combination with BrdU, there were reductions in CD68 (monocytes) and Sox2 (immature neural precursors) and increases in Blbp (radial glia) expression. CD68-positive cells showed increased co-staining with iNOS. No differences in the expression of GFAP (glia) and NG2 (oligodendrocytes) or in GFAP cell morphology were found. In conclusion, our work shows that LFS of NRM in subacute SCI influences the proliferation of cell types implicated in inflammation and repair, thus providing mechanistic insight into deep brain stimulation as a neuromodulatory treatment for this devastating pathology.
Collapse
|
17
|
Guelfi S, Botia JA, Thom M, Ramasamy A, Perona M, Stanyer L, Martinian L, Trabzuni D, Smith C, Walker R, Ryten M, Reimers M, Weale ME, Hardy J, Matarin M. Transcriptomic and genetic analyses reveal potential causal drivers for intractable partial epilepsy. Brain 2019; 142:1616-1630. [DOI: 10.1093/brain/awz074] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 12/10/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sebastian Guelfi
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Juan A. Botia
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Maria Thom
- Division of Neuropathology, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Marina Perona
- Department of Radiobiology (CAC), National Atomic Energy Commission (CNEA), National Scientific and Technical Research Council (CONICET), Argentina
| | - Lee Stanyer
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Lillian Martinian
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Daniah Trabzuni
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Robert Walker
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mark Reimers
- Neuroscience Program and Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Michael E. Weale
- Department Medical and Molecular Genetics, King’s College London, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
| | - Mar Matarin
- Department of Molecular Neuroscience, UCL, Institute of Neurology, Queen Square, London, UK
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, Queen Square, London, WC1N 3, UK
| |
Collapse
|
18
|
Sánchez-Maldonado B, Galicia MDL, Rojo C, González-Gil A, Flor-García M, Picazo RA. Spheroids Spontaneously Generated In Vitro from Sheep Ovarian Cortical Cells Contain Integrating Cells That Exhibit Hallmarks of Neural Stem/Progenitor Cells. Stem Cells Dev 2018; 27:1557-1576. [PMID: 30251912 DOI: 10.1089/scd.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell spheroids are inducible or spontaneously generated cell aggregates produced in vitro that can provide a valuable model for developmental biology, stem cell biology, and cancer therapy research. This investigation aimed to define the cellular identity of spheroids spontaneously generated in vitro from sheep ovarian cortical cells cultured under specific serum-free conditions. Spheroids were characterized during 21 days of culture by morphometric evaluation, detection of alkaline phosphatase (AP) activity, gene expression analyses of stemness transcription factors and several lineage markers, immunolocalization analyses, as well as assessment of self-renewal and differentiation potential. Cell aggregation, evidenced from day 3 of culture onward, resulted in efficient generation of 65-75 spheroids for every 500,000 cells seeded. The spheroids reached maximum diameter (187 ± 15.9 μm) during the second week of culture and exhibited AP activity. Sox2, Oct4, and Nanog were expressed throughout the culture period, with upregulation of Sox2. Neural lineage specification genes (eg, nestin, vimentin, Pax6, and p75NTR) were expressed from day 10 onward at levels above that of Oct4, Nanog and those for endoderm [alpha-fetoprotein (AFP)], and mesoderm (brachyury) specification. Neural stem cell (NSC)/neural progenitor cell (NPC) markers, nestin, Pax6, p75NTR, and vimentin, were extensively localized in cells on day 10, 15 (44.75% ± 5.84%; 93.54% ± 1.35%; 78.90% ± 4.80%; 73.82% ± 3.40%, respectively), and 21 (49.98% ± 5.30%; 91.84% ± 1.9%; 76.74% ± 11.0%; 95.80% ± 3.60%, respectively). Spheroid cell self-renewal was evidenced by cell proliferation and the generation of new spheroids during two consecutive expansion periods. Culture of spheroid cells under differentiation conditions gave rise to cells showing immunolocalization of the neuron-specific antigen NeuN and the astroglial antigen GFAP (glial fibrillary acidic protein). Our results indicate that spheroids spontaneously generated in this culture system were comprised of cells with molecular characteristics of NSC/NPC that can self-renew and differentiate into neurons and glia, supporting the identity of spheroids as neurospheres.
Collapse
Affiliation(s)
- Belén Sánchez-Maldonado
- 1 Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - María de Lourdes Galicia
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Concepción Rojo
- 3 Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Alfredo González-Gil
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Miguel Flor-García
- 4 Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM , Madrid, España.,5 Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, España
| | - Rosa A Picazo
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| |
Collapse
|
19
|
Klum S, Zaouter C, Alekseenko Z, Björklund ÅK, Hagey DW, Ericson J, Muhr J, Bergsland M. Sequentially acting SOX proteins orchestrate astrocyte- and oligodendrocyte-specific gene expression. EMBO Rep 2018; 19:embr.201846635. [PMID: 30166336 DOI: 10.15252/embr.201846635] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
SOX transcription factors have important roles during astrocyte and oligodendrocyte development, but how glial genes are specified and activated in a sub-lineage-specific fashion remains unknown. Here, we define glial-specific gene expression in the developing spinal cord using single-cell RNA-sequencing. Moreover, by ChIP-seq analyses we show that these glial gene sets are extensively preselected already in multipotent neural precursor cells through prebinding by SOX3. In the subsequent lineage-restricted glial precursor cells, astrocyte genes become additionally targeted by SOX9 at DNA regions strongly enriched for Nfi binding motifs. Oligodendrocyte genes instead are prebound by SOX9 only, at sites which during oligodendrocyte maturation are targeted by SOX10. Interestingly, reporter gene assays and functional studies in the spinal cord reveal that SOX3 binding represses the synergistic activation of astrocyte genes by SOX9 and NFIA, whereas oligodendrocyte genes are activated in a combinatorial manner by SOX9 and SOX10. These genome-wide studies demonstrate how sequentially expressed SOX proteins act on lineage-specific regulatory DNA elements to coordinate glial gene expression both in a temporal and in a sub-lineage-specific fashion.
Collapse
Affiliation(s)
- Susanne Klum
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Cécile Zaouter
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Åsa K Björklund
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Daniel W Hagey
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden .,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bergsland
- Ludwig Institute for Cancer Research, Karolinska Institutet, Stockholm, Sweden .,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Gou Y, Guo J, Maulding K, Riley BB. sox2 and sox3 cooperate to regulate otic/epibranchial placode induction in zebrafish. Dev Biol 2018; 435:84-95. [PMID: 29355522 DOI: 10.1016/j.ydbio.2018.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/16/2022]
Abstract
Expression of sox3 is one of the earliest markers of Fgf-dependent otic/epibranchial placode induction. We report here that sox2 is also expressed in the early otic/epibranchial placode in zebrafish. To address functions of sox2 and sox3, we generated knockouts and heat shock-inducible transgenes. Mutant analysis, and low-level misexpression, showed that sox2 and sox3 act redundantly to establish a full complement of otic/epibranchial cells. Disruption of pax8, another early regulator, caused similar placodal deficiencies to sox3 mutants or pax8-sox3 double mutants, suggesting that sox3 and pax8 operate in the same pathway. High-level misexpression of sox2 or sox3 during early stages cell-autonomously blocked placode induction, whereas misexpression several hours later could not reverse placodal differentiation. In an assay for ectopic placode-induction, we previously showed that misexpression of fgf8 induces a high level of ectopic sox3, but not pax8. Partial knockdown of sox3 significantly enhanced ectopic induction of pax8, whereas full knockdown of sox3 inhibited this process. Together these findings show that sox2 and sox3 are together required for proper otic induction, but the level of expression must be tightly regulated to avoid suppression of differentiation and maintenance of pluripotency.
Collapse
Affiliation(s)
- Yunzi Gou
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, United States
| | - Jinbai Guo
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, United States
| | - Kirstin Maulding
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, United States
| | - Bruce B Riley
- Department of Biology, Texas A&M University, College Station, TX 77843-3258, United States.
| |
Collapse
|
21
|
Parween S, Varghese DS, Ardah MT, Prabakaran AD, Mensah-Brown E, Emerald BS, Ansari SA. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis. Front Cell Neurosci 2017; 11:415. [PMID: 29311838 PMCID: PMC5742625 DOI: 10.3389/fncel.2017.00415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs) as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya S Varghese
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eric Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Qin W, Chen S, Yang S, Xu Q, Xu C, Cai J. The Effect of Traditional Chinese Medicine on Neural Stem Cell Proliferation and Differentiation. Aging Dis 2017; 8:792-811. [PMID: 29344417 PMCID: PMC5758352 DOI: 10.14336/ad.2017.0428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Neural stem cells (NSCs) are special types of cells with the potential for self-renewal and multi-directional differentiation. NSCs are regulated by multiple pathways and pathway related transcription factors during the process of proliferation and differentiation. Numerous studies have shown that the compound medicinal preparations, single herbs, and herb extracts in traditional Chinese medicine (TCM) have specific roles in regulating the proliferation and differentiation of NSCs. In this study, we investigate the markers of NSCs in various stages of differentiation, the related pathways regulating the proliferation and differentiation, and the corresponding transcription factors in the pathways. We also review the influence of TCM on NSC proliferation and differentiation, to facilitate the development of TCM in neural regeneration and neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei Qin
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shiya Chen
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Shasha Yang
- 1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Qian Xu
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuanshan Xu
- 3School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jing Cai
- 2College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
23
|
Vasconcelos FF, Sessa A, Laranjeira C, Raposo AASF, Teixeira V, Hagey DW, Tomaz DM, Muhr J, Broccoli V, Castro DS. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Rep 2017; 17:469-483. [PMID: 27705795 PMCID: PMC5067283 DOI: 10.1016/j.celrep.2016.09.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/12/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
The generation of neurons from neural stem cells requires large-scale changes in gene expression that are controlled to a large extent by proneural transcription factors, such as Ascl1. While recent studies have characterized the differentiation genes activated by proneural factors, less is known on the mechanisms that suppress progenitor cell identity. Here, we show that Ascl1 induces the transcription factor MyT1 while promoting neuronal differentiation. We combined functional studies of MyT1 during neurogenesis with the characterization of its transcriptional program. MyT1 binding is associated with repression of gene transcription in neural progenitor cells. It promotes neuronal differentiation by counteracting the inhibitory activity of Notch signaling at multiple levels, targeting the Notch1 receptor and many of its downstream targets. These include regulators of the neural progenitor program, such as Hes1, Sox2, Id3, and Olig1. Thus, Ascl1 suppresses Notch signaling cell-autonomously via MyT1, coupling neuronal differentiation with repression of the progenitor fate. MyT1 promotes neurogenesis downstream Ascl1 MyT1 represses Notch1 receptor and many of its downstream target genes MyT1 represses Hes1 expression by direct DNA binding and competition with RBPJ Ascl1 suppresses Notch signaling cell-autonomously while promoting differentiation
Collapse
Affiliation(s)
| | - Alessandro Sessa
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | - Vera Teixeira
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Daniel W Hagey
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Diogo M Tomaz
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Ludwig Institute for Cancer Research, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Diogo S Castro
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal.
| |
Collapse
|
24
|
Bulstrode H, Johnstone E, Marques-Torrejon MA, Ferguson KM, Bressan RB, Blin C, Grant V, Gogolok S, Gangoso E, Gagrica S, Ender C, Fotaki V, Sproul D, Bertone P, Pollard SM. Elevated FOXG1 and SOX2 in glioblastoma enforces neural stem cell identity through transcriptional control of cell cycle and epigenetic regulators. Genes Dev 2017; 31:757-773. [PMID: 28465359 PMCID: PMC5435889 DOI: 10.1101/gad.293027.116] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/30/2017] [Indexed: 12/11/2022]
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain tumor driven by cells with hallmarks of neural stem (NS) cells. GBM stem cells frequently express high levels of the transcription factors FOXG1 and SOX2. Here we show that increased expression of these factors restricts astrocyte differentiation and can trigger dedifferentiation to a proliferative NS cell state. Transcriptional targets include cell cycle and epigenetic regulators (e.g., Foxo3, Plk1, Mycn, Dnmt1, Dnmt3b, and Tet3). Foxo3 is a critical repressed downstream effector that is controlled via a conserved FOXG1/SOX2-bound cis-regulatory element. Foxo3 loss, combined with exposure to the DNA methylation inhibitor 5-azacytidine, enforces astrocyte dedifferentiation. DNA methylation profiling in differentiating astrocytes identifies changes at multiple polycomb targets, including the promoter of Foxo3 In patient-derived GBM stem cells, CRISPR/Cas9 deletion of FOXG1 does not impact proliferation in vitro; however, upon transplantation in vivo, FOXG1-null cells display increased astrocyte differentiation and up-regulate FOXO3. In contrast, SOX2 ablation attenuates proliferation, and mutant cells cannot be expanded in vitro. Thus, FOXG1 and SOX2 operate in complementary but distinct roles to fuel unconstrained self-renewal in GBM stem cells via transcriptional control of core cell cycle and epigenetic regulators.
Collapse
Affiliation(s)
- Harry Bulstrode
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ewan Johnstone
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Maria Angeles Marques-Torrejon
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Kirsty M Ferguson
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Raul Bardini Bressan
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Carla Blin
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Vivien Grant
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sabine Gogolok
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Ester Gangoso
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| | - Sladjana Gagrica
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Christine Ender
- Department of Cancer Biology, UCL Cancer Institute, University College London, London WC1E 6BT, United Kingdom
| | - Vassiliki Fotaki
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Duncan Sproul
- MRC Human Genetics Unit
- Edinburgh Cancer Research Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul Bertone
- Wellcome Trust-MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Steven M Pollard
- Medical Research Council (MRC) Centre for Regenerative Medicine
- Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, Edinburgh EH16 4UU, United Kingdom
| |
Collapse
|
25
|
Bressan RB, Dewari PS, Kalantzaki M, Gangoso E, Matjusaitis M, Garcia-Diaz C, Blin C, Grant V, Bulstrode H, Gogolok S, Skarnes WC, Pollard SM. Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development 2017; 144:635-648. [PMID: 28096221 PMCID: PMC5312033 DOI: 10.1242/dev.140855] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/15/2016] [Indexed: 01/09/2023]
Abstract
Mammalian neural stem cell (NSC) lines provide a tractable model for discovery across stem cell and developmental biology, regenerative medicine and neuroscience. They can be derived from foetal or adult germinal tissues and continuously propagated in vitro as adherent monolayers. NSCs are clonally expandable, genetically stable, and easily transfectable - experimental attributes compatible with targeted genetic manipulations. However, gene targeting, which is crucial for functional studies of embryonic stem cells, has not been exploited to date in NSC lines. Here, we deploy CRISPR/Cas9 technology to demonstrate a variety of sophisticated genetic modifications via gene targeting in both mouse and human NSC lines, including: (1) efficient targeted transgene insertion at safe harbour loci (Rosa26 and AAVS1); (2) biallelic knockout of neurodevelopmental transcription factor genes; (3) simple knock-in of epitope tags and fluorescent reporters (e.g. Sox2-V5 and Sox2-mCherry); and (4) engineering of glioma mutations (TP53 deletion; H3F3A point mutations). These resources and optimised methods enable facile and scalable genome editing in mammalian NSCs, providing significant new opportunities for functional genetic analysis.
Collapse
Affiliation(s)
| | - Pooran Singh Dewari
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Maria Kalantzaki
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Ester Gangoso
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Mantas Matjusaitis
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Claudia Garcia-Diaz
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Carla Blin
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Vivien Grant
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Bulstrode
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Sabine Gogolok
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Wen CM, Chen MM, Nan FH, Wang CS. Immunocytochemical characterisation of neural stem-progenitor cells from green terror cichlid Aequidens rivulatus. JOURNAL OF FISH BIOLOGY 2017; 90:201-221. [PMID: 27730642 DOI: 10.1111/jfb.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, cultures of neural stem-progenitor cells (NSPC) from the brain of green terror cichlid Aequidens rivulatus were established and various NSPCs were demonstrated using immunocytochemistry. All of the NSPCs expressed brain lipid-binding protein, dopamine- and cAMP-regulated neuronal phosphoprotein 32 (DARPP-32), oligodendrocyte transcription factor 2, paired box 6 and sex determining region Y-box 2. The intensity and localisation of these proteins, however, varied among the different NSPCs. Despite being intermediate cells, NSPCs can be divided into radial glial cells, oligodendrocyte progenitor cells (OPC) and neuroblasts by expressing the astrocyte marker glial fibrillary acidic protein (GFAP), OPC marker A2B5 and neuronal markers, including acetyl-tubulin, βIII-tubulin, microtubule-associated protein 2 and neurofilament protein. Nevertheless, astrocytes were polymorphic and were the most dominant cells in the NSPC cultures. By using Matrigel, radial glia exhibiting a long GFAP+ or DARPP-32+ fibre and neurons exhibiting a significant acetyl-tubulin+ process were obtained. The results confirmed that NSPCs obtained from A. rivulatus brains can proliferate and differentiate into neurons in vitro. Clonal culture can be useful for further studying the distinct NSPCs.
Collapse
Affiliation(s)
- C M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - M M Chen
- School of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617, Taiwan
| | - F H Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - C S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| |
Collapse
|
27
|
Three Dimensional Human Neuro-Spheroid Model of Alzheimer's Disease Based on Differentiated Induced Pluripotent Stem Cells. PLoS One 2016; 11:e0163072. [PMID: 27684569 PMCID: PMC5042502 DOI: 10.1371/journal.pone.0163072] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
The testing of candidate drugs to slow progression of Alzheimer’s disease (AD) requires clinical trials that are lengthy and expensive. Efforts to model the biochemical milieu of the AD brain may be greatly facilitated by combining two cutting edge technologies to generate three-dimensional (3D) human neuro-spheroid from induced pluripotent stem cells (iPSC) derived from AD subjects. We created iPSC from blood cells of five AD patients and differentiated them into 3D human neuronal culture. We characterized neuronal markers of our 3D neurons by immunocytochemical staining to validate the differentiation status. To block the generation of pathologic amyloid β peptides (Aβ), the 3D-differentiated AD neurons were treated with inhibitors targeting β-secretase (BACE1) and γ-secretases. As predicted, both BACE1 and γ-secretase inhibitors dramatically decreased Aβ generation in iPSC-derived neural cells derived from all five AD patients, under standard two-dimensional (2D) differentiation conditions. However, BACE1 and γ-secretase inhibitors showed less potency in decreasing Aβ levels in neural cells differentiated under 3D culture conditions. Interestingly, in a single subject AD1, we found that BACE1 inhibitor treatment was not able to significantly reduce Aβ42 levels. To investigate underlying molecular mechanisms, we performed proteomic analysis of 3D AD human neuronal cultures including AD1. Proteomic analysis revealed specific reduction of several proteins that might contribute to a poor inhibition of BACE1 in subject AD1. To our knowledge, this is the first iPSC-differentiated 3D neuro-spheroid model derived from AD patients’ blood. Our results demonstrate that our 3D human neuro-spheroid model can be a physiologically relevant and valid model for testing efficacy of AD drug.
Collapse
|
28
|
Liu RZ, Li S, Garcia E, Glubrecht DD, Poon HY, Easaw JC, Godbout R. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia 2016; 64:963-76. [PMID: 26893190 DOI: 10.1002/glia.22976] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 12/26/2022]
Abstract
Retinoic acid (RA), a metabolite of vitamin A, is required for the regulation of growth and development. Aberrant expression of molecules involved in RA signaling has been reported in various cancer types including glioblastoma multiforme (GBM). Cellular retinoic acid-binding protein 2 (CRABP2) has previously been shown to play a key role in the transport of RA to retinoic acid receptors (RARs) to activate their transcription regulatory activity. Here, we demonstrate that CRABP2 is predominantly located in the cytoplasm of GBM tumors. Cytoplasmic, but not nuclear, CRABP2 levels in GBM tumors are associated with poor patient survival. Treatment of malignant glioma cell lines with RA results in a dose-dependent increase in accumulation of CRABP2 in the cytoplasm. CRABP2 knockdown reduces proliferation rates of malignant glioma cells, and enhances RA-induced RAR activation. Levels of CRYAB, a small heat shock protein with anti-apoptotic activity, and GFAP, an astrocyte-specific intermediate filament protein, are greatly reduced in CRABP2-depleted cells. Restoration of CRYAB expression partially but significantly reversed the effect of CRABP2 depletion on RAR activation. Our combined in vivo and in vitro data indicate that: (i) CRABP2 is an important determinant of clinical outcome in GBM patients, and (ii) the mechanism of action of CRABP2 in GBM involves sequestration of RA in the cytoplasm and activation of an anti-apoptotic pathway, thereby enhancing proliferation and preventing RA-mediated cell death and differentiation. We propose that reducing CRABP2 levels may enhance the therapeutic index of RA in GBM patients.
Collapse
Affiliation(s)
- Rong-Zong Liu
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Shuai Li
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Elizabeth Garcia
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Darryl D Glubrecht
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Ho Yin Poon
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Jacob C Easaw
- Division of Medical Oncology, University of Calgary, Calgary, Alberta, T2N 4N2, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| |
Collapse
|
29
|
Mapping gene regulatory circuitry of Pax6 during neurogenesis. Cell Discov 2016; 2:15045. [PMID: 27462442 PMCID: PMC4860964 DOI: 10.1038/celldisc.2015.45] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 11/19/2022] Open
Abstract
Pax6 is a highly conserved transcription factor among vertebrates and is important in various aspects of the central nervous system development. However, the gene regulatory circuitry of Pax6 underlying these functions remains elusive. We find that Pax6 targets a large number of promoters in neural progenitors cells. Intriguingly, many of these sites are also bound by another progenitor factor, Sox2, which cooperates with Pax6 in gene regulation. A combinatorial analysis of Pax6-binding data set with transcriptome changes in Pax6-deficient neural progenitors reveals a dual role for Pax6, in which it activates the neuronal (ectodermal) genes while concurrently represses the mesodermal and endodermal genes, thereby ensuring the unidirectionality of lineage commitment towards neuronal differentiation. Furthermore, Pax6 is critical for inducing activity of transcription factors that elicit neurogenesis and repress others that promote non-neuronal lineages. In addition to many established downstream effectors, Pax6 directly binds and activates a number of genes that are specifically expressed in neural progenitors but have not been previously implicated in neurogenesis. The in utero knockdown of one such gene, Ift74, during brain development impairs polarity and migration of newborn neurons. These findings demonstrate new aspects of the gene regulatory circuitry of Pax6, revealing how it functions to control neuronal development at multiple levels to ensure unidirectionality and proper execution of the neurogenic program.
Collapse
|
30
|
Neurosphere Based Differentiation of Human iPSC Improves Astrocyte Differentiation. Stem Cells Int 2015; 2016:4937689. [PMID: 26798357 PMCID: PMC4699090 DOI: 10.1155/2016/4937689] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/30/2022] Open
Abstract
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) are traditionally maintained and proliferated utilizing two-dimensional (2D) adherent monolayer culture systems. However, NPCs cultured using this system hardly reflect the intrinsic spatial development of brain tissue. In this study, we determined that culturing iPSC-derived NPCs as three-dimensional (3D) floating neurospheres resulted in increased expression of the neural progenitor cell (NPC) markers, PAX6 and NESTIN. Expansion of NPCs in 3D culture methods also resulted in a more homogenous PAX6 expression when compared to 2D culture methods. Furthermore, the 3D propagation method for NPCs resulted in a significant higher expression of the astrocyte markers GFAP and aquaporin 4 (AQP4) in the differentiated cells. Thus, our 3D propagation method could constitute a useful tool to promote NPC homogeneity and also to increase the differentiation potential of iPSC towards astrocytes.
Collapse
|
31
|
Castro-Garcia P, Díaz-Moreno M, Gil-Gas C, Fernández-Gómez FJ, Honrubia-Gómez P, Álvarez-Simón CB, Sánchez-Sánchez F, Cano JCC, Almeida F, Blanco V, Jordán J, Mira H, Ramírez-Castillejo C. Defects in subventricular zone pigmented epithelium-derived factor niche signaling in the senescence-accelerated mouse prone-8. FASEB J 2015; 29:1480-92. [PMID: 25636741 DOI: 10.1096/fj.13-244442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 12/05/2014] [Indexed: 12/27/2022]
Abstract
We studied potential changes in the subventricular zone (SVZ) stem cell niche of the senescence-accelerated mouse prone-8 (SAM-P8) aging model. Bromodeoxyuridine (BrdU) assays with longtime survival revealed a lower number of label-retaining stem cells in the SAM-P8 SVZ compared with the SAM-Resistant 1 (SAM-R1) control strain. We also found that in SAM-P8 niche signaling is attenuated and the stem cell pool is less responsive to the self-renewal niche factor pigmented epithelium-derived factor (PEDF). Protein analysis demonstrated stable amounts of the PEDF ligand in the SAM-P8 SVZ niche; however, SAM-P8 stem cells present a significant expression decrease of patatin-like phospholipase domain containing 2, a receptor for PEDF (PNPLA2-PEDF) receptor, but not of laminin receptor (LR), a receptor for PEDF (LR-PEDF) receptor. We observed changes in self-renewal related genes (hairy and enhancer of split 1 (Hes1), hairy and enhancer of split 1 (Hes5), Sox2] and report that although these genes are down-regulated in SAM-P8, differentiation genes (Pax6) are up-regulated and neurogenesis is increased. Finally, sheltering mammalian telomere complexes might be also involved given a down-regulation of telomeric repeat binding factor 1 (Terf1) expression was observed in SAM-P8 at young age periods. Differences between these 2 models, SAM-P8 and SAM-R1 controls, have been previously detected at more advanced ages. We now describe alterations in the PEDF signaling pathway and stem cell self-renewal at a very young age, which could be involved in the premature senescence observed in the SAM-P8 model.
Collapse
Affiliation(s)
- Paola Castro-Garcia
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - María Díaz-Moreno
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Carmen Gil-Gas
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Francisco J Fernández-Gómez
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Paloma Honrubia-Gómez
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Carmen Belén Álvarez-Simón
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Francisco Sánchez-Sánchez
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Juan Carlos Castillo Cano
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Francisco Almeida
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Vicente Blanco
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Joaquín Jordán
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Helena Mira
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| | - Carmen Ramírez-Castillejo
- *Laboratorio de Células Madre, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain; Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, Madrid, Spain; Grupo de Neurofarmacología, Departamento de Ciencias Médicas, Area de Genética, Facultad de Medicina de Albacete, and Instituto de Investigación en Discapacidades Neurológicas, Universidad de Castilla-La Mancha, Albacete, Spain; and Departamento Estadística, I. O. y Computación, Universidad de La Laguna, La Laguna, Canarias, Spain
| |
Collapse
|
32
|
Curto GG, Nieto-Estévez V, Hurtado-Chong A, Valero J, Gómez C, Alonso JR, Weruaga E, Vicario-Abejón C. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev 2014; 23:2813-30. [PMID: 25117830 DOI: 10.1089/scd.2014.0058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/Sey(Dey) mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin(+)-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/Sey(Dey) progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population.
Collapse
Affiliation(s)
- Gloria G Curto
- 1 Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca , Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Intraventricular injection of 6-hydroxydopamine results in an increased number of tyrosine hydroxylase immune-positive cells in the rat cortex. Neuroscience 2014; 280:99-110. [PMID: 25230286 DOI: 10.1016/j.neuroscience.2014.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/04/2014] [Accepted: 09/05/2014] [Indexed: 01/28/2023]
Abstract
Previously we have demonstrated that intraventricular injection of 6-hydroxydopamine (6-OHDA) results in increased proliferation and de-differentiation of rat cortical astrocytes into progenitor-like cells 4 days after lesion (Wachter et al., 2010). To find out if these cells express tyrosine hydroxylase (TH), the rate-limiting enzyme in the catecholamine synthesis pathway, we performed immunohistochemistry in the rat cortex following intraventricular injection of 6-OHDA. Four days after injection we demonstrated a strong emergence of TH-positive (TH(+)) somata in the cortices of 6-OHDA-lesioned animals. The number of TH(+) cells in the cortex of 6-OHDA-lesioned animals was 15 times higher than in sham-operated animals, where virtually no TH(+) somata occurred. Combining TH immunohistochemistry with classical Nissl stain yielded complete congruency, and ∼45% of the TH(+) cells co-expressed calretinin, which indicates an interneuron affiliation. There was no co-staining of TH with other interneuron markers or with glial markers such as glial fibrillary acidic protein (GFAP) or the neural stem/progenitor marker Nestin, nor could we find co-localization with the proliferation marker Ki67. However, we found a co-localization of TH with glial progenitor cell markers (Sox2 and S100β) and with polysialylated-neural cell adhesion molecule (PSA-NCAM), which has been shown to be expressed in immature, but not recently generated cortical neurons. Taken together, this study seems to confirm our previous findings with respect to a 6-OHDA-induced expression of neuronal precursor markers in cells of the rat cortex, although the TH(+) cells found in this study are not identical with the potentially de-differentiated astrocytes described recently (Wachter et al., 2010). The detection of cortical cells expressing the catecholaminergic key enzyme TH might indicate a possible compensatory role of these cells in a dopamine-(DA)-depleted system. Future studies are needed to determine whether the TH(+) cells are capable of DA synthesis to confirm this hypothesis.
Collapse
|
34
|
Betancourt J, Katzman S, Chen B. Nuclear factor one B regulates neural stem cell differentiation and axonal projection of corticofugal neurons. J Comp Neurol 2014; 522:6-35. [PMID: 23749646 DOI: 10.1002/cne.23373] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 05/23/2013] [Indexed: 11/09/2022]
Abstract
During development of the cerebral cortex, neural stem cells divide to expand the progenitor pool and generate basal progenitors, outer radial glia, and cortical neurons. As these newly born neurons differentiate, they must properly migrate toward their final destination in the cortical plate, project axons to appropriate targets, and develop dendrites. However, a complete understanding of the precise genetic mechanisms regulating these steps is lacking. Here we show that a member of the nuclear factor one (NFI) family of transcription factors, NFIB, is essential for many of these processes in mice. We performed a detailed analysis of NFIB expression during cortical development, and investigated defects in cortical neurogenesis, neuronal migration, and differentiation in NfiB(-/-) brains. We found that NFIB is strongly expressed in radial glia and corticofugal neurons throughout cortical development. However, in NfiB(-/-) cortices, radial glia failed to generate outer radial glia, subsequently resulting in a loss of late basal progenitors. In addition, corticofugal neurons showed a severe loss of axonal projections, whereas late-born cortical neurons displayed defects in migration and ectopically expressed the early-born neuronal marker CTIP2. Furthermore, gene expression analysis, by RNA sequencing, revealed a misexpression of genes that regulate the cell cycle, neuronal differentiation and migration in NfiB(-/-) brains. Together these results demonstrate the critical functions of NFIB in regulating cortical development.
Collapse
Affiliation(s)
- Jennifer Betancourt
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | | | | |
Collapse
|
35
|
Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A. PLoS One 2014; 9:e100576. [PMID: 25051057 PMCID: PMC4106758 DOI: 10.1371/journal.pone.0100576] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 05/26/2014] [Indexed: 12/12/2022] Open
Abstract
Background Bisphenol A (BPA) is a ubiquitous endocrine disrupting chemical in our daily life, and its health effect in response to prenatal exposure is still controversial. Early-life BPA exposure may impact brain development and contribute to childhood neurological disorders. The aim of the present study was to investigate molecular target genes of neuronal development in trans-placental exposure to BPA. Methodology A meta-analysis of three public microarray datasets was performed to screen for differentially expressed genes (DEGs) in exposure to BPA. The candidate genes of neuronal development were identified from gene ontology analysis in a reconstructed neuronal sub-network, and their gene expressions were determined using real-time PCR in 20 umbilical cord blood samples dichotomized into high and low BPA level groups upon the median 16.8 nM. Principal Findings Among 36 neuronal transcripts sorted from DAVID ontology clusters of 457 DEGs using the analysis of Bioconductor limma package, we found two neuronal genes, sex determining region Y-box 2 (Sox2) and paired box 6 (Pax6), had preferentially down-regulated expression (Bonferroni correction p-value <10−4 and log2-transformed fold change ≤−1.2) in response to BPA exposure. Fetal cord blood samples had the obviously attenuated gene expression of Sox2 and Pax6 in high BPA group referred to low BPA group. Visualized gene network of Cytoscape analysis showed that Sox2 and Pax6 which were contributed to neural precursor cell proliferation and neuronal differentiation might be down-regulated through sonic hedgehog (Shh), vascular endothelial growth factor A (VEGFA) and Notch signaling. Conclusions These results indicated that trans-placental BPA exposure down-regulated gene expression of Sox2 and Pax6 potentially underlying the adverse effect on childhood neuronal development.
Collapse
|
36
|
Pearton DJ, Smith CS, Redgate E, van Leeuwen J, Donnison M, Pfeffer PL. Elf5 counteracts precocious trophoblast differentiation by maintaining Sox2 and 3 and inhibiting Hand1 expression. Dev Biol 2014; 392:344-57. [PMID: 24859262 DOI: 10.1016/j.ydbio.2014.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
In mice the transcription factor Elf5 is necessary for correct trophoblast development. Upon knockdown of Elf5, TS cells display neither a decrease in proliferation nor an increase in cell death but rather an increased propensity to differentiate. Such cells rapidly lose Sox2 and 3 expression, while transiently upregulating the giant cell differentiation determinant gene Hand1. Other genes affected within 24h of Elf5 knock-down, many of which have not previously been implicated in trophoblast development, exhibited in vivo expression domains and in vitro expression responses consistent with Elf5 having a role in counteracting trophoblast differentiation. In an ES to TS differentiation assay using Cdx2 overexpression with Elf5 loss of function cell lines, it was shown that Elf5 is necessary to prevent terminal trophoblast differentiation. This data thus suggest that Elf5 is a gatekeeper for the TS to differentiated trophoblast transition thereby preventing the precocious differentiation of the undifferentiated extraembryonic ectoderm.
Collapse
Affiliation(s)
- David J Pearton
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Craig S Smith
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Emma Redgate
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand.
| | - Jessica van Leeuwen
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; Department of Biological Sciences, University of Waikato, Hamilton 3214, New Zealand
| | - Martyn Donnison
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Peter L Pfeffer
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
37
|
Radial Glia, the Keystone of the Development of the Hippocampal Dentate Gyrus. Mol Neurobiol 2014; 51:131-41. [DOI: 10.1007/s12035-014-8692-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/24/2014] [Indexed: 01/20/2023]
|
38
|
Goc J, Liu JYW, Sisodiya SM, Thom M. A spatiotemporal study of gliosis in relation to depth electrode tracks in drug-resistant epilepsy. Eur J Neurosci 2014; 39:2151-62. [PMID: 24666402 PMCID: PMC4211361 DOI: 10.1111/ejn.12548] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/21/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
Key questions remain regarding the processes governing gliogenesis following central nervous system injury that are critical to understanding both beneficial brain repair mechanisms and any long-term detrimental effects, including increased risk of seizures. We have used cortical injury produced by intracranial electrodes (ICEs) to study the time-course and localization of gliosis and gliogenesis in surgically resected human brain tissue. Seventeen cases with ICE injuries of 4–301 days age were selected. Double-labelled immunolabelling using a proliferative cell marker (MCM2), markers of fate-specific transcriptional factors (PAX6, SOX2), a microglial marker (IBA1) and glial markers (nestin, GFAP) was quantified in three regions: zone 1 (immediate vicinity: 0–350 μm), zone 2 (350–700 μm) and zone 3 (remote ≥2000 μm) in relation to the ICE injury site. Microglial/macrophage cell densities peaked at 28–30 days post-injury (dpi) with a significant decline in proliferating microglia with dpi in all zones. Nestin-expressing cells (NECs) were concentrated in zones 1 and 2, showed the highest regenerative capacity (MCM2 and PAX6 co-expression) and were intimately associated with capillaries within the organizing injury cavity. There was a significant decline in nestin/MCM2 co-expressing cells with dpi in zones 1 and 2. Nestin-positive fibres remained in the chronic scar, and NECs with neuronal morphology were noted in older injuries. GFAP-expressing glia were more evenly distributed between zones, with no significant decline in density or proliferative capacity with dpi. Colocalization between nestin and GFAP in zone 1 glial cells decreased with increasing dpi. In conclusion, NECs at acute injury sites are a proliferative, transient cell population with capacity for maturation into astrocytes with possible neuronal differentiation observed in older injuries.
Collapse
Affiliation(s)
- Joanna Goc
- Department of Clinical and Experimental Epilepsy, UCL, Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | | | | |
Collapse
|
39
|
Aloia L, Di Stefano B, Sessa A, Morey L, Santanach A, Gutierrez A, Cozzuto L, Benitah SA, Graf T, Broccoli V, Di Croce L. Zrf1 is required to establish and maintain neural progenitor identity. Genes Dev 2014; 28:182-97. [PMID: 24449271 PMCID: PMC3909791 DOI: 10.1101/gad.228510.113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.
Collapse
Affiliation(s)
- Luigi Aloia
- Centre for Genomic Regulation (CRG), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Induced neural stem cells: Methods of reprogramming and potential therapeutic applications. Prog Neurobiol 2014; 114:15-24. [DOI: 10.1016/j.pneurobio.2013.11.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 10/18/2013] [Accepted: 11/07/2013] [Indexed: 01/10/2023]
|
41
|
Hamidi S, Letourneur D, Aid-Launais R, Di Stefano A, Vainchenker W, Norol F, Le Visage C. Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas. Tissue Eng Part A 2014; 20:1285-94. [PMID: 24354596 DOI: 10.1089/ten.tea.2013.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Somatic stem cells require specific niches and three-dimensional scaffolds provide ways to mimic this microenvironment. Here, we studied a scaffold based on Fucoidan, a sulfated polysaccharide known to influence morphogen gradients during embryonic development, to support human embryonic stem cells (hESCs) differentiation toward the cardiac lineage. A macroporous (pore 200 μm) Fucoidan scaffold was selected to support hESCs attachment and proliferation. Using a protocol based on the cardiogenic morphogen bone morphogenic protein 2 (BMP2) and transforming growth factor (TGFβ) followed by tumor necrosis factor (TNFα), an effector of cardiopoietic priming, we examined the cardiac differentiation in the scaffold compared to culture dishes and embryoid bodies (EBs). At day 8, Fucoidan scaffolds supported a significantly higher expression of the 3 genes encoding for transcription factors marking the early step of embryonic cardiac differentiation NKX2.5 (p<0.05), MEF2C (p<0.01), and GATA4 (p<0.01), confirmed by flow cytometry analysis for MEF2C and NKX2.5. The ability of Fucoidan scaffolds to locally concentrate and slowly release TGFβ and TNFα was confirmed by Luminex technology. We also found that Fucoidan scaffolds supported the late stage of embryonic cardiac differentiation marked by a significantly higher atrial natriuretic factor (ANF) expression (p<0.001), although only rare beating areas were observed. We postulated that absence of mechanical stress in the soft hydrogel impaired sarcomere formation, as confirmed by molecular analysis of the cardiac muscle myosin MYH6 and immunohistological staining of sarcomeric α-actinin. Nevertheless, Fucoidan scaffolds contributed to the development of thin filaments connecting beating areas through promotion of smooth muscle cells, thus enabling maintenance of beating areas for up to 6 months. In conclusion, Fucoidan scaffolds appear as a very promising biomaterial to control cardiac differentiation from hESCs that could be further combined with mechanical stress to promote sarcomere formation at terminal stages of differentiation.
Collapse
Affiliation(s)
- Sofiane Hamidi
- 1 INSERM, UMR 1009, Institut Gustave Roussy , Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Alsanie WF, Niclis JC, Petratos S. Human embryonic stem cell-derived oligodendrocytes: protocols and perspectives. Stem Cells Dev 2013; 22:2459-76. [PMID: 23621561 PMCID: PMC3760471 DOI: 10.1089/scd.2012.0520] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/26/2013] [Indexed: 12/19/2022] Open
Abstract
Oligodendrocytes play a fundamental supportive role in the mammalian central nervous system (CNS) as the myelinating-glial cells. Disruption of fast axonal transport mechanisms can occur as a consequence of mature oligodendrocyte loss following spinal cord injury, stroke, or due to neuroinflammatory conditions, such as multiple sclerosis. As a result of the limited remyelination ability in the CNS after injury or disease, human embryonic stem cells (hESCs) may prove to be a promising option for the generation and replacement of mature oligodendrocytes. Moreover, hESC-derived oligodendrocytes may be experimentally utilized to unravel fundamental questions of oligodendrocyte development, along with their therapeutic potential through growth factor support of axons and neurons. However, an intensive characterization and examination of hESC-derived oligodendrocytes prior to preclinical or clinical trials is required to facilitate greater success in their integration following cellular replacement therapy (CRT). Currently, the protocols utilized to derive oligodendrocytes from hESCs consist of significant variations in culture style, time-length of differentiation, and the provision of growth factors in culture. Further, these differing protocols also report disparate patterns in the expression of oligodendroglial markers by these derived oligodendrocytes, throughout their differentiation in culture. We have comprehensively reviewed the published protocols describing the derivation of oligodendrocytes from hESCs and the studies that examine their efficacy to remyelinate, along with the fundamental issues of their safety as a viable CRT. Additionally, this review will highlight particular issues of concern and suggestions for troubleshooting to provide investigators critical information for the future improvement of establishing in vitro hESC-derived oligodendrocytes.
Collapse
Affiliation(s)
- Walaa F Alsanie
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia.
| | | | | |
Collapse
|
43
|
Khalaf-Nazzal R, Bruel-Jungerman E, Rio JP, Bureau J, Irinopoulou T, Sumia I, Roumegous A, Martin E, Olaso R, Parras C, Cifuentes-Diaz C, Francis F. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. PLoS One 2013; 8:e72622. [PMID: 24023755 PMCID: PMC3759370 DOI: 10.1371/journal.pone.0072622] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Heterotopic or aberrantly positioned cortical neurons are associated with epilepsy and intellectual disability. Various mouse models exist with forms of heterotopia, but the composition and state of cells developing in heterotopic bands has been little studied. Dcx knockout (KO) mice show hippocampal CA3 pyramidal cell lamination abnormalities, appearing from the age of E17.5, and mice suffer from spontaneous epilepsy. The Dcx KO CA3 region is organized in two distinct pyramidal cell layers, resembling a heterotopic situation, and exhibits hyperexcitability. Here, we characterized the abnormally organized cells in postnatal mouse brains. Electron microscopy confirmed that the Dcx KO CA3 layers at postnatal day (P) 0 are distinct and separated by an intermediate layer devoid of neuronal somata. We found that organization and cytoplasm content of pyramidal neurons in each layer were altered compared to wild type (WT) cells. Less regular nuclei and differences in mitochondria and Golgi apparatuses were identified. Each Dcx KO CA3 layer at P0 contained pyramidal neurons but also other closely apposed cells, displaying different morphologies. Quantitative PCR and immunodetections revealed increased numbers of oligodendrocyte precursor cells (OPCs) and interneurons in close proximity to Dcx KO pyramidal cells. Immunohistochemistry experiments also showed that caspase-3 dependent cell death was increased in the CA1 and CA3 regions of Dcx KO hippocampi at P2. Thus, unsuspected ultrastructural abnormalities and cellular heterogeneity may lead to abnormal neuronal function and survival in this model, which together may contribute to the development of hyperexcitability.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elodie Bruel-Jungerman
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jean-Paul Rio
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Jocelyne Bureau
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Theano Irinopoulou
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Iffat Sumia
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Audrey Roumegous
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
| | - Elodie Martin
- Université Pierre et Marie Curie, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 975, Paris, France
- CNRS UMR 7225, Paris, France
| | - Robert Olaso
- Plateforme de Transcriptomique, Laboratoire de Recherche Translationnelle, CEA/DSV/IG-Centre National de Génotypage, Evry, France
| | - Carlos Parras
- Université Pierre et Marie Curie, Paris, France
- Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, Paris, France
- INSERM UMRS 975, Paris, France
- CNRS UMR 7225, Paris, France
| | - Carmen Cifuentes-Diaz
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail: (FF); (CCD)
| | - Fiona Francis
- INSERM UMRS 839, Paris, France
- Université Pierre et Marie Curie, Paris, France
- Institut du Fer à Moulin, Paris, France
- * E-mail: (FF); (CCD)
| |
Collapse
|
44
|
Díaz-Guerra E, Pignatelli J, Nieto-Estévez V, Vicario-Abejón C. Transcriptional Regulation of Olfactory Bulb Neurogenesis. Anat Rec (Hoboken) 2013; 296:1364-82. [DOI: 10.1002/ar.22733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 11/13/2012] [Accepted: 12/08/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Eva Díaz-Guerra
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Jaime Pignatelli
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Vanesa Nieto-Estévez
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| | - Carlos Vicario-Abejón
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC); Madrid Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED, ISCIII); Madrid Spain
| |
Collapse
|
45
|
Schneider L, Pellegatta S, Favaro R, Pisati F, Roncaglia P, Testa G, Nicolis SK, Finocchiaro G, d'Adda di Fagagna F. DNA damage in mammalian neural stem cells leads to astrocytic differentiation mediated by BMP2 signaling through JAK-STAT. Stem Cell Reports 2013; 1:123-38. [PMID: 24052948 PMCID: PMC3757751 DOI: 10.1016/j.stemcr.2013.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 01/17/2023] Open
Abstract
The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.
Collapse
Affiliation(s)
- Leonid Schneider
- IFOM Foundation-The FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kikkawa T, Obayashi T, Takahashi M, Fukuzaki-Dohi U, Numayama-Tsuruta K, Osumi N. Dmrta1 regulates proneural gene expression downstream of Pax6 in the mammalian telencephalon. Genes Cells 2013; 18:636-49. [PMID: 23679989 DOI: 10.1111/gtc.12061] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/01/2013] [Indexed: 11/27/2022]
Abstract
The transcription factor Pax6 balances cell proliferation and neuronal differentiation in the mammalian developing neocortex by regulating the expression of target genes. Using microarray analysis, we observed the down-regulation of Dmrta1 (doublesex and mab-3-related transcription factor-like family A1) in the telencephalon of Pax6 homozygous mutant rats (rSey(2) /rSey(2) ). Dmrta1 expression was restricted to the neural stem/progenitor cells of the dorsal telencephalon. Overexpression of Dmrta1 induced the expression of the proneural gene Neurogenin2 (Neurog2) and conversely repressed Ascl1 (Mash1), a proneural gene expressed in the ventral telencephalon. We found that another Dmrt family molecule, Dmrt3, induced Neurog2 expression in the dorsal telencephalon. Our novel findings suggest that dual regulation of proneural genes mediated by Pax6 and Dmrt family members is crucial for cortical neurogenesis.
Collapse
Affiliation(s)
- Takako Kikkawa
- Division of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Paschaki M, Schneider C, Rhinn M, Thibault-Carpentier C, Dembélé D, Niederreither K, Dollé P. Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling. PLoS One 2013; 8:e62274. [PMID: 23638021 PMCID: PMC3634737 DOI: 10.1371/journal.pone.0062274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/19/2013] [Indexed: 11/30/2022] Open
Abstract
Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2−/−) embryos — unable to synthesize RA from maternally-derived retinol — using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic analyses highlighted groups (clusters) of genes displaying similar behaviors in mutant tissues, and biological functions most significantly affected (e.g. mTOR, VEGF, ILK signaling in forebrain tissues; pyrimidine and purine metabolism, calcium signaling, one carbon metabolism in posterior tissues). Overall, these data give an overview of the gene expression changes resulting from embryonic RA deficiency, and provide new candidate genes and pathways that may help understanding retinoid-dependent molecular events.
Collapse
Affiliation(s)
- Marie Paschaki
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Carole Schneider
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Muriel Rhinn
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Christelle Thibault-Carpentier
- Biochips platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Doulaye Dembélé
- Biochips platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Karen Niederreither
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
| | - Pascal Dollé
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (Unité Mixte de Recherche 7104), Institut National de la Santé et de la Recherche Médicale (Unité 964), Université de Strasbourg, Illkirch-Strasbourg, France
- * E-mail:
| |
Collapse
|
48
|
Yamada T, Urano-Tashiro Y, Tanaka S, Akiyama H, Tashiro F. Involvement of crosstalk between Oct4 and Meis1a in neural cell fate decision. PLoS One 2013; 8:e56997. [PMID: 23451132 PMCID: PMC3581578 DOI: 10.1371/journal.pone.0056997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022] Open
Abstract
Oct4 plays a critical role both in maintaining pluripotency and the cell fate decision of embryonic stem (ES) cells. Nonetheless, in the determination of the neuroectoderm (NE) from ES cells, the detailed regulation mechanism of the Oct4 gene expression is poorly understood. Here, we report that crosstalk between Oct4 and Meis1a, a Pbx-related homeobox protein, is required for neural differentiation of mouse P19 embryonic carcinoma (EC) cells induced by retinoic acid (RA). During neural differentiation, Oct4 expression was transiently enhanced during 6–12 h of RA addition and subsequently disappeared within 48 h. Coinciding with up-regulation of Oct4 expression, the induction of Meis1a expression was initiated and reached a plateau at 48 h, suggesting that transiently induced Oct4 activates Meis1a expression and the up-regulated Meis1a then suppresses Oct4 expression. Chromatin immunoprecipitation (ChIP) and luciferase reporter analysis showed that Oct4 enhanced Meis1a expression via direct binding to the Meis1 promoter accompanying histone H3 acetylation and appearance of 5-hydoxymethylcytosine (5hmC), while Meis1a suppressed Oct4 expression via direct association with the Oct4 promoter together with histone deacetylase 1 (HDAC1). Furthermore, ectopic Meis1a expression promoted neural differentiation via formation of large neurospheres that expressed Nestin, GLAST, BLBP and Sox1 as neural stem cell (NSC)/neural progenitor markers, whereas its down-regulation generated small neurospheres and repressed neural differentiation. Thus, these results imply that crosstalk between Oct4 and Meis1a on mutual gene expressions is essential for the determination of NE from EC cells.
Collapse
Affiliation(s)
- Takeyuki Yamada
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Yumiko Urano-Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Saori Tanaka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Hirotada Akiyama
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Fumio Tashiro
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Noda-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
49
|
Suzuki J, Yoshizaki K, Kobayashi T, Osumi N. Neural crest-derived horizontal basal cells as tissue stem cells in the adult olfactory epithelium. Neurosci Res 2012; 75:112-20. [PMID: 23228673 DOI: 10.1016/j.neures.2012.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 10/26/2012] [Accepted: 11/07/2012] [Indexed: 01/04/2023]
Abstract
Horizontal basal cells (HBCs) have garnered attention as tissue stem cells of the olfactory epithelium (OE); however, these cells' exact lineage and their contributions to OE regeneration remain unknown. Neural crest-derived cells (NCDCs) have been shown to possess stem cell properties and to participate in the normal development of the OE. However, the contributions of NCDCs to both normal and regenerating adult OE remain unclear. In this study, we investigated the contribution of NCDCs to the OE, focusing particularly on HBCs. Using immunohistochemistry, we observed the OE of P0-Cre/EGFP mice expressing EGFP-tagged NCDCs at several stages of normal development along with regenerated OE following methimazole treatment. We observed EGFP expression in the HBCs, sustentacular cells (SUSs), Bowman's glands, olfactory receptor neurons (ORNs), and olfactory ensheathing cells of 6-week-old mice. No ectopic Cre expression was identified. Although HBCs at late embryonic stages were placode-derived (i.e., EGFP-negative), we found that EGFP+ HBCs alternatively increased with the decrease of placode-derived HBCs during maturation. In regenerated OE, the percentages of neural crest-derived ORNs and SUSs significantly increased compared with normal OE. These results suggest that NCDCs contribute greatly to the adult HBC population and that they are important for the maintenance of the OE.
Collapse
Affiliation(s)
- Jun Suzuki
- Division of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | | | | | | |
Collapse
|
50
|
Li H, Hader AT, Han YR, Wong JA, Babiarz J, Ricupero CL, Godfrey SB, Corradi JP, Fennell M, Hart RP, Plummer MR, Grumet M. Isolation of a novel rat neural progenitor clone that expresses Dlx family transcription factors and gives rise to functional GABAergic neurons in culture. Dev Neurobiol 2012; 72:805-20. [PMID: 21913335 DOI: 10.1002/dneu.20977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gamma-aminobutyric acid (GABA) ergic interneurons are lost in conditions including epilepsy and central nervous system injury, but there are few culture models available to study their function. Toward the goal of obtaining renewable sources of GABAergic neurons, we used the molecular profile of a functionally incomplete GABAergic precursor clone to screen 17 new clones isolated from GFP(+) rat E14.5 cortex and ganglionic eminence (GE) that were generated by viral introduction of v-myc. The clones grow as neurospheres in medium with FGF2, and after withdrawal of FGF2, they exhibit varying patterns of differentiation. Transcriptional profiling and quantitative reverse transcriptase polymerase chain reaction (RT-PCR) indicated that one clone (GE6) expresses high levels of mRNAs encoding Dlx1, 2, 5, and 6, glutamate decarboxylases, and presynaptic proteins including neuropeptide Y and somatostatin. Protein expression confirmed that GE6 is a progenitor with restricted differentiation giving rise mostly to neurons with GABAergic markers. In cocultures with hippocampal neurons, GE6 neurons became electrically excitable and received both inhibitory and excitatory synapses. After withdrawal of FGF2 in cultures of GE6 alone, neurons matured to express βIII-tubulin, and staining for synaptophysin and vesicular GABA transporter were robust after 1-2 weeks of differentiation. GE6 neurons also became electrically excitable and displayed synaptic activity, but synaptic currents were carried by chloride and were blocked by bicuculline. The results suggest that the GE6 clone, which is ventrally derived from the GE, resembles GABAergic interneuron progenitors that migrate into the developing forebrain. This is the first report of a relatively stable fetal clone that can be differentiated into GABAergic interneurons with functional synapses.
Collapse
Affiliation(s)
- Hedong Li
- W.M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|