1
|
Hwang Y, Park JH, Kim HC, Shin EJ. Nimodipine attenuates neuroinflammation and delayed apoptotic neuronal death induced by trimethyltin in the dentate gyrus of mice. J Mol Histol 2024; 55:721-740. [PMID: 39083161 DOI: 10.1007/s10735-024-10226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 10/10/2024]
Abstract
L-type voltage-gated calcium channels (L-VGCCs) are thought to be involved in epileptogenesis and acute excitotoxicity. However, little is known about the role of L-VGCCs in neuroinflammation or delayed neuronal death following excitotoxic insult. We examined the effects of repeated treatment with the L-VGCC blocker nimodipine on neuroinflammatory changes and delayed neuronal apoptosis in the dentate gyrus following trimethyltin (TMT)-induced convulsions. Male C57BL/6 N mice were administered TMT (2.6 mg/kg, i.p.), and the expression of the Cav1.2 and Cav1.3 subunits of L-VGCC were evaluated. The expression of both subunits was significantly decreased; however, the astroglial expression of Cav1.3 L-VGCC was significantly induced at 6 and 10 days after TMT treatment. Furthermore, astroglial Cav1.3 L-VGCCs colocalized with both the pro-inflammatory phenotype marker C3 and the anti-inflammatory phenotype marker S100A10 of astrocytes. Nimodipine (5 mg/kg, i.p. × 5 at 12-h intervals) did not significantly affect TMT-induced astroglial activation. However, nimodipine significantly attenuated the pro-inflammatory phenotype changes, while enhancing the anti-inflammatory phenotype changes in astrocytes after TMT treatment. Consistently, nimodipine reduced the levels of pro-inflammatory astrocytes-to-microglia mediators, while increasing the levels of anti-inflammatory astrocytes-to-microglia mediators. These effects were accompanied by an increase in the phosphorylation of extracellular signal-regulated kinase (ERK), supporting our previous finding that p-ERK is a signaling factor that regulates astroglial phenotype changes. In addition, nimodipine significantly attenuated TMT-induced microglial activation and delayed apoptosis of dentate granule neurons. Our results suggest that L-VGCC blockade attenuates neuroinflammation and delayed neurotoxicity following TMT-induced convulsions through the regulation of astroglial phenotypic changes by promoting ERK signaling.
Collapse
Affiliation(s)
- Yeonggwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jung Hoon Park
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Chmielarz M, Bromke MA, Olbromski M, Środa-Pomianek K, Frej-Mądrzak M, Dzięgiel P, Sobieszczańska B. Lipidomics Analysis of Human HMC3 Microglial Cells in an In Vitro Model of Metabolic Syndrome. Biomolecules 2024; 14:1238. [PMID: 39456170 PMCID: PMC11506612 DOI: 10.3390/biom14101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024] Open
Abstract
Metabolic endotoxemia (ME) is associated with bacterial lipopolysaccharide (LPS, endotoxin) and increased levels of saturated fatty acids (SFAs) in the bloodstream, causing systemic inflammation. ME usually accompanies obesity and a diet rich in fats, especially SFAs. Numerous studies confirm the effect of ME-related endotoxin on microglial activation. Our study aimed to assess lipid metabolism and immune response in microglia pre-stimulated with TNFα (Tumor Necrosis Factor α) and then with endotoxin and palmitic acid (PA). Using ELISA, we determined cytokines IL-1β, IL-10, IL-13 (interleukin-1β, -10, -13, and TGFβ (Transforming Growth Factor β) in the culture medium from microglial cells stimulated for 24 h with TNFα and then treated with LPS (10 ng/mL) and PA (200 µM) for 24 h. HMC3 (Human Microglial Cells clone 3) cells produced negligible amounts of IL-1β, IL-10, and IL-13 after stimulation but secreted moderate levels of TGFβ. Changes in lipid metabolism accompanied changes in TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) expression. HMC3 stimulation with endotoxin increased TREM2 expression, while PA treatment decreased it. Endotoxin increased ceramide levels, while PA increased triglyceride levels. These results indicated that pre-stimulation of microglia with TNFα significantly affects its interactions with LPS and PA and modulates lipid metabolism, which may lead to microglial activation silencing and neurodegeneration.
Collapse
Affiliation(s)
- Mateusz Chmielarz
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Mariusz Aleksander Bromke
- Department of Biochemistry and Immunochemistry, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland;
| | - Mateusz Olbromski
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Kamila Środa-Pomianek
- Department of Biophysics and Neuroscience, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 3a, 50-368 Wroclaw, Poland;
| | - Magdalena Frej-Mądrzak
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| | - Piotr Dzięgiel
- Department of Human Morphology and Embryology, Faculty of Medicine, Division of Histology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wrocław, Poland; (M.O.); (P.D.)
| | - Beata Sobieszczańska
- Department of Clinical Microbiology, Faculty of Medicine, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland; (M.C.); (M.F.-M.)
| |
Collapse
|
3
|
Izquierdo-Altarejos P, Moreno-Manzano V, Felipo V. Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases. Neural Regen Res 2024; 19:55-61. [PMID: 37488844 PMCID: PMC10479838 DOI: 10.4103/1673-5374.375301] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 07/26/2023] Open
Abstract
Extracellular vesicles are released by all cell types and contain proteins, microRNAs, mRNAs, and other bioactive molecules. Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation. The cargo of extracellular vesicles (e.g., proteins and microRNAs) is altered in pathological situations. Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation, including cancer, diabetes, hyperammonemia and hepatic encephalopathy, and other neurological and neurodegenerative diseases. Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain. This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases. The mechanisms involved are beginning to be understood. For example, increased tumor necrosis factor α in extracellular vesicles from plasma of hyperammonemic rats induces neuroinflammation and motor impairment when injected into normal rats. Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection. In contrast, extracellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies, by reducing inflammation and neuroinflammation and improving cognitive and motor function. These extracellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools: they are less immunogenic, may not differentiate to malignant cells, cross the blood-brain barrier, and may reach more easily target organs. Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury, Alzheimer's and Parkinson's diseases, hyperammonemia, and hepatic encephalopathy. Extracellular vesicles from mesenchymal stem cells modulate the immune system, promoting the shift from a pro-inflammatory to an anti-inflammatory state. For example, extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance, promoting the anti-inflammatory Treg. Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation, promoting a shift from a pro-inflammatory to an anti-inflammatory state. This reduces neuroinflammation and improves cognitive and motor function. Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-β and miR-124. Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules (e.g., proteins and mRNAs) involved may help to improve their therapeutic utility. The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies, the therapeutic potential of extracellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
Collapse
Affiliation(s)
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
4
|
Xin W, Pan Y, Wei W, Gerner ST, Huber S, Juenemann M, Butz M, Bähr M, Huttner HB, Doeppner TR. TGF-β1 Decreases Microglia-Mediated Neuroinflammation and Lipid Droplet Accumulation in an In Vitro Stroke Model. Int J Mol Sci 2023; 24:17329. [PMID: 38139158 PMCID: PMC10743979 DOI: 10.3390/ijms242417329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Hypoxia triggers reactive microglial inflammation and lipid droplet (LD) accumulation under stroke conditions, although the mutual interactions between these two processes are insufficiently understood. Hence, the involvement of transforming growth factor (TGF)-β1 in inflammation and LD accumulation in cultured microglia exposed to hypoxia were analyzed herein. Primary microglia were exposed to oxygen-glucose deprivation (OGD) injury and lipopolysaccharide (LPS) stimulation. For analyzing the role of TGF-β1 patterns under such conditions, a TGF-β1 siRNA and an exogenous recombinant TGF-β1 protein were employed. Further studies applied Triacsin C, an inhibitor of LD formation, in order to directly assess the impact of LD formation on the modulation of inflammation. To assess mutual microglia-to-neuron interactions, a co-culture model of these cells was established. Upon OGD exposure, microglial TGF-β1 levels were significantly increased, whereas LPS stimulation yielded decreased levels. Elevating TGF-β1 expression proved highly effective in suppressing inflammation and reducing LD accumulation in microglia exposed to LPS. Conversely, inhibition of TGF-β1 led to the promotion of microglial cell inflammation and an increase in LD accumulation in microglia exposed to OGD. Employing the LD formation inhibitor Triacsin C, in turn, polarized microglia towards an anti-inflammatory phenotype. Such modulation of both microglial TGF-β1 and LD levels significantly affected the resistance of co-cultured neurons. This study provides novel insights by demonstrating that TGF-β1 plays a protective role against microglia-mediated neuroinflammation through the suppression of LD accumulation. These findings offer a fresh perspective on stroke treatment, suggesting the potential of targeting this pathway for therapeutic interventions.
Collapse
Affiliation(s)
- Wenqiang Xin
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Yongli Pan
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Wei Wei
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Stefan T. Gerner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Martin Juenemann
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Marius Butz
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Heart and Brain Research Group, Kerckhoff Heart and Thorax Center, 61231 Bad Nauheim, Germany
| | - Mathias Bähr
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
| | - Hagen B. Huttner
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
| | - Thorsten R. Doeppner
- Department of Neurology, University of Göttingen Medical School, 37075 Goettingen, Germany; (W.X.); (Y.P.); (W.W.); (M.B.)
- Department of Neurology, University of Giessen Medical School, 35392 Giessen, Germany; (S.T.G.); (M.J.); (M.B.); (H.B.H.)
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, 35032 Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, 9238 Varna, Bulgaria
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, 100098 Istanbul, Turkey
| |
Collapse
|
5
|
Lin D, Sun Y, Wang Y, Yang D, Shui M, Wang Y, Xue Z, Huang X, Zhang Y, Wu A, Wei C. Transforming Growth Factor β1 Ameliorates Microglial Activation in Perioperative Neurocognitive Disorders. Neurochem Res 2023; 48:3512-3524. [PMID: 37470907 DOI: 10.1007/s11064-023-03994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Perioperative neurocognitive disorder (PND) is a common complication of surgery and anesthesia, especially among older patients. Microglial activation plays a crucial role in the occurrence and development of PND and transforming growth factor beta 1 (TGF-β1) can regulate microglial homeostasis. In the present study, abdominal surgery was performed on 12-14 months-old C57BL/6 mice to establish a PND model. The expression of TGF-β1, TGF-β receptor 1, TGF-β receptor 2, and phosphor-smad2/smad3 (psmad2/smad3) was assessed after anesthesia and surgery. Additionally, we examined changes in microglial activation, morphology, and polarization, as well as neuroinflammation and dendritic spine density in the hippocampus. Behavioral tests, including the Morris water maze and open field tests, were used to examine cognitive function, exploratory locomotion, and emotions. We observed decreased TGF-β1 expression after surgery and anesthesia. Intranasally administered exogenous TGF-β1 increased psmad2/smad3 colocalization with microglia positive for ionized calcium-binding adaptor molecule 1. TGF-β1 treatment attenuated microglial activation, reduced microglial phagocytosis, and reduced surgery- and anesthesia-induced changes in microglial morphology. Compared with the surgery group, TGF-β1 treatment decreased M1 microglial polarization and increased M2 microglial polarization. Additionally, surgery- and anesthesia-induced increase in interleukin 1 beta and tumor necrosis factor-alpha levels was ameliorated by TGF-β1 treatment at postoperative day 3. TGF-β1 also ameliorated cognitive function after surgery and anesthesia as well as rescue dendritic spine loss. In conclusion, surgery and anesthesia induced decrease in TGF-β1 levels in older mice, which may contribute to PND development; however, TGF-β1 ameliorated microglial activation and cognitive dysfunction in PND mice.
Collapse
Affiliation(s)
- Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yuzhu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Di Yang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Min Shui
- Department of Anesthesiology, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiming Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziyi Xue
- Department of Anesthesiology, Peking University First Hospital, Beijing, China
| | - Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China.
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongti Nanlu, Chao-Yang District, Beijing, 100020, China.
| |
Collapse
|
6
|
Russ T, Enders L, Zbiegly JM, Potru PS, Wurm J, Spittau B. 2,4-Dichlorophenoxyacetic Acid Induces Degeneration of mDA Neurons In Vitro. Biomedicines 2023; 11:2882. [PMID: 38001883 PMCID: PMC10669833 DOI: 10.3390/biomedicines11112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Parkinson's disease (PD) affects 1-2% of the population over the age of 60 and the majority of PD cases are sporadic, without any family history of the disease. Neuroinflammation driven by microglia has been shown to promote the progression of midbrain dopaminergic (mDA) neuron loss through the release of neurotoxic factors. Interestingly, the risk of developing PD is significantly higher in distinct occupations, such as farming and agriculture, and is linked to the use of pesticides and herbicides. Methods: The neurotoxic features of 2,4-Dichlorophenoxyacetic acid (2,4D) at concentrations of 10 µM and 1 mM were analyzed in two distinct E14 midbrain neuron culture systems and in primary microglia. Results: The application of 1 mM 2,4D resulted in mDA neuron loss in neuron-enriched cultures. Notably, 2,4D-induced neurotoxicity significantly increased in the presence of microglia in neuron-glia cultures, suggesting that microglia-mediated neurotoxicity could be one mechanism for progressive neuron loss in this in vitro setup. However, 2,4D alone was unable to trigger microglia reactivity. Conclusions: Taken together, we demonstrate that 2,4D is neurotoxic for mDA neurons and that the presence of glia cells enhances 2,4D-induced neuron death. These data support the role of 2,4D as a risk factor for the development and progression of PD and further suggest the involvement of microglia during 2,4D-induced mDA neuron loss.
Collapse
Affiliation(s)
- Tamara Russ
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Lennart Enders
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Julia M. Zbiegly
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Phani Sankar Potru
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Johannes Wurm
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
| |
Collapse
|
7
|
Kubelt C, Hellmold D, Esser D, Ahmeti H, Synowitz M, Held-Feindt J. Insights into Gene Regulation under Temozolomide-Promoted Cellular Dormancy and Its Connection to Stemness in Human Glioblastoma. Cells 2023; 12:1491. [PMID: 37296610 PMCID: PMC10252797 DOI: 10.3390/cells12111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/12/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The aggressive features of glioblastoma (GBM) are associated with dormancy. Our previous transcriptome analysis revealed that several genes were regulated during temozolomide (TMZ)-promoted dormancy in GBM. Focusing on genes involved in cancer progression, Chemokine (C-C motif) Receptor-Like (CCRL)1, Schlafen (SLFN)13, Sloan-Kettering Institute (SKI), Cdk5 and Abl Enzyme Substrate (Cables)1, and Dachsous Cadherin-Related (DCHS)1 were selected for further validation. All showed clear expression and individual regulatory patterns under TMZ-promoted dormancy in human GBM cell lines, patient-derived primary cultures, glioma stem-like cells (GSCs), and human GBM ex vivo samples. All genes exhibited complex co-staining patterns with different stemness markers and with each other, as examined by immunofluorescence staining and underscored by correlation analyses. Neurosphere formation assays revealed higher numbers of spheres during TMZ treatment, and gene set enrichment analysis of transcriptome data revealed significant regulation of several GO terms, including stemness-associated ones, indicating an association between stemness and dormancy with the involvement of SKI. Consistently, inhibition of SKI during TMZ treatment resulted in higher cytotoxicity, proliferation inhibition, and lower neurosphere formation capacity compared to TMZ alone. Overall, our study suggests the involvement of CCRL1, SLFN13, SKI, Cables1, and DCHS1 in TMZ-promoted dormancy and demonstrates their link to stemness, with SKI being particularly important.
Collapse
Affiliation(s)
- Carolin Kubelt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Dana Hellmold
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Daniela Esser
- Institute of Clinical Chemistry, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany
| | - Hajrullah Ahmeti
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Michael Synowitz
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| | - Janka Held-Feindt
- Department of Neurosurgery, University Medical Center Schleswig-Holstein UKSH, Campus Kiel, 24105 Kiel, Germany; (D.H.); (H.A.); (M.S.)
| |
Collapse
|
8
|
Angeloni E, Germelli L, Marchetti L, Da Pozzo E, Tremolanti C, Wetzel CH, Baglini E, Taliani S, Da Settimo F, Martini C, Costa B. The human microglial surveillant phenotype is preserved by de novo neurosteroidogenesis through the control of cholesterol homeostasis: Crucial role of 18 kDa Translocator Protein. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166751. [PMID: 37169037 DOI: 10.1016/j.bbadis.2023.166751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Neurodegenerative disease-associated microglia commonly exhibit harmful cholesterol accumulation that impairs their ability to resolve the neuroinflammatory response, contributing to disease onset and progression. Neurosteroids, whose levels have been often found significantly altered in brain diseases, are the most potent endogenous anti-inflammatory molecules exerting beneficial effects on activities of brain cells, including microglia. For the first time, the impact of neurosteroidogenesis on cholesterol homeostasis for the immune surveillance phenotype maintenance was investigated in a human microglia in vitro model. To enhance and inhibit neurosteroidogenesis, pharmacological stimulation and knock-down of 18 kDa Translocator Protein (TSPO), which is involved in the neurosteroidogenesis rate-limiting step, were used as experimental approaches, respectively. The obtained results point to an essential autocrine control of neurosteroidogenesis in orchestrating cholesterol trafficking in human microglia. TSPO pharmacological stimulation ensured cholesterol turnover by strengthening cholesterol efflux systems and preserving healthy immune surveillant phenotype. Conversely, TSPO knock-down induced an impairment of the controlled interplay among cholesterol synthesis, efflux, and metabolism mechanisms, leading to an excessive cholesterol accumulation and acquisition of a chronically activated dysfunctional phenotype. In this model, the exogenous neurosteroid administration restored proper the cholesterol clearance. The TSPO ability in promoting native neurosteroidogenesis opens the way to restore cholesterol homeostasis, and thus to maintain microglia proper functionality for the treatment of neuroinflammation-related brain diseases.
Collapse
Affiliation(s)
- Elisa Angeloni
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Lorenzo Germelli
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Laura Marchetti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Eleonora Da Pozzo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| | - Chiara Tremolanti
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, Molecular Neurosciences, University of Regensburg, 93059 Regensburg, Germany.
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy.
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, via Bonanno 6, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), Lungarno Pacinotti, 43/44, 56126 Pisa, Italy.
| |
Collapse
|
9
|
Scotton E, Casa PL, de Abreu FP, de Avila E Silva S, Wilges RLB, Rossetto MV, Géa LP, Rosa AR, Colombo R. Differentially regulated targets in the fast-acting antidepressant effect of (R)-ketamine: A systems biology approach. Pharmacol Biochem Behav 2023; 223:173523. [PMID: 36731751 DOI: 10.1016/j.pbb.2023.173523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Approximately two-thirds of patients with major depressive disorder (MDD) fail to respond to conventional antidepressants, suggesting that additional mechanisms are involved in the MDD pathophysiology. In this scenario, the glutamatergic system represents a promising therapeutic target for treatment-resistant depression. To our knowledge, this is the first study using semantic approach with systems biology to identify potential targets involved in the fast-acting antidepressant effects of ketamine and its enantiomers as well as identifying specific targets of (R)-ketamine. We performed a systematic review, followed by a semantic analysis and functional gene enrichment to identify the main biological processes involved in the therapeutic effects of these agents. Protein-protein interaction networks were constructed, and the genes exclusively regulated by (R)-ketamine were explored. We found that the regulation of α-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid (AMPA) receptor and N-methyl-d-aspartate (NMDA) receptor subunits-Postsynaptic Protein 95 (PSD-95), Brain Derived Neurotrophic Factor (BDNF), and Tyrosine Receptor Kinase B (TrkB) are shared by the three-antidepressant agents, reinforcing the central role of the glutamatergic system and neurogenesis on its therapeutic effects. Differential regulation of Transforming Growth Factor Beta 1 (TGF-β1) receptors-Mitogen-Activated Protein Kinases (MAPK's), Receptor Activator of Nuclear Factor-Kappa Beta Ligand (RANKL), and Serotonin Transporter (SERT) seems to be particularly involved in (R)-ketamine antidepressant effects. Our data helps further studies investigating the relationship between these targets and the mechanisms of (R)-ketamine and searching for other therapeutic compounds that share the regulation of these specific biomolecules. Ultimately, this study could contribute to improve the fast management of depressive-like symptoms with less detrimental side effects than ketamine and (S)-ketamine.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Pedro Lenz Casa
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | | | | | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Luiza Paul Géa
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Pharmacology Department and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| |
Collapse
|
10
|
Microglial Cannabinoid CB 2 Receptors in Pain Modulation. Int J Mol Sci 2023; 24:ijms24032348. [PMID: 36768668 PMCID: PMC9917135 DOI: 10.3390/ijms24032348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, can strongly affect patients' quality of life. Cannabinoids ponhave been reported to produce potent analgesic effects in different preclinical pain models, where they primarily function as agonists of Gi/o protein-coupled cannabinoid CB1 and CB2 receptors. The CB1 receptors are abundantly expressed in both the peripheral and central nervous systems. The central activation of CB1 receptors is strongly associated with psychotropic adverse effects, thus largely limiting its therapeutic potential. However, the CB2 receptors are promising targets for pain treatment without psychotropic adverse effects, as they are primarily expressed in immune cells. Additionally, as the resident immune cells in the central nervous system, microglia are increasingly recognized as critical players in chronic pain. Accumulating evidence has demonstrated that the expression of CB2 receptors is significantly increased in activated microglia in the spinal cord, which exerts protective consequences within the surrounding neural circuitry by regulating the activity and function of microglia. In this review, we focused on recent advances in understanding the role of microglial CB2 receptors in spinal nociceptive circuitry, highlighting the mechanism of CB2 receptors in modulating microglia function and its implications for CB2 receptor- selective agonist-mediated analgesia.
Collapse
|
11
|
Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, Sánchez-Huertas C, Hernández A, Moreno-Manzano V, Felipo V. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflammation 2023; 20:1. [PMID: 36593485 PMCID: PMC9806918 DOI: 10.1186/s12974-022-02688-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFβ levels and membrane expression of TGFβ receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1β which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFβ in the EVs from MSCs, which activates TGFβ receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1β, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.
Collapse
Affiliation(s)
- Paula Izquierdo-Altarejos
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain ,grid.476458.c0000 0004 0427 8560Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Valencia, Spain
| | - Mar Martínez-García
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Carlos Sánchez-Huertas
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain ,grid.466805.90000 0004 1759 6875Laboratory of Bilateral Neural Circuits, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - Alberto Hernández
- grid.418274.c0000 0004 0399 600XOptical and Confocal Microscopy Service, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| |
Collapse
|
12
|
Deng J, Chen C, Xue S, Su D, Poon WS, Hou H, Wang J. Microglia-mediated inflammatory destruction of neuro-cardiovascular dysfunction after stroke. Front Cell Neurosci 2023; 17:1117218. [PMID: 37025698 PMCID: PMC10070726 DOI: 10.3389/fncel.2023.1117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/23/2023] [Indexed: 04/08/2023] Open
Abstract
Stroke, a serious systemic inflammatory disease, features neurological deficits and cardiovascular dysfunction. Neuroinflammation is characterized by the activation of microglia after stroke, which disrupts the cardiovascular-related neural network and the blood-brain barrier. Neural networks activate the autonomic nervous system to regulate the cardiac and blood vessels. Increased permeability of the blood-brain barrier and the lymphatic pathways promote the transfer of the central immune components to the peripheral immune organs and the recruitment of specific immune cells or cytokines, produced by the peripheral immune system, and thus modulate microglia in the brain. In addition, the spleen will also be stimulated by central inflammation to further mobilize the peripheral immune system. Both NK cells and Treg cells will be generated to enter the central nervous system to suppress further inflammation, while activated monocytes infiltrate the myocardium and cause cardiovascular dysfunction. In this review, we will focus on microglia-mediated inflammation in neural networks that result in cardiovascular dysfunction. Furthermore, we will discuss neuroimmune regulation in the central-peripheral crosstalk, in which the spleen is a vital part. Hopefully, this will benefit in anchoring another therapeutic target for neuro-cardiovascular dysfunction.
Collapse
Affiliation(s)
- Jiahong Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Chenghan Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Shuaishuai Xue
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
| | - Daoqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wai Sang Poon
- Neuro-Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wai Sang Poon
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Honghao Hou
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, China
- *Correspondence: Jun Wang
| |
Collapse
|
13
|
Microglial CD74 Expression Is Regulated by TGFβ Signaling. Int J Mol Sci 2022; 23:ijms231810247. [PMID: 36142162 PMCID: PMC9499470 DOI: 10.3390/ijms231810247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary In the present study, we provided evidence that TGFβ signaling regulated the expression of the microglia activation marker CD74. Our data demonstrated that TGFβ1 inhibited LPS-induced upregulation of CD74. Moreover, inhibition of microglial TGFβ signaling in vitro and silencing of TGFβ signaling by deletion of Tgfbr2 in vivo resulted in marked upregulation of microglial CD74. Abstract Microglia play important roles during physiological and pathological situations in the CNS. Several reports have described the expression of Cd74 in disease-associated and aged microglia. Here, we demonstrated that TGFβ1 controled the expression of Cd74 in microglia in vitro and in vivo. Using BV2 cells, primary microglia cultures as well as Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl in combination with qPCR, flow cytometry, and immunohistochemistry, we were able to provide evidence that TGFβ1 inhibited LPS-induced upregulation of Cd74 in microglia. Interestingly, TGFβ1 alone was able to mediate downregulation of CD74 in vitro. Moreover, silencing of TGFβ signaling in vivo resulted in marked upregulation of CD74, further underlining the importance of microglial TGFβ signaling during regulation of microglia activation. Taken together, our data indicated that CD74 is a marker for activated microglia and further demonstrated that microglial TGFβ signaling is important for regulation of Cd74 expression during microglia activation.
Collapse
|
14
|
Usui‐Ouchi A, Eade K, Giles S, Ideguchi Y, Ouchi Y, Aguilar E, Wei G, Marra KV, Berlow RB, Friedlander M. Deletion of Tgfβ signal in activated microglia prolongs hypoxia-induced retinal neovascularization enhancing Igf1 expression and retinal leukostasis. Glia 2022; 70:1762-1776. [PMID: 35611927 PMCID: PMC9540888 DOI: 10.1002/glia.24218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 12/20/2022]
Abstract
Retinal neovascularization (NV) is the major cause of severe visual impairment in patients with ischemic eye diseases. While it is known that retinal microglia contribute to both physiological and pathological angiogenesis, the molecular mechanisms by which these glia regulate pathological NV have not been fully elucidated. In this study, we utilized a retinal microglia-specific Transforming Growth Factor-β (Tgfβ) receptor knock out mouse model and human iPSC-derived microglia to examine the role of Tgfβ signaling in activated microglia during retinal NV. Using a tamoxifen-inducible, microglia-specific Tgfβ receptor type 2 (Tgfβr2) knockout mouse [Tgfβr2 KO (ΔMG)] we show that Tgfβ signaling in microglia actively represses leukostasis in retinal vessels. Furthermore, we show that Tgfβ signaling represses expression of the pro-angiogenic factor, Insulin-like growth factor 1 (Igf1), independent of Vegf regulation. Using the mouse model of oxygen-induced retinopathy (OIR) we show that Tgfβ signaling in activated microglia plays a role in hypoxia-induced NV where a loss in Tgfβ signaling microglia exacerbates and prolongs retinal NV in OIR. Using human iPSC-derived microglia cells in an in vitro assay, we validate the role of Transforming Growth Factor-β1 (Tgfβ1) in regulating Igf1 expression in hypoxic conditions. Finally, we show that Tgfβ signaling in microglia is essential for microglial homeostasis and that the disruption of Tgfβ signaling in microglia exacerbates retinal NV in OIR by promoting leukostasis and Igf1 expression.
Collapse
Affiliation(s)
- Ayumi Usui‐Ouchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of OphthalmologyJuntendo University Urayasu HospitalChibaJapan
| | - Kevin Eade
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Sarah Giles
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| | - Yoichiro Ideguchi
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Yasuo Ouchi
- Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaCaliforniaUSA
- Department of Regenerative MedicineChiba University Graduate School of MedicineChibaJapan
| | - Edith Aguilar
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Guoqin Wei
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Kyle V. Marra
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Rebecca B. Berlow
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Martin Friedlander
- Department of Molecular MedicineThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Lowy Medical Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
15
|
Kang Q, Li L, Pang Y, Zhu W, Meng L. An update on Ym1 and its immunoregulatory role in diseases. Front Immunol 2022; 13:891220. [PMID: 35967383 PMCID: PMC9366555 DOI: 10.3389/fimmu.2022.891220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Ym1 is a rodent-specific chitinase-like protein (CLP) lacking catalytic activity, whose cellular origins are mainly macrophages, neutrophils and other cells. Although the detailed function of Ym1 remains poorly understood, Ym1 has been generally recognized as a fundamental feature of alternative activation of macrophages in mice and hence one of the prevalent detecting targets in macrophage phenotype distinguishment. Studies have pointed out that Ym1 may have regulatory effects, which are multifaceted and even contradictory, far more than just a mere marker. Allergic lung inflammation, parasite infection, autoimmune diseases, and central nervous system diseases have been found associations with Ym1 to varying degrees. Thus, insights into Ym1’s role in diseases would help us understand the pathogenesis of different diseases and clarify the genuine roles of CLPs in mammals. This review summarizes the information on Ym1 from the gene to its expression and regulation and focuses on the association between Ym1 and diseases.
Collapse
Affiliation(s)
- Qi Kang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Luyao Li
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yucheng Pang
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- Department of Clinical Medicine, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Wenhua Zhu
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Wenhua Zhu, ; Liesu Meng,
| |
Collapse
|
16
|
Huang W, Tao Y, Zhang X, Zhang X. TGF-β1/SMADs signaling involved in alleviating inflammation induced by nanoparticulate titanium dioxide in BV2 cells. Toxicol In Vitro 2022; 80:105303. [PMID: 34990773 DOI: 10.1016/j.tiv.2021.105303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
There are increasing safety concerns accompanying the widespread use of nanoparticulate titanium dioxide (nano-TiO2). It has been demonstrated that nano-TiO2 can cross the blood-brain barrier and enter the brain, causing damage to the nervous system, consisting mainly of neuroinflammation and neuronal apoptosis. Several studies have linked the TGF-β1/SMADs signaling to the development of inflammatory response in various organs. However, no studies have connected the induction of microglial inflammation by nano-TiO2 to this signaling. Therefore, this study aimed to investigate the role of TGF-β1/SMADs signaling in microglia inflammatory response induced by nano-TiO2. The results showed that nano-TiO2 increased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) and decreased the expressions of TGF-β1 and SMAD1/2/3 proteins in BV2 cells. When TGF-β1/SMADs signaling was inhibited, the inflammatory effect induced by nano-TiO2 increased, suggesting a suppressive effect of this signaling on the inflammation. In addition, exogenous TGF-β1 upregulated the expressions of TGF-β1 and SMADs1/2/3 proteins as well as decreased the secretions of pro-inflammatory cytokines (IL-1α, IL-6, and TNF-α) compared to BV2 cells treated with only nano-TiO2. Our results suggest that nano-TiO2 may inhibit the TGF-β1/SMADs signaling by suppressing the intracellular secretion of active TGF-β1, leading to microglial activation and the induction or exacerbation of inflammatory responses.
Collapse
Affiliation(s)
- Wendi Huang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Yifan Tao
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiuwen Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China
| | - Xiaoqiang Zhang
- School of Public Health, Southeast University, Nanjing 210009, Jiangsu, China; Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Southeast University, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
17
|
Timmerman R, Zuiderwijk-Sick EA, Oosterhof N, 't Jong AEJ, Veth J, Burm SM, van Ham TJ, Bajramovic JJ. Transcriptome analysis reveals the contribution of oligodendrocyte and radial glia-derived cues for maintenance of microglia identity. Glia 2021; 70:728-747. [PMID: 34961968 DOI: 10.1002/glia.24136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
Microglia are increasingly being recognized as druggable targets in neurodegenerative disorders, and good in vitro models are crucial to address cell biological questions. Major challenges are to recapitulate the complex microglial morphology and their in vivo transcriptome. We have therefore exposed primary microglia from adult rhesus macaques to a variety of different culture conditions including exposure to soluble factors as M-CSF, IL-34, and TGF-β as well as serum replacement approaches, and compared their morphologies and transcriptomes to those of mature, homeostatic in vivo microglia. This enabled us to develop a new, partially serum-free, monoculture protocol, that yields high numbers of ramified cells. We also demonstrate that exposure of adult microglia to M-CSF or IL-34 induces similar transcriptomes, and that exposure to TGF-β has much less pronounced effects than it does on rodent microglia. However, regardless of culture conditions, the transcriptomes of in vitro and in vivo microglia remained substantially different. Analysis of differentially expressed genes inspired us to perform 3D-spherical coculture experiments of microglia with oligodendrocytes and radial glia. In such spheres, microglia signature genes were strongly induced, even in the absence of neurons and astrocytes. These data reveal a novel role for oligodendrocyte and radial glia-derived cues in the maintenance of microglial identity, providing new anchor points to study microglia in health and disease.
Collapse
Affiliation(s)
- Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | | | - Nynke Oosterhof
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke E J 't Jong
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Saskia M Burm
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Tjakko J van Ham
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| |
Collapse
|
18
|
Kretzschmar F, Piecha R, Jahn J, Potru PS, Spittau B. Characterization of the Leucocyte Immunoglobulin-like Receptor B4 (Lilrb4) Expression in Microglia. BIOLOGY 2021; 10:biology10121300. [PMID: 34943215 PMCID: PMC8698765 DOI: 10.3390/biology10121300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In the present study, we provide a detailed characterization of Lilrb4 expression in microglia and peripheral myeloid cells. Our data demonstrate that LILRB4 is a marker for microglia activation, as evidenced by upregulation after lipopolysaccharide treatment and inhibition of microglial TGFβ signaling. Moreover, we provide evidence that microglia express low levels of Lilrb4 in vivo and high levels in vitro, and we clearly demonstrate that LILRB4 is also expressed by bone marrow-derived monocytes and, to a greater extent, by peritoneal macrophages, defining LILRB4 as a surface marker of myeloid cells and not as a microglia-specific marker. Abstract As resident innate immune cells of the CNS, microglia play important essential roles during physiological and pathological situations. Recent reports have described the expression of Lilrb4 in disease-associated and aged microglia. Here, we characterized the expression of Lilrb4 in microglia in vitro and in vivo in comparison with bone marrow-derived monocytes and peritoneal macrophages in mice. Using BV2 cells, primary microglia cultures as well as ex vivo isolated microglia and myeloid cells in combination with qPCR and flow cytometry, we were able to provide a comprehensive characterization of Lilrb4 expression in distinct mouse myeloid cells. Whereas microglia in vivo display low expression of Lilrb4, primary microglia cultures present high levels of surface LILRB4. Among the analyzed peripheral myeloid cells, peritoneal macrophages showed the highest expression levels of Lilrb4. Moreover, LPS treatment and inhibition of microglial TGFβ signaling resulted in significant increases of LILRB4 cell surface levels. Taken together, our data indicate that LILRB4 is a reliable surface marker for activated microglia and further demonstrate that microglial TGFβ signaling is involved in the regulation of Lilrb4 expression during LPS-induced microglia activation.
Collapse
Affiliation(s)
- Felix Kretzschmar
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Robin Piecha
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Jannik Jahn
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
| | - Phani Sankar Potru
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Björn Spittau
- Institute of Anatomy, Medicine Rostock, University of Rostock, 18055 Rostock, Germany; (F.K.); (R.P.); (J.J.); (P.S.P.)
- Anatomy and Cell Biology, Medical School OWL, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
19
|
The Endocannabinoid System in Glial Cells and Their Profitable Interactions to Treat Epilepsy: Evidence from Animal Models. Int J Mol Sci 2021; 22:ijms222413231. [PMID: 34948035 PMCID: PMC8709154 DOI: 10.3390/ijms222413231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Epilepsy is one of the most common neurological conditions. Yearly, five million people are diagnosed with epileptic-related disorders. The neuroprotective and therapeutic effect of (endo)cannabinoid compounds has been extensively investigated in several models of epilepsy. Therefore, the study of specific cell-type-dependent mechanisms underlying cannabinoid effects is crucial to understanding epileptic disorders. It is estimated that about 100 billion neurons and a roughly equal number of glial cells co-exist in the human brain. The glial population is in charge of neuronal viability, and therefore, their participation in brain pathophysiology is crucial. Furthermore, glial malfunctioning occurs in a wide range of neurological disorders. However, little is known about the impact of the endocannabinoid system (ECS) regulation over glial cells, even less in pathological conditions such as epilepsy. In this review, we aim to compile the existing knowledge on the role of the ECS in different cell types, with a particular emphasis on glial cells and their impact on epilepsy. Thus, we propose that glial cells could be a novel target for cannabinoid agents for treating the etiology of epilepsy and managing seizure-like disorders.
Collapse
|
20
|
Chiaranunt P, Tai SL, Ngai L, Mortha A. Beyond Immunity: Underappreciated Functions of Intestinal Macrophages. Front Immunol 2021; 12:749708. [PMID: 34650568 PMCID: PMC8506163 DOI: 10.3389/fimmu.2021.749708] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract hosts the largest compartment of macrophages in the body, where they serve as mediators of host defense and immunity. Seeded in the complex tissue-environment of the gut, an array of both hematopoietic and non-hematopoietic cells forms their immediate neighborhood. Emerging data demonstrate that the functional diversity of intestinal macrophages reaches beyond classical immunity and includes underappreciated non-immune functions. In this review, we discuss recent advances in research on intestinal macrophage heterogeneity, with a particular focus on how non-immune functions of macrophages impact tissue homeostasis and function. We delve into the strategic localization of distinct gut macrophage populations, describe the potential factors that regulate their identity and functional heterogeneity within these locations, and provide open questions that we hope will inspire research dedicated to elucidating a holistic view on macrophage-tissue cell interactions in the body's largest mucosal organ.
Collapse
Affiliation(s)
- Pailin Chiaranunt
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Siu Ling Tai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Louis Ngai
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
22
|
Mayhew JA, Cummins MJ, Cresswell ET, Callister RJ, Smith DW, Graham BA. Age-related gene expression changes in lumbar spinal cord: Implications for neuropathic pain. Mol Pain 2021; 16:1744806920971914. [PMID: 33241748 DOI: 10.1177/1744806920971914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Clinically, pain has an uneven incidence throughout lifespan and impacts more on the elderly. In contrast, preclinical models of pathological pain have typically used juvenile or young adult animals to highlight the involvement of glial populations, proinflammatory cytokines, and chemokines in the onset and maintenance of pathological signalling in the spinal dorsal horn. The potential impact of this mismatch is also complicated by the growing appreciation that the aged central nervous system exists in a state of chronic inflammation because of enhanced proinflammatory cytokine/chemokine signalling and glial activation. To address this issue, we investigated the impact of aging on the expression of genes that have been associated with neuropathic pain, glial signalling, neurotransmission and neuroinflammation. We used qRT-PCR to quantify gene expression and focussed on the dorsal horn of the spinal cord as this is an important perturbation site in neuropathic pain. To control for global vs region-specific age-related changes in gene expression, the ventral half of the spinal cord was examined. Our results show that expression of proinflammatory chemokines, pattern recognition receptors, and neurotransmitter system components was significantly altered in aged (24-32 months) versus young mice (2-4 months). Notably, the magnitude and direction of these changes were spinal-cord region dependent. For example, expression of the chemokine, Cxcl13, increased 119-fold in dorsal spinal cord, but only 2-fold in the ventral spinal cord of old versus young mice. Therefore, we propose the dorsal spinal cord of old animals is subject to region-specific alterations that prime circuits for the development of pathological pain, potentially in the absence of the peripheral triggers normally associated with these conditions.
Collapse
Affiliation(s)
- Jack A Mayhew
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mitchell J Cummins
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Ethan T Cresswell
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Doug W Smith
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, and Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
23
|
Kuroda E, Nishimura K, Kawanishi S, Sueyoshi M, Ueno F, Toji Y, Abo N, Konishi T, Harada K, Satake S, Shima C, Toda Y, Kitamura Y, Shimohama S, Ashihara E, Takata K. Mouse Bone Marrow-derived Microglia-like Cells Secrete Transforming Growth Factor-β1 and Promote Microglial Aβ Phagocytosis and Reduction of Brain Aβ. Neuroscience 2021; 438:217-228. [PMID: 32522344 DOI: 10.1016/j.neuroscience.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022]
Abstract
Accumulation of amyloid-β (Aβ) in brain tissue contributes to the pathophysiology of Alzheimer's disease (AD). We recently reported that intrahippocampal transplantation of mouse bone marrow-derived microglia-like (BMDML) cells suppresses brain amyloid pathology and cognitive impairment in a mouse model of AD. How these transplanted cells interact with resident microglia remains unknown. In the present study, we evaluated the effects of cytokines secreted from mouse BMDML cells on cultured mouse microglia. Conditioned medium from BMDML cells increased microglial Aβ phagocytosis. High levels of transforming growth factor-β1 (TGF-β1) were present in the conditioned medium, and BMDML cells and microglia expressed Tgf-β1 mRNA and TGF-β receptor type 1 (TGF-βR1) protein, respectively. BMDML conditioned medium also induced microglial Smad2/3 phosphorylation. A TGF-βR1 inhibitor suppressed Smad2/3 phosphorylation and promotion of microglial Aβ phagocytosis induced by conditioned medium. Recombinant mouse TGF-β1 similarly increased microglial Aβ phagocytosis and induced Smad2/3 phosphorylation, which were suppressed by the TGF-βR1 inhibitor. Brain TGF-β1 levels and resident microglial TGF-β1R expression were increased by intrahippocampal injection of BMDML cells in a mouse model of AD. Cotreatment with the TGF-βR1 inhibitor suppressed the ability of transplanted BMDML cells to increase microglial TGF-β1R expression and decrease hippocampal Aβ levels. Taken together, these findings suggested that transplanted BMDML cells secreted TGF-β1 to stimulate Aβ phagocytosis by resident microglia and decrease brain Aβ pathology.
Collapse
Affiliation(s)
- Eriko Kuroda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kaneyasu Nishimura
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Shohei Kawanishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan; Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mari Sueyoshi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Fumitaka Ueno
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yumiko Toji
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Naoko Abo
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toko Konishi
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Koki Harada
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Shiho Satake
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Chiaki Shima
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Toda
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yoshihisa Kitamura
- Laboratory of Pharmacology and Neurobiology, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Shun Shimohama
- Department of Neurology, Sapporo Medical University, School of Medicine, Sapporo 060-8543, Japan
| | - Eishi Ashihara
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuyuki Takata
- Division of Integrated Pharmaceutical Sciences, Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
24
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
25
|
Iravanpour F, Dargahi L, Rezaei M, Haghani M, Heidari R, Valian N, Ahmadiani A. Intranasal insulin improves mitochondrial function and attenuates motor deficits in a rat 6-OHDA model of Parkinson's disease. CNS Neurosci Ther 2021; 27:308-319. [PMID: 33497031 PMCID: PMC7871791 DOI: 10.1111/cns.13609] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Experimental and clinical evidences demonstrate that common dysregulated pathways are involved in Parkinson’s disease (PD) and type 2 diabetes. Recently, insulin treatment through intranasal (IN) approach has gained attention in PD, although the underlying mechanism of its potential therapeutic effects is still unclear. In this study, we investigated the effects of insulin treatment in a rat model of PD with emphasis on mitochondrial function indices in striatum. Methods Rats were treated with a daily low dose (4IU/day) of IN insulin, starting 72 h after 6‐OHDA‐induced lesion and continued for 14 days. Motor performance, dopaminergic cell survival, mitochondrial dehydrogenases activity, mitochondrial swelling, mitochondria permeability transition pore (mPTP), mitochondrial membrane potential (Δψm), reactive oxygen species (ROS) formation, and glutathione (GSH) content in mitochondria, mitochondrial adenosine triphosphate (ATP), and the gene expression of PGC‐1α, TFAM, Drp‐1, GFAP, and Iba‐1 were assessed. Results Intranasal insulin significantly reduces 6‐OHDA‐induced motor dysfunction and dopaminergic cell death. In parallel, it improves mitochondrial function indices and modulates mitochondria biogenesis and fission as well as activation of astrocytes and microglia. Conclusion Considering the prominent role of mitochondrial dysfunction in PD pathology, IN insulin as a disease‐modifying therapy for PD should be considered for extensive research.
Collapse
Affiliation(s)
- Farideh Iravanpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Haghani
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Neda Valian
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Liu Y, Yu L, Xu Y, Tang X, Wang X. Substantia nigra Smad3 signaling deficiency: relevance to aging and Parkinson's disease and roles of microglia, proinflammatory factors, and MAPK. J Neuroinflammation 2020; 17:342. [PMID: 33198771 PMCID: PMC7670688 DOI: 10.1186/s12974-020-02023-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background Smad3 signaling is indicated to regulate microglia activity. Parkinson’s disease (PD) neurodegeneration is shown to be associated with aging and neuroinflammation. However, it remains unclear about the relationship among Smad3 signaling, aging, neuroinflammation, and PD. Methods Rats were treated with SIS3 (a specific inhibitor of Smad3, intranigal injection) and/or lipopolysaccharide (intraperitoneal injection). We investigated the effect of SIS3 and lipopolysaccharide and their mechanism of action on motor behavior and nigrostriatal dopaminergic system in the rats. Furthermore, we explored the effect of SIS3 and LPS and their potential signaling mechanism of action on inflammatory response by using primary microglial cultures. Finally, we investigated the relationship among aging, Smad3 signaling, and neuroinflammation using animals of different ages. Results Both SIS3 and lipopolysaccharide induced significant behavior deficits and nigrostriatal dopaminergic neurodegeneration in the rats compared with the vehicle-treated (control) rats. Significantly increased behavior deficits and nigrostriatal dopaminergic neurodegeneration were observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the rats treated with vehicle, SIS3, or lipopolysaccharide. Furthermore, both SIS3 and lipopolysaccharide induced significant microglia activation and proinflammatory factor (IL-1β, IL-6, iNOS, and ROS) level increase in the SN of rats compared with the control rats. Significantly enhanced microglial inflammatory response was observed in the rats co-treated with SIS3 and lipopolysaccharide compared with the other three groups. For our in vitro study, both SIS3 and lipopolysaccharide induced significant proinflammatory factor level increase in primary microglia cultures compared with the control cultures. Significantly increased inflammatory response was observed in the cultures co-treated with SIS3 and lipopolysaccharide compared with the other three groups. MAPK (ERK/p38) contributed to microglial inflammatory response induced by co-treatment with SIS3 and lipopolysaccharide. Interestingly, there was decrease in Smad3 and pSmad3 expression (protein) and enhancement of neuroinflammation in the mouse SN with aging. Proinflammatory factor levels were significantly inversely correlated with Smad3 and pSmad3 expression. Conclusion Our study strongly indicates the involvement of SN Smad3 signaling deficiency in aging and PD neurodegeneration and provides a novel molecular mechanism underlying the participation of aging in PD and helps to elucidate the mechanisms for the combined effect of multiple factors in PD.
Collapse
Affiliation(s)
- Ying Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Lijia Yu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Yaling Xu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xiaohui Tang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China
| | - Xijin Wang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, P.R. China.
| |
Collapse
|
27
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
28
|
Cao BB, Zhang XX, Du CY, Liu Z, Qiu YH, Peng YP. TGF-β1 Provides Neuroprotection via Inhibition of Microglial Activation in 3-Acetylpyridine-Induced Cerebellar Ataxia Model Rats. Front Neurosci 2020; 14:187. [PMID: 32265625 PMCID: PMC7099147 DOI: 10.3389/fnins.2020.00187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Cerebellar ataxias (CAs) consist of a heterogeneous group of neurodegenerative diseases hallmarked by motor deficits and deterioration of the cerebellum and its associated circuitries. Neuroinflammatory responses are present in CA brain, but how neuroinflammation may contribute to CA pathogenesis remain unresolved. Here, we investigate whether transforming growth factor (TGF)-β1, which possesses anti-inflammatory and neuroprotective properties, can ameliorate the microglia-mediated neuroinflammation and thereby alleviate neurodegeneration in CA. In the current study, we administered TGF-β1 via the intracerebroventricle (ICV) in CA model rats, by intraperitoneal injection of 3-acetylpyridine (3-AP), to reveal the neuroprotective role of TGF-β1. The TGF-β1 administration after 3-AP injection ameliorated motor impairments and reduced the calbindin-positive neuron loss and apoptosis in the brain stem and cerebellum. Meanwhile, 3-AP induced microglial activation and inflammatory responses in vivo, which were determined by morphological alteration and an increase in expression of CD11b, enhancement of percentage of CD40 + and CD86 + microglial cells, upregulation of pro-inflammatory mediators, tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and a downregulation of neurotrophic factor, insulin-like growth factor (IGF)-1 in the brain stem and cerebellum. TGF-β1 treatment significantly prevented all the changes caused by 3-AP. In addition, in vitro experiments, TGF-β1 directly attenuated 3-AP-induced microglial activation and inflammatory responses in primary cultures. Purkinje cell exposure to supernatants of primary microglia that had been treated with TGF-β1 reduced neuronal loss and apoptosis induced by 3-AP-treated microglial supernatants. Furthermore, the protective effect was similar to those treated with TNF-α-neutralizing antibody. These findings suggest that TGF-β1 protects against neurodegeneration in 3-AP-induced CA rats via inhibiting microglial activation and at least partly TNF-α release.
Collapse
Affiliation(s)
- Bei-Bei Cao
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiao-Xian Zhang
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Chen-Yu Du
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhan Liu
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, Nantong University, Nantong, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
29
|
von Ehr A, Attaai A, Neidert N, Potru PS, Ruß T, Zöller T, Spittau B. Inhibition of Microglial TGFβ Signaling Increases Expression of Mrc1. Front Cell Neurosci 2020; 14:66. [PMID: 32296307 PMCID: PMC7137652 DOI: 10.3389/fncel.2020.00066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/04/2020] [Indexed: 01/05/2023] Open
Abstract
Microglia are constantly surveying their microenvironment and rapidly react to impairments by changing their morphology, migrating toward stimuli and adopting gene expression profiles characterizing their activated state. The increased expression of the M2-like marker Mannose receptor 1 (Mrc1), which is also referred to as CD206, in microglia has been reported after M2-like activation in vitro and in vivo. Mrc1 is a 175-kDa transmembrane pattern recognition receptor which binds a variety of carbohydrates and is involved in the pinocytosis and the phagocytosis of immune cells, including microglia, and thought to contribute to a neuroprotective microglial phenotype. Here we analyzed the effects of TGFβ signaling on Mrc1 expression in microglia in vivo and in vitro. Using C57BL/6 wild type and Cx3cr1CreERT2:R26-YFP:Tgfbr2fl/fl mice-derived microglia, we show that the silencing of TGFβ signaling results in the upregulation of Mrc1, whereas recombinant TGFβ1 induced the delayed downregulation of Mrc1. Furthermore, chromatin immunoprecipitation experiments provided evidence that Mrc1 is not a direct Smad2/Smad4 target gene in microglia. Altogether our data indicate that the changes in Mrc1 expression after the activation or the silencing of microglial TGFβ signaling are likely to be mediated by modifications of the secondary intracellular signaling events influenced by TGFβ signaling.
Collapse
Affiliation(s)
- Alexander von Ehr
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Abdelraheim Attaai
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nicolas Neidert
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | | | - Tamara Ruß
- Institute of Anatomy, University of Rostock, Rostock, Germany
| | - Tanja Zöller
- Institute of Anatomy, University of Rostock, Rostock, Germany
| | - Björn Spittau
- Institute of Anatomy, University of Rostock, Rostock, Germany.,Centre for Translational Neurosciences Rostock, Rostock, Germany
| |
Collapse
|
30
|
Pre- and Neonatal Exposure to Lead (Pb) Induces Neuroinflammation in the Forebrain Cortex, Hippocampus and Cerebellum of Rat Pups. Int J Mol Sci 2020; 21:ijms21031083. [PMID: 32041252 PMCID: PMC7037720 DOI: 10.3390/ijms21031083] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/01/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Lead (Pb) is a heavy metal with a proven neurotoxic effect. Exposure is particularly dangerous to the developing brain in the pre- and neonatal periods. One postulated mechanism of its neurotoxicity is induction of inflammation. This study analyzed the effect of exposure of rat pups to Pb during periods of brain development on the concentrations of selected cytokines and prostanoids in the forebrain cortex, hippocampus and cerebellum. Methods: Administration of 0.1% lead acetate (PbAc) in drinking water ad libitum, from the first day of gestation to postnatal day 21, resulted in blood Pb in rat pups reaching levels below the threshold considered safe for humans by the Centers for Disease Control and Prevention (10 µg/dL). Enzyme-linked immunosorbent assay (ELISA) method was used to determine the levels of interleukins IL-1β, IL-6, transforming growth factor-β (TGF-β), prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). Western blot and quantitative real-time PCR were used to determine the expression levels of cyclooxygenases COX-1 and COX-2. Finally, Western blot was used to determine the level of nuclear factor kappa B (NF-κB). Results: In all studied brain structures (forebrain cortex, hippocampus and cerebellum), the administration of Pb caused a significant increase in all studied cytokines and prostanoids (IL-1β, IL-6, TGF-β, PGE2 and TXB2). The protein and mRNA expression of COX-1 and COX-2 increased in all studied brain structures, as did NF-κB expression. Conclusions: Chronic pre- and neonatal exposure to Pb induces neuroinflammation in the forebrain cortex, hippocampus and cerebellum of rat pups.
Collapse
|
31
|
Röszer T. Signal Mechanisms of M2 Macrophage Activation. PROGRESS IN INFLAMMATION RESEARCH 2020:73-97. [DOI: 10.1007/978-3-030-50480-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Divolis G, Stavropoulos A, Manioudaki M, Apostolidou A, Doulou A, Gavriil A, Dafnis I, Chroni A, Mummery C, Xilouri M, Sideras P. Activation of both transforming growth factor-β and bone morphogenetic protein signalling pathways upon traumatic brain injury restrains pro-inflammatory and boosts tissue reparatory responses of reactive astrocytes and microglia. Brain Commun 2019; 1:fcz028. [PMID: 32954268 PMCID: PMC7425383 DOI: 10.1093/braincomms/fcz028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
Various ligands and receptors of the transforming growth factor-β superfamily have been found upregulated following traumatic brain injury; however, the role of this signalling system in brain injury pathophysiology is not fully characterized. To address this, we utilized an acute stab wound brain injury model to demonstrate that hallmarks of transforming growth factor-β superfamily system activation, such as levels of phosphorylated Smads, ligands and target genes for both transforming growth factor-β and bone morphogenetic protein pathways, were upregulated within injured tissues. Using a bone morphogenetic protein-responsive reporter mouse model, we showed that activation of the bone morphogenetic protein signalling pathway involves primarily astrocytes that demarcate the wound area. Insights regarding the potential role of transforming growth factor-β superfamily activation in glia cells within the injured tissues were obtained indirectly by treating purified reactive astrocytes and microglia with bone morphogenetic protein-4 or transforming growth factor-β1 and characterizing changes in their transcriptional profiles. Astrocytes responded to both ligands with considerably overlapping profiles, whereas, microglia responded selectively to transforming growth factor-β1. Novel pathways, crucial for repair of tissue-injury and blood-brain barrier, such as activation of cholesterol biosynthesis and transport, production of axonal guidance and extracellular matrix components were upregulated by transforming growth factor-β1 and/or bone morphogenetic protein-4 in astrocytes. Moreover, both ligands in astrocytes and transforming growth factor-β1 in microglia shifted the phenotype of reactive glia cells towards the anti-inflammatory and tissue reparatory 'A2'-like and 'M0/M2'-like phenotypes, respectively. Increased expression of selected key components of the in vitro modulated pathways and markers of 'A2'-like astrocytes was confirmed within the wound area, suggesting that these processes could also be modulated in situ by the integrated action of transforming growth factor-β and/or bone morphogenetic protein-mediated signalling. Collectively, our study provides a comprehensive comparative analysis of transforming growth factor-β superfamily signalling in reactive astrocytes and microglia and points towards a crucial role of both transforming growth factor-β and bone morphogenetic protein pathways in modulating the inflammatory and brain injury reparatory functions of activated glia cells.
Collapse
Affiliation(s)
- Georgios Divolis
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Stavropoulos
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Manioudaki
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Anastasia Apostolidou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasia Doulou
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ariana Gavriil
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Dafnis
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research-Demokritos, 15341 Athens, Greece
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZC Leiden, The Netherlands
| | - Maria Xilouri
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Paschalis Sideras
- Center for Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
33
|
Chu T, Zhang YP, Tian Z, Ye C, Zhu M, Shields LBE, Kong M, Barnes GN, Shields CB, Cai J. Dynamic response of microglia/macrophage polarization following demyelination in mice. J Neuroinflammation 2019; 16:188. [PMID: 31623610 PMCID: PMC6798513 DOI: 10.1186/s12974-019-1586-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The glial response in multiple sclerosis (MS), especially for recruitment and differentiation of oligodendrocyte progenitor cells (OPCs), predicts the success of remyelination of MS plaques and return of function. As a central player in neuroinflammation, activation and polarization of microglia/macrophages (M/M) that modulate the inflammatory niche and cytokine components in demyelination lesions may impact the OPC response and progression of demyelination and remyelination. However, the dynamic behaviors of M/M and OPCs during demyelination and spontaneous remyelination are poorly understood, and the complex role of neuroinflammation in the demyelination-remyelination process is not well known. In this study, we utilized two focal demyelination models with different dynamic patterns of M/M to investigate the correlation between M/M polarization and the demyelination-remyelination process. METHODS The temporal and spatial features of M/M activation/polarization and OPC response in two focal demyelination models induced by lysolecithin (LPC) and lipopolysaccharide (LPS) were examined in mice. Detailed discrimination of morphology, sensorimotor function, diffusion tensor imaging (DTI), inflammation-relevant cytokines, and glial responses between these two models were analyzed at different phases. RESULTS The results show that LPC and LPS induced distinctive temporal and spatial lesion patterns. LPS produced diffuse demyelination lesions, with a delayed peak of demyelination and functional decline compared to LPC. Oligodendrocytes, astrocytes, and M/M were scattered throughout the LPS-induced demyelination lesions but were distributed in a layer-like pattern throughout the LPC-induced lesion. The specific M/M polarization was tightly correlated to the lesion pattern associated with balance beam function. CONCLUSIONS This study elaborated on the spatial and temporal features of neuroinflammation mediators and glial response during the demyelination-remyelination processes in two focal demyelination models. Specific M/M polarization is highly correlated to the demyelination-remyelination process probably via modulations of the inflammatory niche, cytokine components, and OPC response. These findings not only provide a basis for understanding the complex and dynamic glial phenotypes and behaviors but also reveal potential targets to promote/inhibit certain M/M phenotypes at the appropriate time for efficient remyelination.
Collapse
Affiliation(s)
- Tianci Chu
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Zhisen Tian
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Chuyuan Ye
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Mingming Zhu
- Department of Radiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA
| | - Maiying Kong
- Department of Bioinformatics and Biostatistics, University of Louisville School of Public Health and Information Sciences, Louisville, KY, 40202, USA
| | - Gregory N Barnes
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, 210 East Gray Street, Suite 1102, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Jun Cai
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Donald Baxter Building, Suite 321B, 570 S. Preston Street, Louisville, KY, 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
34
|
Laffer B, Bauer D, Wasmuth S, Busch M, Jalilvand TV, Thanos S, Meyer Zu Hörste G, Loser K, Langmann T, Heiligenhaus A, Kasper M. Loss of IL-10 Promotes Differentiation of Microglia to a M1 Phenotype. Front Cell Neurosci 2019; 13:430. [PMID: 31649508 PMCID: PMC6794388 DOI: 10.3389/fncel.2019.00430] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia represent the primary resident immune cells of the central nervous system (CNS) and modulate local immune responses. Depending on their physiological functions, microglia can be classified into pro- (M1) and anti-inflammatory (M2) phenotype. Interleukin (IL)-10 is an important modulator of neuronal homeostasis, with anti-inflammatory and neuroprotective functions, and can be released by microglia. Here, we investigated how IL-10 deficiency affected the M1/2 polarization of primary microglia upon lipopolysaccharide (LPS) stimulation in vitro. Microglia phenotypes were analyzed via flow cytometry. Cytokine and chemokine secretion were examined by ELISA and bead-based multiplex LEGENDplexTM. Our results showed that genetic depletion of IL-10 led to elevated M1 like phenotype (CD86+ CD206−) under pro-inflammatory conditions associated with increased frequency of IL-6+, TNF-α+ cells and enhanced release of several pro-inflammatory chemokines. Absence of IL-10 led to an attenuated M2 like phenotype (CD86− CD206+) and a reduced secretion of TGF-β1 upon LPS stimulation. In conclusion, IL-10 deficiency may promote the polarization of microglia into M1-prone phenotype under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Björn Laffer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Ophthalmology, University of Duisburg-Essen, Essen, Germany
| | - Dirk Bauer
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Susanne Wasmuth
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Martin Busch
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| | - Tida Viola Jalilvand
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Solon Thanos
- Department of Experimental Ophthalmology, Westphalian Wilhelms University of Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Karin Loser
- Department of Dermatology - Experimental Dermatology and Immunobiology of the Skin, University of Münster, Münster, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Arnd Heiligenhaus
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany.,University of Duisburg-Essen, Essen, Germany
| | - Maren Kasper
- Department of Ophthalmology and Ophtha-Lab at St. Franziskus-Hospital, Münster, Germany
| |
Collapse
|
35
|
Silencing of TGFβ signalling in microglia results in impaired homeostasis. Nat Commun 2018; 9:4011. [PMID: 30275444 PMCID: PMC6167353 DOI: 10.1038/s41467-018-06224-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
TGFβ1 has been implicated in regulating functional aspects of several distinct immune cell populations including central nervous system (CNS) resident microglia. Activation and priming of microglia have been demonstrated to contribute to the progression of neurodegenerative diseases and, thus, underlie stringent control by endogenous regulatory factors including TGFβ1. Here, we demonstrate that deletion of Tgfbr2 in adult postnatal microglia does neither result in impairment of the microglia-specific gene expression signatures, nor is microglial survival and maintenance affected. Tgfbr2-deficient microglia were characterised by distinct morphological changes and transcriptome analysis using RNAseq revealed that loss of TGFβ signalling results in upregulation of microglia activation and priming markers. Moreover, protein arrays demonstrated increased secretion of CXCL10 and CCL2 accompanied by activation of immune cell signalling as evidenced by increased phosphorylation of TAK1. Together, these data underline the importance of microglial TGFβ signalling to regulate microglia adaptive changes.
Collapse
|
36
|
Neidert N, von Ehr A, Zöller T, Spittau B. Microglia-Specific Expression of Olfml3 Is Directly Regulated by Transforming Growth Factor β1-Induced Smad2 Signaling. Front Immunol 2018; 9:1728. [PMID: 30093905 PMCID: PMC6070609 DOI: 10.3389/fimmu.2018.01728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/12/2018] [Indexed: 11/13/2022] Open
Abstract
Microglia maturation takes place during the postnatal weeks and is characterized by the establishment of a unique microglia-specific gene expression pattern. Tmem119, Fcrls, Hexb, and Olfml3 have been identified among these microglia-specific genes. Transforming growth factor β1 (TGFβ1) has been reported as a critical factor for microglia maturation and maintenance and active TGFβ signaling precedes the inductions of microglial gene expression. In this study, we demonstrate Olfml3 expression in adult microglia and further provide evidence that TGFβ1 induces upregulation of Olfml3 expression in postnatal microglia. Using chromatin immunoprecipitation and microglia-specific silencing of TGFβ signaling in vitro and in vivo, we in clearly show that Olfml3 is a direct TGFβ1/Smad2 target gene. Together, our data underline the importance of TGFβ1 as a critical regulator of microglia functions and microglia maturation and further broaden our understanding of TGFβ1-mediated effects on the resident immune cells of the central nervous system.
Collapse
Affiliation(s)
- Nicolas Neidert
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Alexander von Ehr
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Tanja Zöller
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Björn Spittau
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Institute of Anatomy, University of Rostock, Rostock, Germany
| |
Collapse
|
37
|
Microglial SMAD4 regulated by microRNA-146a promotes migration of microglia which support tumor progression in a glioma environment. Oncotarget 2018; 9:24950-24969. [PMID: 29861845 PMCID: PMC5982777 DOI: 10.18632/oncotarget.25116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/19/2018] [Indexed: 12/28/2022] Open
Abstract
Glioma tumors constitute a significant portion of microglial cells, which are known to support tumor progression. The present study demonstrates that transforming growth factor-β (TGFβ) signaling pathway in microglia in a glioma environment is involved in tumor progression and pathogenesis. It has been shown that the TGFβ level is elevated in higher grades of gliomas and its signaling pathway regulates tumor progression through phosphorylation of SMAD2 and SMAD3, which form a complex with SMAD4 to regulate target gene transcription. In an in vitro cell line-based model increased protein levels of pSMAD2/3, total SMAD2/3 and SMAD4 were observed in murine BV2 microglia cultured in glioma conditioned medium (GCM), indicative of the activated TGFβ signaling pathway in microglia associated with glioma environment. Immunofluorescence labeling further revealed the expression of SMAD4 in microglial and non-microglial cells of human glioblastomas tissue in vivo. Functional analysis through shRNA-mediated stable knockdown of SMAD4 in microglia revealed the downregulation of the expression of matrix metalloproteinase 9 (MMP9), which has been shown to be involved in tumor progression and cell migration. Further, knockdown of SMAD4 in microglia decreased the migration of microglial cells towards GCM, indicating that SMAD4 promotes microglial migration in glioma environment. In addition, SMAD4 has been shown to be post-transcriptionally regulated by microRNA-146a, which was downregulated in microglia treated with GCM. Overexpression of miR-146a resulted in decreased expression of SMAD4 together with tumor supportive gene MMP9 in microglia, and subsequently suppressed microglial migration towards GCM, possibly through regulation of SMAD4. On the other hand, the cell viability assay revealed decreased viability of glioma cells when they were treated with conditioned medium derived from SMAD4 knockdown microglia or miR-146a overexpressed microglia as compared to glioma cells treated with the medium from control microglial cells. Taken together, the present study suggests that microglial SMAD4 which is epigenetically regulated by miR-146a promotes microglial migration in gliomas and glioma cell viability.
Collapse
|
38
|
Lively S, Lam D, Wong R, Schlichter LC. Comparing Effects of Transforming Growth Factor β1 on Microglia From Rat and Mouse: Transcriptional Profiles and Potassium Channels. Front Cell Neurosci 2018; 12:115. [PMID: 29780305 PMCID: PMC5946019 DOI: 10.3389/fncel.2018.00115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/11/2018] [Indexed: 12/02/2022] Open
Abstract
The cytokine, transforming growth factor β1 (TGFβ1), is up-regulated after central nervous system (CNS) injuries or diseases involving microglial activation, and it has been proposed as a therapeutic agent for treating neuroinflammation. Microglia can produce and respond to TGFβ1. While rats and mice are commonly used for studying neuroinflammation, very few reports directly compare them. Such studies are important for improving pre-clinical studies and furthering translational progress in developing therapeutic interventions. After intracerebral hemorrhage (ICH) in the rat striatum, the TGFβ1 receptor was highly expressed on microglia/macrophages within the hematoma. We recently found species similarities and differences in response to either a pro-inflammatory (interferon-γ, IFN-γ, +tumor necrosis factor, TNF-α) or anti-inflammatory interleukin-4 (IL-4) stimulus. Here, we assessed whether rat and mouse microglia differ in their responses to TGFβ1. Microglia were isolated from Sprague-Dawley rats and C57BL/6 mice and treated with TGFβ1. We quantified changes in expression of >50 genes, in their morphology, proliferation, apoptosis and in three potassium channels that are considered therapeutic targets. Many inflammatory mediators, immune receptors and modulators showed species similarities, but notable differences included that, for some genes, only one species responded (e.g., Il4r, Il10, Tgfbr2, colony-stimulating factor receptor (Csf1r), Itgam, suppressor of cytokine signaling 1 (Socs1), toll-like receptors 4 (Tlr4), P2rx7, P2ry12), and opposite responses were seen for others (Tgfb1, Myc, Ifngr1). In rat only, TGFβ1 affected microglial morphology and proliferation, but there was no apoptosis in either species. In both species, TGFβ1 dramatically increased Kv1.3 channel expression and current (no effects on Kir2.1). KCa3.1 showed opposite species responses: the current was low in unstimulated rat microglia and greatly increased by TGFβ1 but higher in control mouse cells and decreased by TGFβ1. Finally, we compared TGFβ1 and IL10 (often considered similar anti-inflammatory stimuli) and found many different responses in both species. Overall, the numerous species differences should be considered when characterizing neuroinflammation and microglial activation in vitro and in vivo, and when targeting potassium channels.
Collapse
Affiliation(s)
- Starlee Lively
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada
| | - Doris Lam
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Raymond Wong
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Lyanne C Schlichter
- Krembil Research Institute, Genes and Development Division, University Health Network, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Chen SX, Wang SK, Yao PW, Liao GJ, Na XD, Li YY, Zeng WA, Liu XG, Zang Y. Early CALP2 expression and microglial activation are potential inducers of spinal IL-6 up-regulation and bilateral pain following motor nerve injury. J Neurochem 2018; 145:154-169. [DOI: 10.1111/jnc.14317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Shao-Xia Chen
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Shao-Kun Wang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Pei-Wen Yao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Guang-Jie Liao
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Xiao-Dong Na
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
- Department of Pathophysiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Yong-Yong Li
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Wei-an Zeng
- Department of Anesthesiology; Cancer Center, Sun Yat-Sen University; State Key Laboratory of Oncology in South China; Collaborative, Innovation Center for Cancer Medicine; Guangzhou China
| | - Xian-Guo Liu
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| | - Ying Zang
- Pain Research Center and Department of Physiology; Zhongshan Medical School of Sun Yat-Sen University; Guangzhou China
| |
Collapse
|
40
|
Attaai A, Neidert N, von Ehr A, Potru PS, Zöller T, Spittau B. Postnatal maturation of microglia is associated with alternative activation and activated TGFβ signaling. Glia 2018; 66:1695-1708. [PMID: 29575117 DOI: 10.1002/glia.23332] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/02/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Microglia are involved in a widespread set of physiological and pathological processes and further play important roles during neurodevelopmental events. Postnatal maturation of microglia has been associated with the establishment of microglia-specific gene expression patterns. The mechanisms governing microglia maturation are only partially understood but Tgfβ1 has been suggested to be one important mediator. In the present study, we demonstrate that early postnatal microglia maturation is associated with alternative microglia activation, increased engulfment of apoptotic cells as well as activated microglial Tgfβ signaling. Interestingly, microglial Tgfβ signaling preceded the induction of the microglia-specific gene expression indicating the importance of Tgfβ1 for postnatal microglia maturation. Moreover, we provide evidence that Tgfβ1 is expressed by neurons in postnatal and adult brains defining neuron-microglia communication via Tgfβ1 as an important event. Finally, we introduce the recently identified microglia marker Tmem119 as a direct Tgfβ1-Smad2 target gene. Taken together, the data presented here further increase the understanding of Tgfβ1-mediated effects in microglia and place emphasis on the importance of Tgfβ1 for microglia maturation and maintenance.
Collapse
Affiliation(s)
- Abdelraheim Attaai
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University Freiburg, Freiburg, Germany.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nicolas Neidert
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander von Ehr
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Phani Sankar Potru
- Institute of Anatomy, University of Rostock, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Zöller
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Björn Spittau
- Institute of Anatomy, University of Rostock, Germany.,Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
41
|
Islam A, Choudhury ME, Kigami Y, Utsunomiya R, Matsumoto S, Watanabe H, Kumon Y, Kunieda T, Yano H, Tanaka J. Sustained anti-inflammatory effects of TGF-β1 on microglia/macrophages. Biochim Biophys Acta Mol Basis Dis 2017; 1864:721-734. [PMID: 29269050 DOI: 10.1016/j.bbadis.2017.12.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/07/2017] [Accepted: 12/13/2017] [Indexed: 12/26/2022]
Abstract
Ischemic brain injuries caused release of damage-associated molecular patterns (DAMPs) that activate microglia/macrophages (MG/MPs) by binding to Toll-like receptors. Using middle cerebral artery transiently occluded rats, we confirmed that MG/MPs expressed inducible nitric oxide synthase (iNOS) on 3days after reperfusion (dpr) in ischemic rat brain. iNOS expression almost disappeared on 7dpr when transforming growth factor-β1 (TGF-β1) expression was robustly increased. After transient incubation with TGF-β1 for 24h, rat primary microglial cells were incubated with lipopolysaccharide (LPS) and released NO level was measured. The NO release was persistently suppressed even 72h after removal of TGF-β1. The sustained TGF-β1 effects were not attributable to microglia-derived endogenous TGF-β1, as revealed by TGF-β1 knockdown and in vitro quantification studies. Then, boiled supernatants prepared from ischemic brain tissues showed the similar sustained inhibitory effects on LPS-treated microglial cells that were prevented by the TGF-β1 receptor-selective blocker SB525334. After incubation with TGF-β1 for 24h and its subsequent removal, LPS-induced phosphorylation of IκB kinases (IKKs), IκB degradation, and NFκB nuclear translocation were inhibited in a sustained manner. SB525334 abolished all these effects of TGF-β1. In consistent with the in vitro results, phosphorylated IKK-immunoreactivity was abundant in MG/MPs in ischemic brain lesion on 3dpr, whereas it was almost disappeared on 7dpr. The findings suggest that abundantly produced TGF-β1 in ischemic brain displays sustained anti-inflammatory effects on microglial cells by persistently inhibiting endogenous Toll-like receptor ligand-induced IκB degradation.
Collapse
Affiliation(s)
- Afsana Islam
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | | | - Yuka Kigami
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Ryo Utsunomiya
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Yoshiaki Kumon
- Department of Regeneration of Community Medicine, Graduate School of Medicine, Ehime University, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Graduate School of Medicine, Ehime University, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Ehime University, Japan.
| |
Collapse
|
42
|
Zhou X, Spittau B. Lipopolysaccharide-Induced Microglia Activation Promotes the Survival of Midbrain Dopaminergic Neurons In Vitro. Neurotox Res 2017; 33:856-867. [DOI: 10.1007/s12640-017-9842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
|
43
|
Trojan E, Ślusarczyk J, Chamera K, Kotarska K, Głombik K, Kubera M, Basta-Kaim A. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine - Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression. Front Pharmacol 2017; 8:779. [PMID: 29163165 PMCID: PMC5671972 DOI: 10.3389/fphar.2017.00779] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/16/2017] [Indexed: 12/26/2022] Open
Abstract
An increasing number of studies indicate that the chemokine system may be the third major communication system of the brain. Therefore, the role of the chemokine system in the development of brain disorders, including depression, has been recently proposed. However, little is known about the impact of the administration of various antidepressant drugs on the brain chemokine - chemokine receptor axis. In the present study, we used an animal model of depression based on the prenatal stress procedure. We determined whether chronic treatment with tianeptine, venlafaxine, or fluoxetine influenced the evoked by prenatal stress procedure changes in the mRNA and protein levels of the homeostatic chemokines, CXCL12 (SDF-1α), CX3CL1 (fractalkine) and their receptors, in the hippocampus and frontal cortex. Moreover, the impact of mentioned antidepressants on the TGF-β, a molecular pathway related to fractalkine receptor (CX3CR1), was explored. We found that prenatal stress caused anxiety and depressive-like disturbances in adult offspring rats, which were normalized by chronic antidepressant treatment. Furthermore, we showed the stress-evoked CXCL12 upregulation while CXCR4 downregulation in hippocampus and frontal cortex. CXCR7 expression was enhanced in frontal cortex but not hippocampus. Furthermore, the levels of CX3CL1 and CX3CR1 were diminished by prenatal stress in the both examined brain areas. The mentioned changes were normalized with various potency by chronic administration of tested antidepressants. All drugs in hippocampus, while tianeptine and venlafaxine in frontal cortex normalized the CXCL12 level in prenatally stressed offspring. Moreover, in hippocampus only fluoxetine enhanced CXCR4 level, while fluoxetine and tianeptine diminished CXCR7 level in frontal cortex. Additionally, the diminished by prenatal stress levels of CX3CL1 and CX3CR1 in the both examined brain areas were normalized by chronic tianeptine and partially fluoxetine administration. Tianeptine modulate also brain TGF-β signaling in the prenatal stress-induced animal model of depression. Our results provide new evidence that not only prenatal stress-induced behavioral disturbances but also changes of CXCL12 and their receptor and at less extend in CX3CL1-CX3CR1 expression may be normalized by chronic antidepressant drug treatment. In particular, the effect on the CXCL12 and their CXCR4 and CXCR7 receptors requires additional studies to elucidate the possible biological consequences.
Collapse
Affiliation(s)
- Ewa Trojan
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Ślusarczyk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Kotarska
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Głombik
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Marta Kubera
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
44
|
Rhinacanthin C Alleviates Amyloid- β Fibrils' Toxicity on Neurons and Attenuates Neuroinflammation Triggered by LPS, Amyloid- β, and Interferon- γ in Glial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5414297. [PMID: 29181126 PMCID: PMC5664341 DOI: 10.1155/2017/5414297] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022]
Abstract
Neuroinflammation plays a central role in the pathophysiology of Alzheimer's disease (AD). Compounds that suppress neuroinflammation have been identified as potential therapeutic targets for AD. Rhinacanthin C (RC), a naphthoquinone ester found in Rhinacanthus nasutus Kurz (Acanthaceae), is currently proposed as an effective molecule against inflammation. However, the exact role of RC on neuroinflammation remains to be elucidated. In the present study, we investigated RC effect on modulating lipopolysaccharides (LPS), amyloid-β peptide (Aβ), or interferon-γ- (IFN-γ-) evoked pathological events in neurons and glia. Our findings demonstrated that RC prevented Aβ-induced toxicity in rat hippocampal neurons and attenuated LPS-activated nitric oxide (NO) production, inducible nitric oxide synthase (iNOS) expression, and NF-κB signaling in rat glia. Likewise, RC suppressed LPS-induced neuroinflammation by reducing NO production and iNOS, IL-1β, CCL-2, and CCL-5 mRNA levels in rat microglia. Further studies using BV-2 microglia revealed that RC inhibited LPS-, Aβ-, and IFN-γ-stimulated IL-6 and TNF-α secretion. Of note, NF-κB and ERK activation was abrogated by RC in BV-2 cell response to Aβ or IFN-γ. Moreover, RC protected neurons from Aβ-stimulated microglial conditioned media-dependent toxicity. Collectively, these data highlight the beneficial effects of RC on neuroprotection and support the therapeutic implications of RC to neuroinflammation-mediated conditions.
Collapse
|
45
|
Affram KO, Mitchell K, Symes AJ. Microglial Activation Results in Inhibition of TGF-β-Regulated Gene Expression. J Mol Neurosci 2017; 63:308-319. [DOI: 10.1007/s12031-017-0980-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/20/2017] [Indexed: 12/23/2022]
|
46
|
Spittau B. Aging Microglia-Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:194. [PMID: 28659790 PMCID: PMC5469878 DOI: 10.3389/fnagi.2017.00194] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/30/2017] [Indexed: 12/23/2022] Open
Abstract
Aging of the central nervous system (CNS) is one of the major risk factors for the development of neurodegenerative pathologies such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). The molecular mechanisms underlying the onset of AD and especially PD are not well understood. However, neuroinflammatory responses mediated by microglia as the resident immune cells of the CNS have been reported for both diseases. The unique nature and developmental origin of microglia causing microglial self-renewal and telomere shortening led to the hypothesis that these CNS-specific innate immune cells become senescent. Age-dependent and senescence-driven impairments of microglia functions and responses have been suggested to play essential roles during onset and progression of neurodegenerative diseases. This review article summarizes the current knowledge of microglia phenotypes and functions in the aging CNS and further discusses the implications of these age-dependent microglia changes for the development and progression of AD and PD as the most common neurodegenerative diseases.
Collapse
Affiliation(s)
- Björn Spittau
- Department of Molecular Embryology, Faculty of Medicine, Institute for Anatomy and Cell Biology, University of FreiburgFreiburg, Germany.,Institute of Anatomy, University of RostockRostock, Germany
| |
Collapse
|
47
|
Chen X, Liu Z, Cao BB, Qiu YH, Peng YP. TGF-β1 Neuroprotection via Inhibition of Microglial Activation in a Rat Model of Parkinson's Disease. J Neuroimmune Pharmacol 2017; 12:433-446. [PMID: 28429275 DOI: 10.1007/s11481-017-9732-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Transforming growth factor (TGF)-β1 is a pleiotropic cytokine with immunosuppressive and anti-inflammatory properties. Recently we have shown that TGF-β1 pretreatment in vitro protects against 1-methyl-4-phenylpyridinium (MPP+)-induced dopaminergic neuronal loss that characterizes in Parkinson's disease (PD). Herein, we aimed to demonstrate that TGF-β1 administration in vivo after MPP+ toxicity has neuroprotection that is achieved by a mediation of microglia. A rat model of PD was prepared by injecting MPP+ unilaterally in the striatum. At 14 days after MPP+ injection, TGF-β1 was administrated in the right lateral cerebral ventricle. Primary ventral mesencephalic (VM) neurons and cerebral cortical microglia were treated by MPP+, respectively, and TGF-β1 was applied to neuronal or microglial cultures at 1 h after MPP+ treatment. As expected, MPP+ resulted in decrease in TGF-β1 production in the substantia nigra and in primary VM neurons and microglia. TGF-β1 intracerebroventricular administration alleviated MPP+-induced PD-like changes in pathology, motor coordination and behavior. Meanwhile, TGF-β1 ameliorated MPP+-induced microglial activation and inflammatory cytokine production in vivo. Interestingly, TGF-β1 treatment was not able to ameliorate MPP+-induced dopaminergic neuronal loss and caspase-3/9 activation in mono-neuron cultures, but TGF-β1 alleviated MPP+-induced microglial activation and inflammatory cytokine production in microglia-enriched cultures. This effect of TGF-β1 inhibiting microglial inflammatory response was blocked by Smad3 inhibitor SIS3. Importantly, neuronal exposure to supernatants of primary microglia that had been treated with TGF-β1 reduced dopaminergic neuronal loss and caspase-3/9 activation induced by MPP+-treated microglial supernatants. These findings establish that TGF-β1 exerts neuroprotective property in PD by inhibiting microglial inflammatory response via Smad3 signaling.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.,Department of Neurology, Affiliated Hospital, Nantong University, 20 Xisi Road, Nantong, Jiangsu Province, 226001, China
| | - Zhan Liu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Bei-Bei Cao
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yi-Hua Qiu
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| | - Yu-Ping Peng
- Department of Physiology, School of Medicine, and Co-innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|
48
|
Hühner L, Rilka J, Gilsbach R, Zhou X, Machado V, Spittau B. Interleukin-4 Protects Dopaminergic Neurons In vitro but Is Dispensable for MPTP-Induced Neurodegeneration In vivo. Front Mol Neurosci 2017; 10:62. [PMID: 28337124 PMCID: PMC5343015 DOI: 10.3389/fnmol.2017.00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
Abstract
Microglia are involved in physiological as well as neuropathological processes in the central nervous system (CNS). Their functional states are often referred to as M1-like and M2-like activation, and are believed to contribute to neuroinflammation-mediated neurodegeneration or neuroprotection, respectively. Parkinson’s disease (PD) is one the most common neurodegenerative disease and is characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra resulting in bradykinesia, tremor, and rigidity. Interleukin 4 (IL4)-mediated M2-like activation of microglia, which is characterized by upregulation of alternative markers Arginase 1 (Arg1) and Chitinase 3 like 3 (Ym1) has been well studied in vitro but the role of endogenous IL4 during CNS pathologies in vivo is not well understood. Interestingly, microglia activation by IL4 has been described to promote neuroprotective and neurorestorative effects, which might be important to slow the progression of neurodegenerative diseases. In the present study, we addressed the role of endogenous and exogenous IL4 during MPP+-induced degeneration of mDA neurons in vitro and further addressed the impact of IL4-deficiency on neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Our results clearly demonstrate that exogenous IL4 is important to protect mDA neurons in vitro, but endogenous IL4 seems to be dispensable for development and maintenance of the nigrostriatal system as well as MPTP-induced loss of TH+ neurons in vivo. These results underline the importance of IL4 in promoting a neuroprotective microglia activation state and strengthen the therapeutic potential of exogenous IL4 for protection of mDA neurons in PD models.
Collapse
Affiliation(s)
- Laura Hühner
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Jennifer Rilka
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg Freiburg, Germany
| | - Xiaolai Zhou
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany; Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, IthacaNY, USA
| | - Venissa Machado
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Björn Spittau
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| |
Collapse
|
49
|
Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of Innate and Adaptive Immunity by TGFβ. Adv Immunol 2017; 134:137-233. [PMID: 28413021 DOI: 10.1016/bs.ai.2017.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Immune regulation by cytokines is crucial in maintaining immune homeostasis, promoting responses to infection, resolving inflammation, and promoting immunological memory. Additionally, cytokine responses drive pathology in immune-mediated disease. A crucial cytokine in the regulation of all aspects of an immune response is transforming growth factor beta (TGFβ). Although best known as a crucial regulator of T cell responses, TGFβ plays a vital role in regulating responses mediated by virtually every innate and adaptive immune cell, including dendritic cells, B cells, NK cells, innate lymphoid cells, and granulocytes. Here, we review our current knowledge of how TGFβ regulates the immune system, highlighting the multifunctional nature of TGFβ and how its function can change depending on location and context of action.
Collapse
Affiliation(s)
- Aoife Kelly
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Stephanie A Houston
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Eleanor Sherwood
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mark A Travis
- Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester, United Kingdom; Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, United Kingdom; Manchester Immunology Group, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
50
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|