1
|
Chaudhary R, Rehman M, Agarwal V, Kumar A, Kaushik AS, Srivastava S, Srivastava S, Verma R, Rajinikanth PS, Mishra V. Terra incognita of glial cell dynamics in the etiology of leukodystrophies: Broadening disease and therapeutic perspectives. Life Sci 2024; 354:122953. [PMID: 39122110 DOI: 10.1016/j.lfs.2024.122953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Neuroglial cells, also known as glia, are primarily characterized as auxiliary cells within the central nervous system (CNS). The recent findings have shed light on their significance in numerous physiological processes and their involvement in various neurological disorders. Leukodystrophies encompass an array of rare and hereditary neurodegenerative conditions that were initially characterized by the deficiency, aberration, or degradation of myelin sheath within CNS. The primary cellular populations that experience significant alterations are astrocytes, oligodendrocytes and microglia. These glial cells are either structurally or metabolically impaired due to inherent cellular dysfunction. Alternatively, they may fall victim to the accumulation of harmful by-products resulting from metabolic disturbances. In either situation, the possible replacement of glial cells through the utilization of implanted tissue or stem cell-derived human neural or glial progenitor cells hold great promise as a therapeutic strategy for both the restoration of structural integrity through remyelination and the amelioration of metabolic deficiencies. Various emerging treatment strategies like stem cell therapy, ex-vivo gene therapy, infusion of adeno-associated virus vectors, emerging RNA-based therapies as well as long-term therapies have demonstrated success in pre-clinical studies and show promise for rapid clinical translation. Here, we addressed various leukodystrophies in a comprehensive and detailed manner as well as provide prospective therapeutic interventions that are being considered for clinical trials. Further, we aim to emphasize the crucial role of different glial cells in the pathogenesis of leukodystrophies. By doing so, we hope to advance our understanding of the disease, elucidate underlying mechanisms, and facilitate the development of potential treatment interventions.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Anand Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Siddhi Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Sukriti Srivastava
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rajkumar Verma
- University of Connecticut School of Medicine, 200 Academic Way, Farmington, CT 06032, USA
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Vikas Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
2
|
Knoll C, Doehler J, Northall A, Schreiber S, Rotta J, Mattern H, Kuehn E. Age-related differences in human cortical microstructure depend on the distance to the nearest vein. Brain Commun 2024; 6:fcae321. [PMID: 39355004 PMCID: PMC11443451 DOI: 10.1093/braincomms/fcae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/13/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Age-related differences in cortical microstructure are used to understand the neuronal mechanisms that underlie human brain ageing. The cerebral vasculature contributes to cortical ageing, but its precise interaction with cortical microstructure is poorly understood. In a cross-sectional study, we combine venous imaging with vessel distance mapping to investigate the interaction between venous distances and age-related differences in the microstructural architecture of the primary somatosensory cortex, the primary motor cortex and additional areas in the frontal cortex as non-sensorimotor control regions. We scanned 18 younger adults and 17 older adults using 7 Tesla MRI to measure age-related changes in longitudinal relaxation time (T1) and quantitative susceptibility mapping (QSM) values at 0.5 mm isotropic resolution. We modelled different cortical depths using an equi-volume approach and assessed the distance of each voxel to its nearest vein using vessel distance mapping. Our data reveal a dependence of cortical quantitative T1 values and positive QSM values on venous distance. In addition, there is an interaction between venous distance and age on quantitative T1 values, driven by lower quantitative T1 values in older compared to younger adults in voxels that are closer to a vein. Together, our data show that the local venous architecture explains a significant amount of variance in standard measures of cortical microstructure and should be considered in neurobiological models of human brain organisation and cortical ageing.
Collapse
Affiliation(s)
- Christoph Knoll
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Juliane Doehler
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Alicia Northall
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
| | - Stefanie Schreiber
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
| | - Johanna Rotta
- Department of Neurology, Otto von Guericke University of Magdeburg, Magdeburg 39120, Germany
- Department of Neurology, Katharinenhospital, Klinikum Stuttgart, Stuttgart 70174, Germany
| | - Hendrik Mattern
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Magdeburg 39120, Germany
- Center for Behavioral Brain Sciences (CBBS), Otto von Guericke University Magdeburg, Magdeburg 39106, Germany
- Department Biomedical Magnetic Resonance (BMMR), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Esther Kuehn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
- Hertie Institute for Clinical Brain Research (HIH), Tübingen 72076, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen 72076, Germany
| |
Collapse
|
3
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Marcora MS, Mattera VS, Goñi P, Aybar F, Correale JD, Pasquini JM. Iron deficiency in astrocytes alters cellular status and impacts on oligodendrocyte differentiation. J Neurosci Res 2024; 102:e25334. [PMID: 38656648 DOI: 10.1002/jnr.25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.
Collapse
Affiliation(s)
- María Silvina Marcora
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Vanesa Soledad Mattera
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Pilar Goñi
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Florencia Aybar
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Jorge Daniel Correale
- Departamento de Neurología, Fleni e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Juana Maria Pasquini
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Rojo D, Dal Cengio L, Badner A, Kim S, Sakai N, Greene J, Dierckx T, Mehl LC, Eisinger E, Ransom J, Arellano-Garcia C, Gumma ME, Soyk RL, Lewis CM, Lam M, Weigel MK, Damonte VM, Yalçın B, Jones SE, Ollila HM, Nishino S, Gibson EM. BMAL1 loss in oligodendroglia contributes to abnormal myelination and sleep. Neuron 2023; 111:3604-3618.e11. [PMID: 37657440 PMCID: PMC10873033 DOI: 10.1016/j.neuron.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Myelination depends on the maintenance of oligodendrocytes that arise from oligodendrocyte precursor cells (OPCs). We show that OPC-specific proliferation, morphology, and BMAL1 are time-of-day dependent. Knockout of Bmal1 in mouse OPCs during development disrupts the expression of genes associated with circadian rhythms, proliferation, density, morphology, and migration, leading to changes in OPC dynamics in a spatiotemporal manner. Furthermore, these deficits translate into thinner myelin, dysregulated cognitive and motor functions, and sleep fragmentation. OPC-specific Bmal1 loss in adulthood does not alter OPC density at baseline but impairs the remyelination of a demyelinated lesion driven by changes in OPC morphology and migration. Lastly, we show that sleep fragmentation is associated with increased prevalence of the demyelinating disorder multiple sclerosis (MS), suggesting a link between MS and sleep that requires further investigation. These findings have broad mechanistic and therapeutic implications for brain disorders that include both myelin and sleep phenotypes.
Collapse
Affiliation(s)
- Daniela Rojo
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Louisa Dal Cengio
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Anna Badner
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Noriaki Sakai
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Jacob Greene
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Tess Dierckx
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Lindsey C Mehl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ella Eisinger
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Julia Ransom
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Caroline Arellano-Garcia
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Biology Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mohammad E Gumma
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Rebecca L Soyk
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Cheyanne M Lewis
- Neuroscience Graduate Program, Stanford University, Palo Alto, CA 94305, USA
| | - Mable Lam
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Maya K Weigel
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA; Stem Cell Biology and Regenerative Medicine Program, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Valentina Martinez Damonte
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Belgin Yalçın
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Samuel E Jones
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland
| | - Hanna M Ollila
- Institute for Molecular Medicine, HiLIFE, University of Helsinki, Helsinki 00014, Finland; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA
| | - Seiji Nishino
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Erin M Gibson
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA 94305, USA.
| |
Collapse
|
6
|
Al-Kuraishy HM, Al-Gareeb AI, Saad HM, Batiha GES. The potential therapeutic effect of statins in multiple sclerosis: beneficial or detrimental effects. Inflammopharmacology 2023; 31:1671-1682. [PMID: 37160526 DOI: 10.1007/s10787-023-01240-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/11/2023]
Abstract
Multiple sclerosis (MS) is a chronic progressive disabling disease of the central nervous system (CNS) characterized by demyelination and neuronal injury. Dyslipidemia is observed as one of the imperative risk factors involved in MS neuropathology. Also, chronic inflammation in MS predisposes to the progress of dyslipidemia. Therefore, treatment of dyslipidemia in MS by statins may attenuate dyslipidemia-induced MS and avert MS-induced metabolic changes. Therefore, the present review aimed to elucidate the possible effects of statins on the pathogenesis and outcomes of MS. Statins adversely affect the cognitive function in MS by decreasing brain cholesterol CoQ10, which is necessary for the regulation of neuronal mitochondrial function. However, statins could be beneficial in MS by shifting the immune response from pro-inflammatory Th17 to an anti-inflammatory regulatory T cell (Treg). The protective effect of statins against MS is related to anti-inflammatory and immunomodulatory effects with modulation of fibrinogen and growth factors. In conclusion, the effects of statins on MS neuropathology seem to be conflicting, as statins seem to be protective in the acute phase of MS through anti-inflammatory and antioxidant effects. However, statins lead to detrimental effects in the chronic phase of MS by reducing brain cholesterol and inhibiting the remyelination process.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Professor in Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, M. B. Ch. B, FRCP, Box 14132, Baghdad, Iraq
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
7
|
Bao Q, Gu W, Song L, Weng K, Cao Z, Zhang Y, Zhang Y, Ji T, Xu Q, Chen G. The Photoperiod-Driven Cyclical Secretion of Pineal Melatonin Regulates Seasonal Reproduction in Geese ( Anser cygnoides). Int J Mol Sci 2023; 24:11998. [PMID: 37569373 PMCID: PMC10419153 DOI: 10.3390/ijms241511998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
The photoperiod is the predominant environmental factor that governs seasonal reproduction in animals; however, the underlying molecular regulatory mechanism has yet to be fully elucidated. Herein, Yangzhou geese (Anser cygnoides) were selected at the spring equinox (SE), summer solstice (SS), autumn equinox (AE), and winter solstice (WS), and the regulation of seasonal reproduction via the light-driven cyclical secretion of pineal melatonin was investigated. We show that there were seasonal variations in the laying rate and GSI, while the ovarian area decreased 1.5-fold from the SS to the AE. Moreover, not only did the weight and volume of the pineal gland increase with a shortened photoperiod, but the secretory activity was also enhanced. Notably, tissue distribution further revealed seasonal oscillations in melatonin receptors (Mtnrs) in the pineal gland and the hypothalamus-pituitary-gonadal (HPG) axis. The immunohistochemical staining indicated higher Mtnr levels due to the shortened photoperiod. Furthermore, the upregulation of aralkylamine N-acetyltransferase (Aanat) was observed from the SS to the AE, concurrently resulting in a downregulation of the gonadotrophin-releasing hormone (GnRH) and gonadotropins (GtHs). This trend was also evident in the secretion of hormones. These data indicate that melatonin secretion during specific seasons is indicative of alterations in the photoperiod, thereby allowing for insight into the neuroendocrine regulation of reproduction via an intrinsic molecular depiction of external photoperiodic variations.
Collapse
Affiliation(s)
- Qiang Bao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Wang Gu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Lina Song
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Kaiqi Weng
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Zhengfeng Cao
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yu Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Yang Zhang
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Ting Ji
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Qi Xu
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
| | - Guohong Chen
- Key Laboratory for Evaluation and Utilization of Poultry Genetic Resources of Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China; (Q.B.); (W.G.); (L.S.); (K.W.); (Z.C.); (Y.Z.); (Y.Z.); (T.J.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Perdue MV, DeMayo MM, Bell TK, Boudes E, Bagshawe M, Harris AD, Lebel C. Changes in brain metabolite levels across childhood. Neuroimage 2023; 274:120087. [PMID: 37080345 DOI: 10.1016/j.neuroimage.2023.120087] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
Metabolites play important roles in brain development and their levels change rapidly in the prenatal period and during infancy. Metabolite levels are thought to stabilize during childhood, but the development of neurochemistry across early-middle childhood remains understudied. We examined the developmental changes of key metabolites (total N-acetylaspartate, tNAA; total choline, tCho; total creatine, tCr; glutamate+glutamine, Glx; and myo-inositol, mI) using short echo-time magnetic resonance spectroscopy (MRS) in the anterior cingulate cortex (ACC) and the left temporo-parietal cortex (LTP) using a mixed cross-sectional/longitudinal design in children aged 2-11 years (ACC: N=101 children, 112 observations; LTP: N=95 children, 318 observations). We found age-related effects for all metabolites. tNAA increased with age in both regions, while tCho decreased with age in both regions. tCr increased with age in the LTP only, and mI decreased with age in the ACC only. Glx did not show linear age effects in either region, but a follow-up analysis in only participants with ≥3 datapoints in the LTP revealed a quadratic effect of age following an inverted U-shape. These substantial changes in neurochemistry throughout childhood likely underlie various processes of structural and functional brain development.
Collapse
Affiliation(s)
- Meaghan V Perdue
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Marilena M DeMayo
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary; Mathison Centre for Mental Health Research and Education; Department of Psychiatry, University of Calgary
| | - Tiffany K Bell
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | | | - Mercedes Bagshawe
- Alberta Children's Hospital Research Institute; Werklund School of Education, University of Calgary
| | - Ashley D Harris
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary
| | - Catherine Lebel
- Department of Radiology, University of Calgary; Alberta Children's Hospital Research Institute; Hotchkiss Brain Institute, University of Calgary.
| |
Collapse
|
9
|
Mok KKS, Yeung SHS, Cheng GWY, Ma IWT, Lee RHS, Herrup K, Tse KH. Apolipoprotein E ε4 disrupts oligodendrocyte differentiation by interfering with astrocyte-derived lipid transport. J Neurochem 2023; 165:55-75. [PMID: 36549843 DOI: 10.1111/jnc.15748] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/23/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Carriers of the APOE4 (apolipoprotein E ε4) variant of the APOE gene are subject to several age-related health risks, including Alzheimer's disease (AD). The deficient lipid and cholesterol transport capabilities of the APOE4 protein are one reason for the altered risk profile. In particular, APOE4 carriers are at elevated risk for sporadic AD. While deposits o misfolded proteins are present in the AD brain, white matter (WM) myelin is also disturbed. As myelin is a lipid- and cholesterol-rich structure, the connection to APOE makes considerable biological sense. To explore the APOE-WM connection, we have analyzed the impact of human APOE4 on oligodendrocytes (OLs) of the mouse both in vivo and in vitro. We find that APOE proteins is enriched in astrocytes but sparse in OL. In human APOE4 (hAPOE4) knock-in mice, myelin lipid content is increased but the density of major myelin proteins (MBP, MAG, and PLP) is largely unchanged. We also find an unexpected but significant reduction of cell density of the OL lineage (Olig2+ ) and an abnormal accumulation of OL precursors (Nkx 2.2+ ), suggesting a disruption of OL differentiation. Gene ontology analysis of an existing RNA-seq dataset confirms a robust transcriptional response to the altered chemistry of the hAPOE4 mouse brain. In culture, the uptake of astrocyte-derived APOE during Lovastatin-mediated depletion of cholesterol synthesis is sufficient to sustain OL differentiation. While endogenous hAPOE protein isoforms have no effects on OL development, exogenous hAPOE4 abolishes the ability of very low-density lipoprotein to restore myelination in Apoe-deficient, cholesterol-depleted OL. Our data suggest that APOE4 impairs myelination in the aging brain by interrupting the delivery of astrocyte-derived lipids to the oligodendrocytes. We propose that high myelin turnover and OL exhaustion found in APOE4 carriers is a likely explanation for the APOE-dependent myelin phenotypes of the AD brain.
Collapse
Affiliation(s)
- Kingston King-Shi Mok
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sunny Hoi-Sang Yeung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Gerald Wai-Yeung Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Iris Wai-Ting Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ralph Hon-Sun Lee
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Karl Herrup
- Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kai-Hei Tse
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
10
|
Glial Cell Metabolic Profile Upon Iron Deficiency: Oligodendroglial and Astroglial Casualties of Bioenergetic Adjustments. Mol Neurobiol 2023; 60:1949-1963. [PMID: 36595194 DOI: 10.1007/s12035-022-03149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/24/2022] [Indexed: 01/04/2023]
Abstract
Iron deficiency (ID) represents one of the most prevalent nutritional deficits, affecting almost two billion people worldwide. Gestational iron deprivation induces hypomyelination due to oligodendroglial maturation deficiencies and is thus a useful experimental model to analyze oligodendrocyte (OLG) requirements to progress to a mature myelinating state. A previous proteomic study in the adult ID brain by our group demonstrated a pattern of dysregulated proteins involved in the tricarboxylic acid cycle and mitochondrial dysfunction. The aim of the present report was to assess bioenergetics metabolism in primary cultures of OLGs and astrocytes (ASTs) from control and ID newborns, on the hypothesis that the regulation of cell metabolism correlates with cell maturation. Oxygen consumption and extracellular acidification rates were measured using a Seahorse extracellular flux analyzer. ID OLGs and ASTs both exhibited decreased spare respiratory capacity, which indicates that ID effectively induces mitochondrial dysfunction. A decrease in glycogen granules was observed in ID ASTs, and an increase in ROS production was detected in ID OLGs. Immunolabeling of structural proteins showed that mitochondrial number and size were increased in ID OLGs, while an increased number of smaller mitochondria was observed in ID ASTs. These results reflect an unfavorable bioenergetic scenario in which ID OLGs fail to progress to a myelinating state, and indicate that the regulation of cell metabolism may impact cell fate decisions and maturation.
Collapse
|
11
|
Koch RL, Soler-Alfonso C, Kiely BT, Asai A, Smith AL, Bali DS, Kang PB, Landstrom AP, Akman HO, Burrow TA, Orthmann-Murphy JL, Goldman DS, Pendyal S, El-Gharbawy AH, Austin SL, Case LE, Schiffmann R, Hirano M, Kishnani PS. Diagnosis and management of glycogen storage disease type IV, including adult polyglucosan body disease: A clinical practice resource. Mol Genet Metab 2023; 138:107525. [PMID: 36796138 DOI: 10.1016/j.ymgme.2023.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Glycogen storage disease type IV (GSD IV) is an ultra-rare autosomal recessive disorder caused by pathogenic variants in GBE1 which results in reduced or deficient glycogen branching enzyme activity. Consequently, glycogen synthesis is impaired and leads to accumulation of poorly branched glycogen known as polyglucosan. GSD IV is characterized by a remarkable degree of phenotypic heterogeneity with presentations in utero, during infancy, early childhood, adolescence, or middle to late adulthood. The clinical continuum encompasses hepatic, cardiac, muscular, and neurologic manifestations that range in severity. The adult-onset form of GSD IV, referred to as adult polyglucosan body disease (APBD), is a neurodegenerative disease characterized by neurogenic bladder, spastic paraparesis, and peripheral neuropathy. There are currently no consensus guidelines for the diagnosis and management of these patients, resulting in high rates of misdiagnosis, delayed diagnosis, and lack of standardized clinical care. To address this, a group of experts from the United States developed a set of recommendations for the diagnosis and management of all clinical phenotypes of GSD IV, including APBD, to support clinicians and caregivers who provide long-term care for individuals with GSD IV. The educational resource includes practical steps to confirm a GSD IV diagnosis and best practices for medical management, including (a) imaging of the liver, heart, skeletal muscle, brain, and spine, (b) functional and neuromusculoskeletal assessments, (c) laboratory investigations, (d) liver and heart transplantation, and (e) long-term follow-up care. Remaining knowledge gaps are detailed to emphasize areas for improvement and future research.
Collapse
Affiliation(s)
- Rebecca L Koch
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Claudia Soler-Alfonso
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bridget T Kiely
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Akihiro Asai
- Department of Pediatrics, University of Cincinnati Medical Center, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ariana L Smith
- Division of Urology, Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Deeksha S Bali
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Peter B Kang
- Paul and Sheila Wellstone Muscular Dystrophy Center, Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Andrew P Landstrom
- Division of Cardiology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA; Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - H Orhan Akman
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - T Andrew Burrow
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, AR, USA
| | | | - Deberah S Goldman
- Adult Polyglucosan Body Disease Research Foundation, Brooklyn, NY, USA
| | - Surekha Pendyal
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Areeg H El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Stephanie L Austin
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Laura E Case
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA; Doctor of Physical Therapy Division, Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Michio Hirano
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY, USA
| | - Priya S Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
12
|
Lee J, Shin JA, Lee EM, Nam M, Park EM. Noggin-mediated effects on metabolite profiles of microglia and oligodendrocytes after ischemic insult. J Pharm Biomed Anal 2023; 224:115196. [PMID: 36529041 DOI: 10.1016/j.jpba.2022.115196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Recent studies show that shifts in energy metabolism in activated microglia are linked to their functions and immune responses in the ischemic brain. We previously reported that an antagonist of the bone morphogenetic protein, noggin, enhanced myelination in the ischemic brain during the chronic phase, and conditioned media (CM) from activated BV2 microglia treated with noggin after ischemia/reperfusion (I/R) increased the expression of myelin basic protein (MBP) in oligodendrocytes (MO3.13). To determine whether noggin induced changes in cell metabolism, metabolite profiles in BV2 and MO3.13 cells were analyzed by untargeted metabolomics using 1H nuclear magnetic resonance spectroscopy. Compared to vehicle-treated BV2 cells, noggin treatment (100 ng/mL for 3 h after I/R) suppressed the I/R-induced increase in intracellular glucose and lactate levels but increased extracellular levels of glucose and several amino acids. When MO3.13 cells were exposed to noggin CM from BV2 cells, most of the vehicle CM-induced changes in the levels of metabolites such as choline, formate, and intermediates of oxidative phosphorylation were reversed, while the glycerol level was markedly increased. An increase in glycerol level was also observed in the noggin-treated ischemic brain and was further supported by the expression of glycerol-3-phosphate dehydrogenase 1 (required for glycerol synthesis) in the cytoplasm of MBP-positive oligodendrocytes in the ischemic brains treated with noggin. These results suggest that noggin-induced changes in the metabolism of microglia provide a favorable environment for myelin synthesis in oligodendrocytes during the recovery phase after ischemic stroke.
Collapse
Affiliation(s)
- Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea.
| | - Jin A Shin
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Eun-Mi Lee
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea
| | - Miso Nam
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea; Food Analysis Research Center, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Eun-Mi Park
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07084, Republic of Korea.
| |
Collapse
|
13
|
Köhler S, Winkler U, Junge T, Lippmann K, Eilers J, Hirrlinger J. Gray and white matter astrocytes differ in basal metabolism but respond similarly to neuronal activity. Glia 2023; 71:229-244. [PMID: 36063073 DOI: 10.1002/glia.24268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Astrocytes are a heterogeneous population of glial cells in the brain, which adapt their properties to the requirements of the local environment. Two major groups of astrocytes are protoplasmic astrocytes residing in gray matter as well as fibrous astrocytes of white matter. Here, we compared the energy metabolism of astrocytes in the cortex and corpus callosum as representative gray matter and white matter regions, in acute brain slices taking advantage of genetically encoded fluorescent nanosensors for the NADH/NAD+ redox ratio and for ATP. Astrocytes of the corpus callosum presented a more reduced basal NADH/NAD+ redox ratio, and a lower cytosolic concentration of ATP compared to cortical astrocytes. In cortical astrocytes, the neurotransmitter glutamate and increased extracellular concentrations of K+ , typical correlates of neuronal activity, induced a more reduced NADH/NAD+ redox ratio. While application of glutamate decreased [ATP], K+ as well as the combination of glutamate and K+ resulted in an increase of ATP levels. Strikingly, a very similar regulation of metabolism by K+ and glutamate was observed in astrocytes in the corpus callosum. Finally, strong intrinsic neuronal activity provoked by application of bicuculline and withdrawal of Mg2+ caused a shift of the NADH/NAD+ redox ratio to a more reduced state as well as a slight reduction of [ATP] in gray and white matter astrocytes. In summary, the metabolism of astrocytes in cortex and corpus callosum shows distinct basal properties, but qualitatively similar responses to neuronal activity, probably reflecting the different environment and requirements of these brain regions.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Tabea Junge
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Kristina Lippmann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
14
|
Astrocytes regulate neuronal network activity by mediating synapse remodeling. Neurosci Res 2023; 187:3-13. [PMID: 36170922 DOI: 10.1016/j.neures.2022.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/22/2022]
Abstract
Based on experience during our life, neuronal connectivity continuously changes through structural remodeling of synapses. Recent studies have shown that the complex interaction between astrocytes and synapses regulates structural synapse remodeling by inducing the formation and elimination of synapses, as well as their functional maturation. Defects in this astrocyte-mediated synapse remodeling cause problems in not only neuronal network activities but also animal behaviors. Moreover, in various neurological disorders, astrocytes have been shown to play central roles in the initiation and progression of synaptic pathophysiology through impaired interactions with synapses. In this review, we will discuss recent studies identifying the novel roles of astrocytes in neuronal circuit remodeling, focusing on synapse formation and elimination. We will also discuss the potential implication of defective astrocytic function in evoking various brain disorders.
Collapse
|
15
|
Mueller-Buehl C, Wegrzyn D, Bauch J, Faissner A. Regulation of the E/I-balance by the neural matrisome. Front Mol Neurosci 2023; 16:1102334. [PMID: 37143468 PMCID: PMC10151766 DOI: 10.3389/fnmol.2023.1102334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
In the mammalian cortex a proper excitatory/inhibitory (E/I) balance is fundamental for cognitive functions. Especially γ-aminobutyric acid (GABA)-releasing interneurons regulate the activity of excitatory projection neurons which form the second main class of neurons in the cortex. During development, the maturation of fast-spiking parvalbumin-expressing interneurons goes along with the formation of net-like structures covering their soma and proximal dendrites. These so-called perineuronal nets (PNNs) represent a specialized form of the extracellular matrix (ECM, also designated as matrisome) that stabilize structural synapses but prevent the formation of new connections. Consequently, PNNs are highly involved in the regulation of the synaptic balance. Previous studies revealed that the formation of perineuronal nets is accompanied by an establishment of mature neuronal circuits and by a closure of critical windows of synaptic plasticity. Furthermore, it has been shown that PNNs differentially impinge the integrity of excitatory and inhibitory synapses. In various neurological and neuropsychiatric disorders alterations of PNNs were described and aroused more attention in the last years. The following review gives an update about the role of PNNs for the maturation of parvalbumin-expressing interneurons and summarizes recent findings about the impact of PNNs in different neurological and neuropsychiatric disorders like schizophrenia or epilepsy. A targeted manipulation of PNNs might provide an interesting new possibility to indirectly modulate the synaptic balance and the E/I ratio in pathological conditions.
Collapse
|
16
|
Viessmann O, Tian Q, Bernier M, Polimeni JR. Static and dynamic BOLD fMRI components along white matter fibre tracts and their dependence on the orientation of the local diffusion tensor axis relative to the B 0-field. J Cereb Blood Flow Metab 2022; 42:1905-1919. [PMID: 35650710 PMCID: PMC9536127 DOI: 10.1177/0271678x221106277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies have reported functional MRI (fMRI) activation within cerebral white matter (WM) using blood-oxygenation-level-dependent (BOLD) contrast. Many blood vessels in WM run parallel to the fibre bundles, and other studies observed dependence of susceptibility contrast-based measures of blood volume on the local orientation of the fibre bundles relative to the magnetic field or B0 axis. Motivated by this, we characterized the dependence of gradient-echo BOLD fMRI on fibre orientation (estimated by the local diffusion tensor) relative to the B0 axis to test whether the alignment between bundles and vessels imparts an orientation dependence on resting-state BOLD fluctuations in the WM. We found that the baseline signal level of the T2*-weighted data is 11% higher in voxels containing fibres parallel to B0 than those containing perpendicular fibres, consistent with a static influence of either fibre or vessel orientation on local T2* values. We also found that BOLD fluctuations in most bundles exhibit orientation effects expected from oxygenation changes, with larger amplitudes from voxels containing perpendicular fibres. Different magnitudes of this orientation effect were observed across the major WM bundles, with inferior fasciculus, corpus callosum and optic radiation exhibiting 14-19% higher fluctuations in voxels containing perpendicular compared to parallel fibres.
Collapse
Affiliation(s)
- Olivia Viessmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Michaël Bernier
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.,Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
17
|
Beirowski B. Emerging evidence for compromised axonal bioenergetics and axoglial metabolic coupling as drivers of neurodegeneration. Neurobiol Dis 2022; 170:105751. [PMID: 35569720 DOI: 10.1016/j.nbd.2022.105751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
Impaired bioenergetic capacity of the nervous system is thought to contribute to the pathogenesis of many neurodegenerative diseases (NDD). Since neuronal synapses are believed to be the major energy consumers in the nervous system, synaptic derangements resulting from energy deficits have been suggested to play a central role for the development of many of these disorders. However, long axons constitute the largest compartment of the neuronal network, require large amounts of energy, are metabolically and structurally highly vulnerable, and undergo early injurious stresses in many NDD. These stresses likely impose additional energy demands for continuous adaptations and repair processes, and may eventually overwhelm axonal maintenance mechanisms. Indeed, pathological axon degeneration (pAxD) is now recognized as an etiological focus in a wide array of NDD associated with bioenergetic abnormalities. In this paper I first discuss the recognition that a simple experimental model for pAxD is regulated by an auto-destruction program that exhausts distressed axons energetically. Provision of the energy substrate pyruvate robustly counteracts this axonal breakdown. Importantly, energy decline in axons is not only a consequence but also an initiator of this program. This opens the intriguing possibility that axon dysfunction and pAxD can be suppressed by preemptively energizing distressed axons. Second, I focus on the emerging concept that axons communicate energetically with their flanking glia. This axoglial metabolic coupling can help offset the axonal energy decline that activates the pAxD program but also jeopardize axon integrity as a result of perturbed glial metabolism. Third, I present compelling evidence that abnormal axonal energetics and compromised axoglial metabolic coupling accompany the activation of the pAxD auto-destruction pathway in models of glaucoma, a widespread neurodegenerative condition with pathogenic overlap to other common NDD. In conclusion, I propose a novel conceptual framework suggesting that therapeutic interventions focused on bioenergetic support of the nervous system should also address axons and their metabolic interactions with glia.
Collapse
Affiliation(s)
- Bogdan Beirowski
- Institute for Myelin and Glia Exploration, New York State Center of Excellence in Bioinformatics & Life Sciences (CBLS), University at Buffalo, Buffalo, NY 14203, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
18
|
Wei H, Moffett JR, Amanat M, Fatemi A, Tsukamoto T, Namboodiri AM, Slusher BS. The pathogenesis of, and pharmacological treatment for, Canavan disease. Drug Discov Today 2022; 27:2467-2483. [DOI: 10.1016/j.drudis.2022.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 12/12/2022]
|
19
|
Poggi G, Albiez J, Pryce CR. Effects of chronic social stress on oligodendrocyte proliferation-maturation and myelin status in prefrontal cortex and amygdala in adult mice. Neurobiol Stress 2022; 18:100451. [PMID: 35685682 PMCID: PMC9170777 DOI: 10.1016/j.ynstr.2022.100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/26/2022] Open
Abstract
Stress-related neuropsychiatric disorders present with excessive processing of aversive stimuli. Whilst underlying pathophysiology remains poorly understood, within- and between-regional changes in oligodendrocyte (OL)-myelination status in anterior cingulate cortex and amygdala (ACC-AMY network) could be important. In adult mice, a 15-day chronic social stress (CSS) protocol leads to increased aversion responsiveness, accompanied by increased resting-state functional connectivity between, and reduced oligodendrocyte- and myelin-related transcript expression within, medial prefrontal cortex and amygdala (mPFC-AMY network), the analog of the human ACC-AMY network. In the current study, young-adult male C57BL/6 mice underwent CSS or control handling (CON). To assess OL proliferation-maturation, mice received 5-ethynyl-2'-deoxyuridine via drinking water across CSS/CON and brains were collected on day 16 or 31. In mPFC, CSS decreased the density of proliferative OL precursor cells (OPCs) at days 16 and 31. CSS increased mPFC myelin basic protein (MBP) integrated density at day 31, as well as increasing myelin thickness as determined using transmission electron microscopy, at day 16. In AMY, CSS increased the densities of total CC1+ OLs (day 31) and CC1+/ASPA+ OLs (days 16 and 31), whilst decreasing the density of proliferative OPCs at days 16 and 31. CSS was without effect on AMY MBP content and myelin thickness, at days 16 and 31. Therefore, CSS impacts on the OL lineage in mPFC and AMY and to an extent that, in mPFC at least, leads to increased myelination. This increased myelination could contribute to the excessive aversion learning and memory that occur in CSS mice and, indeed, human stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Jamie Albiez
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Christopher R. Pryce
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
20
|
Development of a Chemical Cocktail That Rescues Mouse Brain Demyelination in a Cuprizone-Induced Model. Cells 2022; 11:cells11071091. [PMID: 35406658 PMCID: PMC8997971 DOI: 10.3390/cells11071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrocytes are glial cells located in the central nervous system (CNS) that play essential roles in the transmission of nerve signals and in the neuroprotection of myelinated neurons. The dysfunction or loss of oligodendrocytes leads to demyelinating diseases such as multiple sclerosis (MS). To treat demyelinating diseases, the development of a therapy that promotes remyelination is required. In the present study, we established an in vitro method to convert human fibroblasts into induced oligodendrocyte-like cells (iOLCs) in 3 days. The induced cells displayed morphologies and molecular signatures similar to oligodendrocytes after treatment with valproic acid and exposure to the small molecules Y27632, SU9516, and forskolin (FSK). To pursue the development of a cell-free remyelination therapy in vivo, we used a cuprizone-induced demyelinated mouse model. The small molecules (Y27632, SU9516, and FSK) were directly injected into the demyelinated corpus callosum of the mouse brain. This combination of small molecules rescued the demyelination phenotype within two weeks as observed by light and electron microscopy. These results provide a foundation for exploring the development of a treatment for demyelinating diseases via regenerative medicine.
Collapse
|
21
|
Zheng M, Liu Z, Mana L, Qin G, Huang S, Gong Z, Tian M, He Y, Wang P. Shenzhiling oral liquid protects the myelin sheath against Alzheimer's disease through the PI3K/Akt-mTOR pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114264. [PMID: 34082015 DOI: 10.1016/j.jep.2021.114264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/22/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shenzhiling oral liquid (SZL), a traditional Chinese medicine (TCM) compound, is firstly approved by the Chinese Food and Drug Administration (CFDA) for the treatment of mild to moderate Alzheimer's disease (AD). SZL is composed of ten Chinese herbs, and the precise therapy mechanism of its action to AD is far from fully understood. AIM OF THE STUDY The purpose of this study was to observe whether SZL is an effective therapy for amyloid-beta (Aβ)-induced myelin sheath and oligodendrocytes impairments. Notably, the primary aim was to elucidate whether and through what underlying mechanism SZL protects the myelin sheath through the PI3K/Akt-mTOR signaling pathway in Aβ42-induced OLN-93 oligodendrocytes in vitro. MATERIALS AND METHODS APP/PS1 mice were treated with SZL or donepezil continuously for three months, and Aβ42-induced oligodendrocyte OLN-93 cells mimicking AD pathogenesis of myelin sheath impairments were incubated with SZL-containing serum or with donepezil. LC-MS/MS was used to analysis the active components of SZL and SZL-containing serum. The Y maze test was administered after 3 months of treatment, and the hippocampal tissues of the APP/PS1 mice were then harvested for observation of myelin sheath and oligodendrocyte morphology. Cell viability and toxicity were assessed using CCK-8 and lactate dehydrogenase (LDH) release assays, and flow cytometry was used to measure cell apoptosis. The expression of the myelin proteins MBP, PLP, and MAG and that of Aβ42 and Aβ40 in the hippocampi of APP/PS1 mice were examined after SZL treatment. Simultaneously, the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR were also examined. The expression of proteins, including CNPase, Olig2, NKX2.2, MBP, PLP, MAG, MOG, p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, was determined by immunofluorescence and Western blot, and the corresponding gene expression was evaluated by qPCR in Aβ42-induced OLN-93 oligodendrocytes. RESULTS LC-MS/MS detected a total of 126 active compounds in SZL-containing serum, including terpenoids, flavones, phenols, phenylpropanoids and phenolic acids. SZL treatment significantly improved memory and cognition in APP/PS1 mice and decreased the G-ratio of myelin sheath, alleviated myelin sheath and oligodendrocyte impairments by decreasing Aβ42 and Aβ40 accumulation and increasing the expression of myelin proteins MBP, PLP, MAG, and PI3K/Akt-mTOR signaling pathway associated protein in the hippocampi of APP/PS1 mice. SZL-containing serum also significantly reversed the OLN-93 cell injury induced by Aβ42 by increasing cell viability and enhanced the expression of MBP, PLP, MAG, and MOG. Meanwhile, SZL-containing serum facilitated the maturation and differentiation of oligodendrocytes in Aβ42-induced OLN-93 cells by heightening the expression of CNPase, Olig2 and NKX2.2. SZL-containing serum treatment also fostered the expression of p-PI3K, PI3K, p-Akt, Akt, p-mTOR, and mTOR, indicating an activating PI3K/Akt-mTOR signaling pathway in OLN-93 cells. Furthermore, the effects of SZL on myelin proteins, p-Akt, and p-mTOR were clearly inhibited by LY294002 and/or rapamycin, antagonists of PI3K and m-TOR, respectively. CONCLUSIONS Our findings indicate that SZL exhibits a neuroprotective effect on the myelin sheath by promoting the expression of myelin proteins during AD, and its mechanism of action is closely related to the activation of the PI3K/Akt-mTOR signaling pathway.
Collapse
Affiliation(s)
- Mingcui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine (BUCM), Beijing, 100029, China.
| | - Lulu Mana
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China; Xinjiang Medical University, Urumqi, 830011, China.
| | - Gaofeng Qin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Shuaiyang Huang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Zhuoyan Gong
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Meijing Tian
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Yannan He
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| | - Pengwen Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine (BUCM), Beijing, 100700, China; Key Laboratory of Pharmacology Dongzhimen Hospital (BUCM), State Administration of Traditional Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
22
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
23
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
24
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
25
|
Creo AL, Cortes TM, Jo HJ, Huebner AR, Dasari S, Tillema JM, Lteif AN, Klaus KA, Ruegsegger GN, Kudva YC, Petersen RC, Port JD, Nair KS. Brain functions and cognition on transient insulin deprivation in type 1 diabetes. JCI Insight 2021; 6:144014. [PMID: 33561011 PMCID: PMC8021100 DOI: 10.1172/jci.insight.144014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/03/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a risk factor for dementia and structural brain changes. It remains to be determined whether transient insulin deprivation that frequently occurs in insulin-treated individuals with T1D alters brain function. METHODS We therefore performed functional and structural magnetic resonance imaging, magnetic resonance spectroscopy, and neuropsychological testing at baseline and following 5.4 ± 0.6 hours of insulin deprivation in 14 individuals with T1D and compared results with those from 14 age-, sex-, and BMI-matched nondiabetic (ND) participants with no interventions. RESULTS Insulin deprivation in T1D increased blood glucose, and β-hydroxybutyrate, while reducing bicarbonate levels. Participants with T1D showed lower baseline brain N-acetyl aspartate and myo-inositol levels but higher cortical fractional anisotropy, suggesting unhealthy neurons and brain microstructure. Although cognitive functions did not differ between participants with T1D and ND participants at baseline, significant changes in fine motor speed as well as attention and short-term memory occurred following insulin deprivation in participants with T1D. Insulin deprivation also reduced brain adenosine triphosphate levels and altered the phosphocreatine/adenosine triphosphate ratio. Baseline differences in functional connectivity in brain regions between participants with T1D and ND participants were noted, and on insulin deprivation further alterations in functional connectivity between regions, especially cortical and hippocampus-caudate regions, were observed. These alterations in functional connectivity correlated to brain metabolites and to changes in cognition. CONCLUSION Transient insulin deprivation therefore caused alterations in executive aspects of cognitive function concurrent with functional connectivity between memory regions and the sensory cortex. These findings have important clinical implications, as many patients with T1D inadvertently have periods of transient insulin deprivation. TRIAL REGISTRATION ClinicalTrials.gov NCT03392441. FUNDING Clinical and Translational Science Award (UL1 TR002377) from the National Center for Advancing Translational Science; NIH grants (R21 AG60139 and R01 AG62859); the Mayo Foundation.
Collapse
Affiliation(s)
- Ana L Creo
- Division of Pediatric Endocrinology and Metabolism
| | | | | | | | | | | | - Aida N Lteif
- Division of Pediatric Endocrinology and Metabolism
| | | | | | - Yogish C Kudva
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition
| | | | - John D Port
- Division of Neuroradiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
26
|
Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8881770. [PMID: 33552387 PMCID: PMC7847339 DOI: 10.1155/2021/8881770] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/15/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Schizophrenia is recognized to be a highly heterogeneous disease at various levels, from genetics to clinical manifestations and treatment sensitivity. This heterogeneity is also reflected in the variety of oxidative stress-related mechanisms contributing to the phenotypic realization and manifestation of schizophrenia. At the molecular level, these mechanisms are supposed to include genetic causes that increase the susceptibility of individuals to oxidative stress and lead to gene expression dysregulation caused by abnormal regulation of redox-sensitive transcriptional factors, noncoding RNAs, and epigenetic mechanisms favored by environmental insults. These changes form the basis of the prooxidant state and lead to altered redox signaling related to glutathione deficiency and impaired expression and function of redox-sensitive transcriptional factors (Nrf2, NF-κB, FoxO, etc.). At the cellular level, these changes lead to mitochondrial dysfunction and metabolic abnormalities that contribute to aberrant neuronal development, abnormal myelination, neurotransmitter anomalies, and dysfunction of parvalbumin-positive interneurons. Immune dysfunction also contributes to redox imbalance. At the whole-organism level, all these mechanisms ultimately contribute to the manifestation and development of schizophrenia. In this review, we consider oxidative stress-related mechanisms and new treatment perspectives associated with the correction of redox imbalance in schizophrenia. We suggest that not only antioxidants but also redox-regulated transcription factor-targeting drugs (including Nrf2 and FoxO activators or NF-κB inhibitors) have great promise in schizophrenia. But it is necessary to develop the stratification criteria of schizophrenia patients based on oxidative stress-related markers for the administration of redox-correcting treatment.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena M. Dmitrieva
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | - Daria A. Parshukova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| | | | | | - Liudmila P. Smirnova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia
| |
Collapse
|
27
|
Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites. Cell Rep 2021; 34:108642. [PMID: 33472059 DOI: 10.1016/j.celrep.2020.108642] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 10/23/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.
Collapse
|
28
|
Rombaut B, Kessels S, Schepers M, Tiane A, Paes D, Solomina Y, Piccart E, Hove DVD, Brône B, Prickaerts J, Vanmierlo T. PDE inhibition in distinct cell types to reclaim the balance of synaptic plasticity. Theranostics 2021; 11:2080-2097. [PMID: 33500712 PMCID: PMC7797685 DOI: 10.7150/thno.50701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Synapses are the functional units of the brain. They form specific contact points that drive neuronal communication and are highly plastic in their strength, density, and shape. A carefully orchestrated balance between synaptogenesis and synaptic pruning, i.e., the elimination of weak or redundant synapses, ensures adequate synaptic density. An imbalance between these two processes lies at the basis of multiple neuropathologies. Recent evidence has highlighted the importance of glia-neuron interactions in the synaptic unit, emphasized by glial phagocytosis of synapses and local excretion of inflammatory mediators. These findings warrant a closer look into the molecular basis of cell-signaling pathways in the different brain cells that are related to synaptic plasticity. In neurons, intracellular second messengers, such as cyclic guanosine or adenosine monophosphate (cGMP and cAMP, respectively), are known mediators of synaptic homeostasis and plasticity. Increased levels of these second messengers in glial cells slow down inflammation and neurodegenerative processes. These multi-faceted effects provide the opportunity to counteract excessive synapse loss by targeting cGMP and cAMP pathways in multiple cell types. Phosphodiesterases (PDEs) are specialized degraders of these second messengers, rendering them attractive targets to combat the detrimental effects of neurological disorders. Cellular and subcellular compartmentalization of the specific isoforms of PDEs leads to divergent downstream effects for these enzymes in the various central nervous system resident cell types. This review provides a detailed overview on the role of PDEs and their inhibition in the context of glia-neuron interactions in different neuropathologies characterized by synapse loss. In doing so, it provides a framework to support future research towards finding combinational therapy for specific neuropathologies.
Collapse
|
29
|
Cullen CL, O'Rourke M, Beasley SJ, Auderset L, Zhen Y, Pepper RE, Gasperini R, Young KM. Kif3a deletion prevents primary cilia assembly on oligodendrocyte progenitor cells, reduces oligodendrogenesis and impairs fine motor function. Glia 2020; 69:1184-1203. [PMID: 33368703 PMCID: PMC7986221 DOI: 10.1002/glia.23957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Primary cilia are small microtubule‐based organelles capable of transducing signals from growth factor receptors embedded in the cilia membrane. Developmentally, oligodendrocyte progenitor cells (OPCs) express genes associated with primary cilia assembly, disassembly, and signaling, however, the importance of primary cilia for adult myelination has not been explored. We show that OPCs are ciliated in vitro and in vivo, and that they disassemble their primary cilia as they progress through the cell cycle. OPC primary cilia are also disassembled as OPCs differentiate into oligodendrocytes. When kinesin family member 3a (Kif3a), a gene critical for primary cilium assembly, was conditionally deleted from adult OPCs in vivo (Pdgfrα‐CreER™:: Kif3afl/fl transgenic mice), OPCs failed to assemble primary cilia. Kif3a‐deletion was also associated with reduced OPC proliferation and oligodendrogenesis in the corpus callosum and motor cortex and a progressive impairment of fine motor coordination.
Collapse
Affiliation(s)
- Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Megan O'Rourke
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Shannon J Beasley
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Loic Auderset
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Yilan Zhen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Renee E Pepper
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Robert Gasperini
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.,School of Medicine, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
30
|
Mozafari S, Deboux C, Laterza C, Ehrlich M, Kuhlmann T, Martino G, Baron-Van Evercooren A. Beneficial contribution of induced pluripotent stem cell-progeny to Connexin 47 dynamics during demyelination-remyelination. Glia 2020; 69:1094-1109. [PMID: 33301181 PMCID: PMC7984339 DOI: 10.1002/glia.23950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
Oligodendrocytes are extensively coupled to astrocytes, a phenomenon ensuring glial homeostasis and maintenance of central nervous system myelin. Molecular disruption of this communication occurs in demyelinating diseases such as multiple sclerosis. Less is known about the vulnerability and reconstruction of the panglial network during adult demyelination‐remyelination. Here, we took advantage of lysolcithin‐induced demyelination to investigate the expression dynamics of the oligodendrocyte specific connexin 47 (Cx47) and to some extent that of astrocyte Cx43, and whether this dynamic could be modulated by grafted induced pluripotent stem cell (iPSC)‐neural progeny. Our data show that disruption of Cx43‐Cx47 mediated hetero‐cellular gap‐junction intercellular communication following demyelination is larger in size than demyelination. Loss of Cx47 expression is timely rescued during remyelination and accelerated by the grafted neural precursors. Moreover, mouse and human iPSC‐derived oligodendrocytes express Cx47, which co‐labels with astrocyte Cx43, indicating their integration into the panglial network. These data suggest that in rodents, full lesion repair following transplantation occurs by panglial reconstruction in addition to remyelination. Targeting panglial elements by cell therapy or pharmacological compounds may help accelerating or stabilizing re/myelination in myelin disorders.
Collapse
Affiliation(s)
- Sabah Mozafari
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cyrille Deboux
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| | - Cecilia Laterza
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy.,Industrial Engineering Department, University of Padova, Padova, Italy
| | - Marc Ehrlich
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Gianvito Martino
- Institute of Experimental Neurology-DIBIT 2, Division of Neuroscience, IRCCS San Raffaele Hospital and Vita San Raffaele University, Milan, Italy
| | - Anne Baron-Van Evercooren
- INSERM, U1127, Paris, France.,CNRS, UMR 7225, Paris, France.,Sorbonne Université UPMC Paris 06, UM-75, Paris, France.,ICM-GH Pitié-Salpêtrière, Paris, France
| |
Collapse
|
31
|
Köhler S, Schmidt H, Fülle P, Hirrlinger J, Winkler U. A Dual Nanosensor Approach to Determine the Cytosolic Concentration of ATP in Astrocytes. Front Cell Neurosci 2020; 14:565921. [PMID: 33192312 PMCID: PMC7530325 DOI: 10.3389/fncel.2020.565921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/26/2020] [Indexed: 11/17/2022] Open
Abstract
Adenosine triphosphate (ATP) is the central energy carrier of all cells and knowledge on the dynamics of the concentration of ATP ([ATP]) provides important insights into the energetic state of a cell. Several genetically encoded fluorescent nanosensors for ATP were developed, which allow following the cytosolic [ATP] at high spatial and temporal resolution using fluorescence microscopy. However, to calibrate the fluorescent signal to [ATP] has remained challenging. To estimate basal cytosolic [ATP] ([ATP]0) in astrocytes, we here took advantage of two ATP nanosensors of the ATeam-family (ATeam1.03; ATeam1.03YEMK) with different affinities for ATP. Altering [ATP] by external stimuli resulted in characteristic pairs of signal changes of both nanosensors, which depend on [ATP]0. Using this dual nanosensor strategy and epifluorescence microscopy, [ATP]0 was estimated to be around 1.5 mM in primary cultures of cortical astrocytes from mice. Furthermore, in astrocytes in acutely isolated cortical slices from mice expressing both nanosensors after stereotactic injection of AAV-vectors, 2-photon microscopy revealed [ATP]0 of 0.7 mM to 1.3 mM. Finally, the change in [ATP] induced in the cytosol of cultured cortical astrocytes by application of azide, glutamate, and an increased extracellular concentration of K+ were calculated as −0.50 mM, −0.16 mM, and 0.07 mM, respectively. In summary, the dual nanosensor approach adds another option for determining the concentration of [ATP] to the increasing toolbox of fluorescent nanosensors for metabolites. This approach can also be applied to other metabolites when two sensors with different binding properties are available.
Collapse
Affiliation(s)
- Susanne Köhler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Hartmut Schmidt
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| | - Paula Fülle
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Wilhelm-Ostwald-Schule, Gymnasium der Stadt Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| | - Ulrike Winkler
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Structural myelin defects are associated with low axonal ATP levels but rapid recovery from energy deprivation in a mouse model of spastic paraplegia. PLoS Biol 2020; 18:e3000943. [PMID: 33196637 PMCID: PMC7704050 DOI: 10.1371/journal.pbio.3000943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 11/30/2020] [Accepted: 10/22/2020] [Indexed: 11/19/2022] Open
Abstract
In several neurodegenerative disorders, axonal pathology may originate from impaired oligodendrocyte-to-axon support of energy substrates. We previously established transgenic mice that allow measuring axonal ATP levels in electrically active optic nerves. Here, we utilize this technique to explore axonal ATP dynamics in the Plpnull/y mouse model of spastic paraplegia. Optic nerves from Plpnull/y mice exhibited lower and more variable basal axonal ATP levels and reduced compound action potential (CAP) amplitudes, providing a missing link between axonal pathology and a role of oligodendrocytes in brain energy metabolism. Surprisingly, when Plpnull/y optic nerves are challenged with transient glucose deprivation, both ATP levels and CAP decline slower, but recover faster upon reperfusion of glucose. Structurally, myelin sheaths display an increased frequency of cytosolic channels comprising glucose and monocarboxylate transporters, possibly facilitating accessibility of energy substrates to the axon. These data imply that complex metabolic alterations of the axon–myelin unit contribute to the phenotype of Plpnull/y mice. Imaging of ATP dynamics in the optic nerve axons of mice lacking the major myelin protein PLP (a model of spastic paraplegia) reveals complex alterations in the metabolic interaction between oligodendrocytes and axons, associated with structural deficits of myelin.
Collapse
|
33
|
Wrapping glia regulates neuronal signaling speed and precision in the peripheral nervous system of Drosophila. Nat Commun 2020; 11:4491. [PMID: 32901033 PMCID: PMC7479103 DOI: 10.1038/s41467-020-18291-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
The functionality of the nervous system requires transmission of information along axons with high speed and precision. Conductance velocity depends on axonal diameter whereas signaling precision requires a block of electrical crosstalk between axons, known as ephaptic coupling. Here, we use the peripheral nervous system of Drosophila larvae to determine how glia regulates axonal properties. We show that wrapping glial differentiation depends on gap junctions and FGF-signaling. Abnormal glial differentiation affects axonal diameter and conductance velocity and causes mild behavioral phenotypes that can be rescued by a sphingosine-rich diet. Ablation of wrapping glia does not further impair axonal diameter and conductance velocity but causes a prominent locomotion phenotype that cannot be rescued by sphingosine. Moreover, optogenetically evoked locomotor patterns do not depend on conductance speed but require the presence of wrapping glial processes. In conclusion, our data indicate that wrapping glia modulates both speed and precision of neuronal signaling.
Collapse
|
34
|
Yazdankhah M, Shang P, Ghosh S, Hose S, Liu H, Weiss J, Fitting CS, Bhutto IA, Zigler JS, Qian J, Sahel JA, Sinha D, Stepicheva NA. Role of glia in optic nerve. Prog Retin Eye Res 2020; 81:100886. [PMID: 32771538 DOI: 10.1016/j.preteyeres.2020.100886] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Glial cells are critically important for maintenance of neuronal activity in the central nervous system (CNS), including the optic nerve (ON). However, the ON has several unique characteristics, such as an extremely high myelination level of retinal ganglion cell (RGC) axons throughout the length of the nerve (with virtually all fibers myelinated by 7 months of age in humans), lack of synapses and very narrow geometry. Moreover, the optic nerve head (ONH) - a region where the RGC axons exit the eye - represents an interesting area that is morphologically distinct in different species. In many cases of multiple sclerosis (demyelinating disease of the CNS) vision problems are the first manifestation of the disease, suggesting that RGCs and/or glia in the ON are more sensitive to pathological conditions than cells in other parts of the CNS. Here, we summarize current knowledge on glial organization and function in the ON, focusing on glial support of RGCs. We cover both well-established concepts on the important role of glial cells in ON health and new findings, including novel insights into mechanisms of remyelination, microglia/NG2 cell-cell interaction, astrocyte reactivity and the regulation of reactive astrogliosis by mitochondrial fragmentation in microglia.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peng Shang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph Weiss
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher S Fitting
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Imran A Bhutto
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Samuel Zigler
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiang Qian
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institut de la Vision, INSERM, CNRS, Sorbonne Université, F-75012, Paris, France
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
35
|
Bouçanova F, Pollmeier G, Sandor K, Morado Urbina C, Nijssen J, Médard JJ, Bartesaghi L, Pellerin L, Svensson CI, Hedlund E, Chrast R. Disrupted function of lactate transporter MCT1, but not MCT4, in Schwann cells affects the maintenance of motor end-plate innervation. Glia 2020; 69:124-136. [PMID: 32686211 DOI: 10.1002/glia.23889] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Recent studies in neuron-glial metabolic coupling have shown that, in the CNS, astrocytes and oligodendrocytes support neurons with energy-rich lactate/pyruvate via monocarboxylate transporters (MCTs). The presence of such transporters in the PNS, in both Schwann cells and neurons, has prompted us to question if a similar interaction may be present. Here we describe the generation and characterization of conditional knockout mouse models where MCT1 or MCT4 is specifically deleted in Schwann cells (named MCT1 and MCT4 cKO). We show that MCT1 cKO and MCT4 cKO mice develop normally and that myelin in the PNS is preserved. However, MCT1 expressed by Schwann cells is necessary for long-term maintenance of motor end-plate integrity as revealed by disrupted neuromuscular innervation in mutant mice, while MCT4 appears largely dispensable for the support of motor neurons. Concomitant to detected structural alterations, lumbar motor neurons from MCT1 cKO mice show transcriptional changes affecting cytoskeletal components, transcriptional regulators, and mitochondria related transcripts, among others. Together, our data indicate that MCT1 plays a role in Schwann cell-mediated maintenance of motor end-plate innervation thus providing further insight into the emerging picture of the biology of the axon-glia metabolic crosstalk.
Collapse
Affiliation(s)
- Filipa Bouçanova
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gill Pollmeier
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katalin Sandor
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carlos Morado Urbina
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Jacques Médard
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luca Bartesaghi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques, UMR5536 CNRS, LabEx TRAIL-IBIO, Université de Bordeaux, Bordeaux Cedex, France.,Inserm U1082, Université de Poitiers, Poitiers Cedex, France
| | - Camilla I Svensson
- Department of Physiology and Pharmacology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Roman Chrast
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Mesentier-Louro LA, Shariati MA, Dalal R, Camargo A, Kumar V, Shamskhou EA, de Jesus Perez V, Liao YJ. Systemic hypoxia led to little retinal neuronal loss and dramatic optic nerve glial response. Exp Eye Res 2020; 193:107957. [PMID: 32032627 PMCID: PMC7673281 DOI: 10.1016/j.exer.2020.107957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 02/03/2020] [Indexed: 01/23/2023]
Abstract
Vision loss is a devastating consequence of systemic hypoxia, but the cellular mechanisms are unclear. We investigated the impact of acute hypoxia in the retina and optic nerve. We induced systemic hypoxia (10% O2) in 6-8w mice for 48 h and performed in vivo imaging using optical coherence tomography (OCT) at baseline and after 48 h to analyze structural changes in the retina and optic nerve. We analyzed glial cellular and molecular changes by histology and immunofluorescence and the impact of pretreatment with 4-phenylbutyric acid (4-PBA) in oligodendroglia survival. After 48 h hypoxia, we found no change in ganglion cell complex thickness and no loss of retinal ganglion cells. Despite this, there was significantly increased expression of CCAAT-enhancer-binding protein homologous protein (CHOP), a marker of endoplasmic reticulum stress, in the retina and optic nerve. In addition, hypoxia induced obvious increase of GFAP expression in the anterior optic nerve, where it co-localized with CHOP, and significant loss of Olig2+ oligodendrocytes. Pretreatment with 4-PBA, which has been shown to reduce endoplasmic reticulum stress, rescued total Olig2+ oligodendrocytes and increased the pool of mature (CC-1+) but not of immature (PDGFRa+) oligodendrocytes. Consistent with a selective vulnerability of the retina and optic nerve in hypoxia, the most striking changes in the 48 h murine model of hypoxia were in glial cells in the optic nerve, including increased CHOP expression in the astrocytes and loss of oligodendrocytes. Our data support a model where glial dysfunction is among the earliest events in systemic hypoxia - suggesting that glia may be a novel target in treatment of hypoxia.
Collapse
Affiliation(s)
| | - Mohammed Ali Shariati
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Alexandra Camargo
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Varun Kumar
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Elya Ali Shamskhou
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Vinicio de Jesus Perez
- Department of Pulmonary Medicine, Stanford University, School of Medicine, Stanford, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University, School of Medicine, Stanford, CA, USA; Department of Neurology, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|
37
|
Csf1 Deficiency Dysregulates Glial Responses to Demyelination and Disturbs CNS White Matter Remyelination. Cells 2019; 9:cells9010099. [PMID: 31906095 PMCID: PMC7017166 DOI: 10.3390/cells9010099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 12/30/2022] Open
Abstract
Remyelination, a highly efficient central nervous system (CNS) regenerative process, is performed by oligodendrocyte progenitor cells (OPCs), which are recruited to the demyelination sites and differentiate into mature oligodendrocytes to form a new myelin sheath. Microglia, the specialized CNS-resident phagocytes, were shown to support remyelination through secretion of factors stimulating OPC recruitment and differentiation, and their pharmacological depletion impaired remyelination. Macrophage colony-stimulating factor (Csf1) has been implicated in the control of recruitment and polarization of microglia/macrophages in injury-induced CNS inflammation. However, it remains unclear how Csf1 regulates a glial inflammatory response to demyelination as well as axonal survival and new myelin formation. Here, we have investigated the effects of the inherent Csf1 deficiency in a murine model of remyelination. We showed that remyelination was severely impaired in Csf1-/- mutant mice despite the fact that reduction in monocyte/microglia accumulation affects neither the number of OPCs recruited to the demyelinating lesion nor their differentiation. We identified a specific inflammatory gene expression signature and found aberrant astrocyte activation in Csf1-/- mice. We conclude that Csf1-dependent microglia activity is essential for supporting the equilibrium between microglia and astrocyte pro-inflammatory vs. regenerative activation, demyelinated axons integration and, ultimately, reconstruction of damaged white matter.
Collapse
|
38
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
39
|
Diverse Role of Biological Plasticity in Low Back Pain and Its Impact on Sensorimotor Control of the Spine. J Orthop Sports Phys Ther 2019; 49:389-401. [PMID: 31151376 DOI: 10.2519/jospt.2019.8716] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pain is complex. It is no longer acceptable to consider pain solely as a peripheral phenomenon involving activation of nociceptive neurons. The contemporary understanding of pain involves consideration of different underlying pain mechanisms and an increasing awareness of plasticity in all of the biological systems. Of note, recent advances in technology and understanding have highlighted the critical importance of neuroimmune interactions, both in the peripheral and central nervous systems, and the interaction between the nervous system and body tissues in the development and maintenance of pain, including low back pain (LBP). Further, the biology of many tissues changes when challenged by pain and injury, as reported in a growing body of literature on the biology of muscle, fat, and connective tissue. These advances in understanding of the complexity of LBP have implications for our understanding of pain and its interaction with the motor system, and may change how we consider motor control in the rehabilitation of LBP. This commentary provides a state-of-the-art overview of plasticity of biology in LBP. The paper is divided into 4 parts that address (1) biology of pain mechanisms, (2) neuroimmune interaction in the central nervous system, (3) neuroimmune interaction in the periphery, and (4) brain and peripheral tissue interaction. Each section considers the implications for clinical management of LBP. J Orthop Sports Phys Ther 2019;49(6):389-401. doi:10.2519/jospt.2019.8716.
Collapse
|
40
|
Optic Nerve Regeneration: Considerations on Treatment of Acute Optic Neuropathy and End-Stage Disease. CURRENT OPHTHALMOLOGY REPORTS 2019. [DOI: 10.1007/s40135-019-00194-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
41
|
Yoon G, Cho KA, Song J, Kim YK. Transcriptomic Analysis of High Fat Diet Fed Mouse Brain Cortex. Front Genet 2019; 10:83. [PMID: 30838024 PMCID: PMC6389608 DOI: 10.3389/fgene.2019.00083] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
High fat diet can lead to metabolic diseases such as obesity and diabetes known to be chronic inflammatory diseases with high prevalence worldwide. Recent studies have reported cognitive dysfunction in obese patients is caused by a high fat diet. Accordingly, such dysfunction is called "type 3 diabetes" or "diabetic dementia." Although dysregulation of protein-coding genes has been extensively studied, profiling of non-coding RNAs including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) has not been reported yet. Therefore, the objective of this study was to obtain profiles of diverse RNAs and determine their patterns of alteration in high fat fed brain cortex compared to normal brain cortex. To investigate regulatory roles of both coding and non-coding RNAs in high fat diet brain, we performed RNA sequencing of ribosomal RNA-depleted RNAs and identified genome-wide lncRNAs and circRNAs expression and co-expression patterns of mRNAs in high fat diet mouse brain cortex. Our results showed expression levels of mRNAs related to neurogenesis, synapse, and calcium signaling were highly changed in high fat diet fed cortex. In addition, numerous differentially expressed lncRNAs and circRNAs were identified. Our study provides valuable expression profiles and potential function of both coding and non-coding RNAs in high fat diet fed brain cortex.
Collapse
Affiliation(s)
- Gwangho Yoon
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, South Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, South Korea
| |
Collapse
|
42
|
Simões RV, Cabañas ME, Loreiro C, Illa M, Crispi F, Gratacós E. Assessment of prenatal cerebral and cardiac metabolic changes in a rabbit model of fetal growth restriction based on 13C-labelled substrate infusions and ex vivo multinuclear HRMAS. PLoS One 2018; 13:e0208784. [PMID: 30589837 PMCID: PMC6307735 DOI: 10.1371/journal.pone.0208784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/25/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We have used a previously reported rabbit model of fetal growth restriction (FGR), reproducing perinatal neurodevelopmental and cardiovascular impairments, to investigate the main relative changes in cerebral and cardiac metabolism of term FGR fetuses during nutrient infusion. METHODS FGR was induced in 9 pregnant New Zealand rabbits at 25 days of gestation: one horn used as FGR, by partial ligation of uteroplacental vessels, and the contralateral as control (appropriate for gestation age, AGA). At 30 days of gestation, fasted mothers under anesthesia were infused i.v. with 1-13C-glucose (4 mothers), 2-13C-acetate (3 mothers), or not infused (2 mothers). Fetal brain and heart samples were quickly harvested and frozen down. Brain cortex and heart apex regions from 30 fetuses were studied ex vivo by HRMAS at 4°C, acquiring multinuclear 1D and 2D spectra. The data were processed, quantified by peak deconvolution or integration, and normalized to sample weight. RESULTS Most of the total 13C-labeling reaching the fetal brains/hearts (80-90%) was incorporated to alanine and lactate (cytosol), and to the glutamine-glutamate pool (mitochondria). Acetate-derived lactate (Lac C2C3) had a slower turnover in FGR brains (~ -20%). In FGR hearts, mitochondrial turnover of acetate-derived glutamine (Gln C4) was slower (-23%) and there was a stronger accumulation of phospholipid breakdown products (glycerophosphoethanolamine and glycerophosphocholine, +50%), resembling the profile of non-infused control hearts. CONCLUSIONS Our results indicate specific functional changes in cerebral and cardiac metabolism of FGR fetuses under nutrient infusion, suggesting glial impairment and restricted mitochondrial metabolism concomitant with slower cell membrane turnover in cardiomyocytes, respectively. These prenatal metabolic changes underlie neurodevelopmental and cardiovascular problems observed in this FGR model and in clinical patients, paving the way for future studies aimed at evaluating metabolic function postnatally and in response to stress and/or treatment.
Collapse
Affiliation(s)
- Rui V. Simões
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
- * E-mail:
| | - Miquel E. Cabañas
- Servei de Resonància Magnètica Nuclear, Universitat Autònoma de Barcelona (UAB), SPAIN
| | - Carla Loreiro
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Miriam Illa
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Fatima Crispi
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| | - Eduard Gratacós
- Fetal i+d Fetal Medicine Reseach Center, BCNatal—Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), ICGON, IDIBAPS, University of Barcelona, Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, SPAIN
| |
Collapse
|
43
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
44
|
Yu X, Cheng G, Zhang L, Zhang Y, Wang Q, Zhao M, Zeng L, Hu Y, Feng L. N-Phenylquinazolin-2-amine Yhhu4952 as a novel promotor for oligodendrocyte differentiation and myelination. Sci Rep 2018; 8:14040. [PMID: 30232349 PMCID: PMC6145871 DOI: 10.1038/s41598-018-32326-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/23/2018] [Indexed: 11/19/2022] Open
Abstract
Oligodendrocytes are a type of glial cells that ensheath multiple neuronal axons and form myelin. Under pathological conditions, such as multiple sclerosis (MS), inflammatory damage to myelin and oligodendrocytes leads to demyelination. Although the demyelinated regions can partially resolve functional deficits through remyelination, however, as the disease progresses, remyelination typically becomes incomplete and ultimately fails. One possible explanation for this failure is the activation of the Notch pathway in MS lesions, which impedes oligodendrocyte precursor cells (OPCs) at maturation. This leads to a potential target for remyelination. Here, we have identified a compound Yhhu4952 that promoted the maturation of cultured OPCs in a dose-dependent and time-dependent manner. Neonatal rats showed a significant increase in the expression of myelin basic protein (MBP) and the prevalence of mature oligodendrocytes in the corpus callosum after Yhhu4952 treatment. The compound was also effective in promoting remyelination in cuprizone-induced demyelination model and improving severity scores in experimental autoimmune encephalomyelitis (EAE) model. Mechanism studies revealed that Yhhu4952 promotes OPC differentiation through the inhibition of the Jagged1-Notch1 pathway. These findings suggest Yhhu4952 is potentially useful for proceeding oligodendrocyte differentiation and remyelination.
Collapse
Affiliation(s)
- Xueli Yu
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lei Zhang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Yu Zhang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Qing Wang
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Mengxue Zhao
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Limin Zeng
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Youhong Hu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Linyin Feng
- CAS Key Laboratory of Receptor Research and Department of Neuropharmacology,Shanghai Institute of Materia Medica, 555 Zu Chongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
45
|
Oligodendrocytes: Development, Physiology and Glucose Metabolism. ADVANCES IN NEUROBIOLOGY 2018; 13:275-294. [PMID: 27885633 DOI: 10.1007/978-3-319-45096-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The glutamate-glutamine cycle is an outstanding example of how essential neuronal-glial interactions are for brain function. For several decades, this and other metabolic cycles in the brain have only included neurons and astrocytes but not oligodendrocytes, the myelinating cells of the central nervous system (CNS). Recent data revealed that oligodendrocytes are highly metabolically active cells in the brain and, therefore, should not be ignored. Using 13C-labelled glucose in combination with nuclear magnetic resonance spectroscopy (MRS) and/or mass spectrometry (MS) it is possible to characterize metabolic functions in primary oligodendrocyte cultures. Mature rat oligodendrocytes avidly metabolize glucose in the cytosol and pyruvate derived from glucose in mitochondria. Moreover, they seem to have the ability of performing anaplerosis from pyruvate, which might enable them to synthesize metabolites de novo and transfer them to neighbouring cells. All these original findings highlight the importance of investigating oligodendrocyte metabolism separately from that of astrocytes and neurons to be able to discern the roles played by the individual partners. This is of particular importance in the white matter where the number of oligodendrocytes is considerable. The present book chapter provides some background on oligodendrocyte biology and physiology and summarizes the not very extensive information published on glucose metabolism in oligodendrocytes.
Collapse
|
46
|
Köhler S, Winkler U, Sicker M, Hirrlinger J. NBCe1 mediates the regulation of the NADH/NAD + redox state in cortical astrocytes by neuronal signals. Glia 2018; 66:2233-2245. [PMID: 30208253 DOI: 10.1002/glia.23504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/19/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
Abstract
Astrocytes are a glial cell type, which is indispensable for brain energy metabolism. Within cells, the NADH/NAD+ redox state is a crucial node in metabolism connecting catabolic pathways to oxidative phosphorylation and ATP production in mitochondria. To characterize the dynamics of the intracellular NADH/NAD+ redox state in cortical astrocytes Peredox, a genetically encoded sensor for the NADH/NAD+ redox state, was expressed in cultured cortical astrocytes as well as in cortical astrocytes in acutely isolated brain slices. Calibration of the sensor in cultured astrocytes revealed a mean basal cytosolic NADH/NAD+ redox ratio of about 0.01; however, with a broad distribution and heterogeneity in the cell population, which was mirrored by a heterogeneous basal cellular concentration of lactate. Inhibition of glucose uptake decreased the NADH/NAD+ redox state while inhibition of lactate dehydrogenase or of lactate release resulted in an increase in the NADH/NAD+ redox ratio. Furthermore, the NADH/NAD+ redox state was regulated by the extracellular concentration of K+ , and application of the neurotransmitters ATP or glutamate increased the NADH/NAD+ redox state dependent on purinergic receptors and glutamate uptake, respectively. This regulation by K+ , ATP, and glutamate involved NBCe1 mediated sodium-bicarbonate transport. These results demonstrate that the NADH/NAD+ redox state in astrocytes is a metabolic node regulated by neuronal signals reflecting physiological activity, most likely contributing to adjust astrocytic metabolism to energy demand of the brain.
Collapse
Affiliation(s)
- Susanne Köhler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Ulrike Winkler
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Marit Sicker
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany
| | - Johannes Hirrlinger
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, University of Leipzig, Leipzig, Germany.,Department of Neurogenetics, Max-Planck-Institute for Experimental Medicine, Göttingen, Germany
| |
Collapse
|
47
|
Fasciani I, Pluta P, González-Nieto D, Martínez-Montero P, Molano J, Paíno CL, Millet O, Barrio LC. Directional coupling of oligodendrocyte connexin-47 and astrocyte connexin-43 gap junctions. Glia 2018; 66:2340-2352. [PMID: 30144323 DOI: 10.1002/glia.23471] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
Intercellular communication via gap junction channels between oligodendrocytes and between astrocytes as well as between these cell types is essential to maintain the integrity of myelin in the central nervous system. Oligodendrocyte gap junction connexin-47 (Cx47) is a key element in this crosstalk and indeed, mutations in human Cx47 cause severe myelin disorders. However, the permeation properties of channels of Cx47 alone and in heterotypic combination with astrocyte Cx43 remain unclear. We show here that Cx47 contains three extra residues at 5' amino-terminus that play a critical role in the channel pore structure and account for relative low ionic conductivity, cationic permselectivity and voltage-gating properties of oligodendrocyte-oligodendrocyte Cx47 channels. Regarding oligodendrocyte-astrocyte coupling, heterotypic channels formed by Cx47 with Cx43 exhibit ionic and chemical rectification, which creates a directional diffusion barrier for the movement of ions and larger negatively charged molecules from cells expressing Cx47 to those with Cx43. The restrictive permeability of Cx47 channels and the diffusion barrier of Cx47-Cx43 channels was abolished by a mutation associated with leukodystrophy, the Cx47P90S, suggesting a novel pathogenic mechanism underlying myelin disorders that involves alterations in the panglial permeation.
Collapse
Affiliation(s)
- Ilaria Fasciani
- Unit of Experimental Neurology and Neurobiology, "Ramón y Cajal" Hospital-IRYCIS, Carretera de Colmenar km 9, Madrid, 28034, Spain
| | - Paula Pluta
- Structural Biology Unit of CIC bioGUNE, Bizkaia Technology Park, Building 800, Derio, 48160, Spain
| | - Daniel González-Nieto
- Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 28040 Madrid, and Center for Biomedical Technology, Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Paloma Martínez-Montero
- Unit of Molecular Genetics-INGEMM, Hospital "La Paz"-IDIPAZ, Paseo de la Castellana 261, 28046-Madrid, Spain
| | - Jesús Molano
- Unit of Molecular Genetics-INGEMM, Hospital "La Paz"-IDIPAZ, Paseo de la Castellana 261, 28046-Madrid, Spain
| | - Carlos L Paíno
- Unit of Experimental Neurology and Neurobiology, "Ramón y Cajal" Hospital-IRYCIS, Carretera de Colmenar km 9, Madrid, 28034, Spain
| | - Oscar Millet
- Structural Biology Unit of CIC bioGUNE, Bizkaia Technology Park, Building 800, Derio, 48160, Spain
| | - Luis C Barrio
- Unit of Experimental Neurology and Neurobiology, "Ramón y Cajal" Hospital-IRYCIS, Carretera de Colmenar km 9, Madrid, 28034, Spain
| |
Collapse
|
48
|
Schranz AL, Manning KY, Dekaban GA, Fischer L, Jevremovic T, Blackney K, Barreira C, Doherty TJ, Fraser DD, Brown A, Holmes J, Menon RS, Bartha R. Reduced brain glutamine in female varsity rugby athletes after concussion and in non-concussed athletes after a season of play. Hum Brain Mapp 2018; 39:1489-1499. [PMID: 29271016 PMCID: PMC6866259 DOI: 10.1002/hbm.23919] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/07/2017] [Accepted: 12/04/2017] [Indexed: 11/07/2022] Open
Abstract
The purpose of this study was to use non-invasive proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) to monitor changes in prefrontal white matter metabolite levels and tissue microstructure in female rugby players with and without concussion (ages 18-23, n = 64). Evaluations including clinical tests and 3 T MRI were performed at the beginning of a season (in-season) and followed up at the end of the season (off-season). Concussed athletes were additionally evaluated 24-72 hr (n = 14), three months (n = 11), and six months (n = 8) post-concussion. Reduced glutamine at 24-72 hr and three months post-concussion, and reduced glutamine/creatine at three months post-concussion were observed. In non-concussed athletes (n = 46) both glutamine and glutamine/creatine were lower in the off-season compared to in-season. Within the MRS voxel, an increase in fractional anisotropy (FA) and decrease in radial diffusivity (RD) were also observed in the non-concussed athletes, and correlated with changes in glutamine and glutamine/creatine. Decreases in glutamine and glutamine/creatine suggest reduced oxidative metabolism. Changes in FA and RD may indicate neuroinflammation or re-myelination. The observed changes did not correlate with clinical test scores suggesting these imaging metrics may be more sensitive to brain injury and could aid in assessing recovery of brain injury from concussion.
Collapse
Affiliation(s)
- Amy L. Schranz
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Kathryn Y. Manning
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Gregory A. Dekaban
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Lisa Fischer
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Tatiana Jevremovic
- Department of Family Medicine and Fowler Kennedy Sport Medicine ClinicThe University of Western Ontario, 3M Centre, 1151 Richmond Street NorthLondonOntarioN6A 3K7Canada
| | - Kevin Blackney
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Microbiology and ImmunologyThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Dental Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Christy Barreira
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
| | - Timothy J. Doherty
- Department of Physical Medicine and RehabilitationThe University of Western Ontario, Schulich School of Medicine and Dentistry, Parkwood Institute, 550 Wellington Road, Hobbins BuildingLondonOntarioN6C 0A7Canada
| | - Douglas D. Fraser
- Paediatrics Critical Care Medicine, London Health Sciences Centre, Children's Hospital, 800 Commissioners Road EastLondonOntarioN6A 5W9Canada
| | - Arthur Brown
- Molecular Medicine Research Laboratories, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Anatomy and Cell BiologyThe University of Western Ontario, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 3K7Canada
| | - Jeff Holmes
- School of Occupational TherapyThe University of Western Ontario, 1201 Western Road, Elborn CollegeLondonOntarioN6A 1H1Canada
| | - Ravi S. Menon
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| | - Robert Bartha
- Centre for Functional and Metabolic MappingRobarts Research Institute, The University of Western Ontario, 1151 Richmond Street NorthLondonOntarioN6A 5B7Canada
- Department of Medical BiophysicsThe University of Western Ontario, Schulich School of Medicine and Dentistry, 1151 Richmond Street North, Medical Sciences BuildingLondonOntarioN6A 5C1Canada
| |
Collapse
|
49
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
50
|
Gibson EM, Geraghty AC, Monje M. Bad wrap: Myelin and myelin plasticity in health and disease. Dev Neurobiol 2017; 78:123-135. [PMID: 28986960 DOI: 10.1002/dneu.22541] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/31/2017] [Accepted: 10/03/2017] [Indexed: 12/21/2022]
Abstract
Human central nervous system myelin development extends well into the fourth decade of life, and this protracted period underscores the potential for experience to modulate myelination. The concept of myelin plasticity implies adaptability in myelin structure and function in response to experiences during development and beyond. Mounting evidence supports this concept of neuronal activity-regulated changes in myelin-forming cells, including oligodendrocyte precursor cell proliferation, oligodendrogenesis and modulation of myelin microstructure. In healthy individuals, myelin plasticity in associative white matter structures of the brain is implicated in learning and motor function in both rodents and humans. Activity-dependent changes in myelin-forming cells may influence the function of neural networks that depend on the convergence of numerous neural signals on both a temporal and spatial scale. However, dysregulation of myelin plasticity can disadvantageously alter myelin microstructure and result in aberrant circuit function or contribute to pathological cell proliferation. Emerging roles for myelin plasticity in normal neurological function and in disease are discussed. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 123-135, 2018.
Collapse
Affiliation(s)
- Erin M Gibson
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Anna C Geraghty
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|