1
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
2
|
Kuhrt LD, Motta E, Elmadany N, Weidling H, Fritsche-Guenther R, Efe IE, Cobb O, Chatterjee J, Boggs LG, Schnauß M, Diecke S, Semtner M, Anastasaki C, Gutmann DH, Kettenmann H. Neurofibromin 1 mutations impair the function of human induced pluripotent stem cell-derived microglia. Dis Model Mech 2023; 16:dmm049861. [PMID: 37990867 PMCID: PMC10740172 DOI: 10.1242/dmm.049861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition caused by germline mutations in the neurofibromin 1 (NF1) gene. Children with NF1 are prone to the development of multiple nervous system abnormalities, including autism and brain tumors, which could reflect the effect of NF1 mutation on microglia function. Using heterozygous Nf1-mutant mice, we previously demonstrated that impaired purinergic signaling underlies deficits in microglia process extension and phagocytosis in situ. To determine whether these abnormalities are also observed in human microglia in the setting of NF1, we leveraged an engineered isogenic series of human induced pluripotent stem cells to generate human microglia-like (hiMGL) cells heterozygous for three different NF1 gene mutations found in patients with NF1. Whereas all NF1-mutant and isogenic control hiMGL cells expressed classical microglia markers and exhibited similar transcriptomes and cytokine/chemokine release profiles, only NF1-mutant hiMGL cells had defects in P2X receptor activation, phagocytosis and motility. Taken together, these findings indicate that heterozygous NF1 mutations impair a subset of the functional properties of human microglia, which could contribute to the neurological abnormalities seen in children with NF1.
Collapse
Affiliation(s)
- Leonard D. Kuhrt
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Edyta Motta
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Department of Neurosurgery, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Nirmeen Elmadany
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU), Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim (MCTN), University of Heidelberg, 68167 Mannheim, Germany
| | - Hannah Weidling
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Raphaela Fritsche-Guenther
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH Metabolomics Platform, 13353 Berlin, Germany
| | - Ibrahim E. Efe
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lucy G. Boggs
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marina Schnauß
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Sebastian Diecke
- Technology Platform Pluripotent Stem Cells, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Klinik für Augenheilkunde, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H. Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 518000
| |
Collapse
|
3
|
Wei H, Wu X, Withrow J, Cuevas-Diaz Duran R, Singh S, Chaboub LS, Rakshit J, Mejia J, Rolfe A, Herrera JJ, Horner PJ, Wu JQ. Glial progenitor heterogeneity and key regulators revealed by single-cell RNA sequencing provide insight to regeneration in spinal cord injury. Cell Rep 2023; 42:112486. [PMID: 37149868 PMCID: PMC10511029 DOI: 10.1016/j.celrep.2023.112486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/12/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023] Open
Abstract
Recent studies have revealed the heterogeneous nature of astrocytes; however, how diverse constituents of astrocyte-lineage cells are regulated in adult spinal cord after injury and contribute to regeneration remains elusive. We perform single-cell RNA sequencing of GFAP-expressing cells from sub-chronic spinal cord injury models and identify and compare with the subpopulations in acute-stage data. We find subpopulations with distinct functional enrichment and their identities defined by subpopulation-specific transcription factors and regulons. Immunohistochemistry, RNAscope experiments, and quantification by stereology verify the molecular signature, location, and morphology of potential resident neural progenitors or neural stem cells in the adult spinal cord before and after injury and uncover the populations of the intermediate cells enriched in neuronal genes that could potentially transition into other subpopulations. This study has expanded the knowledge of the heterogeneity and cell state transition of glial progenitors in adult spinal cord before and after injury.
Collapse
Affiliation(s)
- Haichao Wei
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Joseph Withrow
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León 64710, Mexico
| | - Simranjit Singh
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Lesley S Chaboub
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jyotirmoy Rakshit
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Julio Mejia
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Andrew Rolfe
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Juan J Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, UTHealth, Houston, TX 77030, USA
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA.
| | - Jia Qian Wu
- The Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
4
|
Logiacco F, Grzegorzek LC, Cordell EC, Popp O, Mertins P, Gutmann DH, Kettenmann H, Semtner M. Neurofibromatosis type 1-dependent alterations in mouse microglia function are not cell-intrinsic. Acta Neuropathol Commun 2023; 11:36. [PMID: 36890585 PMCID: PMC9996880 DOI: 10.1186/s40478-023-01525-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/05/2023] [Indexed: 03/10/2023] Open
Abstract
We previously discovered a sex-by-genotype defect in microglia function using a heterozygous germline knockout mouse model of Neurofibromatosis type 1 (Nf1 ± mice), in which only microglia from male Nf1 ± mice exhibited defects in purinergic signaling. Herein, we leveraged an unbiased proteomic approach to demonstrate that male, but not female, heterozygous Nf1 ± microglia exhibit differences in protein expression, which largely reflect pathways involved in cytoskeletal organization. In keeping with these predicted defects in cytoskeletal function, only male Nf1 ± microglia had reduced process arborization and surveillance capacity. To determine whether these microglial defects were cell autonomous or reflected adaptive responses to Nf1 heterozygosity in other cells in the brain, we generated conditional microglia Nf1-mutant knockout mice by intercrossing Nf1flox/flox with Cx3cr1-CreER mice (Nf1flox/wt; Cx3cr1-CreER mice, Nf1MG ± mice). Surprisingly, neither male nor female Nf1MG ± mouse microglia had impaired process arborization or surveillance capacity. In contrast, when Nf1 heterozygosity was generated in neurons, astrocytes and oligodendrocytes by intercrossing Nf1flox/flox with hGFAP-Cre mice (Nf1flox/wt; hGFAP-Cre mice, Nf1GFAP ± mice), the microglia defects found in Nf1 ± mice were recapitulated. Collectively, these data reveal that Nf1 ± sexually dimorphic microglia abnormalities are likely not cell-intrinsic properties, but rather reflect a response to Nf1 heterozygosity in other brain cells.
Collapse
Affiliation(s)
- Francesca Logiacco
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Laura Cathleen Grzegorzek
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Elizabeth C Cordell
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Oliver Popp
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Marcus Semtner
- Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
| |
Collapse
|
5
|
Deciphering the Genetic Crosstalk between Microglia and Oligodendrocyte Precursor Cells during Demyelination and Remyelination Using Transcriptomic Data. Int J Mol Sci 2022; 23:ijms232314868. [PMID: 36499195 PMCID: PMC9738937 DOI: 10.3390/ijms232314868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Demyelinating disorders show impaired remyelination due to failure in the differentiation of oligodendrocyte progenitor cells (OPCs) into mature myelin-forming oligodendrocytes, a process driven by microglia-OPC crosstalk. Through conducting a transcriptomic analysis of microarray studies on the demyelination-remyelination cuprizone model and using human samples of multiple sclerosis (MS), we identified molecules involved in this crosstalk. Differentially expressed genes (DEGs) of specific regions/cell types were detected in GEO transcriptomic raw data after cuprizone treatment and in MS samples, followed by functional analysis with GO terms and WikiPathways. Additionally, microglia-OPC crosstalk between microglia ligands, OPC receptors and target genes was examined with the NicheNet model. We identified 108 and 166 DEGs in the demyelinated corpus callosum (CC) at 2 and 4 weeks of cuprizone treatment; 427 and 355 DEGs in the remyelinated (4 weeks of cuprizone treatment + 14 days of normal diet) compared to 2- and 4-week demyelinated CC; 252 DEGs in MS samples and 2730 and 12 DEGs in OPC and microglia of 4-week demyelinated CC. At this time point, we found 95 common DEGs in the CC and OPCs, and one common DEG in microglia and OPCs, mostly associated with myelin and lipid metabolism. Crosstalk analysis identified 47 microglia ligands, 43 OPC receptors and 115 OPC target genes, all differentially expressed in cuprizone-treated samples and associated with myelination. Our differential expression pipeline identified demyelination/remyelination transcriptomic biomarkers in studies using diverse platforms and cell types/tissues. Cellular crosstalk analysis yielded novel markers of microglia ligands, OPC receptors and target genes.
Collapse
|
6
|
Codrici E, Popescu ID, Tanase C, Enciu AM. Friends with Benefits: Chemokines, Glioblastoma-Associated Microglia/Macrophages, and Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms23052509. [PMID: 35269652 PMCID: PMC8910233 DOI: 10.3390/ijms23052509] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Glioma is the most common primary intracranial tumor and has the greatest prevalence of all brain tumors. Treatment resistance and tumor recurrence in GBM are mostly explained by considerable alterations within the tumor microenvironment, as well as extraordinary cellular and molecular heterogeneity. Soluble factors, extracellular matrix components, tissue-resident cell types, resident or newly recruited immune cells together make up the GBM microenvironment. Regardless of many immune cells, a profound state of tumor immunosuppression is supported and developed, posing a considerable hurdle to cancer cells' immune-mediated destruction. Several studies have suggested that various GBM subtypes present different modifications in their microenvironment, although the importance of the microenvironment in treatment response has yet to be determined. Understanding the microenvironment and how it changes after therapies is critical because it can influence the remaining invasive GSCs and lead to recurrence. This review article sheds light on the various components of the GBM microenvironment and their roles in tumoral development, as well as immune-related biological processes that support the interconnection/interrelationship between different cell types. Also, we summarize the current understanding of the modulation of soluble factors and highlight the dysregulated inflammatory chemokine/specific receptors cascades/networks and their significance in tumorigenesis, cancer-related inflammation, and metastasis.
Collapse
Affiliation(s)
- Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Ionela-Daniela Popescu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 031593 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (E.C.); (I.-D.P.); (A.-M.E.)
| |
Collapse
|
7
|
Salcman B, Affleck K, Bulfone-Paus S. P2X Receptor-Dependent Modulation of Mast Cell and Glial Cell Activities in Neuroinflammation. Cells 2021; 10:cells10092282. [PMID: 34571930 PMCID: PMC8471135 DOI: 10.3390/cells10092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 11/27/2022] Open
Abstract
Localisation of mast cells (MCs) at the abluminal side of blood vessels in the brain favours their interaction with glial cells, neurons, and endothelial cells, resulting in the activation of these cells and the release of pro-inflammatory mediators. In turn, stimulation of glial cells, such as microglia, astrocytes, and oligodendrocytes may result in the modulation of MC activities. MCs, microglia, astrocytes, and oligodendrocytes all express P2X receptors (P2XRs) family members that are selectively engaged by ATP. As increased concentrations of extracellular adenosine 5′-triphosphate (ATP) are present in the brain in neuropathological conditions, P2XR activation in MCs and glial cells contributes to the control of their communication and amplification of the inflammatory response. In this review we discuss P2XR-mediated MC activation, its bi-directional effect on microglia, astrocytes and oligodendrocytes and role in neuroinflammation.
Collapse
Affiliation(s)
- Barbora Salcman
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
| | - Karen Affleck
- GlaxoSmithKline, Immunology Research Unit, Stevenage SG1 2NY, UK;
| | - Silvia Bulfone-Paus
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research, University of Manchester, Manchester M13 9NT, UK;
- Correspondence:
| |
Collapse
|
8
|
Ikezu S, Yeh H, Delpech JC, Woodbury ME, Van Enoo AA, Ruan Z, Sivakumaran S, You Y, Holland C, Guillamon-Vivancos T, Yoshii-Kitahara A, Botros MB, Madore C, Chao PH, Desani A, Manimaran S, Kalavai SV, Johnson WE, Butovsky O, Medalla M, Luebke JI, Ikezu T. Inhibition of colony stimulating factor 1 receptor corrects maternal inflammation-induced microglial and synaptic dysfunction and behavioral abnormalities. Mol Psychiatry 2021; 26:1808-1831. [PMID: 32071385 PMCID: PMC7431382 DOI: 10.1038/s41380-020-0671-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/23/2022]
Abstract
Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.
Collapse
Affiliation(s)
- Seiko Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
| | - Hana Yeh
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Jean-Christophe Delpech
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Maya E Woodbury
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Alicia A Van Enoo
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Zhi Ruan
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Sudhir Sivakumaran
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Yang You
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Carl Holland
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Asuka Yoshii-Kitahara
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Mina B Botros
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pin-Hao Chao
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Ankita Desani
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Solaiappan Manimaran
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Srinidhi Venkatesan Kalavai
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - W Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology and Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Medalla
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Jennifer I Luebke
- Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Tsuneya Ikezu
- Departments of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Department of Neurology and Alzheimer's Disease Center, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Krek A, Ma W, Zhu Y, Ji J, Calinawan A, Whiteaker JR, Colaprico A, Stathias V, Omelchenko T, Song X, Raman P, Guo Y, Brown MA, Ivey RG, Szpyt J, Guha Thakurta S, Gritsenko MA, Weitz KK, Lopez G, Kalayci S, Gümüş ZH, Yoo S, da Veiga Leprevost F, Chang HY, Krug K, Katsnelson L, Wang Y, Kennedy JJ, Voytovich UJ, Zhao L, Gaonkar KS, Ennis BM, Zhang B, Baubet V, Tauhid L, Lilly JV, Mason JL, Farrow B, Young N, Leary S, Moon J, Petyuk VA, Nazarian J, Adappa ND, Palmer JN, Lober RM, Rivero-Hinojosa S, Wang LB, Wang JM, Broberg M, Chu RK, Moore RJ, Monroe ME, Zhao R, Smith RD, Zhu J, Robles AI, Mesri M, Boja E, Hiltke T, Rodriguez H, Zhang B, Schadt EE, Mani DR, Ding L, Iavarone A, Wiznerowicz M, Schürer S, Chen XS, Heath AP, Rokita JL, Nesvizhskii AI, Fenyö D, Rodland KD, Liu T, Gygi SP, Paulovich AG, Resnick AC, Storm PB, Rood BR, Wang P. Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell 2020; 183:1962-1985.e31. [PMID: 33242424 PMCID: PMC8143193 DOI: 10.1016/j.cell.2020.10.044] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Antonio Colaprico
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard G Ivey
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Szpyt
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Guha Thakurta
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jacob J Kennedy
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Lei Zhao
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valerie Baubet
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lamiya Tauhid
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jena V Lilly
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey Farrow
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Young
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah Leary
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Javad Nazarian
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA; Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich 8032, Switzerland
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Dayton, OH 45404, USA
| | - Samuel Rivero-Hinojosa
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Joshua M Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Matilda Broberg
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 61-203 Poznań, Poland
| | - Stephan Schürer
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Xi S Chen
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allison P Heath
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Fenyö
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Steven P Gygi
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Brian R Rood
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
10
|
Miedema A, Wijering MHC, Eggen BJL, Kooistra SM. High-Resolution Transcriptomic and Proteomic Profiling of Heterogeneity of Brain-Derived Microglia in Multiple Sclerosis. Front Mol Neurosci 2020; 13:583811. [PMID: 33192299 PMCID: PMC7654237 DOI: 10.3389/fnmol.2020.583811] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are important for central nervous system (CNS) homeostasis and first to respond to tissue damage and perturbations. Microglia are heterogeneous cells; in case of pathology, microglia adopt a range of phenotypes with altered functions. However, how these different microglia subtypes are implicated in CNS disease is largely unresolved. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS, characterized by inflammation and axonal degeneration, ultimately leading to neurological decline. One way microglia are implicated in MS is through stimulation of remyelination. They facilitate efficient remyelination by phagocytosis of myelin debris. In addition, microglia recruit oligodendrocyte precursor cells (OPCs) to demyelinated areas and stimulate remyelination. The development of high-resolution technologies to profile individual cells has greatly contributed to our understanding of microglia heterogeneity and function under normal and pathological conditions. Gene expression profiling technologies have evolved from whole tissue RNA sequencing toward single-cell or nucleus sequencing. Single microglia proteomic profiles are also increasingly generated, offering another layer of high-resolution data. Here, we will review recent studies that have employed these technologies in the context of MS and their respective advantages and disadvantages. Moreover, recent developments that allow for (single) cell profiling while retaining spatial information and tissue context will be discussed.
Collapse
Affiliation(s)
- Anneke Miedema
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marion H C Wijering
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bart J L Eggen
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Susanne M Kooistra
- Section Molecular Neurobiology, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
11
|
Acute brain injuries trigger microglia as an additional source of the proteoglycan NG2. Acta Neuropathol Commun 2020; 8:146. [PMID: 32843103 PMCID: PMC7449013 DOI: 10.1186/s40478-020-01016-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/10/2020] [Indexed: 01/07/2023] Open
Abstract
NG2 is a type I transmembrane glycoprotein known as chondroitin sulfate proteoglycan 4 (CSPG4). In the healthy central nervous system, NG2 is exclusively expressed by oligodendrocyte progenitor cells and by vasculature pericytes. A large body of immunohistochemical studies showed that under pathological conditions such as acute brain injuries and experimental autoimmune encephalomyelitis (EAE), a number of activated microglia were NG2 immuno-positive, suggesting NG2 expression in these cells. Alternative explanations for the microglial NG2 labeling consider the biochemical properties of NG2 or the phagocytic activity of activated microglia. Reportedly, the transmembrane NG2 proteoglycan can be cleaved by a variety of proteases to deposit the NG2 ectodomain into the extracellular matrix. The ectodomain, however, could also stick to the microglial surface. Since microglia are phagocytic cells engulfing debris of dying cells, it is difficult to identify a genuine expression of NG2. Recent studies showing (1) pericytes giving rise to microglial after stroke, and (2) immune cells of NG2-EYFP knock-in mice lacking NG2 expression in an EAE model generated doubts for the de novo expression of NG2 in microglia after acute brain injuries. In the current study, we took advantage of three knock-in mouse lines (NG2-CreERT2, CX3CR1-EGFP and NG2-EYFP) to study NG2 expression indicated by transgenic fluorescent proteins in microglia after tMCAO (transient middle cerebral artery occlusion) or cortical stab wound injury (SWI). We provide strong evidence that NG2-expressing cells, including OPCs and pericytes, did not differentiate into microglia after acute brain injuries, whereas activated microglia did express NG2 in a disease-dependent manner. A subset of microglia continuously activated the NG2 gene at least within the first week after tMCAO, whereas within 3 days after SWI a limited number of microglia at the lesion site transiently expressed NG2. Immunohistochemical studies demonstrated that these microglia with NG2 gene activity also synthesized the NG2 protein, suggesting activated microglia as an additional source of the NG2 proteoglycan after acute brain injuries.
Collapse
|
12
|
Fisch U, Brégère C, Geier F, Chicha L, Guzman R. Neonatal hypoxia-ischemia in rat elicits a region-specific neurotrophic response in SVZ microglia. J Neuroinflammation 2020; 17:26. [PMID: 31954397 PMCID: PMC6969423 DOI: 10.1186/s12974-020-1706-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/08/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent findings describe microglia as modulators of neurogenesis in the subventricular zone (SVZ). SVZ microglia in the adult rat are thought to adopt a neurotrophic phenotype after ischemic stroke. Early postnatal microglia are endogenously activated and may therefore exhibit an increased sensitivity to neonatal hypoxia-ischemia (HI). The goal of this study was to investigate the impact of cortico-striatal HI on the microglial phenotype, function, and gene expression in the early postnatal SVZ. METHODS Postnatal day (P)7 rats underwent sham or right-hemispheric HI surgery. Microglia in the SVZ, the uninjured cortex, and corpus callosum were immunohistochemically analyzed at P10, P20, and P40. The transcriptome of microdissected SVZ and cortical microglia was analyzed at P10 and P20, and the effect of P10 SVZ microglia on neurosphere generation in vitro was studied. RESULTS The microglial response to HI was region-specific. In the SVZ, a microglial accumulation, prolonged activation and phagocytosis was noted that was not observed in the cortex and corpus callosum. The transcriptome of SVZ microglia and cortical microglia were distinct, and after HI, SVZ microglia concurrently upregulated pro- and anti-inflammatory as well as neurotrophic genes. In vitro, microglia isolated from the SVZ supported neurosphere generation in a concentration-dependent manner. CONCLUSIONS Microglia are an inherent cellular component of the early postnatal SVZ and undergo developmental changes that are affected on many aspects by neonatal HI injury. Our results demonstrate that early postnatal SVZ microglia are sensitive to HI injury and display a long-lasting region-specific response including neurotrophic features.
Collapse
Affiliation(s)
- Urs Fisch
- Department of Neurology, University Hospital Basel, University Basel, Basel, Switzerland.
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland.
| | - Catherine Brégère
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Florian Geier
- Bioinformatics Core Facility, Department of Biomedicine, University Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Laurie Chicha
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
| | - Raphael Guzman
- Brain ischemia and regeneration, Department of Biomedicine, University Hospital Basel, University Basel, Basel, Switzerland
- Department of Neurosurgery, University Hospital Basel, University Basel, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| |
Collapse
|
13
|
Al-Ouran R, Wan YW, Mangleburg CG, Lee TV, Allison K, Shulman JM, Liu Z. A Portal to Visualize Transcriptome Profiles in Mouse Models of Neurological Disorders. Genes (Basel) 2019; 10:E759. [PMID: 31561642 PMCID: PMC6826490 DOI: 10.3390/genes10100759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 09/23/2019] [Indexed: 11/29/2022] Open
Abstract
Target nomination for drug development has been a major challenge in the path to finding a cure for several neurological disorders. Comprehensive transcriptome profiles have revealed brain gene expression changes associated with many neurological disorders, and the functional validation of these changes is a critical next step. Model organisms are a proven approach for the elucidation of disease mechanisms, including screening of gene candidates as therapeutic targets. Frequently, multiple models exist for a given disease, creating a challenge to select the optimal model for validation and functional follow-up. To help in nominating the best mouse models for studying neurological diseases, we developed a web portal to visualize mouse transcriptomic data related to neurological disorders: http://mmad.nrihub.org. Users can examine gene expression changes across mouse model studies to help select the optimal mouse model for further investigation. The portal provides access to mouse studies related to Alzheimer's diseases (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic Lateral Sclerosis (ALS), Spinocerebellar ataxia (SCA), and models related to aging.
Collapse
Affiliation(s)
- Rami Al-Ouran
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Ying-Wooi Wan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Carl Grant Mangleburg
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tom V. Lee
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine Allison
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua M. Shulman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhandong Liu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| |
Collapse
|
14
|
Calovi S, Mut-Arbona P, Sperlágh B. Microglia and the Purinergic Signaling System. Neuroscience 2018; 405:137-147. [PMID: 30582977 DOI: 10.1016/j.neuroscience.2018.12.021] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023]
Abstract
Microglia are the main resident immune-competent cell type of the central nervous system (CNS); these cells are highly sensitive to subtle changes in the chemical environment of the brain. Microglia are activated during diverse conditions, such as apoptosis, trauma, inflammation, and infection. The specific activities of microglia result from the confluence of environmental stimuli and the cellular state. It is likely that several signaling systems with different biological functions operate in competition and/or synergy, thus regulating similar microglial behaviors. The purinergic system is one of the fundamental signaling systems that establish microglial behavior in a wide spectrum of conditions. Adenosine tri-phosphate (ATP) belongs to the purinergic signaling system, which includes P2X, P2Y, and P1 receptors, as well as other proteins participating in ATP secretion and extracellular ATP degradation, and molecules that recognize purines as a ligand. In this review, we focus on the latest pre-clinical and basic purinergic system and microglial research, with particular attention to data collected in vivo and ex vivo. This chapter is divided into sections related to microglial ATP release, ATP degradation, and ATP-related actions mediated by P2X and P2Y receptor activation.
Collapse
Affiliation(s)
- Stefano Calovi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Paula Mut-Arbona
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
15
|
Gorse KM, Lafrenaye AD. The Importance of Inter-Species Variation in Traumatic Brain Injury-Induced Alterations of Microglial-Axonal Interactions. Front Neurol 2018; 9:778. [PMID: 30294296 PMCID: PMC6158363 DOI: 10.3389/fneur.2018.00778] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
Interactions between microglia and neuronal components are important for normal CNS function. They are also associated with neuroinflammation and many pathological processes and several studies have explored these interactions in terms of phagocytic engulfment. Much progress has also been made in understanding the consequences of chronic neuroinflammatory changes following trauma. However, little is known about acute alterations to these physical non-phagocytic microglial-neuronal interactions following traumatic brain injury (TBI), and particularly to what degree these post-injury interactions may be influenced by the animal species utilized in pre-clinical models of TBI. To investigate these problems, we evaluated the physical interactions between microglia and injured axons acutely (6 h and 1 day) following central fluid percussion injury (cFPI) in both rats and micro pigs. The physical interactions between Iba-1+ microglia and either normal MBP+ myelinated fibers or APP+ injured axonal swellings in the thalamus were assessed following injury or sham via quantitative image analysis of 3D confocal micrographs. The results indicated that the physical interactions between microglia and injured axonal swellings decreased by nearly half in rats 6 h following cFPI but was consistent with sham control at 1 day post-cFPI. This reduction was also observed in non-injured intact fibers at both timepoints following TBI in the rat. Microglial process interactions with injured axons in the micro pig, however, increased nearly 2-fold compared to interactions with intact axonal segments 1 day post-cFPI. This study shows that the species utilized for in vivo pre-clinical studies influences the manner in which microglial-axonal interactions change following TBI. These species differences can be leveraged to further our understanding of the mechanisms involved in microglial process convergence and how these neuro-immune interactions alter the progression of axonal injury following TBI.
Collapse
Affiliation(s)
- Karen M Gorse
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Audrey D Lafrenaye
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
16
|
Noristani HN, They L, Perrin FE. C57BL/6 and Swiss Webster Mice Display Differences in Mobility, Gliosis, Microcavity Formation and Lesion Volume After Severe Spinal Cord Injury. Front Cell Neurosci 2018; 12:173. [PMID: 29977191 PMCID: PMC6021489 DOI: 10.3389/fncel.2018.00173] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Spinal cord injuries (SCI) are neuropathologies causing enormous physical and emotional anguish as well as irreversibly disabilities with great socio/economic burdens to our society. The availability of multiple mouse strains is important for studying the underlying pathophysiological response after SCI. Although strain differences have been shown to directly affect spontaneous functional recovery following incomplete SCI, its influence after complete lesion of the spinal cord is unclear. To study the influence of mouse strain on recovery after severe SCI, we first carried out behavioral analyses up to 6 weeks following complete transection of the spinal cord in mice with two different genetic backgrounds namely, C57BL/6 and Swiss Webster. Using immunohistochemistry, we then analyzed glial cell reactivity not only at different time-points after injury but also at different distances from the lesion epicenter. Behavioral assessments using CatWalk™ and open field analyses revealed increased mobility (measured using average speed) and differential forelimb gross sensory response in Swiss Webster compared to C57BL/6 mice after complete transection of the spinal cord. Comprehensive histological assessment revealed elevated microglia/macrophage reactivity and a moderate increase in astrogliosis in Swiss Webster that was associated with reduced microcavity formation and reduced lesion volume after spinal cord transection compared to C57BL/6 mice. Our results thus suggest that increased mobility correlates with enhanced gliosis and better tissue protection after complete transection of the spinal cord.
Collapse
Affiliation(s)
- Harun Najib Noristani
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| | | | - Florence Evelyne Perrin
- INSERM U1198, University of Montpellier, EPHE, Montpellier, France.,INSERM U1051, Montpellier, France
| |
Collapse
|
17
|
Duffy MF, Collier TJ, Patterson JR, Kemp CJ, Luk KC, Tansey MG, Paumier KL, Kanaan NM, Fischer DL, Polinski NK, Barth OL, Howe JW, Vaikath NN, Majbour NK, El-Agnaf OMA, Sortwell CE. Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflammation 2018; 15:129. [PMID: 29716614 PMCID: PMC5930695 DOI: 10.1186/s12974-018-1171-z] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.
Collapse
Affiliation(s)
- Megan F Duffy
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Timothy J Collier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Joseph R Patterson
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Christopher J Kemp
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Kelvin C Luk
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Katrina L Paumier
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - Nicholas M Kanaan
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA
| | - D Luke Fischer
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
- MD/PhD Program, Michigan State University, Grand Rapids, MI, USA
| | - Nicole K Polinski
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
- Neuroscience Graduate Training Program, Michigan State University, Grand Rapids, MI, USA
| | - Olivia L Barth
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Jacob W Howe
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA
| | - Nishant N Vaikath
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Nour K Majbour
- Neurological Disorders Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Omar M A El-Agnaf
- Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar
| | - Caryl E Sortwell
- Department of Translational Science and Molecular Medicine, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503-2532, USA.
- Mercy Health Hauenstein Neuroscience Medical Center, Grand Rapids, MI, USA.
| |
Collapse
|
18
|
Ciernia AV, Careaga M, Ashwood P, LaSalle J. Microglia from offspring of dams with allergic asthma exhibit epigenomic alterations in genes dysregulated in autism. Glia 2018; 66:505-521. [PMID: 29134693 PMCID: PMC5767155 DOI: 10.1002/glia.23261] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/18/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022]
Abstract
Dysregulation in immune responses during pregnancy increases the risk of a having a child with an autism spectrum disorder (ASD). Asthma is one of the most common chronic diseases among pregnant women, and symptoms often worsen during pregnancy. We recently developed a mouse model of maternal allergic asthma (MAA) that induces changes in sociability, repetitive, and perseverative behaviors in the offspring. Since epigenetic changes help a static genome adapt to the maternal environment, activation of the immune system may epigenetically alter fetal microglia, the brain's resident immune cells. We therefore tested the hypothesis that epigenomic alterations to microglia may be involved in behavioral abnormalities observed in MAA offspring. We used the genome-wide approaches of whole genome bisulfite sequencing to examine DNA methylation and RNA sequencing to examine gene expression in microglia from juvenile MAA offspring. Differentially methylated regions were enriched for immune signaling pathways and important microglial developmental transcription factor binding motifs. Differential expression analysis identified genes involved in controlling microglial sensitivity to the environment and shaping neuronal connections in the developing brain. Differentially expressed genes significantly overlapped genes with altered expression in human ASD cortex, supporting a role for microglia in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Milo Careaga
- MIND Institute, 2825 50 Street, Sacramento, CA 95817, University of California, Davis
| | - Paul Ashwood
- MIND Institute, 2825 50 Street, Sacramento, CA 95817, University of California, Davis
| | - Janine LaSalle
- Medical Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| |
Collapse
|
19
|
Hirbec H, Marmai C, Duroux-Richard I, Roubert C, Esclangon A, Croze S, Lachuer J, Peyroutou R, Rassendren F. The microglial reaction signature revealed by RNAseq from individual mice. Glia 2018; 66:971-986. [PMID: 29399880 DOI: 10.1002/glia.23295] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/23/2017] [Accepted: 01/02/2018] [Indexed: 12/20/2022]
Abstract
Microglial cells have a double life as the immune cells of the brain in times of stress but have also specific physiological functions in homeostatic conditions. In pathological contexts, microglia undergo a phenotypic switch called "reaction" that promotes the initiation and the propagation of neuro-inflammation. Reaction is complex, molecularly heterogeneous and still poorly characterized, leading to the concept that microglial reactivity might be too diverse to be molecularly defined. However, it remains unknown whether reactive microglia from different pathological contexts share a common molecular signature. Using improved flow cytometry and RNAseq approaches we studied, with higher statistical power, the remodeling of microglia transcriptome in a mouse model of sepsis. Through bioinformatic comparison of our results with published datasets, we defined the microglial reactome as a set of genes discriminating reactive from homeostatic microglia. Ultimately, we identified a subset of 86 genes deregulated in both acute and neurodegenerative conditions. Our data provide a new comprehensive resource that includes functional analysis and specific molecular markers of microglial reaction which represent new tools for its unambiguous characterization.
Collapse
Affiliation(s)
- Hélène Hirbec
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | - Camille Marmai
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | | | | | | | - Séverine Croze
- ProfileXpert, Université Claude Bernard Lyon 1, Lyon, France
| | - Joël Lachuer
- ProfileXpert, Université Claude Bernard Lyon 1, Lyon, France
| | - Ronan Peyroutou
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| | - François Rassendren
- Institute of Functional Genomics, CNRS, INSERM, University of Montpellier, Montpellier, France.,Labex ICST, Montpellier, France
| |
Collapse
|
20
|
E Hirbec H, Noristani HN, Perrin FE. Microglia Responses in Acute and Chronic Neurological Diseases: What Microglia-Specific Transcriptomic Studies Taught (and did Not Teach) Us. Front Aging Neurosci 2017; 9:227. [PMID: 28785215 PMCID: PMC5519576 DOI: 10.3389/fnagi.2017.00227] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, microglia have been acknowledged to be key players in central nervous system (CNS) under both physiological and pathological conditions. They constantly survey the CNS environment and as immune cells, in pathological contexts, they provide the first host defense and orchestrate the immune response. It is well recognized that under pathological conditions microglia have both sequential and simultaneous, beneficial and detrimental effects. Cell-specific transcriptomics recently became popular in Neuroscience field allowing concurrent monitoring of the expression of numerous genes in a given cell population. Moreover, by comparing two or more conditions, these approaches permit to unbiasedly identify deregulated genes and pathways. A growing number of studies have thus investigated microglial transcriptome remodeling over the course of neuropathological conditions and highlighted the molecular diversity of microglial response to different diseases. In the present work, we restrict our review to microglia obtained directly from in vivo samples and not cell culture, and to studies using whole-genome strategies. We first critically review the different methods developed to decipher microglia transcriptome. In particular, we compare advantages and drawbacks of flow cytometry and laser microdissection to isolate pure microglia population as well as identification of deregulated microglial genes obtained via RNA sequencing (RNA-Seq) vs. microarrays approaches. Second, we summarize insights obtained from microglia transcriptomes in traumatic brain and spinal cord injuries, pain and more chronic neurological conditions including Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD) and Multiple sclerosis (MS). Transcriptomic responses of microglia in other non-neurodegenerative CNS disorders such as gliomas and sepsis are also addressed. Third, we present a comparison of the most activated pathways in each neuropathological condition using Gene ontology (GO) classification and highlight the diversity of microglia response to insults focusing on their pro- and anti-inflammatory signatures. Finally, we discuss the potential of the latest technological advances, in particular, single cell RNA-Seq to unravel the individual microglial response diversity in neuropathological contexts.
Collapse
Affiliation(s)
- Hélène E Hirbec
- Institute for Functional Genomics, CNRS UMR5203, INSERM U1191, University of MontpellierMontpellier, France.,Laboratory of Excellence in Ion Channel Science and Therapeutics (LabEx ICST)Montpellier, France
| | - Harun N Noristani
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| | - Florence E Perrin
- University of Montpellier, INSERM U1198Montpellier, France.,École Pratique des Hautes Études (EPHE)Paris, France
| |
Collapse
|
21
|
Kudriaeva A, Galatenko VV, Maltseva DV, Khaustova NA, Kuzina E, Tonevitsky AG, Gabibov A, Belogurov A. The Transcriptome of Type I Murine Astrocytes under Interferon-Gamma Exposure and Remyelination Stimulus. Molecules 2017; 22:molecules22050808. [PMID: 28505143 PMCID: PMC6153759 DOI: 10.3390/molecules22050808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 02/04/2023] Open
Abstract
Astrocytes are considered to be an important contributor to central nervous system (CNS) disorders, particularly multiple sclerosis. The transcriptome of these cells is greatly affected by cytokines released by lymphocytes, penetrating the blood–brain barrier—in particular, the classical pro-inflammatory cytokine interferon-gamma (IFNγ). We report here the transcriptomal profiling of astrocytes treated using IFNγ and benztropine, a putative remyelinization agent. Our findings indicate that the expression of genes involved in antigen processing and presentation in astrocytes are significantly upregulated upon IFNγ exposure, emphasizing the critical role of this cytokine in the redirection of immune response towards self-antigens. Data reported herein support previous observations that the IFNγ-induced JAK-STAT signaling pathway may be regarded as a valuable target for pharmaceutical interventions.
Collapse
Affiliation(s)
- Anna Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | - Vladimir V Galatenko
- Department of Mathematical Analysis, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, 119991 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- SRC Bioclinicum, 115088 Moscow, Russia.
| | | | | | - Ekaterina Kuzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
| | | | - Alexander Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| | - Alexey Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
- Big Data and Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 125319 Moscow, Russia.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
| |
Collapse
|
22
|
Huang S, Feng C, Chen L, Huang Z, Zhou X, Li B, Wang LL, Chen W, Lv FQ, Li TS. Molecular Mechanisms of Mild and Severe Pneumonia: Insights from RNA Sequencing. Med Sci Monit 2017; 23:1662-1673. [PMID: 28381820 PMCID: PMC5390720 DOI: 10.12659/msm.900782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND This study aimed to uncover the molecular mechanisms underlying mild and severe pneumonia by use of mRNA sequencing (RNA-seq). MATERIAL AND METHODS RNA was extracted from the peripheral blood of patients with mild pneumonia, severe pneumonia, and healthy controls. Sequencing was performed on the HiSeq4000 platform. After filtering, clean reads were mapped to the human reference genome hg19. Differentially expressed genes (DEGs) were identified between the control group and the mild or severe group. A transcription factor-gene network was constructed for each group. Biological process (BP) terms enriched by DEGs in the network were analyzed and these genes were also mapped to the Connectivity map to search for small-molecule drugs. RESULTS A total of 199 and 560 DEGs were identified from the mild group and severe group, respectively. A transcription factor-gene network consisting of 215 nodes and another network consisting of 451 nodes were constructed in the mild group and severe group, respectively, and 54 DEGs (e.g., S100A9 and S100A12) were found to be common, with consistent differential expression changes in the 2 groups. Genes in the transcription factor-gene network for the mild group were mainly enriched in 13 BP terms, especially defense and inflammatory response (e.g., S100A8) and spermatogenesis, while the top BP terms enriched by genes in the severe group include response to oxidative stress (CCL5), wound healing, and regulation of cell differentiation (CCL5), and of the cellular protein metabolic process. CONCLUSIONS S100A9 and S100A12 may have a role in the pathogenesis of pneumonia: S100A9 and CXCL1 may contribute solely in mild pneumonia, and CCL5 and CXCL11 may contribute in severe pneumonia.
Collapse
Affiliation(s)
- Sai Huang
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland).,Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Cong Feng
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Li Chen
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Zhi Huang
- Electrical and Computer Engineering, Purdue University, Indianapolis, IN, USA
| | - Xuan Zhou
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Bei Li
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Li-Li Wang
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Wei Chen
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Fa-Qin Lv
- Department of Ultrasound, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| | - Tan-Shi Li
- Department of Emergency, General Hospital of The People's Liberation Army (PLA), Beijing, China (mainland)
| |
Collapse
|
23
|
RNA Sequencing of Tumor-Associated Microglia Reveals Ccl5 as a Stromal Chemokine Critical for Neurofibromatosis-1 Glioma Growth. Neoplasia 2016; 17:776-88. [PMID: 26585233 PMCID: PMC4656811 DOI: 10.1016/j.neo.2015.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/06/2015] [Accepted: 10/14/2015] [Indexed: 12/31/2022] Open
Abstract
Solid cancers develop within a supportive microenvironment that promotes tumor formation and growth through the elaboration of mitogens and chemokines. Within these tumors, monocytes (macrophages and microglia) represent rich sources of these stromal factors. Leveraging a genetically engineered mouse model of neurofibromatosis type 1 (NF1) low-grade brain tumor (optic glioma), we have previously demonstrated that microglia are essential for glioma formation and maintenance. To identify potential tumor-associated microglial factors that support glioma growth (gliomagens), we initiated a comprehensive large-scale discovery effort using optimized RNA-sequencing methods focused specifically on glioma-associated microglia. Candidate microglial gliomagens were prioritized to identify potential secreted or membrane-bound proteins, which were next validated by quantitative real-time polymerase chain reaction as well as by RNA fluorescence in situ hybridization following minocycline-mediated microglial inactivation in vivo. Using these selection criteria, chemokine (C-C motif) ligand 5 (Ccl5) was identified as a chemokine highly expressed in genetically engineered Nf1 mouse optic gliomas relative to nonneoplastic optic nerves. As a candidate gliomagen, recombinant Ccl5 increased Nf1-deficient optic nerve astrocyte growth in vitro. Importantly, consistent with its critical role in maintaining tumor growth, treatment with Ccl5 neutralizing antibodies reduced Nf1 mouse optic glioma growth and improved retinal dysfunction in vivo. Collectively, these findings establish Ccl5 as an important microglial growth factor for low-grade glioma maintenance relevant to the development of future stroma-targeted brain tumor therapies.
Collapse
|
24
|
Gonzalez-Pena D, Nixon SE, Southey BR, Lawson MA, McCusker RH, Hernandez AG, Dantzer R, Kelley KW, Rodriguez-Zas SL. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages. PLoS One 2016; 11:e0157727. [PMID: 27314674 PMCID: PMC4912085 DOI: 10.1371/journal.pone.0157727] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 05/06/2016] [Indexed: 11/19/2022] Open
Abstract
Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome under unchallenged conditions.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Scott E. Nixon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Alvaro G. Hernandez
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Robert Dantzer
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
25
|
The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci 2016; 19:20-7. [PMID: 26713745 DOI: 10.1038/nn.4185] [Citation(s) in RCA: 1163] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/23/2015] [Indexed: 11/08/2022]
Abstract
There is a growing recognition that gliomas are complex tumors composed of neoplastic and non-neoplastic cells, which each individually contribute to cancer formation, progression and response to treatment. The majority of the non-neoplastic cells are tumor-associated macrophages (TAMs), either of peripheral origin or representing brain-intrinsic microglia, that create a supportive stroma for neoplastic cell expansion and invasion. TAMs are recruited to the glioma environment, have immune functions, and can release a wide array of growth factors and cytokines in response to those factors produced by cancer cells. In this manner, TAMs facilitate tumor proliferation, survival and migration. Through such iterative interactions, a unique tumor ecosystem is established, which offers new opportunities for therapeutic targeting.
Collapse
|
26
|
Gonzalez-Pena D, Nixon SE, O’Connor JC, Southey BR, Lawson MA, McCusker RH, Borras T, Machuca D, Hernandez AG, Dantzer R, Kelley KW, Rodriguez-Zas SL. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge. PLoS One 2016; 11:e0150858. [PMID: 26959683 PMCID: PMC4784788 DOI: 10.1371/journal.pone.0150858] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/20/2016] [Indexed: 12/20/2022] Open
Abstract
Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.
Collapse
Affiliation(s)
- Dianelys Gonzalez-Pena
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Scott E. Nixon
- Illinois Informatics Institute, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Jason C. O’Connor
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States of America
| | - Bruce R. Southey
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Marcus A. Lawson
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Robert H. McCusker
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Tania Borras
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Debbie Machuca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - Alvaro G. Hernandez
- High-Throughput Sequencing and Genotyping Unit, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Robert Dantzer
- Department of Symptom Research, University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Keith W. Kelley
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Integrative Immunology and Behavior Program and Department of Pathology, College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
- Department of Statistics and Carle Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kaminska B, Mota M, Pizzi M. Signal transduction and epigenetic mechanisms in the control of microglia activation during neuroinflammation. Biochim Biophys Acta Mol Basis Dis 2016; 1862:339-51. [DOI: 10.1016/j.bbadis.2015.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/12/2015] [Accepted: 10/28/2015] [Indexed: 12/21/2022]
|
28
|
Crotti A, Ransohoff RM. Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity 2016; 44:505-515. [DOI: 10.1016/j.immuni.2016.02.013] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/06/2016] [Accepted: 02/17/2016] [Indexed: 12/22/2022]
|
29
|
Abstract
UNLABELLED Understanding why adult CNS neurons fail to regenerate their axons following injury remains a central challenge of neuroscience research. A more complete appreciation of the biological mechanisms shaping the injured nervous system is a crucial prerequisite for the development of robust therapies to promote neural repair. Historically, the identification of regeneration associated signaling pathways has been impeded by the limitations of available genetic and molecular tools. As we progress into an era in which the high-throughput interrogation of gene expression is commonplace and our knowledge base of interactome data is rapidly expanding, we can now begin to assemble a more comprehensive view of the complex biology governing axon regeneration. Here, we highlight current and ongoing work featuring transcriptomic approaches toward the discovery of novel molecular mechanisms that can be manipulated to promote neural repair. SIGNIFICANCE STATEMENT Transcriptional profiling is a powerful technique with broad applications in the field of neuroscience. Recent advances such as single-cell transcriptomics, CNS cell type-specific and developmental stage-specific expression libraries are rapidly enhancing the power of transcriptomics for neuroscience applications. However, extracting biologically meaningful information from large transcriptomic datasets remains a formidable challenge. This mini-symposium will highlight current work using transcriptomic approaches to identify regulatory networks in the injured nervous system. We will discuss analytical strategies for transcriptomics data, the significance of noncoding RNA networks, and the utility of multiomic data integration. Though the studies featured here specifically focus on neural repair, the approaches highlighted in this mini-symposium will be of broad interest and utility to neuroscientists working in diverse areas of the field.
Collapse
|
30
|
Baker SJ, Ellison DW, Gutmann DH. Pediatric gliomas as neurodevelopmental disorders. Glia 2015; 64:879-95. [PMID: 26638183 DOI: 10.1002/glia.22945] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
Abstract
Brain tumors represent the most common solid tumor of childhood, with gliomas comprising the largest fraction of these cancers. Several features distinguish them from their adult counterparts, including their natural history, causative genetic mutations, and brain locations. These unique properties suggest that the cellular and molecular etiologies that underlie their development and maintenance might be different from those that govern adult gliomagenesis and growth. In this review, we discuss the genetic basis for pediatric low-grade and high-grade glioma in the context of developmental neurobiology, and highlight the differences between histologically-similar tumors arising in children and adults.
Collapse
Affiliation(s)
- Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David W Ellison
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
31
|
Webb A, Papp AC, Curtis A, Newman LC, Pietrzak M, Seweryn M, Handelman SK, Rempala GA, Wang D, Graziosa E, Tyndale RF, Lerman C, Kelsoe JR, Mash DC, Sadee W. RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics 2015; 16:990. [PMID: 26597164 PMCID: PMC4657279 DOI: 10.1186/s12864-015-2207-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 11/12/2015] [Indexed: 01/03/2023] Open
Abstract
Background We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly-dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly-A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. Results Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis-acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. Conclusions RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis-acting regulatory factors with potential clinical relevance. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2207-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Webb
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Audrey C Papp
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Amanda Curtis
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Leslie C Newman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Maciej Pietrzak
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Michal Seweryn
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Samuel K Handelman
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.
| | - Grzegorz A Rempala
- Division of Biostatistics, College of Public Health, and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA.
| | - Daqing Wang
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Erica Graziosa
- Thermo Fisher Scientific, South San Francisco, CA, 94080, USA.
| | - Rachel F Tyndale
- Center for Addiction and Mental Health and Departments of Psychiatry and Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Caryn Lerman
- Department of Psychiatry, Annenberg School for Communication, and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - John R Kelsoe
- Department of Psychiatry, Laboratory of Psychiatric Genomics, University of California, San Diego, USA. .,VA San Diego Healthcare System, La Jolla, San Diego, CA, USA.
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Wolfgang Sadee
- Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Departments of Pharmacology, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA. .,Departments of Psychiatry, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, Columbus, OH, USA. .,Departments of Human Genetics/Internal Medicine, College of Medicine; Colleges of Pharmacy and Environmental Health Sciences, The Ohio State University, 5078 Graves Hall, 333 W. 10th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|