1
|
Gumusgoz E, Kasiri S, Verma M, Wu J, Villarreal Acha D, Marriam U, Fyffe-Maricich S, Lin A, Chen X, Gray SJ, Minassian BA. CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy. Gene Ther 2024; 31:234-241. [PMID: 38135787 DOI: 10.1038/s41434-023-00433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children's normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.
Collapse
Affiliation(s)
- Emrah Gumusgoz
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sahba Kasiri
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mayank Verma
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jun Wu
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Villarreal Acha
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ummay Marriam
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | | | - Xin Chen
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Steven J Gray
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Berge A Minassian
- Division of Neurology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Singh S, Hämäläinen RH. The Roles of Cystatin B in the Brain and Pathophysiological Mechanisms of Progressive Myoclonic Epilepsy Type 1. Cells 2024; 13:170. [PMID: 38247861 PMCID: PMC10814315 DOI: 10.3390/cells13020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder, also known as Unverricht-Lundborg disease (ULD). EPM1 patients suffer from photo-sensitive seizures, stimulus-sensitive myoclonus, nocturnal myoclonic seizures, ataxia and dysarthria. In addition, cerebral ataxia and impaired GABAergic inhibition are typically present. EPM1 is caused by mutations in the Cystatin B gene (CSTB). The CSTB protein functions as an intracellular thiol protease inhibitor and inhibits Cathepsin function. It also plays a crucial role in brain development and regulates various functions in neurons beyond maintaining cellular proteostasis. These include controlling cell proliferation and differentiation, synaptic functions and protection against oxidative stress, likely through regulation of mitochondrial function. Depending on the differentiation stage and status of neurons, the protein localizes either to the cytoplasm, nucleus, lysosomes or mitochondria. Further, CSTB can also be secreted to the extracellular matrix for interneuron rearrangement and migration. In this review, we will review the various functions of CSTB in the brain and discuss the putative pathophysiological mechanism underlying EPM1.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
3
|
Pollari E, Tegelberg S, Björklund H, Kälviäinen R, Lehesjoki AE, Haapalinna A. In depth behavioral phenotyping unravels complex motor disturbances in Cstb-/- mouse, a model for progressive myoclonus epilepsy type 1. Front Behav Neurosci 2023; 17:1325051. [PMID: 38179183 PMCID: PMC10764494 DOI: 10.3389/fnbeh.2023.1325051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Progressive myoclonus epilepsy type 1 (EPM1) is an autosomal recessively inherited childhood-adolescence onset neurodegenerative disease caused by mutations in the cystatin B (CSTB gene). The key clinical manifestation in EPM1 is progressive, stimulus-sensitive, in particular action-induced myoclonus. The cystatin B-deficient mouse model, Cstb-/-, has been described to present with myoclonic seizures and progressive ataxia. Here we describe results from in-depth behavioral phenotyping of the Cstb-/- mouse model in pure isogenic 129S2/SvHsd background covering ages from 1.5 to 6 months. We developed a method for software-assisted detection of myoclonus from video recordings of the Cstb-/- mice. Additionally, we observed that the mice were hyperactive and showed reduced startle response, problems in motor coordination and lack of inhibition. We were, however, not able to demonstrate an ataxic phenotype in them. This detailed behavioral phenotyping of the Cstb-/- mice reveals new aspects of this mouse model. The nature of the motor problems in the Cstb-/- mice seems to be more complex and more resembling the human phenotype than initially described.
Collapse
Affiliation(s)
| | - Saara Tegelberg
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | | - Reetta Kälviäinen
- Epilepsy Center, Neuro Center, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center and Medicum, Medical Faculty, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
4
|
Trstenjak-Prebanda M, Biasizzo M, Dolinar K, Pirkmajer S, Turk B, Brault V, Herault Y, Kopitar-Jerala N. Stefin B Inhibits NLRP3 Inflammasome Activation via AMPK/mTOR Signalling. Cells 2023; 12:2731. [PMID: 38067160 PMCID: PMC10798374 DOI: 10.3390/cells12232731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Stefin B (cystatin B) is an inhibitor of lysosomal and nuclear cysteine cathepsins. The gene for stefin B is located on human chromosome 21 and its expression is upregulated in the brains of individuals with Down syndrome. Biallelic loss-of-function mutations in the stefin B gene lead to Unverricht-Lundborg disease-progressive myoclonus epilepsy type 1 (EPM1) in humans. In our past study, we demonstrated that mice lacking stefin B were significantly more sensitive to sepsis induced by lipopolysaccharide (LPS) and secreted higher levels of interleukin 1-β (IL-1β) due to increased inflammasome activation in bone marrow-derived macrophages. Here, we report lower interleukin 1-β processing and caspase-11 expression in bone marrow-derived macrophages prepared from mice that have an additional copy of the stefin B gene. Increased expression of stefin B downregulated mitochondrial reactive oxygen species (ROS) generation and lowered the NLR family pyrin domain containing 3 (NLRP3) inflammasome activation in macrophages. We determined higher AMP-activated kinase phosphorylation and downregulation of mTOR activity in stefin B trisomic macrophages-macrophages with increased stefin B expression. Our study showed that increased stefin B expression downregulated mitochondrial ROS generation and increased autophagy. The present work contributes to a better understanding of the role of stefin B in regulation of autophagy and inflammasome activation in macrophages and could help to develop new treatments.
Collapse
Affiliation(s)
- Mojca Trstenjak-Prebanda
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Monika Biasizzo
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- International Postgraduate School Jožef Stefan, SI-1000 Ljubljana, Slovenia
| | - Klemen Dolinar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (K.D.); (S.P.)
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Veronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (V.B.)
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, CNRS, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (V.B.)
- Institut Clinique de la Souris, PHENOMIN, CELPHEDIA, INSERM, CNRS, Universite’ de Strasbourg, 67404 Illkirch Graffenstaden, France
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Hyppönen J, Paanila V, Äikiä M, Koskenkorva P, Könönen M, Vanninen R, Mervaala E, Kälviäinen R, Hakumäki J. Progressive myoclonic epilepsy type 1 (EPM1) patients present with abnormal 1H MRS brain metabolic profiles associated with cognitive function. Neuroimage Clin 2023; 39:103459. [PMID: 37541097 PMCID: PMC10412857 DOI: 10.1016/j.nicl.2023.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Collapse
Affiliation(s)
- Jelena Hyppönen
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vili Paanila
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Marja Äikiä
- Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Päivi Koskenkorva
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reetta Kälviäinen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Juhana Hakumäki
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland.
| |
Collapse
|
6
|
Daura E, Tegelberg S, Hakala P, Lehesjoki AE, Joensuu T. Cystatin B deficiency results in sustained histone H3 tail cleavage in postnatal mouse brain mediated by increased chromatin-associated cathepsin L activity. Front Mol Neurosci 2022; 15:1069122. [DOI: 10.3389/fnmol.2022.1069122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Cystatin B (CSTB) is a cysteine cathepsin inhibitor whose biallelic loss-of-function mutations in human result in defects in brain development and in neurodegeneration. The physiological function of CSTB is largely unknown, and the mechanisms underlying the human brain diseases remain poorly understood. We previously showed that CSTB modulates the proteolysis of the N-terminal tail of histone H3 (H3cs1) during in vitro neurogenesis. Here we investigated the significance of this mechanism in postnatal mouse brain. Spatiotemporal analysis of H3cs1 intensity showed that while H3cs1 in wild-type (wt) mice was found at varying levels during the first postnatal month, it was virtually absent in adult brain. We further showed that the high level of H3cs1 coincides with chromatin association of de novo synthesized cathepsin L suggesting a role for nuclear cathepsin L in brain development and maturation. On the contrary, the brains of Cstb–/– mice showed sustained H3cs1 proteolysis to adulthood with increased chromatin-associated cathepsin L activity, implying that CSTB regulates chromatin-associated cathepsin L activity in the postnatal mouse brain. As H3 tail proteolysis has been linked to cellular senescence in vitro, we explored the presence of several cellular senescence markers in the maturing Cstb–/– cerebellum, where we see increased levels of H3cs1. While several markers showed alterations in Cstb–/– mice, the results remained inconclusive regarding the association of deficient CSTB function with H3cs1-induced senescence. Together, we identify a molecular role for CSTB in brain with implications for brain development and disease.
Collapse
|
7
|
Žerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci 2022; 15:1009976. [PMID: 36340691 PMCID: PMC9634419 DOI: 10.3389/fnmol.2022.1009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2024] Open
Abstract
Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
8
|
Guo Y, Dai W, Zheng Y, Qiao W, Chen W, Peng L, Zhou H, Zhao T, Liu H, Zheng F, Sun P. Mechanism and Regulation of Microglia Polarization in Intracerebral Hemorrhage. Molecules 2022; 27:molecules27207080. [PMID: 36296682 PMCID: PMC9611828 DOI: 10.3390/molecules27207080] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the most lethal subtype of stroke, but effective treatments are lacking, and neuroinflammation plays a key role in the pathogenesis. In the innate immune response to cerebral hemorrhage, microglia first appear around the injured tissue and are involved in the inflammatory cascade response. Microglia respond to acute brain injury by being activated and polarized to either a typical M1-like (pro-inflammatory) or an alternative M2-like (anti-inflammatory) phenotype. These two polarization states produce pro-inflammatory or anti-inflammatory. With the discovery of the molecular mechanisms and key signaling molecules related to the polarization of microglia in the brain, some targets that regulate the polarization of microglia to reduce the inflammatory response are considered a treatment for secondary brain tissue after ICH damage effective strategies. Therefore, how to promote the polarization of microglia to the M2 phenotype after ICH has become the focus of attention in recent years. This article reviews the mechanism of action of microglia’s M1 and M2 phenotypes in secondary brain injury after ICH. Moreover, it discusses compounds and natural pharmaceutical ingredients that can polarize the M1 to the M2 phenotype.
Collapse
Affiliation(s)
- Yuting Guo
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Weibo Dai
- Department of Pharmacy, Zhongshan Hospital of traditional Chinese Medicine, Zhongshan 528401, China
| | - Yan Zheng
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Weilin Qiao
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Weixuan Chen
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Lihua Peng
- Zhongshan Zhongzhi Pharmaceutical Group Co., Ltd., Zhongshan 528411, China
| | - Hua Zhou
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Tingting Zhao
- School of Foreign Languages, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Huimin Liu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Feng Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362002, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| | - Peng Sun
- Innovation Research Institute of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Correspondence: (T.Z.); (H.L.); (F.Z.); (P.S.)
| |
Collapse
|
9
|
Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, Ezer S, Hakala P, Katayama S, Kere J, Lehesjoki AE, Joensuu T. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis 2021; 156:105418. [PMID: 34102276 DOI: 10.1016/j.nbd.2021.105418] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 06/04/2021] [Indexed: 12/29/2022] Open
Abstract
Cystatin B (CSTB) acts as an inhibitor of cysteine proteases of the cathepsin family and loss-of-function mutations result in human brain diseases with a genotype-phenotype correlation. In the most severe case, CSTB-deficiency disrupts brain development, and yet the molecular basis of this mechanism is missing. Here, we establish CSTB as a regulator of chromatin structure during neural stem cell renewal and differentiation. Murine neural precursor cells (NPCs) undergo transient proteolytic cleavage of the N-terminal histone H3 tail by cathepsins B and L upon induction of differentiation into neurons and glia. In contrast, CSTB-deficiency triggers premature H3 tail cleavage in undifferentiated self-renewing NPCs and sustained H3 tail proteolysis in differentiating neural cells. This leads to significant transcriptional changes in NPCs, particularly of nuclear-encoded mitochondrial genes. In turn, these transcriptional alterations impair the enhanced mitochondrial respiration that is induced upon neural stem cell differentiation. Collectively, our findings reveal the basis of epigenetic regulation in the molecular pathogenesis of CSTB deficiency.
Collapse
Affiliation(s)
- Eduard Daura
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Masahito Yoshihara
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Christopher Jackson
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Francesca Simonetti
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Katri Aksentjeff
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sini Ezer
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Paula Hakala
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Shintaro Katayama
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden
| | - Juha Kere
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, 141 83 Stockholm, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Tarja Joensuu
- Folkhälsan Research Center, 00290 Helsinki, Finland; Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
10
|
Trstenjak Prebanda M, Matjan-Štefin P, Turk B, Kopitar-Jerala N. Altered Expression of Peroxiredoxins in Mouse Model of Progressive Myoclonus Epilepsy upon LPS-Induced Neuroinflammation. Antioxidants (Basel) 2021; 10:antiox10030357. [PMID: 33673502 PMCID: PMC7997206 DOI: 10.3390/antiox10030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 11/16/2022] Open
Abstract
Stefin B (cystatin B) is an inhibitor of endo-lysosomal cysteine cathepsin, and the loss-of-function mutations in the stefin B gene were reported in patients with Unverricht–Lundborg disease (EPM1), a form of progressive myoclonus epilepsy. Stefin B-deficient mice, a mouse model of the disease, display key features of EPM1, including myoclonic seizures. Although the underlying mechanism is not yet completely clear, it was reported that the impaired redox homeostasis and inflammation in the brain contribute to the progression of the disease. In the present study, we investigated if lipopolysaccharide (LPS)-triggered neuroinflammation affected the protein levels of redox-sensitive proteins: thioredoxin (Trx1), thioredoxin reductase (TrxR), peroxiredoxins (Prxs) in brain and cerebella of stefin B-deficient mice. LPS challenge was found to result in a marked elevation of Trx1 and TrxR in the brain and cerebella of stefin B deficient mice, while Prx1 was upregulated only in cerebella after LPS challenge. Mitochondrial peroxiredoxin 3 (Prx3), was upregulated also in the cerebellar tissue lysates prepared from unchallenged stefin B deficient mice, while after LPS challenge Prx3 was upregulated in stefin B deficient brain and cerebella. Our results imply the role of oxidative stress in the progression of the disease.
Collapse
Affiliation(s)
- Mojca Trstenjak Prebanda
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (P.M.-Š.); (B.T.)
| | - Petra Matjan-Štefin
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (P.M.-Š.); (B.T.)
- International Postgraduate School Jožef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (P.M.-Š.); (B.T.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
- Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol’shaya Pirogovskaya Ulitsa, 19c1, 119146 Moscow, Russia
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (P.M.-Š.); (B.T.)
- Correspondence: ; Tel.: +386-1-4773-510
| |
Collapse
|
11
|
Gorski K, Spoljaric A, Nyman TA, Kaila K, Battersby BJ, Lehesjoki AE. Quantitative Changes in the Mitochondrial Proteome of Cerebellar Synaptosomes From Preclinical Cystatin B-Deficient Mice. Front Mol Neurosci 2020; 13:570640. [PMID: 33281550 PMCID: PMC7691638 DOI: 10.3389/fnmol.2020.570640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/21/2020] [Indexed: 12/04/2022] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is a neurodegenerative disorder caused by loss-of-function mutations in the cystatin B (CSTB) gene. Progression of the clinical symptoms in EPM1 patients, including stimulus-sensitive myoclonus, tonic-clonic seizures, and ataxia, are well described. However, the cellular dysfunction during the presymptomatic phase that precedes the disease onset is not understood. CSTB deficiency leads to alterations in GABAergic signaling, and causes early neuroinflammation followed by progressive neurodegeneration in brains of a mouse model, manifesting as progressive myoclonus and ataxia. Here, we report the first proteome atlas from cerebellar synaptosomes of presymptomatic Cstb-deficient mice, and propose that early mitochondrial dysfunction is important to the pathogenesis of altered synaptic function in EPM1. A decreased sodium- and chloride dependent GABA transporter 1 (GAT-1) abundance was noted in synaptosomes with CSTB deficiency, but no functional difference was seen between the two genotypes in electrophysiological experiments with pharmacological block of GAT-1. Collectively, our findings provide novel insights into the early onset and pathogenesis of CSTB deficiency, and reveal greater complexity to the molecular pathogenesis of EPM1.
Collapse
Affiliation(s)
- Katarin Gorski
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Albert Spoljaric
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kai Kaila
- Molecular and Integrative Biosciences, and Neuroscience Center (HiLIFE), Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Anna-Elina Lehesjoki
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Sierra-Torre V, Plaza-Zabala A, Bonifazi P, Abiega O, Díaz-Aparicio I, Tegelberg S, Lehesjoki AE, Valero J, Sierra A. Microglial phagocytosis dysfunction in the dentate gyrus is related to local neuronal activity in a genetic model of epilepsy. Epilepsia 2020; 61:2593-2608. [PMID: 32940364 PMCID: PMC7756777 DOI: 10.1111/epi.16692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Microglial phagocytosis of apoptotic cells is an essential component of the brain regenerative response during neurodegeneration. Whereas it is very efficient in physiological conditions, it is impaired in mouse and human mesial temporal lobe epilepsy, and now we extend our studies to a model of progressive myoclonus epilepsy type 1 in mice lacking cystatin B (CSTB). METHODS We used confocal imaging and stereology-based quantification of apoptosis and phagocytosis of the hippocampus of Cstb knockout (KO) mice, an in vitro model of phagocytosis and siRNAs to acutely reduce Cstb expression, and a virtual three-dimensional (3D) model to analyze the physical relationship between apoptosis, phagocytosis, and active hippocampal neurons. RESULTS Microglial phagocytosis was impaired in the hippocampus of Cstb KO mice at 1 month of age, when seizures arise and hippocampal atrophy begins. This impairment was not related to the lack of Cstb in microglia alone, as shown by in vitro experiments with microglial Cstb depletion. The phagocytosis impairment was also unrelated to seizures, as it was also present in Cstb KO mice at postnatal day 14, before seizures begin. Importantly, phagocytosis impairment was restricted to the granule cell layer and spared the subgranular zone, where there are no active neurons. Furthermore, apoptotic cells (both phagocytosed and not phagocytosed) in Cstb-deficient mice were at close proximity to active cFos+ neurons, and a virtual 3D model demonstrated that the physical relationship between apoptotic cells and cFos+ neurons was specific for Cstb KO mice. SIGNIFICANCE These results suggest a complex crosstalk between apoptosis, phagocytosis, and neuronal activity, hinting that local neuronal activity could be related to phagocytosis dysfunction in Cstb KO mice. Overall, these data suggest that phagocytosis impairment is an early feature of hippocampal damage in epilepsy and opens novel therapeutic approaches for epileptic patients based on targeting microglial phagocytosis.
Collapse
Affiliation(s)
- Virginia Sierra-Torre
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain
| | - Paolo Bonifazi
- Ikerbasque Foundation, Bilbao, Spain.,Biocruces Health Research Institute, Barakaldo, Spain
| | - Oihane Abiega
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Irune Díaz-Aparicio
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Saara Tegelberg
- Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | | | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Science Park University of the Basque Country EHU/UPV, Leioa, Spain.,Department of Neuroscience, University of the Basque Country UPV/EHU, Leioa, Spain.,Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
13
|
Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med 2020; 22:e4. [PMID: 32938505 PMCID: PMC7520540 DOI: 10.1017/erm.2020.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of genetic neurological disorders characterised by the occurrence of epileptic seizures, myoclonus and progressive neurological deterioration including cerebellar involvement and dementia. The primary cause of PMEs is variable and alterations in the corresponding mutated genes determine the progression and severity of the disease. In most cases, they lead to the death of the patient after a period of prolonged disability. PMEs also share poor information on the pathophysiological bases and the lack of a specific treatment. Recent reports suggest that neuroinflammation is a common trait under all these conditions. Here, we review similarities and differences in neuroinflammatory response in several PMEs and discuss the window of opportunity of using anti-inflammatory drugs in the treatment of several of these conditions.
Collapse
|
14
|
Chen L, Zhu L, Lu D, Wu Z, Han Y, Xu P, Chang L, Wu Q. Interleukin 4 Affects Epilepsy by Regulating Glial Cells: Potential and Possible Mechanism. Front Mol Neurosci 2020; 13:554547. [PMID: 33013320 PMCID: PMC7500526 DOI: 10.3389/fnmol.2020.554547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/19/2020] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a chronic brain dysfunction induced by an abnormal neuronal discharge that is caused by complicated psychopathologies. Recently, accumulating studies have revealed a close relationship between inflammation and epilepsy. Specifically, microglia and astrocytes are important inflammatory cells in the central nervous system (CNS) that have been proven to be related to the pathogenesis and development of epilepsy. Additionally, interleukin 4 (IL-4) is an anti-inflammatory factor that can regulate microglia and astrocytes in many aspects. This review article focuses on the regulatory role of IL-4 in the pathological changes of glial cells related to epilepsy. We additionally propose that IL-4 may play a protective role in epileptogenesis and suggest that IL-4 may be a novel therapeutic target for the treatment of epilepsy.
Collapse
Affiliation(s)
- Lu Chen
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lin Zhu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Di Lu
- Biomedicine Engineering Research Centre, Kunming Medical University, Kunming, China
| | - Zhe Wu
- Department of Psychology, The First People's Hospital of Yunnan Province, Kunming, China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Puying Xu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Lvhua Chang
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital, Kunming Medical University, Kunming, China
| |
Collapse
|
15
|
Fatoba O, Itokazu T, Yamashita T. Microglia as therapeutic target in central nervous system disorders. J Pharmacol Sci 2020; 144:102-118. [PMID: 32921391 DOI: 10.1016/j.jphs.2020.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/19/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic microglial activation is associated with the pathogenesis of several CNS disorders. Microglia show phenotypic diversity and functional complexity in diseased CNS. Thus, understanding the pathology-specific heterogeneity of microglial behavior is crucial for the future development of microglia-modulating therapy for variety of CNS disorders. This review summarizes up-to-date knowledge on how microglia contribute to CNS homeostasis during development and throughout adulthood. We discuss the heterogeneity of microglial phenotypes in the context of CNS disorders with an emphasis on neurodegenerative diseases, demyelinating diseases, CNS trauma, and epilepsy. We conclude this review with a discussion about the disease-specific heterogeneity of microglial function and how it could be exploited for therapeutic intervention.
Collapse
Affiliation(s)
- Oluwaseun Fatoba
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takahide Itokazu
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; WPI-Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
16
|
Casillas‐Espinosa PM, Ali I, O'Brien TJ. Neurodegenerative pathways as targets for acquired epilepsy therapy development. Epilepsia Open 2020; 5:138-154. [PMID: 32524040 PMCID: PMC7278567 DOI: 10.1002/epi4.12386] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/13/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
There is a growing body of clinical and experimental evidence that neurodegenerative diseases and epileptogenesis after an acquired brain insult may share common etiological mechanisms. Acquired epilepsy commonly develops as a comorbid condition in patients with neurodegenerative diseases such as Alzheimer's disease, although it is likely much under diagnosed in practice. Progressive neurodegeneration has also been described after traumatic brain injury, stroke, and other forms of brain insults. Moreover, recent evidence has shown that acquired epilepsy is often a progressive disorder that is associated with the development of drug resistance, cognitive decline, and worsening of other neuropsychiatric comorbidities. Therefore, new pharmacological therapies that target neurobiological pathways that underpin neurodegenerative diseases have potential to have both an anti-epileptogenic and disease-modifying effect on the seizures in patients with acquired epilepsy, and also mitigate the progressive neurocognitive and neuropsychiatric comorbidities. Here, we review the neurodegenerative pathways that are plausible targets for the development of novel therapies that could prevent the development or modify the progression of acquired epilepsy, and the supporting published experimental and clinical evidence.
Collapse
Affiliation(s)
- Pablo M. Casillas‐Espinosa
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Idrish Ali
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
| | - Terence J. O'Brien
- Departments of Neuroscience and MedicineCentral Clinical SchoolMonash UniversityMelbourneVic.Australia
- Department of MedicineThe Royal Melbourne HospitalThe University of MelbourneMelbourneVic.Australia
- Department of NeurologyThe Alfred HospitalMelbourneVic.Australia
- Department of NeurologyThe Royal Melbourne HospitalParkvilleVic.Australia
| |
Collapse
|
17
|
Therajaran P, Hamilton JA, O'Brien TJ, Jones NC, Ali I. Microglial polarization in posttraumatic epilepsy: Potential mechanism and treatment opportunity. Epilepsia 2020; 61:203-215. [PMID: 31943156 DOI: 10.1111/epi.16424] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022]
Abstract
Owing to the complexity of the pathophysiological mechanisms driving epileptogenesis following traumatic brain injury (TBI), effective preventive treatment approaches are not yet available for posttraumatic epilepsy (PTE). Neuroinflammation appears to play a critical role in the pathogenesis of the acquired epilepsies, including PTE, but despite a large preclinical literature demonstrating the ability of anti-inflammatory treatments to suppress epileptogenesis and chronic seizures, no anti-inflammatory treatment approaches have been clinically proven to date. TBI triggers robust inflammatory cascades, suggesting that they may be relevant for the pathogenesis of PTE. A major cell type involved in such cascades is the microglial cells-brain-resident immune cells that become activated after brain injury. When activated, these cells can oscillate between different phenotypes, and such polarization states are associated with the release of various pro- and anti-inflammatory mediators that may influence brain repair processes, and also differentially contribute to the development of PTE. As the molecular mechanisms and key signaling molecules associated with microglial polarization in brain are discovered, strategies are now emerging that can modulate this polarization, promoting this as a potential therapeutic strategy for PTE. In this review, we discuss the relevant literature regarding the polarization of brain-resident immune cells following TBI and attempt to put into perspective a role in epilepsy pathogenesis. Finally, we explore potential strategies that could polarize microglia/macrophages toward a neuroprotective phenotype to mitigate PTE development.
Collapse
Affiliation(s)
- Peravina Therajaran
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - John A Hamilton
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
| | - Terence J O'Brien
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Nigel C Jones
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| | - Idrish Ali
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia.,Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
18
|
Lahuerta M, Gonzalez D, Aguado C, Fathinajafabadi A, García-Giménez JL, Moreno-Estellés M, Romá-Mateo C, Knecht E, Pallardó FV, Sanz P. Reactive Glia-Derived Neuroinflammation: a Novel Hallmark in Lafora Progressive Myoclonus Epilepsy That Progresses with Age. Mol Neurobiol 2019; 57:1607-1621. [PMID: 31808062 DOI: 10.1007/s12035-019-01842-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/22/2019] [Indexed: 01/31/2023]
Abstract
Lafora disease (LD) is a rare, fatal form of progressive myoclonus epilepsy. The molecular basis of this devastating disease is still poorly understood, and no treatment is available yet, which leads to the death of the patients around 10 years from the onset of the first symptoms. The hallmark of LD is the accumulation of insoluble glycogen-like inclusions in the brain and peripheral tissues, as a consequence of altered glycogen homeostasis. In addition, other determinants in the pathophysiology of LD have been suggested, such as proteostasis impairment, with reduction in autophagy, and oxidative stress, among others. In order to gain a general view of the genes involved in the pathophysiology of LD, in this work, we have performed RNA-Seq transcriptome analyses of whole-brain tissue from two independent mouse models of the disease, namely Epm2a-/- and Epm2b-/- mice, at different times of age. Our results provide strong evidence for three major facts: first, in both models of LD, we found a common set of upregulated genes, most of them encoding mediators of inflammatory response; second, there was a progression with the age in the appearance of these inflammatory markers, starting at 3 months of age; and third, reactive glia was responsible for the expression of these inflammatory genes. These results clearly indicate that neuroinflammation is one of the most important traits to be considered in order to fully understand the pathophysiology of LD, and define reactive glia as novel therapeutic targets in the disease.
Collapse
Affiliation(s)
- Marcos Lahuerta
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Daymé Gonzalez
- EpiDisease S.L. (Spin-Off from the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain
| | - Carmen Aguado
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alihamze Fathinajafabadi
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - José Luis García-Giménez
- EpiDisease S.L. (Spin-Off from the CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Dept. Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Mireia Moreno-Estellés
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain
| | - Carlos Romá-Mateo
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Dept. Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Erwin Knecht
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Federico V Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.,Dept. Fisiología, Facultad de Medicina y Odontología, Universidad de Valencia-INCLIVA, Valencia, Spain
| | - Pascual Sanz
- Consejo Superior de Investigaciones Científicas, Instituto de Biomedicina de Valencia, Jaime Roig 11, 46010, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain.
| |
Collapse
|
19
|
Trstenjak Prebanda M, Završnik J, Turk B, Kopitar Jerala N. Upregulation of Mitochondrial Redox Sensitive Proteins in LPS-Treated Stefin B-Deficient Macrophages. Cells 2019; 8:E1476. [PMID: 31766320 PMCID: PMC6952955 DOI: 10.3390/cells8121476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Stefin B (cystatin B) is an intracellular inhibitor of cysteine cathepsins and mutations in the stefin B gene, resulting in the development of Unverricht-Lundborg disease, which is a form of myoclonic epilepsy. It was suggested that a key mechanism behind stefin B-mediated disease progression was impaired redox homeostasis. Stefin B-deficient mice were found more sensitive to lipopolysaccharide (LPS)-induced sepsis as a consequence of increased expression of caspase-11 and Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing (NLRP nflammasome activation and higher levels of mitochondrial reactive oxygen species (ROS). In the present study, we investigated if LPS-triggered oxidative stress affected the protein levels and redox status of redox sensitive proteins-thioredoxin, peroxiredoxins, and superoxide dismutases in macrophages and spleens of LPS-injected mice. LPS challenge was found to result in a marked elevation in mitochondrial peroxiredoxin 3 (Prx3), sulfiredoxin, and superoxide dismutase 2 (Sod2) in stefin B-deficient macrophages and spleens. We determined that sulfiredoxin is targeted to mitochondria after LPS challenge. In conclusion, the upregulation of mitochondrial redox-sensitive proteins Prx3 and Sod2 in stefin B-deficient cells implies a protective role of stefin B in mitochondrial function.
Collapse
Affiliation(s)
- Mojca Trstenjak Prebanda
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (J.Z.); (B.T.)
| | - Janja Završnik
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (J.Z.); (B.T.)
- International Postgraduate School Jožef Stefan, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (J.Z.); (B.T.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Nataša Kopitar Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia; (M.T.P.); (J.Z.); (B.T.)
| |
Collapse
|
20
|
Neuroinflammation in Post-Traumatic Epilepsy: Pathophysiology and Tractable Therapeutic Targets. Brain Sci 2019; 9:brainsci9110318. [PMID: 31717556 PMCID: PMC6895909 DOI: 10.3390/brainsci9110318] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common chronic consequence of traumatic brain injury (TBI), contributing to increased morbidity and mortality for survivors. As post-traumatic epilepsy (PTE) is drug-resistant in at least one-third of patients, there is a clear need for novel therapeutic strategies to prevent epilepsy from developing after TBI, or to mitigate its severity. It has long been recognized that seizure activity is associated with a local immune response, characterized by the activation of microglia and astrocytes and the release of a plethora of pro-inflammatory cytokines and chemokines. More recently, increasing evidence also supports a causal role for neuroinflammation in seizure induction and propagation, acting both directly and indirectly on neurons to promote regional hyperexcitability. In this narrative review, we focus on key aspects of the neuroinflammatory response that have been implicated in epilepsy, with a particular focus on PTE. The contributions of glial cells, blood-derived leukocytes, and the blood–brain barrier will be explored, as well as pro- and anti-inflammatory mediators. While the neuroinflammatory response to TBI appears to be largely pro-epileptogenic, further research is needed to clearly demonstrate causal relationships. This research has the potential to unveil new drug targets for PTE, and identify immune-based biomarkers for improved epilepsy prediction.
Collapse
|
21
|
Riva M, Wouters R, Weerasekera A, Belderbos S, Nittner D, Thal DR, Baert T, Giovannoni R, Gsell W, Himmelreich U, Van Ranst M, Coosemans A. CT-2A neurospheres-derived high-grade glioma in mice: a new model to address tumor stem cells and immunosuppression. Biol Open 2019; 8:bio.044552. [PMID: 31511246 PMCID: PMC6777368 DOI: 10.1242/bio.044552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, several promising treatments for high-grade gliomas (HGGs) failed to provide significant benefit when translated from the preclinical setting to patients. Improving the animal models is fundamental to overcoming this translational gap. To address this need, we developed and comprehensively characterized a new in vivo model based on the orthotopic implantation of CT-2A cells cultured in neurospheres (NS/CT-2A). Murine CT-2A methylcholanthrene-induced HGG cells (C57BL/6 background) were cultured in monolayers (ML) or NS and orthotopically inoculated in syngeneic animals. ML/CT-2A and NS/CT-2A tumors' characterization included the analysis of tumor growth, immune microenvironment, glioma stem cells (GSCs), vascularization and metabolites. The immuno-modulating properties of NS/CT-2A and ML/CT-2A cells on splenocytes were tested in vitro. Mice harboring NS/CT-2A tumors had a shorter survival than those harboring ML/CT-2A tumors (P=0.0033). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors showed more abundant GSCs (P=0.0002 and 0.0770 for Nestin and CD133, respectively) and regulatory T cells (Tregs, P=0.0074), and a strong tendency towards an increased vascularization (P=0.0503). There were no significant differences in metabolites' composition between NS/ and ML/CT-2A tumors. In vitro, NS were able to drive splenocytes towards a more immunosuppressive status by reducing CD8+ T cells (P=0.0354) and by promoting Tregs (P=0.0082), macrophages (MF, P=0.0019) and their M2 subset (P=0.0536). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors show a more aggressive phenotype with increased immunosuppression and GSCs proliferation. Because of these specific features, the NS/CT-2A model represents a clinically relevant platform in the search for new HGG treatments aimed at reducing immunosuppression and eliminating GSCs. Summary: The NS/CT-2A tumor model represents a valuable research platform for the study of innovative treatments aimed at eliminating GSCs and reversing the tumor-induced immunosuppression in HGGs.
Collapse
Affiliation(s)
- Matteo Riva
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium .,Department of Neurosurgery, Erasme Hospital, Bruxelles 1070, Belgium
| | - Roxanne Wouters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium
| | - Akila Weerasekera
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - David Nittner
- Center for the Biology of Disease, KU Leuven Center for Human Genetics - InfraMouse, VIB, University of Leuven, Leuven 3000, Belgium
| | - Dietmar R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Department of Pathology, UZ-Leuven, Leuven 3000, Belgium
| | - Thaïs Baert
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium.,Department of Gynecology and Gynecologic Oncology, Kliniken Essen Mitte (KEM), Essen 2910, Germany
| | - Roberto Giovannoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium.,Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven 3000, Belgium
| |
Collapse
|
22
|
Liu JT, Wu SX, Zhang H, Kuang F. Inhibition of MyD88 Signaling Skews Microglia/Macrophage Polarization and Attenuates Neuronal Apoptosis in the Hippocampus After Status Epilepticus in Mice. Neurotherapeutics 2018; 15:1093-1111. [PMID: 30112701 PMCID: PMC6277303 DOI: 10.1007/s13311-018-0653-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Inflammation is implicated in epileptogenesis. Activated microglia and macrophages (MG/MΦ) are found in the brains of patients with epilepsy-related diseases and animal models of epilepsy. It is not yet known how the MG/MΦ activation phenotype affects pathological changes in the brain after a single seizure. In this study, we had 2 main purposes: first, to characterize post-status epilepticus (SE) inflammation by tracking MG/MΦ polarization, and, second, to explore the role of an innate immune receptor adaptor protein, namely, myeloid differentiation primary response gene 88 (MyD88), in the induction of SE in a mouse model. A lithium-pilocarpine model of seizure conditions was generated in C57BL/6 mice. The intensity and distribution of MG/MΦ polarization were tracked by fluorescent immunohistochemistry and Western blotting for the polarization markers inducible nitrogen oxygenized synthase, arginase-1, CD163, and mannose receptor. We observed steadily increasing M1 MG/MΦ along with MyD88 signal upregulation after SE in the hippocampi of mice, whereas the M2 marker arginase-1 was localized mainly in astrocytes rather than in MG/MΦ. Inhibition or gene knockout of MyD88 reduced M1 MG/MΦ and gliosis although increasing M2 MG/MΦ in the hippocampi of SE mice. MyD88 inhibition also augmented glutamate transporter 1 expression and reduced N-methyl-D-aspartate receptor NR1 subunit expression in the hippocampus to protect pyramidal neurons from apoptosis. These data suggest that MG/MΦ polarization after SE impacts the pathological outcome of the hippocampus via MyD88 signaling and point to MyD88 as a potential neuroprotective target for epilepsy therapy.
Collapse
Affiliation(s)
- Jin-Tao Liu
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
- Department of Orthopedics, The 413th Hospital of the Chinese People's Liberation Army, Zhoushan, 316000, China
| | - Sheng-Xi Wu
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China
| | - Hua Zhang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, 710038, China.
| | - Fang Kuang
- Institute of Neurosciences, Department of Neurobiology and Collaborative Innovation Center for Brain Science, The Fourth Military Medical University, No. 169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
23
|
Ali I, Silva JC, Liu S, Shultz SR, Kwan P, Jones NC, O'Brien TJ. Targeting neurodegeneration to prevent post-traumatic epilepsy. Neurobiol Dis 2018; 123:100-109. [PMID: 30099094 DOI: 10.1016/j.nbd.2018.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
In the quest for developing new therapeutic targets for post-traumatic epilepsies (PTE), identifying mechanisms relevant to development and progression of disease is critical. A growing body of literature suggests involvement of neurodegenerative mechanisms in the pathophysiology of acquired epilepsies, including following traumatic brain injury (TBI). In this review, we discuss the potential of some of these mechanisms to be targets for the development of a therapy against PTE.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Juliana C Silva
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Shijie Liu
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Sandy R Shultz
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia; Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
24
|
Abstract
Epilepsy affects all age groups and is one of the most common and most disabling neurological disorders. The accurate diagnosis of seizures is essential as some patients will be misdiagnosed with epilepsy, whereas others will receive an incorrect diagnosis. Indeed, errors in diagnosis are common, and many patients fail to receive the correct treatment, which often has severe consequences. Although many patients have seizure control using a single medication, others require multiple medications, resective surgery, neuromodulation devices or dietary therapies. In addition, one-third of patients will continue to have uncontrolled seizures. Epilepsy can substantially impair quality of life owing to seizures, comorbid mood and psychiatric disorders, cognitive deficits and adverse effects of medications. In addition, seizures can be fatal owing to direct effects on autonomic and arousal functions or owing to indirect effects such as drowning and other accidents. Deciphering the pathophysiology of epilepsy has advanced the understanding of the cellular and molecular events initiated by pathogenetic insults that transform normal circuits into epileptic circuits (epileptogenesis) and the mechanisms that generate seizures (ictogenesis). The discovery of >500 genes associated with epilepsy has led to new animal models, more precise diagnoses and, in some cases, targeted therapies.
Collapse
Affiliation(s)
- Orrin Devinsky
- Departments of Neurology, Neuroscience, Neurosurgery and Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Annamaria Vezzani
- Laboratory of Experimental Neurology, Department of Neuroscience, IRCCS 'Mario Negri' Institute for Pharmacological Research, Milan, Italy
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathalie Jette
- Department of Neurology and Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.,The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, and Department of Neurology, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia.,Departments of Neurology and Medicine, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
25
|
Canafoglia L, Ferlazzo E, Michelucci R, Striano P, Magaudda A, Gambardella A, Pasini E, Belcastro V, Riguzzi P, Fanella M, Granata T, Beccaria F, Trentini C, Bianchi A, Aguglia U, Panzica F, Franceschetti S. Variable course of Unverricht-Lundborg disease. Neurology 2017; 89:1691-1697. [DOI: 10.1212/wnl.0000000000004518] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/23/2017] [Indexed: 01/29/2023] Open
Abstract
Objective:To explore the course of Unverricht-Lundborg disease (EPM1) and identify the risk factors for severity, we investigated the time course of symptoms and prognostic factors already detectable near to disease onset.Methods:We retrospectively evaluated the features of 59 Italian patients carrying the CSTB expansion mutation, and coded the information every 5 years after the disease onset in order to describe the cumulative time-dependent probability of reaching disabling myoclonus, relevant cognitive impairment, and inability to work, and evaluated the influence of early factors using the log-rank test. The risk factors were included in a Cox multivariate proportional hazards regression model.Results:Disabling myoclonus occurred an average of 32 years after disease onset, whereas cognitive impairment occurred a little later. An age at onset of less than 12 years, the severity of myoclonus at the time of first assessment, and seizure persistence more than 10 years after onset affected the timing of disabling myoclonus and cognitive decline. Most patients became unable to work years before the appearance of disabling myoclonus or cognitive decline.Conclusions:A younger age at onset, early severe myoclonus, and seizure persistence are predictors of a more severe outcome. All of these factors may be genetically determined, but the greater hyperexcitability underlying more severe seizures and myoclonus at onset may also play a role by increasing cell damage due to reduced cystatin B activity.
Collapse
|
26
|
Lanser AJ, Rezende RM, Rubino S, Lorello PJ, Donnelly DJ, Xu H, Lau LA, Dulla CG, Caldarone BJ, Robson SC, Weiner HL. Disruption of the ATP/adenosine balance in CD39 -/- mice is associated with handling-induced seizures. Immunology 2017; 152:589-601. [PMID: 28742222 DOI: 10.1111/imm.12798] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/15/2017] [Accepted: 07/16/2017] [Indexed: 12/14/2022] Open
Abstract
Seizures are due to excessive, synchronous neuronal firing in the brain and are characteristic of epilepsy, the fourth most prevalent neurological disease. We report handling-induced and spontaneous seizures in mice deficient for CD39, a cell-surface ATPase highly expressed on microglial cells. CD39-/- mice with handling-induced seizures had normal input-output curves and paired-pulse ratio measured from hippocampal slices and lacked microgliosis, astrogliosis or overt cell loss in the hippocampus and cortex. As expected, however, the cerebrospinal fluid of CD39-/- mice contained increased levels of ATP and decreased levels of adenosine. To determine if immune activation was involved in seizure progression, we challenged mice with lipopolysaccharide (LPS) and measured the effect on microglia activation and seizure severity. Systemic LPS challenge resulted in increased cortical staining of Iba1/CD68 and gene array data from purified microglia predicted increased expression of interleukin-8, triggering receptor expressed on myeloid cells 1, p38, pattern recognition receptors, death receptor, nuclear factor-κB , complement, acute phase, and interleukin-6 signalling pathways in CD39-/- versus CD39+/+ mice. However, LPS treatment did not affect handling-induced seizures. In addition, microglia-specific CD39 deletion in adult mice was not sufficient to cause seizures, suggesting instead that altered expression of CD39 during development or on non-microglial cells such as vascular endothelial cells may promote the seizure phenotype. In summary, we show a correlation between altered extracellular ATP/adenosine ratio and a previously unreported seizure phenotype in CD39-/- mice. This work provides groundwork for further elucidation of the underlying mechanisms of epilepsy.
Collapse
Affiliation(s)
- Amanda J Lanser
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul J Lorello
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Dustin J Donnelly
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huixin Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A Lau
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
| | - Barbara J Caldarone
- NeuroBehavior Laboratory, Harvard NeuroDiscovery Center; Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Cruz SA, Hari A, Qin Z, Couture P, Huang H, Lagace DC, Stewart AFR, Chen HH. Loss of IRF2BP2 in Microglia Increases Inflammation and Functional Deficits after Focal Ischemic Brain Injury. Front Cell Neurosci 2017; 11:201. [PMID: 28769762 PMCID: PMC5515910 DOI: 10.3389/fncel.2017.00201] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/27/2017] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke causes neuronal cell death and triggers a cascade of inflammatory signals that contribute to secondary brain damage. Microglia, the brain-resident macrophages that remove dead neurons, play a critical role in the brain’s response to ischemic injury. Our previous studies showed that IRF2 binding protein 2 (IRF2BP2) regulates peripheral macrophage polarization, limits their inflammatory response and reduces susceptibility to atherosclerosis. Here, we show that loss of IRF2BP2 in microglia leads to increased inflammatory cytokine expression in response to lipopolysaccharide challenge and impaired activation of anti-inflammatory markers in response to interleukin-4 (IL4) stimulation. Focal ischemic brain injury of the sensorimotor cortex induced by photothrombosis caused more severe functional deficits in mice with IRF2BP2 ablated in macrophages/microglia, associated with elevated expression of inflammatory cytokines in the brain. These mutant mice had larger infarctions 4 days after stroke associated with fewer anti-inflammatory M2 microglia/macrophages recruited to the peri-infarct area, suggesting an impaired clearance of injured tissues. Since IRF2BP2 modulates interferon signaling, and interferon beta (IFNβ) has been reported to be anti-inflammatory and reduce ischemic brain injury, we asked whether loss of IRF2BP2 in macrophages/microglia would affect the response to IFNβ in our stroke model. IFNβ suppressed inflammatory cytokine production of macrophages and reduced infarct volumes at 4 days after photothrombosis in wild type mice. The anti-inflammatory effect of IFNβ was lost in IRF2BP2-deficient macrophages and IFNβ failed to protect mice lacking IRF2BP2 in macrophages/microglia from ischemic injury. In summary, IRF2BP2 expression in macrophages/microglia is important to limit inflammation and stroke injury, in part by mediating the beneficial effect of IFNβ.
Collapse
Affiliation(s)
- Shelly A Cruz
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Aswin Hari
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Zhaohong Qin
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada
| | - Pascal Couture
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Hua Huang
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,University of Ottawa Heart InstituteOttawa, ON, Canada
| | - Diane C Lagace
- Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada
| | - Alexandre F R Stewart
- University of Ottawa Heart InstituteOttawa, ON, Canada.,Biochemistry, Microbiology and Immunology, University of OttawaOttawa, ON, Canada
| | - Hsiao-Huei Chen
- Ottawa Hospital Research InstituteOttawa, ON, Canada.,Brain and Mind Institute, University of OttawaOttawa, ON, Canada.,Canadian Partnership for Stroke RecoveryOttawa, ON, Canada.,Cellular and Molecular Medicine, University of OttawaOttawa, ON, Canada.,Medicine, University of OttawaOttawa, ON, Canada
| |
Collapse
|
28
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 553] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|
29
|
Ali I, Aertgeerts S, Le Blon D, Bertoglio D, Hoornaert C, Ponsaerts P, Dedeurwaerdere S. Intracerebral delivery of the M2 polarizing cytokine interleukin 13 using mesenchymal stem cell implants in a model of temporal lobe epilepsy in mice. Epilepsia 2017; 58:1063-1072. [PMID: 28374921 DOI: 10.1111/epi.13743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Neuroinflammation plays a critical role in the pathophysiology of mesial temporal lobe epilepsy. We aimed to evaluate whether intracerebral transplantation of interleukin 13-producing mesenchymal stem cells (IL-13 MSCs) induces an M2 microglia/macrophage activation phenotype in the hippocampus with an epileptogenic insult, thereby providing a neuroprotective environment with reduced epileptogenesis. METHODS Genetically engineered syngeneic IL-13 MSCs or vehicle was injected within the hippocampus 1 week before the intrahippocampal kainic acid-induced status epilepticus (SE) in C57BL/6J mice. Neuroinflammation was evaluated at disease onset as well as during the chronic epilepsy period (9 weeks). In addition, continuous video-electroencephalography (EEG) (vEEG) monitoring was obtained during the chronic epilepsy period (between 6 and 9 weeks after SE). RESULTS Evaluation of vEEG recordings suggested that IL-13 MSC grafts did not affect the severity and duration of SE or the seizure burden during the chronic epilepsy period, when compared to the vehicle treated SE mice. An M2-activation phenotype was induced in microglia/macrophages that infiltrated the -13 MSC graft site, as evidenced by the arginase1 expression at the graft site at both the 2-week and 9-week time-points. However, M2-activated immune cells were rarely observed outside the graft site and, accordingly, the neuroinflammatory response or cell loss related to SE induction was not altered by IL-13 MSC grafting. Moreover, an increase in the proportion of F4/80+ cells was observed in the IL-13 MSC group compared to the controls. SIGNIFICANCE Our data suggest that MSC-based IL-13 delivery to induce M2 glial activation does not provide any neuroprotective or disease-modifying effects in a mouse model of epilepsy. Moreover, use of cell grafting to deliver bioactive compounds for modulating neuroinflammation may have confounding effects in disease pathology of epilepsy due to the additional immune response generated by the grafted cells.
Collapse
Affiliation(s)
- Idrish Ali
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Stephanie Aertgeerts
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Debbie Le Blon
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | - Daniele Bertoglio
- Department of Translational Neurosciences, University of Antwerp, Antwerp, Belgium
| | - Chloe Hoornaert
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaxinfectio, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
30
|
Abstract
OBJECTIVE Epilepsy is a chronic neurological disease characterised with seizures. The aetiology of the most generalised epilepsies cannot be explicitly determined and the seizures are pronounced to be genetically determined by disturbances of receptors in central nervous system. Besides, neurotransmitter distributions or other metabolic problems are supposed to involve in epileptogenesis. Lack of adequate data about pharmacological agents that have antiepileptogenic effects point to need of research on this field. Thus, in this review, inflammatory aspects of epileptogenesis has been focussed via considering several concepts like role of immune system, blood-brain barrier and antibody involvement in epileptogenesis. METHODS We conducted an evidence-based review of the literatures in order to evaluate the possible participation of inflammatory processes to epileptogenesis and also, promising agents which are effective to these processes. We searched PubMed database up to November 2015 with no date restrictions. RESULTS In the present review, 163 appropriate articles were included. Obtained data suggests that inflammatory processes participate to epileptogenesis in several ways like affecting fibroblast growth factor-2 and tropomyosin receptor kinase B signalling pathways, detrimental proinflammatory pathways [such as the interleukin-1 beta (IL-1β)-interleukin-1 receptor type 1 (IL-1R1) system], mammalian target of rapamycin pathway, microglial activities, release of glial inflammatory proteins (such as macrophage inflammatory protein, interleukin 6, C-C motif ligand 2 and IL-1β), adhesion molecules that are suggested to function in signalling pathways between neurons and microglia and also linkage between these molecules and proinflammatory cytokines. CONCLUSION The literature research indicated that inflammation is a part of epileptogenesis. For this reason, further studies are necessary for assessing agents that will be effective in clinical use for therapeutic treatment of epileptogenesis.
Collapse
|
31
|
Li T, Zhai X, Jiang J, Song X, Han W, Ma J, Xie L, Cheng L, Chen H, Jiang L. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2016; 1657:120-129. [PMID: 27956120 DOI: 10.1016/j.brainres.2016.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022]
Abstract
Recent studies have reported microglia that are activated in the central nervous system (CNS) in patients with temporal lobe epilepsy and animal models of epilepsy. However, limited data are available on the dynamic changes of the proportions of various phenotypes of microglia throughout epileptogenesis and whether IL-4/IFN-γ administration can modulate the proportions of microglial phenotypes to affect the outcome of epilepsy. The current study examined this issue using a mouse model of pilocarpine-induced epilepsy. Flow cytometry showed that classically activated microglia (M1) and alternatively activated microglia (M2) underwent variations throughout the stages of epileptogenesis. The altered trends in the microglia-associated cytokines IL-1β, IL-4, and IL-10 paralleled the changes in phenotype proportions. We found that intraperitoneal injections of IL-4 and IFN-γ, which have been reported to modulate the phenotypes of microglia in vitro, also affected the proportion of microglia in vivo. In addition, correctly timing the modulation of the proportion of microglia improved the outcomes of epilepsy based on the reduced frequency, duration, and severity of spontaneous recurrent seizures (SRS) and increased the performances of the mice in the Morris water maze. This study is the first to report altering the proportion of microglial phenotypes in pilocarpine-induced epileptogenesis. Intraperitoneal injection of IL-4/IFN-γ could be used to modulate the proportions of the types of microglia, and epilepsy outcomes could be improved by correctly timing this modulation of phenotypes.
Collapse
Affiliation(s)
- Tianyi Li
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Jiang
- Research Center for Immunologic and Infectious diseases, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaojie Song
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Han
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jiannan Ma
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China
| | - Lingling Xie
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China
| | - Li Cheng
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hengsheng Chen
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Li Jiang
- Lab of Pediatric Neurology, Ministry of Education, Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Department of Neurology, Children's Hospital of Chongqing Medical University, 136# Zhongshan 2 Road, Chongqing 400014, China.
| |
Collapse
|
32
|
Okuneva O, Li Z, Körber I, Tegelberg S, Joensuu T, Tian L, Lehesjoki AE. Brain inflammation is accompanied by peripheral inflammation in Cstb -/- mice, a model for progressive myoclonus epilepsy. J Neuroinflammation 2016; 13:298. [PMID: 27894304 PMCID: PMC5127053 DOI: 10.1186/s12974-016-0764-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/16/2016] [Indexed: 01/16/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1) is an autosomal recessively inherited childhood-onset neurodegenerative disorder, characterized by myoclonus, seizures, and ataxia. Mutations in the cystatin B gene (CSTB) underlie EPM1. The CSTB-deficient (Cstb -/- ) mouse model recapitulates key features of EPM1, including myoclonic seizures. The mice show early microglial activation that precedes seizure onset and neuronal loss and leads to neuroinflammation. We here characterized the inflammatory phenotype of Cstb -/- mice in more detail. We found higher concentrations of chemokines and pro-inflammatory cytokines in the serum of Cstb -/- mice and higher CXCL13 expression in activated microglia in Cstb -/- compared to control mouse brains. The elevated chemokine levels were not accompanied by blood-brain barrier disruption, despite increased brain vascularization. Macrophages in the spleen and brain of Cstb -/- mice were predominantly pro-inflammatory. Taken together, these data show that CXCL13 expression is a hallmark of microglial activation in Cstb -/- mice and that the brain inflammation is linked to peripheral inflammatory changes, which might contribute to the disease pathology of EPM1.
Collapse
Affiliation(s)
- Olesya Okuneva
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014 Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Zhilin Li
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Inken Körber
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014 Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Saara Tegelberg
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014 Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Tarja Joensuu
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014 Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| | - Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
- Beijing Huilongguan Hospital, Peking University teaching hospital, Beijing, China
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Haartmaninkatu 8, 00014 Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Haartmaninkatu 8, 00014 Helsinki, Finland
- Neuroscience Center, University of Helsinki, Viikinkaari 4, 00014 Helsinki, Finland
| |
Collapse
|
33
|
Li Z, Wei H, Piirainen S, Chen Z, Kalso E, Pertovaara A, Tian L. Spinal versus brain microglial and macrophage activation traits determine the differential neuroinflammatory responses and analgesic effect of minocycline in chronic neuropathic pain. Brain Behav Immun 2016; 58:107-117. [PMID: 27262531 DOI: 10.1016/j.bbi.2016.05.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/18/2022] Open
Abstract
Substantial evidence indicates involvement of microglia/macrophages in chronic neuropathic pain. However, the temporal-spatial features of microglial/macrophage activation and their pain-bound roles remain elusive. Here, we evaluated microglia/macrophages and the subtypes in the lumbar spinal cord (SC) and prefrontal cortex (PFC), and analgesic-anxiolytic effect of minocycline at different stages following spared nerve injury (SNI) in rats. While SNI enhanced the number of spinal microglia/macrophages since post-operative day (POD)3, pro-inflammatory MHCII+ spinal microglia/macrophages were unexpectedly less abundant in SNI rats than shams on POD21. By contrast, less abundant anti-inflammatory CD172a (SIRPα)+ microglia/macrophages were found in the PFC of SNI rats. Interestingly in naïve rats, microglial/macrophage expression of CD11b/c, MHCII and MHCII+/CD172a+ ratio were higher in the SC than the cortex. Consistently, multiple immune genes involved in anti-inflammation, phagocytosis, complement activation and M2 microglial/macrophage polarization were upregulated in the spinal dorsal horn and dorsal root ganglia but downregulated in the PFC of SNI rats. Furthermore, daily intrathecal minocycline treatment starting from POD0 for two weeks alleviated mechanical allodynia most robustly before POD3 and attenuated anxiety on POD9. Although minocycline dampened spinal MHCII+ microglia/macrophages until POD13, it failed to do so on cortical microglia/macrophages, indicating that dampening only spinal inflammation may not be enough to alleviate centralized pain at the chronic stage. Taken together, our data provide the first evidence that basal microglial/macrophage traits underlie differential region-specific responses to SNI and minocycline treatment, and suggest that drug treatment efficiently targeting not only spinal but also brain inflammation may be more effective in treating chronic neuropathic pain.
Collapse
Affiliation(s)
- Zhilin Li
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Hong Wei
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Sami Piirainen
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| | - Zuyue Chen
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Eija Kalso
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Li Tian
- Neuroscience Center, University of Helsinki, Helsinki, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| |
Collapse
|
34
|
Žerovnik E. Putative alternative functions of human stefin B (cystatin B): binding to amyloid-beta, membranes, and copper. J Mol Recognit 2016; 30. [PMID: 27577977 DOI: 10.1002/jmr.2562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/17/2022]
Abstract
We describe studies performed thus far on stefin B from the family of cystatins as a model protein for folding and amyloid fibril formation studies. We also briefly mention our studies on aggregation of some of the missense EPM1 mutants of stefin B in cells, which mimic additional pathological traits (gain in toxic function) in selected patients with EPM1 disease. We collected data on the reported interactors of stefin B and discuss several hypotheses of possible cytosolic alternative functions.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia.,CipKeBip-Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
35
|
Terrone G, Pauletti A, Pascente R, Vezzani A. Preventing epileptogenesis: A realistic goal? Pharmacol Res 2016; 110:96-100. [DOI: 10.1016/j.phrs.2016.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022]
|
36
|
Körber I, Katayama S, Einarsdottir E, Krjutškov K, Hakala P, Kere J, Lehesjoki AE, Joensuu T. Gene-Expression Profiling Suggests Impaired Signaling via the Interferon Pathway in Cstb-/- Microglia. PLoS One 2016; 11:e0158195. [PMID: 27355630 PMCID: PMC4927094 DOI: 10.1371/journal.pone.0158195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/26/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht-Lundborg type (EPM1, OMIM254800) is an autosomal recessive neurodegenerative disorder characterized by stimulus-sensitive and action-activated myoclonus, tonic-clonic epileptic seizures, and ataxia. Loss-of-function mutations in the gene encoding the cysteine protease inhibitor cystatin B (CSTB) underlie EPM1. The deficiency of CSTB in mice (Cstb-/- mice) generates a phenotype resembling the symptoms of EPM1 patients and is accompanied by microglial activation at two weeks of age and an upregulation of immune system-associated genes in the cerebellum at one month of age. To shed light on molecular pathways and processes linked to CSTB deficiency in microglia we characterized the transcriptome of cultured Cstb-/- mouse microglia using microarray hybridization and RNA sequencing (RNA-seq). The gene expression profiles obtained with these two techniques were in good accordance and not polarized to either pro- or anti-inflammatory status. In Cstb-/- microglia, altogether 184 genes were differentially expressed. Of these, 33 genes were identified by both methods. Several interferon-regulated genes were weaker expressed in Cstb-/- microglia compared to control. This was confirmed by quantitative real-time PCR of the transcripts Irf7 and Stat1. Subsequently, we explored the biological context of CSTB deficiency in microglia more deeply by functional enrichment and canonical pathway analysis. This uncovered a potential role for CSTB in chemotaxis, antigen-presentation, and in immune- and defense response-associated processes by altering JAK-STAT pathway signaling. These data support and expand the previously suggested involvement of inflammatory processes to the disease pathogenesis of EPM1 and connect CSTB deficiency in microglia to altered expression of interferon-regulated genes.
Collapse
Affiliation(s)
- Inken Körber
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Shintaro Katayama
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Kaarel Krjutškov
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Paula Hakala
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Tarja Joensuu
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program’s Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
37
|
Kopitar-Jerala N. Innate Immune Response in Brain, NF-Kappa B Signaling and Cystatins. Front Mol Neurosci 2015; 8:73. [PMID: 26696821 PMCID: PMC4673337 DOI: 10.3389/fnmol.2015.00073] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/16/2015] [Indexed: 12/29/2022] Open
Abstract
Recently several reports have demonstrated that innate immune response and inflammation have an important role in major neurodegenerative diseases. The activation of the NF-κB family of transcription factors is a key step in the regulation of pro inflammatory cytokine expression. Microglia and other cell types in the brain can be activated in response to endogenous danger molecules as well as aggregated proteins and brain injury. During the past couple of years several studies reported the role of cystatins in neuroinflammation and neurodegeneration. In the present review, I will summarize and analyze recent findings regarding the role of cystatins in inflammation and NF-κB activation. Type I cystatin stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor localized in the cytosol, mitochondria and nucleus. Mutations in the gene of stefin B are associated with the neurodegenerative disease known as Unverricht-Lundborg disease and microglial activation plays an important role in the pathogenesis of the disease. Stefin B deficient mice have increased caspase-11 expression and secreted higher amounts of pro-inflammatory cytokines. The increased caspase-11 gene expression, was a consequence of increased NF-κB activation.
Collapse
Affiliation(s)
- Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute Ljubljana, Slovenia
| |
Collapse
|
38
|
Kopitar-Jerala N. The Role of Stefin B in Neuro-inflammation. Front Cell Neurosci 2015; 9:458. [PMID: 26696823 PMCID: PMC4672043 DOI: 10.3389/fncel.2015.00458] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/11/2015] [Indexed: 11/29/2022] Open
Abstract
Stefin B (cystatin B) is an endogenous cysteine cathepsin inhibitor localized in the cytosol, mitochondria and nucleus. Its expression is upregulated upon macrophage activation and cellular stress. Mutations in the gene of stefin B are associated with the neurodegenerative disease known as Unverricht-Lundborg disease (EPM1). It was reported that early microglial activation precedes neuronal loss in the brain of the stefin B-deficient mice, implying a role of the inhibitor at the cross-talk between microglia and cerebellar cells. Detailed analysis of microglial activation in stefin B-deficient microglia showed a significantly higher proportion of both pro-inflammatory M1 and anti-inflammatory M2 microglia in stefin B-deficient mouse brain compared with control mice. In our recent work, we demonstrated that stefin B-deficient mice were significantly more sensitive to the lethal lipopolysaccharide (LPS)-induced sepsis, due to increased caspase-11 expression and secreted higher amounts of pro-inflammatory cytokines IL-1β and IL-18. Upon LPS stimulation, stefin B was targeted into the mitochondria, and the lack of stefin B resulted in the increased destabilization of the mitochondrial membrane potential and mitochondrial superoxide generation. The increased caspase-11 gene expression and better pro- inflammatory caspase-1 and -11 activation determined in stefin B deficient bone marrow-derived macrophages resulted in enhanced non-canonical inflammasome activation. Since signaling pathways in macrophages could be compared to the ones in microglia we propose that inflammasome activation could play an important role in the pathogenesis of EPM1.
Collapse
Affiliation(s)
- Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute Ljubljana, Slovenia
| |
Collapse
|
39
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
40
|
Manninen O, Puolakkainen T, Lehto J, Harittu E, Kallonen A, Peura M, Laitala-Leinonen T, Kopra O, Kiviranta R, Lehesjoki AE. Impaired osteoclast homeostasis in the cystatin B-deficient mouse model of progressive myoclonus epilepsy. Bone Rep 2015; 3:76-82. [PMID: 28377970 PMCID: PMC5365244 DOI: 10.1016/j.bonr.2015.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/19/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023] Open
Abstract
Progressive myoclonus epilepsy of Unverricht–Lundborg type (EPM1) is an autosomal recessively inherited disorder characterized by incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures with onset at the age of 6 to 16 years. EPM1 patients also exhibit a range of skeletal changes, e.g., thickened frontal cranial bone, arachnodactyly and scoliosis. Mutations in the gene encoding cystatin B (CSTB) underlie EPM1. CSTB is an inhibitor of cysteine cathepsins, including cathepsin K, a key enzyme in bone resorption by osteoclasts. CSTB has previously been shown to protect osteoclasts from experimentally induced apoptosis and to modulate bone resorption in vitro. Nevertheless, its physiological function in bone and the cause of the bone changes in patients remain unknown. Here we used the CSTB-deficient mouse (Cstb−/−) model of EPM1 to evaluate the contribution of defective CSTB protein function on bone pathology and osteoclast differentiation and function. Micro-computed tomography of hind limbs revealed thicker trabeculae and elevated bone mineral density in the trabecular bone of Cstb−/− mice. Histology from Cstb−/− mouse bones showed lower osteoclast count and thinner growth plates in long bones. Bone marrow-derived osteoclast cultures revealed lower osteoclast number and size in the Cstb−/− group. Cstb−/− osteoclasts formed less and smaller resorption pits in an in vitro assay. This impaired resorptive capacity was likely due to a decrease in osteoclast numbers and size. These data imply that the skeletal changes in Cstb−/− mice and in EPM1 patients are a result of CSTB deficiency leading to impaired osteoclast formation and consequently compromised resorptive capacity. These results suggest that the role of CSTB in osteoclast homeostasis and modulation of bone metabolism extends beyond cathepsin K regulation. μCT reveals changes in trabecular bone of the Cstb−/− mouse model of EPM1, compatible with findings in human patients. Bone histology in Cstb−/− mice shows lower osteoclast number and thinner growth plates in long bones. Cultured osteoclasts of Cstb−/− mice show decreased size and number of mature osteoclasts with impaired bone resorption. Impaired osteoclast formation and resorption are likely to underlie the bone phenotype associated with CSTB deficiency.
Collapse
Affiliation(s)
- Otto Manninen
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | | | - Jemina Lehto
- Department of Medicine, University of Turku, 20520 Turku, Finland
| | - Elina Harittu
- Department of Anatomy, University of Turku, 20520 Turku, Finland
| | - Aki Kallonen
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Marko Peura
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | | | - Outi Kopra
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Riku Kiviranta
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland; Research Program's Unit, Molecular Neurology, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
41
|
Abstract
We delineate perspectives for the design and discovery of antiepileptic drugs (AEDs) with fewer side effects by focusing on astroglial modulation of spatiotemporal seizure dynamics. It is now recognized that the major inhibitory neurotransmitter of the brain, γ-aminobutyric acid (GABA), can be released through the reversal of astroglial GABA transporters. Synaptic spillover and subsequent glutamate (Glu) uptake in neighboring astrocytes evoke replacement of extracellular Glu for GABA, driving neurons away from the seizure threshold. Attenuation of synaptic signaling by this negative feedback through the interplay of Glu and GABA transporters of adjacent astroglia can result in shortened seizures. By contrast, long-range activation of astroglia through gap junctions may promote recurrent seizures on the model of pharmacoresistant temporal lobe epilepsy. From their first detection to our current understanding, we identify various targets that shape both short- and long-range neuro-astroglia coupling, as these are manifest in epilepsy phenomena and in the associated research promotions of AED.
Collapse
Affiliation(s)
- Julianna Kardos
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - Zsolt Szabó
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| | - László Héja
- Functional Pharmacology Research Group, Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1117 Budapest, Hungary
| |
Collapse
|
42
|
Muona M, Berkovic SF, Dibbens LM, Oliver KL, Maljevic S, Bayly MA, Joensuu T, Canafoglia L, Franceschetti S, Michelucci R, Markkinen S, Heron SE, Hildebrand MS, Andermann E, Andermann F, Gambardella A, Tinuper P, Licchetta L, Scheffer IE, Criscuolo C, Filla A, Ferlazzo E, Ahmad J, Ahmad A, Baykan B, Said E, Topcu M, Riguzzi P, King MD, Ozkara C, Andrade DM, Engelsen BA, Crespel A, Lindenau M, Lohmann E, Saletti V, Massano J, Privitera M, Espay AJ, Kauffmann B, Duchowny M, Møller RS, Straussberg R, Afawi Z, Ben-Zeev B, Samocha KE, Daly MJ, Petrou S, Lerche H, Palotie A, Lehesjoki AE. A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 2014; 47:39-46. [PMID: 25401298 DOI: 10.1038/ng.3144] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/16/2014] [Indexed: 12/14/2022]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures and ataxia. We sequenced the exomes of 84 unrelated individuals with PME of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation, c.959G>A (p.Arg320His), in KCNC1 was identified as a new major cause for PME. Eleven unrelated exome-sequenced (13%) and two affected individuals in a secondary cohort (7%) had this mutation. KCNC1 encodes KV3.1, a subunit of the KV3 voltage-gated potassium ion channels, which are major determinants of high-frequency neuronal firing. Functional analysis of the Arg320His mutant channel showed a dominant-negative loss-of-function effect. Ten cases had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6 and SERPINI1). Identification of mutations in PRNP, SACS and TBC1D24 expand their phenotypic spectra to PME. These findings provide insights into the molecular genetic basis of PME and show the role of de novo mutations in this disease entity.
Collapse
Affiliation(s)
- Mikko Muona
- 1] Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. [2] Folkhälsan Institute of Genetics, Helsinki, Finland. [3] Neuroscience Center, University of Helsinki, Helsinki, Finland. [4] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Samuel F Berkovic
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Leanne M Dibbens
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Karen L Oliver
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Snezana Maljevic
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marta A Bayly
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Tarja Joensuu
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Laura Canafoglia
- Department of Neurophysiopathology, C. Besta Foundation Neurological Institute, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Silvana Franceschetti
- Department of Neurophysiopathology, C. Besta Foundation Neurological Institute, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Roberto Michelucci
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Salla Markkinen
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Sarah E Heron
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Michael S Hildebrand
- Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Eva Andermann
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Frederick Andermann
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | | | - Paolo Tinuper
- 1] Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy. [2] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Laura Licchetta
- 1] Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy. [2] Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ingrid E Scheffer
- 1] Epilepsy Research Center, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia. [2] Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia. [3] Department of Pediatrics, Royal Children's Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Chiara Criscuolo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, Federico II University, Naples, Italy
| | - Edoardo Ferlazzo
- 1] Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy. [2] Regional Epilepsy Center, Bianchi-Melacrino-Morelli Hospital, Reggio Calabria, Italy
| | - Jamil Ahmad
- Department of Biotechnology and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Adeel Ahmad
- Department of Medicine, Mayo Hospital, Lahore, Pakistan
| | - Betul Baykan
- 1] Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. [2] Epilepsy Center (EPIMER), Istanbul University, Istanbul, Turkey
| | - Edith Said
- 1] Department of Anatomy and Cell Biology, University of Malta, Msida, Malta. [2] Section of Medical Genetics, Mater dei Hospital, Msida, Malta
| | - Meral Topcu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Patrizia Riguzzi
- Neurology Unit, IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Mary D King
- 1] Department of Neurology, Temple Street Children's University Hospital, Dublin, Ireland. [2] Academic Centre on Rare Diseases, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Cigdem Ozkara
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Danielle M Andrade
- Division of Neurology, Department of Medicine, University of Toronto, Toronto Western Hospital, Krembil Neurosciences Program, Toronto, Ontario, Canada
| | - Bernt A Engelsen
- 1] Department of Clinical Medicine, University of Bergen, Bergen, Norway. [2] Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Matthias Lindenau
- Department of Neurology and Epileptology, Epilepsy Center Hamburg-Alsterdorf, Hamburg, Germany
| | - Ebba Lohmann
- 1] Department of Neurology and Epileptology, Epilepsy Center Hamburg-Alsterdorf, Hamburg, Germany. [2] Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany. [3] German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Veronica Saletti
- Developmental Neurology Unit, C. Besta Foundation Neurological Institute, IRCCS, Milan, Italy
| | - João Massano
- 1] Department of Neurology, Centro Hospitalar São João, Porto, Portugal. [2] Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Michael Privitera
- Epilepsy Center, University of Cincinnati Neuroscience Institute, Cincinnati, Ohio, USA
| | - Alberto J Espay
- Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Michael Duchowny
- 1] Brain Institute, Miami Children's Hospital, Miami, Florida, USA. [2] Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rikke S Møller
- 1] Danish Epilepsy Centre, Dianalund, Denmark. [2] Institute of Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Rachel Straussberg
- 1] Neurogenetic Clinic, Child Neurology Institute, Schneider Children's Medical Center of Israel, Petah Tiqvah, Israel. [2] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel
| | - Zaid Afawi
- 1] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel. [2] Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva, Israel
| | - Bruria Ben-Zeev
- 1] Sackler School of Medicine, Tel-Aviv University, Ramat Aviv, Israel. [2] Pediatric Neurology Unit, Edmond and Lilly Safra Children's Hospital, Sheba Medical Center, Ramat-Gan, Israel
| | - Kaitlin E Samocha
- 1] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Program in Genetics and Genomics, Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark J Daly
- 1] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [2] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [3] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Steven Petrou
- 1] Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia. [2] Centre for Neural Engineering, University of Melbourne, Melbourne, Victoria, Australia
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Aarno Palotie
- 1] Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland. [2] Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA. [3] Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [4] Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [5] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK. [6] Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA. [7] Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anna-Elina Lehesjoki
- 1] Folkhälsan Institute of Genetics, Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, Helsinki, Finland. [3] Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| |
Collapse
|