1
|
Reagin KL, Funk KE. The role of antiviral CD8 + T cells in cognitive impairment. Curr Opin Neurobiol 2022; 76:102603. [PMID: 35810534 DOI: 10.1016/j.conb.2022.102603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
The impact of the immune system on the etiopathogenesis of neurodegenerative diseases, including Alzheimer's disease, is a rapidly growing area of investigation. Evidence from human patients and animal models implicates neurotropic viral infections, and specifically the antiviral immune response of brain-infiltrating CD8+ T cells, as potential drivers of disease pathology. While infiltration and retention of CD8+ T cells within the brain following viral infection is associated with improved survival, CD8+ T cells also contribute to neuronal death and gliosis which underlie cognitive impairment in several disease models. Here we review the role of antiviral CD8+ T cells as potential mediators of cognitive impairment and highlight the mechanisms by which brain-resident CD8+ T cells may contribute to neurodegenerative disease pathology.
Collapse
Affiliation(s)
- Katie L Reagin
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA
| | - Kristen E Funk
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, USA.
| |
Collapse
|
2
|
Tang J, Tang Y, Yi I, Chen DF. The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. PROGRESS IN BRAIN RESEARCH 2020; 256:79-97. [PMID: 32958216 DOI: 10.1016/bs.pbr.2020.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the last decade, new evidence has become increasingly more compelling that commensal microflora profoundly influences the maturation and function of resident immune cells in host physiology. The concept of gut-retina axis is actively being explored. Studies have revealed a critical role of commensal microbes linked with neuronal stress, immune responses, and neurodegeneration in the retina. Microbial dysbiosis changes the blood-retina barrier permeability and modulates T cell-mediated autoimmunity to contribute to the pathogenesis of retinal diseases, such as glaucoma. Heat shock proteins (HSPs), which are evolutionarily conserved, are thought to function both as neuroprotectant and pathogenic antigens of T cells contributing to cell protection and tissue damage, respectively. Activated microglia recruit and interact with T cells during this process. Glaucoma, characterized by the progressive loss of retinal ganglion cells, is the leading cause of irreversible blindness. With nearly 70 million people suffering glaucoma worldwide, which doubles the number of patients with Alzheimer's disease, it represents the most frequent neurodegenerative disease of the central nervous system (CNS). Thus, understanding the mechanism of neurodegeneration in glaucoma and its association with the function of commensal microflora may help unveil the secrets of many neurodegenerative disorders in the CNS and develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Sichuan, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Yizhen Tang
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
3
|
Machhi J, Kevadiya BD, Muhammad IK, Herskovitz J, Olson KE, Mosley RL, Gendelman HE. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol Neurodegener 2020; 15:32. [PMID: 32503641 PMCID: PMC7275301 DOI: 10.1186/s13024-020-00375-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence demonstrates that adaptive immunity influences the pathobiology of neurodegenerative disorders. Misfolded aggregated self-proteins can break immune tolerance leading to the induction of autoreactive effector T cells (Teffs) with associated decreases in anti-inflammatory neuroprotective regulatory T cells (Tregs). An imbalance between Teffs and Tregs leads to microglial activation, inflammation and neuronal injury. The cascade of such a disordered immunity includes the drainage of the aggregated protein antigens into cervical lymph nodes serving to amplify effector immune responses. Both preclinical and clinical studies demonstrate transformation of this altered immunity for therapeutic gain. We posit that the signs and symptoms of common neurodegenerative disorders such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, and stroke can be attenuated by boosting Treg activities.
Collapse
Affiliation(s)
- Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Radiology, School of Medicine, Stanford University, Palo Alto, 94304 USA
| | - Ijaz Khan Muhammad
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pharmacy, University of Swabi, Anbar Swabi, 23561 Pakistan
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, Center for Neurodegenerative Disorders, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5880 USA
| |
Collapse
|
4
|
Metaxas A, Thygesen C, Kempf SJ, Anzalone M, Vaitheeswaran R, Petersen S, Landau AM, Audrain H, Teeling JL, Darvesh S, Brooks DJ, Larsen MR, Finsen B. Ageing and amyloidosis underlie the molecular and pathological alterations of tau in a mouse model of familial Alzheimer's disease. Sci Rep 2019; 9:15758. [PMID: 31673052 PMCID: PMC6823454 DOI: 10.1038/s41598-019-52357-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/13/2019] [Indexed: 02/07/2023] Open
Abstract
Despite compelling evidence that the accumulation of amyloid-beta (Aβ) promotes neocortical MAPT (tau) aggregation in familial and idiopathic Alzheimer's disease (AD), murine models of cerebral amyloidosis are not considered to develop tau-associated pathology. In the present study, we show that tau can accumulate spontaneously in aged transgenic APPswe/PS1ΔE9 mice. Tau pathology is abundant around Aβ deposits, and further characterized by accumulation of Gallyas and thioflavin-S-positive inclusions, which were detected in the APPswe/PS1ΔE9 brain at 18 months of age. Age-dependent increases in argyrophilia correlated positively with binding levels of the paired helical filament (PHF) tracer [18F]Flortaucipir, in all brain areas examined. Sarkosyl-insoluble PHFs were visualized by electron microscopy. Quantitative proteomics identified sequences of hyperphosphorylated and three-repeat tau in transgenic mice, along with signs of RNA missplicing, ribosomal dysregulation and disturbed energy metabolism. Tissue from the frontal gyrus of human subjects was used to validate these findings, revealing primarily quantitative differences between the tau pathology observed in AD patient vs. transgenic mouse tissue. As physiological levels of endogenous, 'wild-type' tau aggregate secondarily to Aβ in APPswe/PS1ΔE9 mice, this study suggests that amyloidosis is both necessary and sufficient to drive tauopathy in experimental models of familial AD.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.
| | - Camilla Thygesen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark.,Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Marco Anzalone
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | | | - Sussanne Petersen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Hélène Audrain
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark
| | - Jessica L Teeling
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Sultan Darvesh
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada.,Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, NS, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET-Centre, Aarhus University, Aarhus, Denmark.,Division of Neuroscience, Faculty of Medical Science, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| |
Collapse
|
5
|
When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat Rev Neurol 2019; 15:704-717. [PMID: 31527807 DOI: 10.1038/s41582-019-0253-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 01/07/2023]
Abstract
Immune cells mediate critical inflammatory and neurodegenerative processes in the CNS in individuals with multiple sclerosis (MS). In MS, activated microglia, border-associated macrophages and monocyte-derived macrophages in the CNS can encounter T cells that have infiltrated the brain parenchyma from the circulation. Although microglia and T cells both contribute to normal CNS development and homeostasis, evidence suggests that the meeting of activated microglia and macrophages with encephalitogenic T cells exacerbates their capacity to inflict injury. This crosstalk involves many cell-surface molecules, cytokines and neurotoxic factors. In this Review, we summarize the mechanisms and consequences of T cell-microglia interactions as identified with in vitro experiments and animal models, and discuss the challenges that arise when translating this preclinical knowledge to MS in humans. We also consider therapeutic approaches to MS of which the mechanisms involve prevention or modulation of T cell and microglia responses and their interactions.
Collapse
|
6
|
Garber C, Soung A, Vollmer LL, Kanmogne M, Last A, Brown J, Klein RS. T cells promote microglia-mediated synaptic elimination and cognitive dysfunction during recovery from neuropathogenic flaviviruses. Nat Neurosci 2019; 22:1276-1288. [PMID: 31235930 PMCID: PMC6822175 DOI: 10.1038/s41593-019-0427-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/16/2019] [Indexed: 11/09/2022]
Abstract
T cells clear virus from the CNS and dynamically regulate brain functions, including spatial learning, through cytokine signaling. Here we determined whether hippocampal T cells that persist after recovery from infection with West Nile virus (WNV) or Zika virus (ZIKV) impact hippocampal-dependent learning and memory. Using newly established models of viral encephalitis recovery in adult animals, we show that in mice that have recovered from WNV or ZIKV infection, T cell-derived interferon-γ (IFN-γ) signaling in microglia underlies spatial-learning defects via virus-target-specific mechanisms. Following recovery from WNV infection, mice showed presynaptic termini elimination with lack of repair, while for ZIKV, mice showed extensive neuronal apoptosis with loss of postsynaptic termini. Accordingly, animals deficient in CD8+ T cells or IFN-γ signaling in microglia demonstrated protection against synapse elimination following WNV infection and decreased neuronal apoptosis with synapse recovery following ZIKV infection. Thus, T cell signaling to microglia drives post-infectious cognitive sequelae that are associated with emerging neurotropic flaviviruses.
Collapse
Affiliation(s)
- Charise Garber
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Allison Soung
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Lauren L Vollmer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Marlene Kanmogne
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Aisling Last
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Jasmine Brown
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Robyn S Klein
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Myhre CL, Thygesen C, Villadsen B, Vollerup J, Ilkjær L, Krohn KT, Grebing M, Zhao S, Khan AM, Dissing-Olesen L, Jensen MS, Babcock AA, Finsen B. Microglia Express Insulin-Like Growth Factor-1 in the Hippocampus of Aged APP swe/PS1 ΔE9 Transgenic Mice. Front Cell Neurosci 2019; 13:308. [PMID: 31417357 PMCID: PMC6682662 DOI: 10.3389/fncel.2019.00308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/24/2019] [Indexed: 11/14/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) is a pleiotropic molecule with neurotrophic and immunomodulatory functions. Knowing the capacity of chronically activated microglia to produce IGF-1 may therefore show essential to promote beneficial microglial functions in Alzheimer's disease (AD). Here, we investigated the expression of IGF-1 mRNA and IGF-1 along with the expression of tumor necrosis factor (TNF) mRNA, and the amyloid-β (Aβ) plaque load in the hippocampus of 3- to 24-month-old APPswe/PS1ΔE9 transgenic (Tg) and wild-type (WT) mice. As IGF-1, in particular, is implicated in neurogenesis we also monitored the proliferation of cells in the subgranular zone (sgz) of the dentate gyrus. We found that the Aβ plaque load reached its maximum in aged 21- and 24-month-old APPswe/PS1ΔE9 Tg mice, and that microglial reactivity and hippocampal IGF-1 and TNF mRNA levels were significantly elevated in aged APPswe/PS1ΔE9 Tg mice. The sgz cell proliferation decreased with age, regardless of genotype and increased IGF-1/TNF mRNA levels. Interestingly, IGF-1 mRNA was expressed in subsets of sgz cells, likely neuroblasts, and neurons in both genotypes, regardless of age, as well as in glial-like cells. By double in situ hybridization these were shown to be IGF1 mRNA+ CD11b mRNA+ cells, i.e., IGF-1 mRNA-expressing microglia. Quantification showed a 2-fold increase in the number of microglia and IGF-1 mRNA-expressing microglia in the molecular layer of the dentate gyrus in aged APPswe/PS1ΔE9 Tg mice. Double-immunofluorescence showed that IGF-1 was expressed in a subset of Aβ plaque-associated CD11b+ microglia and in several subsets of neurons. Exposure of primary murine microglia and BV2 cells to Aβ42 did not affect IGF-1 mRNA expression. IGF-1 mRNA levels remained constant in WT mice with aging, unlike TNF mRNA levels which increased with aging. In conclusion, our results suggest that the increased IGF-1 mRNA levels can be ascribed to a larger number of IGF-1 mRNA-expressing microglia in the aged APPswe/PS1ΔE9 Tg mice. The finding that subsets of microglia retain the capacity to express IGF-1 mRNA and IGF-1 in the aged APPswe/PS1ΔE9 Tg mice is encouraging, considering the beneficial therapeutic potential of modulating microglial production of IGF-1 in AD.
Collapse
Affiliation(s)
- Christa Løth Myhre
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Camilla Thygesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Birgitte Villadsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jeanette Vollerup
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Laura Ilkjær
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Katrine Tækker Krohn
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Manuela Grebing
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Shuainan Zhao
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Asif Manzoor Khan
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Lasse Dissing-Olesen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Alicia A. Babcock
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Brain Research – Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Thygesen C, Larsen MR, Finsen B. Proteomic signatures of neuroinflammation in Alzheimer’s disease, multiple sclerosis and ischemic stroke. Expert Rev Proteomics 2019; 16:601-611. [DOI: 10.1080/14789450.2019.1633919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Camilla Thygesen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, Odense, Denmark
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Rössel Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Bente Finsen
- Institute of Molecular Medicine, Department of Neurobiology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Sucksdorff M, Tuisku J, Matilainen M, Vuorimaa A, Smith S, Keitilä J, Rokka J, Parkkola R, Nylund M, Rinne J, Rissanen E, Airas L. Natalizumab treatment reduces microglial activation in the white matter of the MS brain. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e574. [PMID: 31355310 PMCID: PMC6624093 DOI: 10.1212/nxi.0000000000000574] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/02/2019] [Indexed: 01/31/2023]
Abstract
Objective To evaluate whether natalizumab treatment reduces microglial activation in MS. Methods We measured microglial activation using the 18-kDa translocator protein (TSPO)-binding radioligand [11C]PK11195 and PET imaging in 10 patients with MS before and after 1 year treatment with natalizumab. Microglial activation was evaluated as the distribution volume ratio (DVR) of the specifically bound radioligand in brain white and gray matter regions of interest. MRI and disability measurements were performed for comparison. Evaluation was performed identically with 11 age- and sex-matched patients with MS who had no MS therapy. Results Natalizumab treatment reduced microglial activation in the normal-appearing white matter (NAWM; baseline DVR vs DVR after 1 year of treatment 1.25 vs 1.22, p = 0.014, Wilcoxon) and at the rim of chronic lesions (baseline DVR vs DVR after 1 year of treatment 1.24 vs 1.18, p = 0.014). In patients with MS with no treatment, there was an increase in microglial activation at the rim of chronic lesions (1.23 vs 1.27, p = 0.045). No alteration was observed in microglial activation in gray matter areas. In the untreated patient group, higher microglial activation at baseline was associated with more rapid disability progression during an average of 4 years of follow-up. Conclusions TSPO-PET imaging can be used as a tool to assess longitudinal changes in microglial activation in the NAWM and in the perilesional areas in the MS brain in vivo. Natalizumab treatment reduces the diffuse compartmentalized CNS inflammation related to brain resident innate immune cells.
Collapse
Affiliation(s)
- Marcus Sucksdorff
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Markus Matilainen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Anna Vuorimaa
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Sarah Smith
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Joonas Keitilä
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Johanna Rokka
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Riitta Parkkola
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Marjo Nylund
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Juha Rinne
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Eero Rissanen
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| | - Laura Airas
- Turku PET Centre (M.S., J.T., M.M., A.V., S.S., J.K., J. Rokka, M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; Division of Clinical Neurosciences (M.S., M.N., J. Rinne, E.R., L.A.), Turku University Hospital and University of Turku; and Department of Radiology (R.P.), University Hospital and University of Turku, Finland
| |
Collapse
|
10
|
Metaxas A, Anzalone M, Vaitheeswaran R, Petersen S, Landau AM, Finsen B. Neuroinflammation and amyloid-beta 40 are associated with reduced serotonin transporter (SERT) activity in a transgenic model of familial Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2019; 11:38. [PMID: 31043179 PMCID: PMC6495598 DOI: 10.1186/s13195-019-0491-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022]
Abstract
Background Discrepant and often contradictory results have accumulated regarding the antidepressant and pro-cognitive effects of serotonin transporter (SERT) antagonists in Alzheimer’s disease. Methods To address the discrepancy, we measured the activity and density of SERT in the neocortex of 3–24-month-old APPswe/PS1dE9 and wild-type littermate mice, by using [3H]DASB autoradiography and the [3H]5-HT uptake assay. Levels of soluble amyloid-β (Aβ), and pro-inflammatory cytokines that can regulate SERT function, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor (TNF), were measured in parallel. Neuroinflammation in aging APPswe/PS1dE9 mice was further evaluated by [3H]PK11195 autoradiography. Results Decreased SERT density was observed in the parietal and frontal cortex of 18–24-month-old APPswe/PS1dE9 mice, compared to age-matched, wild-type animals. The maximal velocity uptake rate (Vmax) of [3H]5-HT was reduced in neocortical preparations from 20-month-old transgenic vs. wild-type mice. The reduction was observed when the proportion of soluble Aβ40 in the Aβ40/42 ratio increased in the aged transgenic brain. At concentrations compatible with those measured in 20-month-old APPswe/PS1dE9 mice, synthetic human Aβ40, but not Aβ42, reduced the baseline Vmax of [3H]5-HT by ~ 20%. Neuroinflammation in APPswe/PS1dE9 vs. wild-type mice was evidenced by elevated [3H]PK11195 binding levels and increased concentration of IL-1β protein, which preceded the reductions in neocortical SERT density and activity. Age-induced increases in the levels of IL-1β, IL-6, and TNF were observed in both transgenic and wild-type animals. Conclusions The progression of cerebral amyloidosis is associated with neuroinflammation and decreased presynaptic markers of serotonergic integrity and activity. The Aβ40-induced reduction in the uptake kinetics of [3H]5-HT suggests that the activity of SERT, and potentially the effects of SERT antagonism, depend on the levels of interstitial Aβ40.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000, Odense C, Denmark.
| | - Marco Anzalone
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000, Odense C, Denmark
| | - Ramanan Vaitheeswaran
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000, Odense C, Denmark
| | - Sussanne Petersen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000, Odense C, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET Center, Aarhus University and Hospital, Nørrebrogade 44, Building 10G, DK-8000, Aarhus, Denmark.,Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, DK-8240, Risskov, Denmark
| | - Bente Finsen
- Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, DK-5000, Odense C, Denmark
| |
Collapse
|
11
|
Recasens M, Shrivastava K, Almolda B, González B, Castellano B. Astrocyte-targeted IL-10 production decreases proliferation and induces a downregulation of activated microglia/macrophages after PPT. Glia 2018; 67:741-758. [PMID: 30548340 DOI: 10.1002/glia.23573] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 11/06/2018] [Accepted: 11/12/2018] [Indexed: 01/03/2023]
Abstract
When central nervous system (CNS) homeostasis is altered, microglial cells become rapidly activated, proliferate and release a broad range of molecules. Among the plethora of molecules involved in the regulation of microglial activation, cytokines are considered crucial. Although production of interleukin-10 (IL-10) has been demonstrated after different types of CNS injuries and associated with protective functions, the specific role played by IL-10 modulating microglial cells remains unclear. Hence, the objective of this study was to evaluate the effects of transgenic astrocyte IL-10 production on microglial activation associated with axonal anterograde degeneration. To address it, the hippocampal area subjected to perforant pathway transection (PPT) was analyzed by immunohistochemistry (IHC), flow cytometry and protein microarray in transgenic (GFAP-IL10Tg) mice and their corresponding wild types (WT) littermates. Our results demonstrated increased microglial/macrophages density in nonlesioned and PPT-lesioned GFAP-IL10Tg animals when compared with nonlesioned and lesioned WT, respectively. This increase was not due to proliferation, as GFAP-IL10Tg mice showed a reduced proliferation of microglial cells, but was related to an increased population of CD11b+/CD45high monocyte/macrophages. Despite this higher number, the microglia/macrophage population in transgenic animals displayed a downregulated phenotype characterized by lower MHCII, ICOSL, and CD11c. Moreover, a sustained T-cell infiltration was found in transgenic animals. We strongly suggest these modifications must be associated with indirect effects derived from the influence of IL-10 on astrocytes and/or neurons, which express IL-10R. We finally suggested that TGF-β produced by astrocytes, along with IL-2 and CXCL10 might be crucial molecules mediating the effects of transgenic IL-10.
Collapse
Affiliation(s)
- Mireia Recasens
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Kalpana Shrivastava
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Porter A, Leckie R, Verstynen T. White matter pathways as both a target and mediator of health behaviors. Ann N Y Acad Sci 2018; 1428:71-88. [PMID: 29749627 DOI: 10.1111/nyas.13708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 01/09/2023]
Abstract
Health behaviors arise from the dynamics of highly interconnected networks in the brain and variability in these networks drives individual differences in behavior. In this review, we show how many factors that predict the physical health of the body also correlate with variability of the myelinated fascicles, called white matter, that connect brain regions together. The general pattern present in the literature is that as predictors of physical health decline, there is often a coincident reduction in the integrity of major white matter pathways. We also highlight a plausible mechanism, inflammatory pathways, whereby health-related activation of the immune system can impact the myelin sheath, a protective tissue that facilitates long range communication in the brain. The growing body of evidence supports the hypothesis that degrading health in the periphery may disrupt the communication efficiency of the macroscopic neural circuits that mediate complex behaviors, which can in turn contribute to poorer physical health.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Regina Leckie
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Timothy Verstynen
- Department of Psychology, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Schetters STT, Gomez-Nicola D, Garcia-Vallejo JJ, Van Kooyk Y. Neuroinflammation: Microglia and T Cells Get Ready to Tango. Front Immunol 2018; 8:1905. [PMID: 29422891 PMCID: PMC5788906 DOI: 10.3389/fimmu.2017.01905] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022] Open
Abstract
In recent years, many paradigms concerning central nervous system (CNS) immunology have been challenged and shifted, including the discovery of CNS-draining lymphatic vessels, the origin and functional diversity of microglia, the impact of T cells on CNS immunological homeostasis and the role of neuroinflammation in neurodegenerative diseases. In parallel, antigen presentation outside the CNS has revealed the vital role of antigen-presenting cells in maintaining tolerance toward self-proteins, thwarting auto-immunity. Here, we review recent findings that unite these shifted paradigms of microglial functioning, antigen presentation, and CNS-directed T cell activation, focusing on common neurodegenerative diseases. It provides an important update on CNS adaptive immunity, novel targets, and a concept of the microglia T-cell equilibrium.
Collapse
Affiliation(s)
- Sjoerd T T Schetters
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Diego Gomez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| |
Collapse
|
14
|
Monteleone F, Nicoletti CG, Stampanoni Bassi M, Iezzi E, Buttari F, Furlan R, Finardi A, Marfia GA, Centonze D, Mori F. Nerve growth factor is elevated in the CSF of patients with multiple sclerosis and central neuropathic pain. J Neuroimmunol 2017; 314:89-93. [PMID: 29174194 DOI: 10.1016/j.jneuroim.2017.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/26/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023]
Abstract
Central neuropathic pain (CNP) is common and disabling among patients with multiple sclerosis (MS). The pathological mechanisms underlying CNP in MS are not well understood. We explored whether NGF is implicated in the pathogenesis of CNP in MS. We measured NGF concentration in the CSF of 73 patients affected by MS, 15 with and 58 without CNP and 14 controls. We found increased levels of NGF in the CSF of patients with CNP compared to patients without and to controls. This finding supports the hypothesis that NGF plays a role in MS related CNP.
Collapse
Affiliation(s)
- Fabrizia Monteleone
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Carolina G Nicoletti
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Fabio Buttari
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Diego Centonze
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy.
| | - Francesco Mori
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, 86077 Pozzilli, IS, Italy
| |
Collapse
|
15
|
Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, Baker GB, Noorbakhsh F, Power C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia 2017; 65:1590-1606. [PMID: 28707358 DOI: 10.1002/glia.23179] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Neurosteroids are reported to exert anti-inflammatory effects in several neurological disorders. We investigated the expression and actions of the neurosteroid, dehydroepiandrosterone (DHEA), and its more stable 3β-sulphated ester, DHEA-S, in MS and associated experimental models. CNS tissues from patients with MS and animals with experimental autoimmune encephalomyelitis (EAE) displayed reduced DHEA concentrations, accompanied by diminished expression of the DHEA-synthesizing enzyme CYP17A1 in oligodendrocytes (ODCs), in association with increased expression of inflammatory genes including interferon (IFN)-γ and interleukin (IL)-1β. CYP17A1 was expressed variably in different human neural cell types but IFN-γ exposure selectively reduced CYP17A1 detection in ODCs. DHEA-S treatment reduced IL-1β and -6 release from activated human myeloid cells with minimal effect on lymphocyte viability. Animals with EAE receiving DHEA-S treatment showed reduced Il1b and Ifng transcript levels in spinal cord compared to vehicle-treated animals with EAE. DHEA-S treatment also preserved myelin basic protein immunoreactivity and reduced axonal loss in animals with EAE, relative to vehicle-treated EAE animals. Neurobehavioral deficits were reduced in DHEA-S-treated EAE animals compared with vehicle-treated animals with EAE. Thus, CYP17A1 expression in ODCs and its product DHEA were downregulated in the CNS during inflammatory demyelination while DHEA-S provision suppressed neuroinflammation, demyelination, and axonal injury that was evident as improved neurobehavioral performance. These findings indicate that DHEA production is an immunoregulatory pathway within the CNS and its restoration represents a novel treatment approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roobina Boghozian
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Brienne A McKenzie
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Leina B Saito
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Ninad Mehta
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - William G Branton
- Department of, Medicine, University of Alberta Edmonton, Alberta, Canada
| | - JianQiang Lu
- Department of Laboratory Medicine & Pathology, University of Alberta Edmonton, Alberta, Canada
| | - Glen B Baker
- Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| | - Farshid Noorbakhsh
- Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of, Medicine, University of Alberta Edmonton, Alberta, Canada.,Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
16
|
Mendiola AS, Cardona AE. The IL-1β phenomena in neuroinflammatory diseases. J Neural Transm (Vienna) 2017; 125:781-795. [PMID: 28534174 DOI: 10.1007/s00702-017-1732-9] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 05/04/2017] [Indexed: 02/06/2023]
Abstract
It is becoming increasingly clear that neuroinflammation has a causal role in the pathogenesis of central nervous system (CNS)-related diseases, and therefore therapeutic strategies targeting the regulation or availability of inflammatory mediators can be used to prevent or mitigate pathology. Interestingly, the proinflammatory cytokine, interleukin-1 beta (IL-1β), has been implicated in perpetuating immune responses and contributing to disease severity in a variety of CNS diseases ranging from multiple sclerosis, neurodegenerative diseases, traumatic brain injury, and diabetic retinopathy. Moreover, pharmacological blockade of IL-1 signaling has shown to be beneficial in some autoimmune and autoinflammatory diseases, making IL-1β a promising therapeutic target in neuroinflammatory conditions. This review highlights recent advances of our understanding on the multifaceted roles of IL-1β in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Andrew S Mendiola
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, 78249, USA.
| |
Collapse
|
17
|
Burm SM, Peferoen LAN, Zuiderwijk-Sick EA, Haanstra KG, 't Hart BA, van der Valk P, Amor S, Bauer J, Bajramovic JJ. Expression of IL-1β in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation 2016; 13:138. [PMID: 27266875 PMCID: PMC4895983 DOI: 10.1186/s12974-016-0605-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Background Interleukin (IL)-1β is a pro-inflammatory cytokine that plays a role in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Yet, detailed studies on IL-1β expression in different stages of MS lesion development and a comparison of IL-1β expression in MS and EAE are lacking. Methods Here, we performed an extensive characterization of IL-1β expression in brain tissue of MS patients, which included different MS lesion types, and in brain tissue of rhesus macaques with EAE. Results In rhesus EAE brain tissue, we observed prominent IL-1β staining in MHC class II+ cells within perivascular infiltrates and at the edges of large demyelinating lesions. Surprisingly, staining was localized to resident microglia or differentiated macrophages rather than to infiltrating monocytes, suggesting that IL-1β expression is induced within the central nervous system (CNS). By contrast, IL-1β staining in MS brain tissue was much less pronounced. Staining was found in the parenchyma of active and chronic active MS lesions and in nodules of MHC class II+ microglia in otherwise normal appearing white matter. IL-1β expression was detected in a minority of the nodules only, which could not be distinguished by the expression of pro- and anti-inflammatory markers. These nodules were exclusively found in MS, and it remains to be determined whether IL-1β+ nodules are destined to progress into active lesions or whether they merely reflect a transient response to cellular stress. Conclusions Although the exact localization and relative intensity of IL-1β expression in EAE and MS is different, the staining pattern in both neuroinflammatory disorders is most consistent with the idea that the expression of IL-1β during lesion development is induced in the tissue rather than in the periphery. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0605-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saskia Maria Burm
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | | | - Ella Alwine Zuiderwijk-Sick
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Krista Geraldine Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Bert Adriaan 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Paul van der Valk
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|