1
|
Yin Z, Kang J, Cheng X, Gao H, Huo S, Xu H. Investigating Müller glia reprogramming in mice: a retrospective of the last decade, and a look to the future. Neural Regen Res 2025; 20:946-959. [PMID: 38989930 PMCID: PMC11438324 DOI: 10.4103/nrr.nrr-d-23-01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/05/2024] [Indexed: 07/12/2024] Open
Abstract
Müller glia, as prominent glial cells within the retina, plays a significant role in maintaining retinal homeostasis in both healthy and diseased states. In lower vertebrates like zebrafish, these cells assume responsibility for spontaneous retinal regeneration, wherein endogenous Müller glia undergo proliferation, transform into Müller glia-derived progenitor cells, and subsequently regenerate the entire retina with restored functionality. Conversely, Müller glia in the mouse and human retina exhibit limited neural reprogramming. Müller glia reprogramming is thus a promising strategy for treating neurodegenerative ocular disorders. Müller glia reprogramming in mice has been accomplished with remarkable success, through various technologies. Advancements in molecular, genetic, epigenetic, morphological, and physiological evaluations have made it easier to document and investigate the Müller glia programming process in mice. Nevertheless, there remain issues that hinder improving reprogramming efficiency and maturity. Thus, understanding the reprogramming mechanism is crucial toward exploring factors that will improve Müller glia reprogramming efficiency, and for developing novel Müller glia reprogramming strategies. This review describes recent progress in relatively successful Müller glia reprogramming strategies. It also provides a basis for developing new Müller glia reprogramming strategies in mice, including epigenetic remodeling, metabolic modulation, immune regulation, chemical small-molecules regulation, extracellular matrix remodeling, and cell-cell fusion, to achieve Müller glia reprogramming in mice.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | | | | | | | | | | |
Collapse
|
2
|
Rumford JE, Grieshaber A, Lewiston S, Reed JL, Long SS, Mitchell DM. Forced MyD88 signaling in microglia impacts the production and survival of regenerated retinal neurons. Front Cell Dev Biol 2024; 12:1495586. [PMID: 39633708 PMCID: PMC11614808 DOI: 10.3389/fcell.2024.1495586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Inflammation and microglia appear to be key factors influencing the outcome of retinal regeneration following acute retinal damage. Despite such findings, direct connection of microglia-specific inflammatory factors as drivers of regenerative responses in the retina are still not defined, and intracellular pathways activated to stimulate such signals from microglia are currently unknown. We became interested in MyD88 regulation in microglia because transcriptomic datasets suggest myd88 could be regulated temporally in zebrafish microglia responding to damage in the central nervous system. MyD88 is an intracellular molecular adaptor that initiates signaling cascades downstream of several innate immune receptors, and probably most well-known for inducing gene expression of pro-inflammatory factors. Using zebrafish, which spontaneously regenerate retinal neurons after acute retinal damage, we studied the effects of overactivation of MyD88 signaling in microglia and macrophages on the Müller glia-mediated regenerative response. Our results indicate that increased MyD88 signaling in microglia/macrophages impacts the initial response of Müller glia entering a regenerative response after acute, neurotoxin-induced retinal damage to inner retinal neurons. In addition, increased MyD88 signaling in microglia/macrophages resulted in reduced survival of inner retinal neurons in regenerated retinas. This work supports the idea that temporal control of inflammatory signaling is a key component in the production of MG-derived progenitors yet further indicates that such control is important for differentiation and survival of regenerated neurons.
Collapse
Affiliation(s)
- Jordan E. Rumford
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Ailis Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Samantha Lewiston
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Jordan L. Reed
- Department of Computer Science, University of Idaho, Moscow, ID, United States
- Formerly North Idaho College, Coeur d’Alene, ID, United States
| | - Samuel S. Long
- Business and Computer Science Division, Lewis-Clark State College, Lewiston, ID, United States
| | - Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
3
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
4
|
Jui J, Goldman D. Müller Glial Cell-Dependent Regeneration of the Retina in Zebrafish and Mice. Annu Rev Genet 2024; 58:67-90. [PMID: 38876121 DOI: 10.1146/annurev-genet-111523-102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Sight is one of our most precious senses. People fear losing their sight more than any other disability. Thus, restoring sight to the blind is an important goal of vision scientists. Proregenerative species, such as zebrafish, provide a system for studying endogenous mechanisms underlying retina regeneration. Nonregenerative species, such as mice, provide a system for testing strategies for stimulating retina regeneration. Key to retina regeneration in zebrafish and mice is the Müller glial cell, a malleable cell type that is amenable to a variety of regenerative strategies. Here, we review cellular and molecular mechanisms used by zebrafish to regenerate a retina, as well as the application of these mechanisms, and other strategies to stimulate retina regeneration in mice. Although our focus is on Müller glia (MG), niche components and their impact on MG reprogramming are also discussed.
Collapse
Affiliation(s)
- Jonathan Jui
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Daniel Goldman
- Molecular Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
5
|
García-García D, Vidal-Gil L, Parain K, Lun J, Audic Y, Chesneau A, Siron L, Van Westendorp D, Lourdel S, Sánchez-Sáez X, Kazani D, Ricard J, Pottin S, Donval A, Bronchain O, Locker M, Roger JE, Borday C, Pla P, Bitard J, Perron M. Neuroinflammation as a cause of differential Müller cell regenerative responses to retinal injury. SCIENCE ADVANCES 2024; 10:eadp7916. [PMID: 39356769 PMCID: PMC11446274 DOI: 10.1126/sciadv.adp7916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Unlike mammals, some nonmammalian species recruit Müller glia for retinal regeneration after injury. Identifying the underlying mechanisms may help to foresee regenerative medicine strategies. Using a Xenopus model of retinitis pigmentosa, we found that Müller cells actively proliferate upon photoreceptor degeneration in old tadpoles but not in younger ones. Differences in the inflammatory microenvironment emerged as an explanation for such stage dependency. Functional analyses revealed that enhancing neuroinflammation is sufficient to trigger Müller cell proliferation, not only in young tadpoles but also in mice. In addition, we showed that microglia are absolutely required for the response of mouse Müller cells to mitogenic factors while negatively affecting their neurogenic potential. However, both cell cycle reentry and neurogenic gene expression are allowed when applying sequential pro- and anti-inflammatory treatments. This reveals that inflammation benefits Müller glia proliferation in both regenerative and nonregenerative vertebrates and highlights the importance of sequential inflammatory modulation to create a regenerative permissive microenvironment.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Lorena Vidal-Gil
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jingxian Lun
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de Genetique et Developpement de Rennes), Rennes, France
| | - Albert Chesneau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Léa Siron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Demi Van Westendorp
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Xavier Sánchez-Sáez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Despoina Kazani
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Julien Ricard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Solène Pottin
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Odile Bronchain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jérôme E. Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Patrick Pla
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| |
Collapse
|
6
|
Song P, Parsana D, Singh R, Pollock LM, Anand-Apte B, Perkins BD. Photoreceptor regeneration occurs normally in microglia-deficient irf8 mutant zebrafish following acute retinal damage. Sci Rep 2024; 14:20146. [PMID: 39209978 PMCID: PMC11362524 DOI: 10.1038/s41598-024-70859-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Microglia are resident immune cells in the central nervous system, including the retina that surveil the environment for damage and infection. Following retinal damage, microglia undergo morphological changes, migrate to the site of damage, and express and secrete pro-inflammatory signals. In the zebrafish retina, inflammation induces the reprogramming and proliferation of Müller glia and the regeneration of neurons following damage or injury. Immunosuppression or pharmacological ablation of microglia reduce or abolish Müller glia proliferation. We evaluated the retinal architecture and retinal regeneration in adult zebrafish irf8 mutants, which have significantly depleted numbers of microglia. We show that irf8 mutants have normal retinal structure at 3 months post fertilization (mpf) and 6 mpf but fewer cone photoreceptors by 10 mpf. Surprisingly, light-induced photoreceptor ablation induced Müller glia proliferation in irf8 mutants and cone and rod photoreceptor regeneration. Light-damaged retinas from both wild-type and irf8 mutants show upregulated expression of mmp-9, il8, and tnfβ pro-inflammatory cytokines. Our data demonstrate that adult zebrafish irf8 mutants can regenerate normally following acute retinal injury. These findings suggest that microglia may not be essential for retinal regeneration in zebrafish and that other mechanisms can compensate for the reduction in microglia numbers.
Collapse
Affiliation(s)
- Ping Song
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Dhwani Parsana
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rupesh Singh
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lana M Pollock
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Bela Anand-Apte
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Brian D Perkins
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Liu H, Lu S, Chen M, Gao N, Yang Y, Hu H, Ren Q, Liu X, Chen H, Zhu Q, Li S, Su J. Towards Stem/Progenitor Cell-Based Therapies for Retinal Degeneration. Stem Cell Rev Rep 2024; 20:1459-1479. [PMID: 38809490 DOI: 10.1007/s12015-024-10740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Retinal degeneration (RD) is a leading cause of blindness worldwide and includes conditions such as retinitis pigmentosa (RP), age-related macular degeneration (AMD), and Stargardt's disease (STGD). These diseases result in the permanent loss of vision due to the progressive and irreversible degeneration of retinal cells, including photoreceptors (PR) and the retinal pigment epithelium (RPE). The adult human retina has limited abilities to regenerate and repair itself, making it challenging to achieve complete self-replenishment and functional repair of retinal cells. Currently, there is no effective clinical treatment for RD. Stem cell therapy, which involves transplanting exogenous stem cells such as retinal progenitor cells (RPCs), embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs), or activating endogenous stem cells like Müller Glia (MG) cells, holds great promise for regenerating and repairing retinal cells in the treatment of RD. Several preclinical and clinical studies have shown the potential of stem cell-based therapies for RD. However, the clinical translation of these therapies for the reconstruction of substantial vision still faces significant challenges. This review provides a comprehensive overview of stem/progenitor cell-based therapy strategies for RD, summarizes recent advances in preclinical studies and clinical trials, and highlights the major challenges in using stem/progenitor cell-based therapies for RD.
Collapse
Affiliation(s)
- Hui Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuaiyan Lu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ming Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Na Gao
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yuhe Yang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Huijuan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Ren
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaoyu Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hongxu Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qunyan Zhu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China
| | - Shasha Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325011, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325001, China.
| |
Collapse
|
8
|
He M, Xia M, Yang Q, Chen X, Li H, Xia X. P-aminobenzoic acid promotes retinal regeneration through activation of Ascl1a in zebrafish. Neural Regen Res 2024; 19:1849-1856. [PMID: 38103253 PMCID: PMC10960302 DOI: 10.4103/1673-5374.389646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/07/2023] [Accepted: 10/20/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00040/figure1/v/2023-12-16T180322Z/r/image-tiff The retina of zebrafish can regenerate completely after injury. Multiple studies have demonstrated that metabolic alterations occur during retinal damage; however to date no study has identified a link between metabolites and retinal regeneration of zebrafish. Here, we performed an unbiased metabolome sequencing in the N-methyl-D-aspartic acid-damaged retinas of zebrafish to demonstrate the metabolomic mechanism of retinal regeneration. Among the differentially-expressed metabolites, we found a significant decrease in p-aminobenzoic acid in the N-methyl-D-aspartic acid-damaged retinas of zebrafish. Then, we investigated the role of p-aminobenzoic acid in retinal regeneration in adult zebrafish. Importantly, p-aminobenzoic acid activated Achaetescute complex-like 1a expression, thereby promoting Müller glia reprogramming and division, as well as Müller glia-derived progenitor cell proliferation. Finally, we eliminated folic acid and inflammation as downstream effectors of PABA and demonstrated that PABA had little effect on Müller glia distribution. Taken together, these findings show that PABA contributes to retinal regeneration through activation of Achaetescute complex-like 1a expression in the N-methyl-D-aspartic acid-damaged retinas of zebrafish.
Collapse
Affiliation(s)
- Meihui He
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Mingfang Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Qian Yang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xingyi Chen
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Haibo Li
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
9
|
Lee MS, Jui J, Sahu A, Goldman D. Mycb and Mych stimulate Müller glial cell reprogramming and proliferation in the uninjured and injured zebrafish retina. Development 2024; 151:dev203062. [PMID: 38984586 PMCID: PMC11369687 DOI: 10.1242/dev.203062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
In the injured zebrafish retina, Müller glial cells (MG) reprogram to adopt retinal stem cell properties and regenerate damaged neurons. The strongest zebrafish reprogramming factors might be good candidates for stimulating a similar regenerative response by mammalian MG. Myc proteins are potent reprogramming factors that can stimulate cellular plasticity in differentiated cells; however, their role in MG reprogramming and retina regeneration remains poorly explored. Here, we report that retinal injury stimulates mycb and mych expression and that, although both Mycb and Mych stimulate MG reprogramming and proliferation, only Mych enhances retinal neuron apoptosis. RNA-sequencing analysis of wild-type, mychmut and mycbmut fish revealed that Mycb and Mych regulate ∼40% and ∼16%, respectively, of the genes contributing to the regeneration-associated transcriptome of MG. Of these genes, those that are induced are biased towards regulation of ribosome biogenesis, protein synthesis, DNA synthesis, and cell division, which are the top cellular processes affected by retinal injury, suggesting that Mycb and Mych are potent MG reprogramming factors. Consistent with this, forced expression of either of these proteins is sufficient to stimulate MG proliferation in the uninjured retina.
Collapse
Affiliation(s)
- Mi-Sun Lee
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jonathan Jui
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aresh Sahu
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Michigan Neuroscience Institute and Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Bludau O, Weber A, Bosak V, Kuscha V, Dietrich K, Hans S, Brand M. Inflammation is a critical factor for successful regeneration of the adult zebrafish retina in response to diffuse light lesion. Front Cell Dev Biol 2024; 12:1332347. [PMID: 39071801 PMCID: PMC11272569 DOI: 10.3389/fcell.2024.1332347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Inflammation can lead to persistent and irreversible loss of retinal neurons and photoreceptors in mammalian vertebrates. In contrast, in the adult zebrafish brain, acute neural inflammation is both necessary and sufficient to stimulate regeneration of neurons. Here, we report on the critical, positive role of the immune system to support retina regeneration in adult zebrafish. After sterile ablation of photoreceptors by phototoxicity, we find rapid response of immune cells, especially monocytes/microglia and neutrophils, which returns to homeostatic levels within 14 days post lesion. Pharmacological or genetic impairment of the immune system results in a reduced Müller glia stem cell response, seen as decreased reactive proliferation, and a strikingly reduced number of regenerated cells from them, including photoreceptors. Conversely, injection of the immune stimulators flagellin, zymosan, or M-CSF into the vitreous of the eye, leads to a robust proliferation response and the upregulation of regeneration-associated marker genes in Müller glia. Our results suggest that neuroinflammation is a necessary and sufficient driver for retinal regeneration in the adult zebrafish retina.
Collapse
Affiliation(s)
- Oliver Bludau
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Anke Weber
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Viktoria Bosak
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Veronika Kuscha
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Kristin Dietrich
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Stefan Hans
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| | - Michael Brand
- CRTD—Center for Regenerative Therapies, and PoL—Cluster of Excellence Physics of Life, Dresden, Germany
| |
Collapse
|
11
|
Lu C, Hyde DR. Cytokines IL-1β and IL-10 are required for Müller glia proliferation following light damage in the adult zebrafish retina. Front Cell Dev Biol 2024; 12:1406330. [PMID: 38938553 PMCID: PMC11208712 DOI: 10.3389/fcell.2024.1406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Zebrafish possess the ability to regenerate dying neurons in response to retinal injury, with both Müller glia and microglia playing integral roles in this response. Resident Müller glia respond to damage by reprogramming and undergoing an asymmetric cell division to generate a neuronal progenitor cell, which continues to proliferate and differentiate into the lost neurons. In contrast, microglia become reactive, phagocytose dying cells, and release inflammatory signals into the surrounding tissue following damage. In recent years, there has been increased attention on elucidating the role that microglia play in regulating retinal regeneration. Here we demonstrate that inflammatory cytokines are differentially expressed during retinal regeneration, with the expression of a subset of pro-inflammatory cytokine genes upregulated shortly after light damage and the expression of a different subset of cytokine genes subsequently increasing. We demonstrate that both cytokine IL-1β and IL-10 are essential for Müller glia proliferation in the light-damaged retina. While IL-1β is sufficient to induce Müller glia proliferation in an undamaged retina, expression of IL-10 in undamaged retinas only induces Müller glia to express gliotic markers. Together, these findings demonstrate the essential role of inflammatory cytokines IL-1β and IL-10 on Müller glia proliferation following light damage in adult zebrafish.
Collapse
Affiliation(s)
| | - David R. Hyde
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, and Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Tucker SK, Ghosal R, Swartz ME, Zhang S, Eberhart JK. Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death. Development 2024; 151:dev202216. [PMID: 38512806 PMCID: PMC11006402 DOI: 10.1242/dev.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
Collapse
Affiliation(s)
- Scott K. Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Ritika Ghosal
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Mary E. Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Stephanie Zhang
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
13
|
Yin Z, Ge L, Cha Z, Gao H, A L, Zeng Y, Huang X, Cheng X, Yao K, Tao Z, Xu H. Identifying Hmga2 preserving visual function by promoting a shift of Müller glia cell fate in mice with acute retinal injury. Stem Cell Res Ther 2024; 15:54. [PMID: 38414051 PMCID: PMC10900711 DOI: 10.1186/s13287-024-03657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Unlike in lower vertebrates, Müller glia (MG) in adult mammalian retinas lack the ability to reprogram into neurons after retinal injury or degeneration and exhibit reactive gliosis instead. Whether a transition in MG cell fate from gliosis to reprogramming would help preserve photoreceptors is still under exploration. METHODS A mouse model of retinitis pigmentosa (RP) was established using MG cell lineage tracing mice by intraperitoneal injection of sodium iodate (SI). The critical time point for the fate determination of MG gliosis was determined through immunohistochemical staining methods. Then, bulk-RNA and single-cell RNA seq techniques were used to elucidate the changes in RNA transcription of the retina and MG at that time point, and new genes that may determine the fate transition of MG were screened. Finally, the selected gene was specifically overexpressed in MG cells through adeno-associated viruses (AAV) in the mouse RP model. Bulk-RNA seq technique, immunohistochemical staining methods, and visual function testing were used to elucidate and validate the mechanism of new genes function on MG cell fate transition and retinal function. RESULTS Here, we found the critical time point for MG gliosis fate determination was 3 days post SI injection. Hmga2 was screened out as a candidate regulator for the cell fate transition of MG. After retinal injury caused by SI, the Hmga2 protein is temporarily and lowly expressed in MG cells. Overexpression of Hmga2 in MG down-regulated glial cell related genes and up-regulated photoreceptor related genes. Besides, overexpressing Hmga2 exclusively to MG reduced MG gliosis, made MG obtain cone's marker, and retained visual function in mice with acute retinal injury. CONCLUSION Our results suggested the unique reprogramming properties of Hmga2 in regulating the fate transition of MG and neuroprotective effects on the retina with acute injury. This work uncovers the reprogramming ability of epigenetic factors in MG.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lingling Ge
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Zhe Cha
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
- Department of Physiology, College of Basic Medical Sciences, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hui Gao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Luodan A
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Yuxiao Zeng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Xuan Cheng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Zui Tao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration and Restoration of Chongqing, Southwest Eye Hospital, Southwest Hospital, Chongqing, 400038, China.
| |
Collapse
|
14
|
Konar GJ, Flickinger Z, Sharma S, Vallone KT, Lyon CE, Doshier C, Lingan A, Lyon W, Patton JG. Damage-Induced Senescent Immune Cells Regulate Regeneration of the Zebrafish Retina. AGING BIOLOGY 2024; 2:e20240021. [PMID: 39156966 PMCID: PMC11328971 DOI: 10.59368/agingbio.20240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Zebrafish spontaneously regenerate their retinas in response to damage through the action of Müller glia (MG). Even though MG are conserved in higher vertebrates, the capacity to regenerate retinal damage is lost. Recent work has focused on the regulation of inflammation during tissue regeneration, with temporal roles for macrophages and microglia. Senescent cells that have withdrawn from the cell cycle have mostly been implicated in aging but are still metabolically active, releasing a variety of signaling molecules as part of the senescence-associated secretory phenotype. Here, we discover that in response to retinal damage, a subset of cells expressing markers of microglia/macrophages also express markers of senescence. These cells display a temporal pattern of appearance and clearance during retina regeneration. Premature removal of senescent cells by senolytic treatment led to a decrease in proliferation and incomplete repair of the ganglion cell layer after N-methyl-D-aspartate damage. Our results demonstrate a role for modulation of senescent cell responses to balance inflammation, regeneration, plasticity, and repair as opposed to fibrosis and scarring.
Collapse
Affiliation(s)
- Gregory J. Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Shivani Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Kyle T. Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Charles E. Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Claire Doshier
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Audrey Lingan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
15
|
Emmerich K, Walker SL, Wang G, White DT, Ceisel A, Wang F, Teng Y, Chunawala Z, Graziano G, Nimmagadda S, Saxena MT, Qian J, Mumm JS. Transcriptomic comparison of two selective retinal cell ablation paradigms in zebrafish reveals shared and cell-specific regenerative responses. PLoS Genet 2023; 19:e1010905. [PMID: 37819938 PMCID: PMC10593236 DOI: 10.1371/journal.pgen.1010905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/23/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.
Collapse
Affiliation(s)
- Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Steven L. Walker
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - David T. White
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Anneliese Ceisel
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Fang Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Zeeshaan Chunawala
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gianna Graziano
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Saumya Nimmagadda
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Meera T. Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jeff S. Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- McKusick-Nathans Institute of the Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
16
|
Xiao X, Liao Z, Zou J. Genetic and epigenetic regulators of retinal Müller glial cell reprogramming. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:126-133. [PMID: 37846362 PMCID: PMC10577857 DOI: 10.1016/j.aopr.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 10/18/2023]
Abstract
Background Retinal diseases characterized with irreversible loss of retinal nerve cells, such as optic atrophy and retinal degeneration, are the main causes of blindness. Current treatments for these diseases are very limited. An emerging treatment strategy is to induce the reprogramming of Müller glial cells to generate new retinal nerve cells, which could potentially restore vision. Main text Müller glial cells are the predominant glial cells in retinae and play multiple roles to maintain retinal homeostasis. In lower vertebrates, such as in zebrafish, Müller glial cells can undergo cell reprogramming to regenerate new retinal neurons in response to various damage factors, while in mammals, this ability is limited. Interestingly, with proper treatments, Müller glial cells can display the potential for regeneration of retinal neurons in mammalian retinae. Recent studies have revealed that dozens of genetic and epigenetic regulators play a vital role in inducing the reprogramming of Müller glial cells in vivo. This review summarizes these critical regulators for Müller glial cell reprogramming and highlights their differences between zebrafish and mammals. Conclusions A number of factors have been identified as the important regulators in Müller glial cell reprogramming. The early response of Müller glial cells upon acute retinal injury, such as the regulation in the exit from quiescent state, the initiation of reactive gliosis, and the re-entry of cell cycle of Müller glial cells, displays significant difference between mouse and zebrafish, which may be mediated by the diverse regulation of Notch and TGFβ (transforming growth factor-β) isoforms and different chromatin accessibility.
Collapse
Affiliation(s)
- Xueqi Xiao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Zhiyong Liao
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Jian Zou
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- The Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
17
|
Gupta S, Sharma P, Chaudhary M, Premraj S, Kaur S, Vijayan V, Arun MG, Prasad NG, Ramachandran R. Pten associates with important gene regulatory network to fine-tune Müller glia-mediated zebrafish retina regeneration. Glia 2023; 71:259-283. [PMID: 36128720 DOI: 10.1002/glia.24270] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/11/2022]
Abstract
Unlike mammals, zebrafish possess a remarkable ability to regenerate damaged retina after an acute injury. Retina regeneration in zebrafish involves the induction of Müller glia-derived progenitor cells (MGPCs) exhibiting stem cell-like characteristics, which are capable of restoring all retinal cell-types. The induction of MGPC through Müller glia-reprograming involves several cellular, genetic and biochemical events soon after a retinal injury. Despite the knowledge on the importance of Phosphatase and tensin homolog (Pten), which is a dual-specificity phosphatase and tumor suppressor in the maintaining of cellular homeostasis, its importance during retina regeneration remains unknown. Here, we explored the importance of Pten during zebrafish retina regeneration. The Pten gets downregulated upon retinal injury and is absent from the MGPCs, which is essential to trigger Akt-mediated cellular proliferation essential for retina regeneration. We found that the downregulation of Pten in the post-injury retina accelerates MGPCs formation, while its overexpression restricts the regenerative response. We observed that Pten regulates the proliferation of MGPCs not only through Akt pathway but also by Mmp9/Notch signaling. Mmp9-activity is essential to induce the proliferation of MGPCs in the absence of Pten. Lastly, we show that expression of Pten is fine-tuned through Mycb/histone deacetylase1 and Tgf-β signaling. The present study emphasizes on the stringent regulation of Pten and its crucial involvement during the zebrafish retina regeneration.
Collapse
Affiliation(s)
- Shivangi Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Mansi Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Sharanya Premraj
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Simran Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Vijithkumar Vijayan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Manas Geeta Arun
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, India
| |
Collapse
|
18
|
Konar G, Flickinger Z, Sharma S, Vallone K, Lyon C, Doshier C, Lyon W, Patton JG. Damage-induced senescent immune cells regulate regeneration of the zebrafish retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524296. [PMID: 36711649 PMCID: PMC9882244 DOI: 10.1101/2023.01.16.524296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Zebrafish spontaneously regenerate their retina in response to damage through the action of Müller glia. Even though Müller glia (MG) are conserved in higher vertebrates, the capacity to regenerate retinal damage is lost. Recent work has focused on the regulation of inflammation during tissue regeneration with precise temporal roles for macrophages and microglia. Senescent cells that have withdrawn from the cell cycle have mostly been implicated in aging, but are still metabolically active, releasing proinflammatory signaling molecules as part of the Senescence Associated Secretory Phenotype (SASP). Here, we discover that in response to retinal damage, a subset of cells expressing markers of microglia/macrophages also express markers of senescence. These cells display a temporal pattern of appearance and clearance during retina regeneration. Premature removal of senescent cells by senolytic treatment led to a decrease in proliferation and incomplete repair of the ganglion cell layer after NMDA damage. Our results demonstrate a role for modulation of senescent cell responses to balance inflammation, regeneration, plasticity, and repair as opposed to fibrosis and scarring.
Collapse
Affiliation(s)
| | | | - Shivani Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Kyle Vallone
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Charles Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - Claire Doshier
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - William Lyon
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University, Nashville TN, USA
| |
Collapse
|
19
|
Lu J, Xu H, Song K, Lin Z, Cao L, Lu B, Chen Y, Zhang S. Sox11b regulates the migration and fate determination of Müller glia-derived progenitors during retina regeneration in zebrafish. Neural Regen Res 2023; 18:445-450. [PMID: 35900444 PMCID: PMC9396499 DOI: 10.4103/1673-5374.346550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The transcription factor Sox11 plays important roles in retinal neurogenesis during vertebrate eye development. However, its function in retina regeneration remains elusive. Here we report that Sox11b, a zebrafish Sox11 homolog, regulates the migration and fate determination of Müller glia-derived progenitors (MGPCs) in an adult zebrafish model of mechanical retinal injury. Following a stab injury, the expression of Sox11b was induced in proliferating MGPCs in the retina. Sox11b knockdown did not affect MGPC formation at 4 days post-injury, although the nuclear morphology and subsequent radial migration of MGPCs were altered. At 7 days post-injury, Sox11b knockdown resulted in an increased proportion of MGPCs in the inner retina and a decreased proportion of MGPCs in the outer nuclear layer, compared with controls. Furthermore, Sox11b knockdown led to reduced photoreceptor regeneration, while it increased the numbers of newborn amacrines and retinal ganglion cells. Finally, quantitative polymerase chain reaction analysis revealed that Sox11b regulated the expression of Notch signaling components in the retina, and Notch inhibition partially recapitulated the Sox11b knockdown phenotype, indicating that Notch signaling functions downstream of Sox11b. Our findings imply that Sox11b plays key roles in MGPC migration and fate determination during retina regeneration in zebrafish, which may have critical implications for future explorations of retinal repair in mammals.
Collapse
|
20
|
Palazzo I, Kelly L, Koenig L, Fischer AJ. Patterns of NFkB activation resulting from damage, reactive microglia, cytokines, and growth factors in the mouse retina. Exp Neurol 2023; 359:114233. [PMID: 36174748 PMCID: PMC9722628 DOI: 10.1016/j.expneurol.2022.114233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/06/2022] [Accepted: 09/22/2022] [Indexed: 12/30/2022]
Abstract
Müller glia are a cellular source for neuronal regeneration in vertebrate retinas. However, the capacity for retinal regeneration varies widely across species. Understanding the mechanisms that regulate the reprogramming of Müller glia into progenitor cells is key to reversing the loss of vision that occurs with retinal diseases. In the mammalian retina, NFkB signaling promotes glial reactivity and represses the reprogramming of Müller glia into progenitor cells. Here we investigate different cytokines, growth factors, cell signaling pathways, and damage paradigms that influence NFkB-signaling in the mouse retina. We find that exogenous TNF and IL1β potently activate NFkB-signaling in Müller glia in undamaged retinas, and this activation is independent of microglia. By comparison, TLR1/2 agonist indirectly activates NFkB-signaling in Müller glia, and this activation depends on the presence of microglia as Tlr2 is predominantly expressed by microglia, but not other types of retinal cells. Exogenous FGF2 did not activate NFkB-signaling, whereas CNTF, Osteopontin, WNT4, or inhibition of GSK3β activated NFkB in Müller glia in the absence of neuronal damage. By comparison, dexamethasone, a glucocorticoid agonist, suppressed NFkB-signaling in Müller glia in damaged retinas, in addition to reducing numbers of dying cells and the accumulation of reactive microglia. Although NMDA-induced retinal damage activated NFkB in Müller glia, optic nerve crush had no effect on NFkB activation within the retina, whereas glial cells within the optic nerve were responsive. We conclude that the NFkB pathway is activated in retinal Müller glia in response to many different cell signaling pathways, and activation often depends on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Isabella Palazzo
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Lisa Kelly
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Lindsay Koenig
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
21
|
Bise T, Pfefferli C, Bonvin M, Taylor L, Lischer HEL, Bruggmann R, Jaźwińska A. The regeneration-responsive element careg monitors activation of Müller glia after MNU-induced damage of photoreceptors in the zebrafish retina. Front Mol Neurosci 2023; 16:1160707. [PMID: 37138703 PMCID: PMC10149768 DOI: 10.3389/fnmol.2023.1160707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
In contrast to mammals, zebrafish can regenerate their damaged photoreceptors. This capacity depends on the intrinsic plasticity of Müller glia (MG). Here, we identified that the transgenic reporter careg, a marker of regenerating fin and heart, also participates in retina restoration in zebrafish. After methylnitrosourea (MNU) treatment, the retina became deteriorated and contained damaged cell types including rods, UV-sensitive cones and the outer plexiform layer. This phenotype was associated with the induction of careg expression in a subset of MG until the reconstruction of the photoreceptor synaptic layer. Single-cell RNA sequencing (scRNAseq) analysis of regenerating retinas revealed a population of immature rods, defined by high expression of rhodopsin and the ciliogenesis gene meig1, but low expression of phototransduction genes. Furthermore, cones displayed deregulation of metabolic and visual perception genes in response to retina injury. Comparison between careg:EGFP expressing and non-expressing MG demonstrated that these two subpopulations are characterized by distinct molecular signatures, suggesting their heterogenous responsiveness to the regenerative program. Dynamics of ribosomal protein S6 phosphorylation showed that TOR signaling became progressively switched from MG to progenitors. Inhibition of TOR with rapamycin reduced the cell cycle activity, but neither affected careg:EGFP expression in MG, nor prevented restoration of the retina structure. This indicates that MG reprogramming, and progenitor cell proliferation might be regulated by distinct mechanisms. In conclusion, the careg reporter detects activated MG, and provides a common marker of regeneration-competent cells in diverse zebrafish organs, including the retina.
Collapse
Affiliation(s)
- Thomas Bise
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Marylène Bonvin
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lea Taylor
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Heidi E. L. Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Anna Jaźwińska,
| |
Collapse
|
22
|
Iribarne M, Hyde DR. Different inflammation responses modulate Müller glia proliferation in the acute or chronically damaged zebrafish retina. Front Cell Dev Biol 2022; 10:892271. [PMID: 36120571 PMCID: PMC9472244 DOI: 10.3389/fcell.2022.892271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike mammals, zebrafish regenerate in response to retinal damage. Because microglia are activated by retinal damage, we investigated their role during regeneration following either acute or chronic damage. At three weeks post-fertilization (wpf), both wild-type fish exhibiting NMDA-induced acute ganglion and amacrine cell death and gold rush (gosh) mutant fish possessing chronic cone photoreceptor degeneration displayed reactive microglia/macrophages and Müller glia proliferation. Dexamethasone-treated retinas, to inhibit the immune response, lacked reactive microglia/macrophages and possessed fewer PCNA-positive cells, while LPS treatment increased microglia/macrophages and PCNA-labeled cells. NMDA-injured retinas upregulated expression of il-1β and tnfα pro-inflammatory cytokine genes, followed by increased expression of il-10 and arg1 anti-inflammatory/remodeling cytokine genes. A transient early TNFα pro-inflammatory microglia/macrophage population was visualized in NMDA-damaged retinas. In contrast, gosh mutant retinas exhibited a slight increase of pro-inflammatory cytokine gene expression concurrently with a greater increased anti-inflammatory/remodeling cytokine gene expression. Few TNFα pro-inflammatory microglia/macrophages were observed in the gosh retina. Understanding why acute and chronic damage results in different inflammation profiles and their effects on regulating zebrafish retinal regeneration would provide important clues toward improving therapeutic strategies for repairing injured mammalian tissues.
Collapse
Affiliation(s)
- Maria Iribarne
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
| | - David R. Hyde
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
- Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, United States
- *Correspondence: David R. Hyde,
| |
Collapse
|
23
|
Sharma P, Ramachandran R. Retina regeneration: lessons from vertebrates. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac012. [PMID: 38596712 PMCID: PMC10913848 DOI: 10.1093/oons/kvac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/24/2022] [Accepted: 06/25/2022] [Indexed: 04/11/2024]
Abstract
Unlike mammals, vertebrates such as fishes and frogs exhibit remarkable tissue regeneration including the central nervous system. Retina being part of the central nervous system has attracted the interest of several research groups to explore its regenerative ability in different vertebrate models including mice. Fishes and frogs completely restore the size, shape and tissue structure of an injured retina. Several studies have unraveled molecular mechanisms underlying retina regeneration. In teleosts, soon after injury, the Müller glial cells of the retina reprogram to form a proliferating population of Müller glia-derived progenitor cells capable of differentiating into various neural cell types and Müller glia. In amphibians, the transdifferentiation of retinal pigment epithelium and differentiation of ciliary marginal zone cells contribute to retina regeneration. In chicks and mice, supplementation with external growth factors or genetic modifications cause a partial regenerative response in the damaged retina. The initiation of retina regeneration is achieved through sequential orchestration of gene expression through controlled modulations in the genetic and epigenetic landscape of the progenitor cells. Several developmental biology pathways are turned on during the Müller glia reprogramming, retinal pigment epithelium transdifferentiation and ciliary marginal zone differentiation. Further, several tumorigenic pathways and gene expression events also contribute to the complete regeneration cascade of events. In this review, we address the various retinal injury paradigms and subsequent gene expression events governed in different vertebrate species. Further, we compared how vertebrates such as teleost fishes and amphibians can achieve excellent regenerative responses in the retina compared with their mammalian counterparts.
Collapse
Affiliation(s)
- Poonam Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| | - Rajesh Ramachandran
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, SAS Nagar, Sector 81, Manauli PO, 140306 Mohali, Punjab, India
| |
Collapse
|
24
|
Context-dependent effects of inflammation on retina regeneration. Mol Neurobiol 2022; 59:4351-4367. [PMID: 35538305 DOI: 10.1007/s12035-022-02857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Inflammation is required for the proliferation of Müller glia (MG) into multipotent progenitors (MGPCs) in the injured fish and avian retinas. However, its function in retina regeneration has not been fully understood. Here we investigated the role of inflammation in three different retinal regeneration paradigms in zebrafish (stab-injury, NMDA-injury and insulin treatment). We first show that different types of immune cells and levels of inflammatory cytokines were found in the retinas of these paradigms. Though zymosan injection alone was insufficient to induce MG proliferation in the uninjured retina, immune suppression significantly inhibited MGPC formation in all three paradigms. Enhancing inflammation promoted MGPC formation after stab-injury, while exhibiting a context-dependent role in the NMDA or insulin models. We further show that proper levels of inflammation promoted MG reprogramming and cell cycle re-entry after stab- or NMDA-injury, but excessive inflammation also suppressed MG proliferation in the latter model. Finally, inflammation differentially affected neuronal regeneration in various injury paradigms. Our study reveals the complex and context-dependent role of inflammation during retinal repair in fish and suggests accurate inflammation management may be crucial for successful retina regeneration in mammals.
Collapse
|
25
|
Magner E, Sandoval-Sanchez P, Kramer AC, Thummel R, Hitchcock PF, Taylor SM. Disruption of miR-18a Alters Proliferation, Photoreceptor Replacement Kinetics, Inflammatory Signaling, and Microglia/Macrophage Numbers During Retinal Regeneration in Zebrafish. Mol Neurobiol 2022; 59:2910-2931. [PMID: 35246819 PMCID: PMC9018604 DOI: 10.1007/s12035-022-02783-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
In mammals, photoreceptor loss causes permanent blindness, but in zebrafish (Danio rerio), photoreceptor loss reprograms Müller glia to function as stem cells, producing progenitors that regenerate photoreceptors. MicroRNAs (miRNAs) regulate CNS neurogenesis, but the roles of miRNAs in injury-induced neuronal regeneration are largely unknown. In the embryonic zebrafish retina, miR-18a regulates photoreceptor differentiation. The purpose of the current study was to determine, in zebrafish, the function of miR-18a during injury-induced photoreceptor regeneration. RT-qPCR, in situ hybridization, and immunohistochemistry showed that miR-18a expression increases throughout the retina between 1 and 5 days post-injury (dpi). To test miR-18a function during photoreceptor regeneration, we used homozygous miR-18a mutants (miR-18ami5012), and knocked down miR-18a with morpholino oligonucleotides. During photoreceptor regeneration, miR-18ami5012 retinas have fewer mature photoreceptors than WT at 7 and 10 dpi, but there is no difference at 14 dpi, indicating that photoreceptor regeneration is delayed. Labeling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) showed that at 7 and 10 dpi, there are excess dividing progenitors in both mutants and morphants, indicating that miR-18a negatively regulates injury-induced proliferation. Tracing 5-ethynyl-2'-deoxyuridine (EdU) and BrdU-labeled cells showed that in miR-18ami5012 retinas excess progenitors migrate to other retinal layers in addition to the photoreceptor layer. Inflammation is critical for photoreceptor regeneration, and RT-qPCR showed that in miR-18ami5012 retinas, inflammatory gene expression and microglia activation are prolonged. Suppressing inflammation with dexamethasone rescues the miR-18ami5012 phenotype. Together, these data show that in the injured zebrafish retina, disruption of miR-18a alters proliferation, inflammation, the microglia/macrophage response, and the timing of photoreceptor regeneration.
Collapse
Affiliation(s)
- Evin Magner
- Plant and Microbial Biology, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA
| | - Pamela Sandoval-Sanchez
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA
| | - Ashley C Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Peter F Hitchcock
- Department of Ophthalmology and Visual Sciences, University of Michigan, W. K. Kellogg Eye Center, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Scott M Taylor
- Department of Biology, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514, USA.
| |
Collapse
|
26
|
Chen Y, Xia Q, Zeng Y, Zhang Y, Zhang M. Regulations of Retinal Inflammation: Focusing on Müller Glia. Front Cell Dev Biol 2022; 10:898652. [PMID: 35573676 PMCID: PMC9091449 DOI: 10.3389/fcell.2022.898652] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Retinal inflammation underlies multiple prevalent retinal diseases. While microglia are one of the most studied cell types regarding retinal inflammation, growing evidence shows that Müller glia play critical roles in the regulation of retinal inflammation. Müller glia express various receptors for cytokines and release cytokines to regulate inflammation. Müller glia are part of the blood-retinal barrier and interact with microglia in the inflammatory responses. The unique metabolic features of Müller glia in the retina makes them vital for retinal homeostasis maintenance, regulating retinal inflammation by lipid metabolism, purine metabolism, iron metabolism, trophic factors, and antioxidants. miRNAs in Müller glia regulate inflammatory responses via different mechanisms and potentially regulate retinal regeneration. Novel therapies are explored targeting Müller glia for inflammatory retinal diseases treatment. Here we review new findings regarding the roles of Müller glia in retinal inflammation and discuss the related novel therapies for retinal diseases.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghong Xia
- Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu, China
- West China School of Nursing, Sichuan University, Chengdu, China
| | - Yue Zeng
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, Sichuan University West China Hospital, Sichuan University, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Meixia Zhang,
| |
Collapse
|
27
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
28
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
29
|
Lu F, Leach LL, Gross JM. mTOR activity is essential for retinal pigment epithelium regeneration in zebrafish. PLoS Genet 2022; 18:e1009628. [PMID: 35271573 PMCID: PMC8939802 DOI: 10.1371/journal.pgen.1009628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 03/22/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lyndsay L. Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
30
|
Zhao M, Lv H, Yang N, Peng GH. Rapamycin Improved Retinal Function and Morphology in a Mouse Model of Retinal Degeneration. Front Neurosci 2022; 16:846584. [PMID: 35295093 PMCID: PMC8919089 DOI: 10.3389/fnins.2022.846584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
The retina is an important visual organ, which is responsible for receiving light signals and transmitting them to the optic nerve center step by step. The retina contains a variety of cells, among which photoreceptor cells receive light signals and convert them into nerve signals, and are mainly responsible for light and dark vision. Retinal degeneration is mainly the degeneration of photoreceptor cells, and retinitis pigmentosa (RP) is characterized by rod degeneration followed by cone degeneration. So far, there is still a lack of effective drugs to treat RP. Here, we established a stable RP model by tail vein injection of methyl methanesulfonate to study the mechanism of retinal photoreceptor degeneration. Mechanistic target of rapamycin (mTOR) is located in the central pathway of growth and energy metabolism and changes in a variety of diseases in response to pathological changes. We found that the mTOR was activated in this model. Therefore, the inhibitor of mTOR, rapamycin was used to suppress the expression of mTOR and interfere with photoreceptor degeneration. Electroretinogram assay showed that the function of mice retina was improved. Hematoxylin and eosin staining results displayed that retinal photoreceptor thickness and morphology were improved. Also, the autophagy in rapamycin group was activated, which revealed that rapamycin may protect the retinal photoreceptor by inhibiting mTOR and then activating autophagy.
Collapse
Affiliation(s)
- Meng Zhao
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Houting Lv
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Na Yang
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- *Correspondence: Guang-Hua Peng,
| |
Collapse
|
31
|
Yang P, Cao Q, Liu Y, Wang K, Zhu W. Small‐molecule‐driven direct reprogramming of Müller cells into bipolar‐like cells. Cell Prolif 2022; 55:e13184. [PMID: 35043487 PMCID: PMC8828256 DOI: 10.1111/cpr.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Pang Yang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd Qingdao China
| | - Yani Liu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
| | - KeWei Wang
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Institute of Innovative Drugs Qingdao University Qingdao China
| | - Wei Zhu
- Department of Pharmacology School of Pharmacy Qingdao University Qingdao China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine Shen Zhen China
- Beijing Advanced Innovation Center for Big Data‐Based Precision Medicine Beihang University & Capital Medical University Beijing China
| |
Collapse
|
32
|
Kramer AC, Gurdziel K, Thummel R. A Comparative Analysis of Gene and Protein Expression Throughout a Full 28-Day Retinal Regeneration Time-Course in Adult Zebrafish. Front Cell Dev Biol 2021; 9:741514. [PMID: 34790663 PMCID: PMC8591265 DOI: 10.3389/fcell.2021.741514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Following photoreceptors ablation by intense light exposure, adult zebrafish are capable of complete regeneration due to the ability of their Müller glia (MG) to re-enter the cell cycle, creating progenitors that differentiate into new photoreceptors. The majority of previous reports on retinal regeneration focused on the first few days of the regenerative response, which include MG cell-cycle re-entry and progenitor cell proliferation. With this study, we analyzed the full 28-day time-course of regeneration by pairing a detailed morphological/immunological analysis with RNA-seq transcriptional profiling at 8 key time points during retinal regeneration. We observed several novel findings. First, we provide evidence for two separate peaks of MG gliosis, with the secondary gliotic peak occurring after MG cell-cycle re-entry. Second, we highlight a distinct transcriptional shift between 5- and 10-days post lesion that highlights the transition from progenitor proliferation to differentiation into new photoreceptors. Third, we show distinctly different patterns of transcriptional recovery of the photoreceptor opsins at 28 days post lesion. Finally, using differential gene expression analysis, we revealed that the established functional recovery of the retina at 28 days post lesion does not, in fact, return to an undamaged transcriptional state, potentially redefining what the field considers complete regeneration. Together, to our knowledge, this work represents the first histological and transcriptomic map of a 28-day time-course of retinal regeneration in adult zebrafish.
Collapse
Affiliation(s)
- Ashley C Kramer
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Katherine Gurdziel
- Genome Sciences Core, Wayne State University, Detroit, MI, United States
| | - Ryan Thummel
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
33
|
mTORC1 Activation in Chx10-Specific Tsc1 Knockout Mice Accelerates Retina Aging and Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6715758. [PMID: 34777691 PMCID: PMC8589503 DOI: 10.1155/2021/6715758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
Age-associated decline in retina function is largely responsible for the irreversible vision deterioration in the elderly population. It is also an important risk factor for the development of degenerative and angiogenic diseases. However, the molecular mechanisms involved in the process of aging in the retina remain largely elusive. This study investigated the role of mTORC1 signaling in aging of the retina. We showed that mTORC1 was activated in old-aged retina, particularly in the ganglion cells. The role of mTORC1 activation was further investigated in Chx10-Cre;Tsc1fx/fx mouse (Tsc1-cKO). Activation of mTORC1 was found in bipolar and some of the ganglion and amacrine cells in the adult Tsc1-cKO retina. Bipolar cell hypertrophy and Müller gliosis were observed in Tsc1-cKO since 6 weeks of age. The abnormal endings of bipolar cell dendritic tips at the outer nuclear layer resembled that of the old-aged mice. Microglial cell activation became evident in 6-week-old Tsc1-cKO. At 5 months, the Tsc1-cKO mice exhibited advanced features of old-aged retina, including the expression of p16Ink4a and p21, expression of SA-β-gal in ganglion cells, decreased photoreceptor cell numbers, decreased electroretinogram responses, increased oxidative stress, microglial cell activation, and increased expression of immune and inflammatory genes. Inhibition of microglial cells by minocycline partially prevented photoreceptor cell loss and restored the electroretinogram responses. Collectively, our study showed that the activation of mTORC1 signaling accelerated aging of the retina by both cell autonomous and nonautonomous mechanisms. Our study also highlighted the role of microglia cells in driving the decline in retina function.
Collapse
|
34
|
Nagashima M, Hitchcock PF. Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish. Cells 2021; 10:cells10040783. [PMID: 33916186 PMCID: PMC8066466 DOI: 10.3390/cells10040783] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/20/2022] Open
Abstract
The ability to regenerate tissues varies between species and between tissues within a species. Mammals have a limited ability to regenerate tissues, whereas zebrafish possess the ability to regenerate almost all tissues and organs, including fin, heart, kidney, brain, and retina. In the zebrafish brain, injury and cell death activate complex signaling networks that stimulate radial glia to reprogram into neural stem-like cells that repair the injury. In the retina, a popular model for investigating neuronal regeneration, Müller glia, radial glia unique to the retina, reprogram into stem-like cells and undergo a single asymmetric division to generate multi-potent retinal progenitors. Müller glia-derived progenitors then divide rapidly, numerically matching the magnitude of the cell death, and differentiate into the ablated neurons. Emerging evidence reveals that inflammation plays an essential role in this multi-step process of retinal regeneration. This review summarizes the current knowledge of the inflammatory events during retinal regeneration and highlights the mechanisms whereby inflammatory molecules regulate the quiescence and division of Müller glia, the proliferation of Müller glia-derived progenitors and the survival of regenerated neurons.
Collapse
|
35
|
Gao H, A L, Huang X, Chen X, Xu H. Müller Glia-Mediated Retinal Regeneration. Mol Neurobiol 2021; 58:2342-2361. [PMID: 33417229 DOI: 10.1007/s12035-020-02274-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Müller glia originate from neuroepithelium and are the principal glial cells in the retina. During retinal development, Müller glia are one of the last cell types to be born. In lower vertebrates, such as zebrafish, Müller glia possess a remarkable capacity for retinal regeneration following various forms of injury through a reprogramming process in which endogenous Müller glia proliferate and differentiate into all types of retinal cells. In mammals, Müller glia become reactive in response to damage to protect or to further impair retinal function. Although mammalian Müller glia have regenerative potential, it is limited as far as repairing damaged retina. Lessons learned from zebrafish will help reveal the critical mechanisms involved in Müller glia reprogramming. Progress has been made in triggering Müller glia to reprogram and generate functional neurons to restore vision in mammals indicating that Müller glia reprogramming may be a promising therapeutic strategy for human retinal diseases. This review comprehensively summarizes the mechanisms related to retinal regeneration in model animals and the critical advanced progress made in Müller glia reprogramming in mammals.
Collapse
Affiliation(s)
- Hui Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xiaona Huang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China
| | - Xi Chen
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, China.
| |
Collapse
|
36
|
Abstract
Tissue or organ regeneration is a complex process with successful outcomes depending on the type of tissue and organism. Upon damage, mammals can only efficiently restore a few tissues including the liver, skin, epithelia of the lung, kidney, and gut. In contrast, lower vertebrates such as zebrafish possess an extraordinary regeneration ability, which restores the normal function of a broad spectrum of tissues including heart, fin, brain, spinal cord, and retina. This regeneration process is either mediated by the proliferation of resident stem cells, or cells that dedifferentiate into a stem cell-like. In recent years, evidence has suggested that the innate immune system can modulate stem cell activity to initiate the regenerative response to damage. This review will explore some of the newer concepts of inflammation in zebrafish regeneration in different tissues. Understanding how inflammation regulates regeneration in zebrafish would provide important clues to improve the therapeutic strategies for repairing injured mammalian tissues that do not have an inherent regenerative capacity.
Collapse
Affiliation(s)
- Maria Iribarne
- Center for Zebrafish Research, Department of Biological Sciences; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
37
|
Yang F, Liao J, Yu W, Pei R, Qiao N, Han Q, Hu L, Li Y, Guo J, Pan J, Tang Z. Copper induces oxidative stress with triggered NF-κB pathway leading to inflammatory responses in immune organs of chicken. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110715. [PMID: 32450432 DOI: 10.1016/j.ecoenv.2020.110715] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 05/21/2023]
Abstract
Copper (Cu) is a necessary trace mineral due to its biological activity. Excessive Cu can induce inflammatory response in humans and animals, but the underlying mechanism is still unknown. Here, 240 broilers were used to study the effects of excessive Cu on oxidative stress and NF-κB-mediated inflammatory responses in immune organs. Chickens were fed with diet containing different concentrations of Cu (11, 110, 220, and 330 mg of Cu/kg dry matter). The experiment lasted for 49 days. Spleen, thymus, and bursa of Fabricius (BF) on day 49 were collected for histopathological observation and assessment of oxidative stress status. Additionally, the mRNA and protein levels of NF-κB and inflammatory cytokines were also analyzed. The results indicated that excess Cu could increase the number and area of splenic corpuscle as well as the ratio of cortex and medulla in thymus and BF. Furthermore, excessive Cu intake could decrease activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px); but increase contents of malondialdehyde (MDA), TNF-α, IL-1, IL-1β; up-regulate mRNA levels of TNF-α, IFN-γ, IL-1, IL-1β, IL-2, iNOS, COX-2, NF-κB and protein levels of TNF-α, IFN-γ, NF-κB, p-NF-κB in immune organs. In conclusion, excessive Cu could cause pathologic changes and induce oxidative stress with triggered NF-κB pathway, and might further regulate the inflammatory response in immune organs of chicken.
Collapse
Affiliation(s)
- Fan Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China; Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ruonan Pei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, PR China.
| |
Collapse
|
38
|
Shi L, Chen C, Yin Z, Wei G, Xie G, Liu D. Systematic profiling of early regulators during tissue regeneration using zebrafish model. Wound Repair Regen 2020; 29:189-195. [PMID: 32776615 DOI: 10.1111/wrr.12852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 11/28/2022]
Abstract
Great progresses have been made in comprehension of tissue regeneration process. However, one of the central questions in regeneration research remains to be deciphered is what factors initiate regenerative process. In present study, we focused on systematic profiling of early regulators in tissue regeneration via high-throughput screening on zebrafish caudal fin model. Firstly, 53 GO-annotated regeneration-related genes, which were specifically activated upon fin amputation, were identified according to the transcriptomic analysis. Moreover, qRT-PCR analysis of a couple of randomly selected genes from the aforementioned gene list validated our sequencing results. These studies confirmed the reliability of transcriptome sequencing analysis. Fibroblast growth factor 20a (fgf20a) is a key initial factor in the regeneration of zebrafish. Through a gene expression correlation analysis, we discovered a collection of 70 genes correlating with fgf20a, whose expression increased promptly at 2 days post amputation (dpa) and went down to the basal level until the completion of fin regeneration. In addition, two genes, socs3b and nppc, were chosen to investigate their functions during the fin regeneration. Inhibition of either of those genes significantly delayed the regenerative process. Taken together, we provided a simple and effective time-saving strategy that may serve as a tool for identifying early regulators in regeneration and identified 71 genes as early regulators of fin regeneration.
Collapse
Affiliation(s)
- Linsheng Shi
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Changsheng Chen
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zhenhua Yin
- Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Guanyun Wei
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Dong Liu
- The Second Affiliated Hospital of Nantong University, School of Life Science, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
39
|
García-García D, Locker M, Perron M. Update on Müller glia regenerative potential for retinal repair. Curr Opin Genet Dev 2020; 64:52-59. [PMID: 32619816 DOI: 10.1016/j.gde.2020.05.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/08/2020] [Accepted: 05/24/2020] [Indexed: 12/20/2022]
Abstract
Retinal regeneration efficiency from Müller glia varies tremendously among vertebrate species, being extremely limited in mammals. Efforts towards the identification of molecular mechanisms underlying Müller cell proliferative and neurogenic potential should help finding strategies to awake them and ensure regeneration in mammals. We provide here an update on the most recent and original progresses made in the field. These include remarkable discoveries regarding (i) unprecedented cross-species comparison of Müller cell transcriptome using single-cell technologies, (ii) the identification of new strategies to promote both the proliferative and the neurogenic potential of mammalian Müller cells, (iii) the role of the epigenome in regulating Müller glia plasticity, (iv) miRNA-based regulatory mechanisms of Müller cell response to injury, and (v) the influence of inflammatory signals on the regenerative process.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Retina France, Institut des Neurosciences Paris Saclay, Orsay, France.
| |
Collapse
|