1
|
Chin-Chan M, Montes S, Blanco-Álvarez VM, Aguirre-Alarcón HA, Hernández-Rodríguez I, Bautista E. Relevance of biometals during neuronal differentiation and myelination: in vitro and in vivo studies. Biometals 2022; 35:395-427. [DOI: 10.1007/s10534-022-00380-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/27/2022] [Indexed: 12/20/2022]
|
2
|
Iron transport across the blood-brain barrier: development, neurovascular regulation and cerebral amyloid angiopathy. Cell Mol Life Sci 2014; 72:709-27. [PMID: 25355056 DOI: 10.1007/s00018-014-1771-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/10/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
There are two barriers for iron entry into the brain: (1) the brain-cerebrospinal fluid (CSF) barrier and (2) the blood-brain barrier (BBB). Here, we review the literature on developmental iron accumulation by the brain, focusing on the transport of iron through the brain microvascular endothelial cells (BMVEC) of the BBB. We review the iron trafficking proteins which may be involved in the iron flux across BMVEC and discuss the plausible mechanisms of BMVEC iron uptake and efflux. We suggest a model for how BMVEC iron uptake and efflux are regulated and a mechanism by which the majority of iron is trafficked across the developing BBB under the direct guidance of neighboring astrocytes. Thus, we place brain iron uptake in the context of the neurovascular unit of the adult brain. Last, we propose that BMVEC iron is involved in the aggregation of amyloid-β peptides leading to the progression of cerebral amyloid angiopathy which often occurs prior to dementia and the onset of Alzheimer's disease.
Collapse
|
3
|
Leitner DF, Connor JR. Functional roles of transferrin in the brain. Biochim Biophys Acta Gen Subj 2011; 1820:393-402. [PMID: 22138408 DOI: 10.1016/j.bbagen.2011.10.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/13/2011] [Accepted: 10/24/2011] [Indexed: 12/11/2022]
Abstract
BACKGROUND Transferrin is synthesized in the brain by choroid plexus and oligodendrocytes, but only that in the choroid plexus is secreted. Transferrin is a major iron delivery protein to the brain, but the amount transcytosed across the brain microvasculature is minimal. Transferrin is the major source of iron delivery to neurons. It may deliver iron to immature oligodendrocytes but this trophic effect declines over time while iron requirements for maintaining myelination continue. Finally, transferrin may play an important role in neurodegenerative diseases through its ability to mobilize iron. SCOPE OF REVIEW The role of transferrin in maintaining brain iron homeostasis and the mechanism by which it enters the brain and delivers iron will be discussed. Its relevance to neurological disorders will also be addressed. MAJOR CONCLUSIONS Transferrin is the major iron delivery protein for neurons and the microvasculature, but has a limited role for glial cells. The main source of transferrin in the brain is likely from the choroid plexus although the concentration of transferrin at any given time in the brain includes that synthesized in oligodendrocytes. Little is known about brain iron egress or the role of transferrin in this process. GENERAL SIGNIFICANCE Neuron survival requires iron, which is predominantly delivered by transferrin. The concentration of transferrin in the cerebrospinal fluid is reflective of brain iron availability and can function as a biomarker in disease. Accumulation of iron in the brain contributes to neurodegenerative processes, thus an understanding of the role that transferrin plays in regulating brain iron homeostasis is essential. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Dominique F Leitner
- Department of Neurosurgery, Penn State University, M.S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033-0850, USA
| | | |
Collapse
|
4
|
Bertazolli-Filho R, Laicine EM, Haddad A. Synthesis and secretion of transferrin by isolated ciliary epithelium of rabbit. Biochem Biophys Res Commun 2003; 305:820-5. [PMID: 12767904 DOI: 10.1016/s0006-291x(03)00825-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has been shown that the vitreous contains several intrinsic glycoproteins whose origin remains to be clarified. Isolated ciliary epithelium (CE) was assayed to verify its role in the synthesis and secretion of transferrin for the vitreous body. It was cultured in the presence of [35S]methionine and the incubation medium was processed for immunoprecipitation. Total RNA from CE was processed for RT-PCR and the amplification products were sequenced. Also, whole preparations of isolated CE were processed for immunolocalization of transferrin. From the incubation assays, a labeled peptide of about 80 kDa was immunopurified that is the expected size of transferrin. The RT-PCR and sequencing experiments detected the presence of transferrin mRNA. Both layers of the CE exhibited transferrin reactivity, following immunohistochemical processing. Taken altogether, these results indicate the CE as one of the possible sources of vitreous intrinsic transferrin.
Collapse
Affiliation(s)
- Rubens Bertazolli-Filho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, USP, 14049-900 Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
5
|
Haddad A, Salazar JJ, Laicine EM, Ramírez AI, Ramírez JM, Triviño A. A direct contact between astrocyte and vitreous body is possible in the rabbit eye due to discontinuities in the basement membrane of the retinal inner limiting membrane. Braz J Med Biol Res 2003; 36:207-11. [PMID: 12563522 DOI: 10.1590/s0100-879x2003000200007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different from most mammalian species, the optic nerve of the rabbit eye is initially formed inside the retina where myelination of the axons of the ganglion cells starts and vascularization occurs. Astrocytes are confined to these regions. The aforementioned nerve fibers known as medullated nerve fibers form two bundles that may be identified with the naked eye. The blood vessels run on the inner surface of these nerve fiber bundles (epivascularization) and, accordingly, the accompanying astrocytes lie mostly facing the vitreous body from which they are separated only by the inner limiting membrane of the retina. The arrangement of the astrocytes around blood vessels leads to the formation of structures known as glial tufts. Fragments (N = 3) or whole pieces (N = 3) of the medullated nerve fiber region of three-month-old male rabbits (Orictolagus cuniculus) were fixed in glutaraldehyde followed by osmium tetroxide, and their thin sections were examined with a transmission electron microscope. Randomly located discontinuities (up to a few micrometers long) of the basement membrane of the inner limiting membrane of the retina were observed in the glial tufts. As a consequence, a direct contact between the astrocyte plasma membrane and vitreous elements was demonstrated, making possible functional interactions such as macromolecular exchanges between this glial cell type and the components of the vitreous body.
Collapse
Affiliation(s)
- A Haddad
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Ceruloplasmin is a ferroxidase that oxidizes toxic ferrous iron to its nontoxic ferric form. We have previously reported that a glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed in the mammalian CNS. To better understand the role of ceruloplasmin in iron homeostasis in the CNS, we generated a ceruloplasmin gene-deficient (Cp(-/-)) mouse. Adult Cp(-/-) mice showed increased iron deposition in several regions of the CNS such as the cerebellum and brainstem. Increased lipid peroxidation was also seen in some CNS regions. Cerebellar cells from neonatal Cp(-/-) mice were also more susceptible to oxidative stress in vitro. Cp(-/-) mice showed deficits in motor coordination that were associated with a loss of brainstem dopaminergic neurons. These results indicate that ceruloplasmin plays an important role in maintaining iron homeostasis in the CNS and in protecting the CNS from iron-mediated free radical injury. Therefore, the antioxidant effects of ceruloplasmin could have important implications for various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease in which iron deposition is known to occur.
Collapse
|
7
|
Moos T, Oates PS, Morgan EH. Expression of transferrin mRNA in rat oligodendrocytes is iron-independent and changes with increasing age. Nutr Neurosci 2002; 4:15-23. [PMID: 11842873 DOI: 10.1080/1028415x.2001.11747347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
As transferrin in the brain may originate principally from synthesis by three different cell types, i.e. hepatocytes, oligodendrocytes and choroid plexus, this study employed a morphological analysis to specifically address oligodendrocytic expression of transferrin mRNA in young (P17) and adult (P50) rats. In spite of a lowering of the concentration of brain iron by approximately 22% in the young iron deficient rats transferrin mRNA expression in oligodendrocytes was not affected when measured by quantitative densitometry. In adult rats, the baseline transferrin mRNA expression in oligodendrocytes was higher than in the young animals, but did not change in spite of a reduction in brain iron by approximately 19%. Brain iron and transferrin mRNA expression in oligodendrocytes were unaltered in iron overloaded rats when compared to age-matched controls. As transferrin expression was lower in the young rat, when constituents from the blood have a relatively higher concentration in the brain than during adulthood, it seems unlikely that blood-borne factors such as transition metals act as inducers of transferrin gene expression in oligodendrocytes. Instead, the higher but constitutive expression of transferrin mRNA at later ages, when the blood-brain barrier segregates the brain from other body parts, may indicate that molecules released from the brain interior are responsible for regulating transcription of the transferrin gene.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Denmark.
| | | | | |
Collapse
|
8
|
Abstract
1. Iron (Fe) is an essential component of virtually all types of cells and organisms. In plasma and interstitial fluids, Fe is carried by transferrin. Iron-containing transferrin has a high affinity for the transferrin receptor, which is present on all cells with a requirement for Fe. The degree of expression of transferrin receptors on most types of cells is determined by the level of Fe supply and their rate of proliferation. 2. The brain, like other organs, requires Fe for metabolic processes and suffers from disturbed function when a Fe deficiency or excess occurs. Hence, the transport of Fe across brain barrier systems must be regulated. The interaction between transferrin and transferrin receptor appears to serve this function in the blood-brain, blood-CSF, and cellular-plasmalemma barriers. Transferrin is present in blood plasma and brain extracellular fluids, and the transferrin receptor is present on brain capillary endothelial cells, choroid plexus epithelial cells, neurons, and probably also glial cells. 3. The rate of Fe transport from plasma to brain is developmentally regulated, peaking in the first few weeks of postnatal life in the rat, after which it decreases rapidly to low values. Two mechanisms for Fe transport across the blood-brain barrier have been proposed. One is that the Fe-transferrin complex is transported intact across the capillary wall by receptor-mediated transcytosis. In the second, Fe transport is the result of receptor-mediated endocytosis of Fe-transferrin by capillary endothelial cells, followed by release of Fe from transferrin within the cell, recycling of transferrin to the blood, and transport of Fe into the brain. Current evidence indicates that although some transcytosis of transferrin does occur, the amount is quantitatively insufficient to account for the rate of Fe transport, and the majority of Fe transport probably occurs by the second of the above mechanisms. 4. An additional route of Fe and transferrin transport from the blood to the brain is via the blood-CSF barrier and from the CSF into the brain. Iron-containing transferrin is transported through the blood-CSF barrier by a mechanism that appears to be regulated by developmental stage and iron status. The transfer of transferrin from blood to CSF is higher than that of albumin, which may be due to the presence of transferrin receptors on choroid plexus epithelial cells so that transferrin can be transported across the cells by a receptor-mediated process as well as by nonselective mechanisms. 5. Transferrin receptors have been detected in neurons in vivo and in cultured glial cells. Transferrin is present in the brain interstitial fluid, and it is generally assumed that Fe which transverses the blood-brain barrier is rapidly bound by brain transferrin and can then be taken up by receptor-mediated endocytosis in brain cells. The uptake of transferrin-bound Fe by neurons and glial cells is probably regulated by the number of transferrin receptors present on cells, which changes during development and in conditions with an altered iron status. 6. This review focuses on the information available on the functions of transferrin and transferrin receptor with respect to Fe transport across the blood-brain and blood-CSF barriers and the cell membranes of neurons and glial cells.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Denmark
| | | |
Collapse
|
9
|
|
10
|
Abstract
The metals iron (Fe) and manganese (Mn) are essential for normal functioning of the brain. This review focuses on recent developments in the literature pertaining to Fe and Mn transport. These metals are treated together because they appear to share several transport mechanisms. In addition, several neurological diseases such as Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease are all associated with Fe mismanagement in the brain, particularly in the striatum and basal ganglia. Similarly, Mn accumulation in brain also appears to target the same brain regions. Therefore, stringent regulation of the concentration of these metals in the brain is essential. The homeostatic mechanisms for these metals must be understood in order to design neurotoxicity prevention strategies.
Collapse
Affiliation(s)
- E A Malecki
- Department of Neuroscience and Anatomy, College of Medicine, Pennsylvania State University, Hershey 17033, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Cell interactions in the nervous system are frequently mediated by surface proteins that are attached to the membrane by a glycosyl phosphatidylinositol (GPI) anchor. In this study, we have characterized the expression of such proteins on glial cells. We have detected a major GPI-anchored protein on astrocytes and Schwann cells, with a molecular weight of 140 kD. When Schwann cells were treated with forskolin to promote a myelinating phenotype, expression of this 140-kD protein dramatically decreased, whereas another GPI-anchored protein of 80 kD was strongly induced; expression of other integral membrane proteins were likewise dramatically altered. The size and pattern of expression of the 140-kD protein suggested that it might correspond to the Ran-2 antigen, a glial lineage marker. This notion was confirmed by immunoprecipitating this 140-kD protein with the Ran-2 monoclonal antibody. The Ran-2 antigen is expressed over the entire Schwann cell surface in a punctate fashion; it is removed by phosphatidylinositol phospholipase C treatment, thereby confirming that it is GPI-anchored. When Schwann cells are cocultured with neurons, the Ran-2 antigen initially concentrates at sites of Schwann cell contact with neurons, suggesting that it may play a role in early Schwann cell-neuron interactions; it is then downregulated. Protein sequencing of the Ran-2 antigen immunopurified from rat brain membranes showed complete identity over two extended segments with the copper binding protein ceruloplasmin. These findings indicate that astrocytes and Schwann cells express a novel GPI-anchored form of ceruloplasmin and suggest that this GPI form plays a role in axonal-glial interactions.
Collapse
Affiliation(s)
- J L Salzer
- Department of Cell Biology, Kaplan Cancer Center, New York University Medical School, New York 10016, USA
| | | | | | | |
Collapse
|
12
|
Moos T, Morgan EH. Kinetics and distribution of [59Fe-125I]transferrin injected into the ventricular system of the rat. Brain Res 1998; 790:115-28. [PMID: 9593852 DOI: 10.1016/s0006-8993(98)00055-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the kinetics and distribution of [59Fe-125I] rat Tf and unlabelled human Tf injected into a lateral cerebral ventricle (i.c. v. injection) in the rat. [56Fe-131I]Tf injected intravenously served as a control of blood-brain barrier (BBB) integrity. In CSF of adult rats, 59Fe and [125I]Tf decreased to only 2.5% of the dose injected after 4 h. In brain parenchyma, [125I]Tf had disappeared after 24 h, whereas approximately 18% of i.c.v.-injected 59Fe was retained even after 72 h. The elimination pattern of [125I]Tf from the CSF corresponded to that of [131I]albumin injected i.c.v., suggesting a nonselective washout of CSF proteins. [131I]Tf was hardly detectable in the brain, reflecting an unimpaired BBB during the experiments. Morphologically, 59Fe and i.c.v. injected human Tf were confined to the ventricular surface and meningeal areas, whereas grey matter regions at distances more than 2-3 mm from the ventricles and the subarachnoid space were unlabelled. However, accumulation of 59Fe was observed in the anterior thalamic and the medial habenular nuclei, and in brain regions with synaptic communications to these areas. In the newborn rats aged 7 days (P7) injected i.c.v. with [59Fe-125I]Tf and examined after 24 h, the amounts of [125I]Tf in CSF were approximately 3.5 times higher than in adult rats collected after the same time interval, whereas the amounts of 59Fe in CSF were at the same level in P7 and adult rats. In the brain tissue of the i.c.v. injected P7 rats, both [125I]Tf and 59Fe were retained to a significantly higher degree compared to that seen in adult brains. The rapid washout and lack of capability for i.c.v. injected [125I]Tf to penetrate deeply into the brain parenchyma of the adult brain question the importance of Tf of the CSF, and choroid plexus-derived Tf, for Fe neutralization and delivery of Fe-Tf to TfR-containing neurons and other cells in the CNS. However, it may serve these functions in young animals due to a lower rate of turnover of CSF.
Collapse
Affiliation(s)
- T Moos
- Department of Medical Anatomy A, The Panum Institute, The University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
13
|
Rosei MA, Foppoli C, Wang XT, Coccia R, Mateescu MA. Production of melanins by ceruloplasmin. PIGMENT CELL RESEARCH 1998; 11:98-102. [PMID: 9585247 DOI: 10.1111/j.1600-0749.1998.tb00717.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It was shown that ceruloplasmin, apart from the known oxidative conversion of dopamine into melanin, can also produce (DHI)-melanin from 5,6-dihydroxyindole and THP-melanin from tetrahydropapaveroline. Ceruloplasmin acts as an oxidase and the kinetic parameters for these oxidative reactions are reported. Since these ceruloplasmin-catalyzed reactions occur also at pH 7.4, they could have a significant physiological impact. This ceruloplasmin-oxidasic activity is enhanced by copper ions and inhibited by chelators, such as ethylenediaminetetraacetic acid (EDTA) and desferoxamine (DEF). Some possible implication of melanin production in blood are discussed.
Collapse
Affiliation(s)
- M A Rosei
- Department of Biochemical Sciences, University La Sapienza of Rome, Italy.
| | | | | | | | | |
Collapse
|
14
|
Klomp LW, Farhangrazi ZS, Dugan LL, Gitlin JD. Ceruloplasmin gene expression in the murine central nervous system. J Clin Invest 1996; 98:207-15. [PMID: 8690795 PMCID: PMC507418 DOI: 10.1172/jci118768] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aceruloplasminemia is an autosomal recessive disorder resulting in neurodegeneration of the retina and basal ganglia in association with iron accumulation in these tissues. To begin to define the mechanisms of central nervous system iron accumulation and neuronal loss in this disease, cDNA clones encoding murine ceruloplasmin were isolated and characterized. RNA blot analysis using these clones detected a 3.7-kb ceruloplasmin-specific transcript in multiple murine tissues including the eye and several regions of the brain. In situ hybridization of systemic tissues revealed cell-specific ceruloplasmin gene expression in hepatocytes, the splenic reticuloendothelial system and the bronchiolar epithelium of the lung. In the central nervous system, abundant ceruloplasmin gene expression was detected in specific populations of astrocytes within the retina and the brain as well as the epithelium of the choroid plexus. Analysis of primary cell cultures confirmed that astrocytes expressed ceruloplasmin mRNA and biosynthetic studies revealed synthesis and secretion of ceruloplasmin by these cells. Taken together these results demonstrate abundant cell-specific ceruloplasmin expression within the central nervous system which may account for the unique clinical and pathologic findings observed in patients with aceruloplasminemia.
Collapse
Affiliation(s)
- L W Klomp
- Edward Mallinckrodt Department off Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
15
|
Grondin B, Bazinet M, Aubry M. The KRAB zinc finger gene ZNF74 encodes an RNA-binding protein tightly associated with the nuclear matrix. J Biol Chem 1996; 271:15458-67. [PMID: 8663113 DOI: 10.1074/jbc.271.26.15458] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously cloned ZNF74, a developmentally expressed zinc finger gene commonly deleted in DiGeorge syndrome. Here, the intron/exon organization of the human gene and the functional properties of the expressed protein are presented. This zinc finger gene from the transcription factor IIIA/Kruppel family contains three exons. A truncated Kruppel-associated box (KRAB) located at the N terminus of the predicted 64-kDa zinc finger protein is encoded by exon 2. The remainder of the protein including the zinc finger domain as well as the 3'-untranslated region (UTR) is encoded by exon 3. Both 5'-UTR (exon 1) and 3'-UTR contain repetitive Alu elements. In vitro translation of a cDNA encoding the entire ZNF74 coding region produced a 63-kDa protein as determined on sodium dodecyl sulfate-polyacrylamide gel. A bacterially expressed fusion protein shown to bind tightly to 65zinc was used to test the nucleic acid binding properties of ZNF74. By RNA binding assays, ZNF74 was found to bind specifically to poly(U) and poly(G) RNA homopolymers. The restricted binding to these homopolymers and not to poly(A) and poly(C) suggested that ZNF74 displays RNA sequence preferences. RNA binding was mediated by the zinc finger domain. Immunofluorescence studies on transfected cells revealed ZNF74 nuclear localization. The labeling pattern observed in the nuclei clearly excluded the nucleoli. The zinc finger region lacks a classical nuclear localization signal but was found to be responsible for nuclear targeting. Subcellular and in situ sequential fractionations further showed that ZNF74 is associated with the nuclear matrix. The RNA binding properties of this protein and its tight association with the nuclear matrix, a subnuclear compartment involved in DNA replication as well as RNA synthesis and processing, suggest a role for ZNF74 in RNA metabolism.
Collapse
Affiliation(s)
- B Grondin
- Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
16
|
Tabernero A, Orfao A, Medina JM. Astrocyte differentiation in primary culture followed by flow cytometry. Neurosci Res 1996; 24:131-8. [PMID: 8929919 DOI: 10.1016/0168-0102(95)00981-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Astrocyte proliferation and differentiation in primary culture were followed by flow cytometry. The time-courses of the percentages of astrocytes in the different cell-cycle phases suggest that astrocytes proliferate during the first 10 days in culture thereafter reaching confluence. Two types of astrocytes are identified immunocytochemically: one growing in the bed monolayer, identified as type-1 astrocytes, and another growing on the top of the monolayer, identified as type-2 astrocytes. In addition, three populations identified as being formed of type-1, type-2 and putative progenitor cells, respectively, were followed by flow cytometry. Progenitor cells were the major type 2 h after plating (89%) but their percentage decreases sharply (to 16%) during the first 5 days in culture, with no ensuing changes. In contrast, the percentage of type-1 cells (11%) rapidly increased after plating reaching a maximum 5 days later (73%). Later, it decreased (to 47%) and was maintained thereafter. The percentage of type-2 cells was undetectable immediately after plating but increased from the 3rd to the 10th day with no further changes. Our results suggest that progenitor cells differentiate into type-1 astrocytes triggered by the culture medium but the differentiation of progenitor cells into type-2 astrocytes is brought about by some type-1-secreted factor. In this work we report a rapid and simple method for following the growth and differentiation of rat brain astrocytes in primary culture.
Collapse
Affiliation(s)
- A Tabernero
- Departamento de Bioquimica y Biologia Molecular, Facultad de Farmacia, Edificio Interdepartamental, Universidad de Salamanca, Spain
| | | | | |
Collapse
|
17
|
Hu YQ, Liu BJ, Dluzen DE, Koo PH. Alteration of dopamine release by rat caudate putamen tissues superfused with alpha 2-macroglobulin. J Neurosci Res 1996; 43:71-7. [PMID: 8838576 DOI: 10.1002/jnr.490430109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoamine-activated alpha-2-macroglobulin (alpha 2M) has been shown to decrease the dopamine concentrations in rat caudate putamen (CP) in vivo as well as inhibit choline acetyltransferase activities in the culture of basal forebrain neurons. In this study, we further investigated the effects of methylamine-activated alpha 2M (MA-alpha 2M) upon striatal dopaminergic function by determining whether a direct infusion of this glycoprotein will alter dopamine (DA) release in vitro from superfused CP tissue fragments. In experiment 1, an infusion of 2.8 microM MA-alpha 2M produced a statistically significant increase in DA release compared with control superfusions. In experiment 2, varying doses (0, 0.7, 1.4, 2.8, 4.1 microM) of MA-alpha 2M were tested for their capacity to alter DA release. Only the 2.8 microM dose of MA-alpha 2M was effective in producing a significant increase of DA release. In experiment 3, the normal form of alpha 2M (N-alpha 2M) at 2.8 microM was compared with the control superfusions. The infusion of N-alpha 2M produced an increase in DA release which was substantially lower than the DA increase induced by MA-alpha 2M, and not significantly different from that of the control superfusion. These results show that MA-alpha 2M, like some other neurotoxins, can markedly alter CP dopaminergic function as indicated by the acute increase in DA release following infusion of this glycoprotein, and these effects are exerted at a relatively narrow range of doses. Taken together, these data suggest that this glycoprotein, if allowed to accumulate in the central nervous system (CNS), may promote some neurodegenerative changes that can occur in disorders like Parkinson's disease.
Collapse
Affiliation(s)
- Y Q Hu
- Department of Microbiology and Immunology, Notheastern Ohio Universities College of Medicine, Rootstown, USA
| | | | | | | |
Collapse
|
18
|
Roisin MP, Deschepper CF. Identification and cellular localization of protein kinase C isoforms in cultures of rat type-1 astrocytes. Brain Res 1995; 701:297-300. [PMID: 8925295 DOI: 10.1016/0006-8993(95)01126-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have examined which isoforms of protein kinase C were present in rat brain astrocytes and found that: (1) the total of calcium-independent isoforms was greater than the total of calcium-dependent isoforms; (2) there were differences in the intracellular distribution of different isoforms; and (3) the abundance of total protein kinase C was greater in astrocytes from cortex than astrocytes from diencephalon.
Collapse
Affiliation(s)
- M P Roisin
- INSERM U29, Hôpital de Port-Royal, Paris, France
| | | |
Collapse
|
19
|
Aldred AR, Brack CM, Schreiber G. The cerebral expression of plasma protein genes in different species. Comp Biochem Physiol B Biochem Mol Biol 1995; 111:1-15. [PMID: 7749630 DOI: 10.1016/0305-0491(94)00229-n] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The cerebrospinal fluid (CSF) contains the same proteins as blood plasma, but with a different pattern of concentrations. Protein concentrations in CSF are much lower than those in blood. CSF proteins are derived from blood or synthesized within the brain. The choroid plexus is an important source of CSF proteins. Transthyretin is the protein most abundantly synthesized and secreted by choroid plexus. It determines the distribution of thyroxine in the cerebral compartment. Synthesis of transthyretin first evolved in the brain, then later it became a plasma protein synthesized in the liver. Other proteins secreted by choroid plexus are serum retinol-binding protein, transferrin, caeruloplasmin, insulin-like growth factors, insulin-like growth factor binding proteins, cystatin C, alpha 1-antichymotrypsin, alpha 2-macroglobulin, prothrombin, beta 2-microglobulin and prostaglandin D synthetase. Species differences in expression of the genes for these proteins are outlined, and their developmental pattern, regulation and roles in the cerebral extracellular compartment are discussed.
Collapse
Affiliation(s)
- A R Aldred
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
20
|
Deschepper CF, Houweling AD, Picard S. The membranes of cultured rat brain astrocytes contain endothelin-converting enzyme activity. Eur J Pharmacol 1995; 275:61-6. [PMID: 7774663 DOI: 10.1016/0014-2999(94)00746-t] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Both endothelins and their big-endothelin precursors were found capable of inducing the release of arachidonic acid from purified cultures of rat astrocytes. Their order of potency was as follows: big-endothelin-3 < big-endothelin-1 < endothelin-1 = endothelin-3. Mature endothelins induced the release of arachidonic acid in a rapid fashion. In contrast, much longer incubation times were required for big-endothelins to exert an effect, suggesting that their activity was dependent on their conversion. When big-endothelin-1 was added to the incubation medium of intact live astrocytes, it was converted into mature endothelin-1 in a time-dependent manner and the conversion was inhibited by phosphoramidon. This suggests that astrocytic endothelin-converting enzyme is (at least in part) an external membrane-bound metalloprotease. Some conversion of big-endothelin-3 into endothelin-3 also occurred. However, it was less efficient than the conversion of big-endothelin-1, which is compatible with the lower bioactivity of big-endothelin-3 vs. that of big-endothelin-1 in astrocytes.
Collapse
Affiliation(s)
- C F Deschepper
- MRC Multidisciplinary Research Group on Hypertension, Institut de Recherches Cliniques de Montréal (IRCM), Québec, Canada
| | | | | |
Collapse
|
21
|
Qian J, Wang HY, Fischer I, Friedman E, Levitt P. Involvement of protein kinase C in the axonal growth-promoting effect on spinal cord neurons by target-derived astrocytes. JOURNAL OF NEUROBIOLOGY 1994; 25:1593-612. [PMID: 7861122 DOI: 10.1002/neu.480251211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Astroglial cells participate in a variety of developmental events during neuronal morphogenesis. We have shown that axonal, but not dendritic, outgrowth of spinal cord neurons can be promoted by a diffusible factor or factors secreted from target region-derived cerebellar astroglia in vitro in comparison with spinal astroglia. In the present study, we examined the involvement of protein kinase C (PKC) in the axon-promoting effect by astroglia. The inhibition of PKC by sphingosine or by the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) at high concentration greatly reduced the mean axonal length of spinal neurons cultured in medium conditioned by cerebellar astroglia (SCn-CBg), while activation of PKC by TPA at low concentration, or by retinoic acid, was not additive to the glial effect. The activation of PKC by TPA or retinoic acid promoted axon growth of spinal neurons cultured in medium conditioned by spinal astroglia (SCn-SCg), which otherwise would not be as supportive for axon growth as cerebellar astroglia. Western blotting and PKC activity assays showed that there was a trend for increased PKC activity and protein levels (in particular, PKC beta) in SCn-CBg cultures, which correlated with enhanced axon growth. Inhibition of PKC by sphingosine appeared to decrease protein levels, especially PKC beta, which correlated with suppressed axon outgrowth. In SCn-SCg cultures, phorbol ester activation of PKC increased both activity and protein levels of both PKC alpha and PKC beta. This activation correlated with stimulated axonal outgrowth. These results suggest that the glial signaling that regulates specific axonal outgrowth by target astroglia is mediated in part by the PKC second messenger system.
Collapse
Affiliation(s)
- J Qian
- Department of Anatomy and Neurobiology, Medical College of Pennsylvania, Philadelphia 19129
| | | | | | | | | |
Collapse
|
22
|
Hong-Brown LQ, Brown CR. Cytokine and insulin regulation of alpha 2 macroglobulin, angiotensinogen, and hsp 70 in primary cultured astrocytes. Glia 1994; 12:211-8. [PMID: 7531672 DOI: 10.1002/glia.440120306] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Acute-phase proteins and heat shock proteins (hsp) are upregulated following exposure to a number of conditions including bacterial infection, tissue injury, or stress. We show here that alpha 2 macroglobulin (alpha 2M), angiotensinogen (AOG), and hsp 70 are regulated by cytokines in primary cultures of astrocytes. In addition, we have found that insulin modulates the effect of cytokines on these proteins. In cells treated with lipopolysaccharide (LPS) conditioned Raw media, interleukin (IL)-6, or IL-1 beta for 24 h, there was a significant decrease of alpha 2M secretion below control levels. In the absence of insulin, however, similar treatments resulted in a significant increase in alpha 2M secretion. AOG secretion increased significantly following treatment with individual cytokines either in the presence or absence of insulin, but conditioned media did not cause a response in the absence of insulin. Hsp 73 concentrations also increased following treatment with conditioned media and IL-1 beta in the presence or absence of insulin. Following IL-6 treatment, however, hsp levels either decreased (- insulin) or did not change (+ insulin). To determine whether acute-phase proteins are regulated similarly to hsp, astrocytes were subjected to elevated environmental temperatures. Cells incubated at 43 degrees C for 90 min showed a marked increase in AOG secretion. However, alpha 2M and hsp 73 levels remained unchanged. In the absence of insulin, heat shock caused a significant increase of alpha 2M and AOG secretion. Thus, in astrocytes, alpha 2M is upregulated by cytokines and heat shock in the absence of insulin, while in the presence of insulin, cytokines function as negative regulators.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- L Q Hong-Brown
- Department of Physiology, University of California-San Francisco 94143-0854
| | | |
Collapse
|
23
|
Deschepper CF, Picard S. Effects of C-type natriuretic peptide on rat astrocytes: regional differences and characterization of receptors. J Neurochem 1994; 62:1974-82. [PMID: 7908948 DOI: 10.1046/j.1471-4159.1994.62051974.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have compared the effects of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP) on the accumulation of cyclic GMP (cGMP) in secondary cultures of rat astrocytes. The order of potency of these peptides was CNP > ANP > BNP, which would be compatible with a predominance of guanylate cyclase B (GC-B)- versus guanylate cyclase A (GC-A)-type receptors in these cells. Accordingly, we found by northern blot analysis that the mRNA transcripts of GC-B were much more abundant in astrocytes than the transcripts of GC-A. In addition, astrocytes from diencephalon accumulated two times more cGMP in response to CNP than astrocytes from cortex. Binding experiments with 125I-labeled ANP or [Tyro]-CNP established that these ligands recognized only clearance-type receptors on astrocytes. However, the number of binding sites was approximately 100 times higher in astrocytes from cortex than in astrocytes from diencephalon and thus was inversely correlated to the amplitude of the cGMP response in the same cells. We found no further evidence for differences in the levels of GC-B receptors in astrocytes from the two regions because (a) the abundance of GC-B mRNA was similar and (b) there was no difference in particulate guanylate cyclase activity in astrocytes from each region. In addition, occupancy of clearance receptors with C-ANP4-23 did not affect the accumulation of cGMP in response to CNP; this makes it unlikely that the differences in cGMP responsiveness can be accounted for by binding and sequestration of CNP to the clearance receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C F Deschepper
- Laboratory of Neurobiology and Vasoactive Peptides, University of Montreal, Québec, Canada
| | | |
Collapse
|
24
|
Mellon SH, Deschepper CF. Neurosteroid biosynthesis: genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 1993; 629:283-92. [PMID: 8111631 DOI: 10.1016/0006-8993(93)91332-m] [Citation(s) in RCA: 281] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To determine if neurosteroids (steroids synthesized in the brain) are produced by enzymes found in steroidogenic tissues, we determined if mRNA for five steroidogenic enzymes could be detected in brain tissues or cultured cells. We detected mRNAs for adrenodoxin, P450scc (cholesterol side-chain cleavage enzyme) and P450c11 beta (11 beta-hydroxylase) but not for P450c17 (17 alpha-hydroxylase/17,20 lyase) or P450c11AS (aldosterone synthase) in rat brains and cultures of rat glial cells. P450scc mRNA abundance in brain or primary glial cultures was approximately 0.01% of that found in the adrenal, but more P450scc mRNA was detected in C6 glial cells. Both P450scc and P450c11 beta mRNAs were most abundant in the cortex, but there were region-specific differences for both mRNAs, and sex-specific differences for P450c11 beta mRNA. P450scc mRNA was equally abundant in mixed glial cultures containing both astrocytes and oligodendrocytes as in astrocyte-enriched cultures, and P450scc immunoreactivity co-localized with GFAP immunoreactivity in cultured astrocytes. P450c11 beta mRNA was not detected in the mixed primary glial cultures for the C6 glioma cell line that synthesize P450scc mRNA, suggesting that glial cells do not synthesize P450c11 beta mRNA. Thus some of the same enzymes involved in steroidogenesis in classic endocrine tissues are found in a cell-specific and region-specific fashion in the brain. Neurosteroids may be derivatives of known classic steroids, and/or may function through non-classic steroid hormone receptors, such as GABAA, N-methyl-D-aspartate, and corticosterone receptors.
Collapse
Affiliation(s)
- S H Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco 94143-0556
| | | |
Collapse
|