1
|
Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol 2023; 11:1221890. [PMID: 37564376 PMCID: PMC10410458 DOI: 10.3389/fcell.2023.1221890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
This article reviews the role of neuronal activity in myelin regeneration and the related neural signaling pathways. The article points out that neuronal activity can stimulate the formation and regeneration of myelin, significantly improve its conduction speed and neural signal processing ability, maintain axonal integrity, and support axonal nutrition. However, myelin damage is common in various clinical diseases such as multiple sclerosis, stroke, dementia, and schizophrenia. Although myelin regeneration exists in these diseases, it is often incomplete and cannot promote functional recovery. Therefore, seeking other ways to improve myelin regeneration in clinical trials in recent years is of great significance. Research has shown that controlling neuronal excitability may become a new intervention method for the clinical treatment of demyelinating diseases. The article discusses the latest research progress of neuronal activity on myelin regeneration, including direct or indirect stimulation methods, and the related neural signaling pathways, including glutamatergic, GABAergic, cholinergic, histaminergic, purinergic and voltage-gated ion channel signaling pathways, revealing that seeking treatment strategies to promote myelin regeneration through precise regulation of neuronal activity has broad prospects.
Collapse
Affiliation(s)
| | - Jing Zhang
- Department of Pharmacy, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Oscillatory calcium release and sustained store-operated oscillatory calcium signaling prevents differentiation of human oligodendrocyte progenitor cells. Sci Rep 2022; 12:6160. [PMID: 35418597 PMCID: PMC9007940 DOI: 10.1038/s41598-022-10095-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Endogenous remyelination in demyelinating diseases such as multiple sclerosis is contingent upon the successful differentiation of oligodendrocyte progenitor cells (OPCs). Signaling via the Gαq-coupled muscarinic receptor (M1/3R) inhibits human OPC differentiation and impairs endogenous remyelination in experimental models. We hypothesized that calcium release following Gαq-coupled receptor (GqR) activation directly regulates human OPC (hOPC) cell fate. In this study, we show that specific GqR agonists activating muscarinic and metabotropic glutamate receptors induce characteristic oscillatory calcium release in hOPCs and that these agonists similarly block hOPC maturation in vitro. Both agonists induce calcium release from endoplasmic reticulum (ER) stores and store operated calcium entry (SOCE) likely via STIM/ORAI-based channels. siRNA mediated knockdown (KD) of obligate calcium sensors STIM1 and STIM2 decreased the magnitude of muscarinic agonist induced oscillatory calcium release and attenuated SOCE in hOPCs. In addition, STIM2 expression was necessary to maintain the frequency of calcium oscillations and STIM2 KD reduced spontaneous OPC differentiation. Furthermore, STIM2 siRNA prevented the effects of muscarinic agonist treatment on OPC differentiation suggesting that SOCE is necessary for the anti-differentiative action of muscarinic receptor-dependent signaling. Finally, using a gain-of-function approach with an optogenetic STIM lentivirus, we demonstrate that independent activation of SOCE was sufficient to significantly block hOPC differentiation and this occurred in a frequency dependent manner while increasing hOPC proliferation. These findings suggest that intracellular calcium oscillations directly regulate hOPC fate and that modulation of calcium oscillation frequency may overcome inhibitory Gαq-coupled signaling that impairs myelin repair.
Collapse
|
3
|
Spontaneous Local Calcium Transients Regulate Oligodendrocyte Development in Culture through Store-Operated Ca 2+ Entry and Release. eNeuro 2020; 7:ENEURO.0347-19.2020. [PMID: 32409508 PMCID: PMC7438061 DOI: 10.1523/eneuro.0347-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes (OLs) insulate axonal fibers for fast conduction of nerve impulses by wrapping axons of the CNS with compact myelin membranes. Differentiating OLs undergo drastic chances in cell morphology. Bipolar oligodendroglial precursor cells (OPCs) transform into highly ramified multipolar OLs, which then expand myelin membranes that enwrap axons. While significant progress has been made in understanding the molecular and genetic mechanisms underlying CNS myelination and its disruption in diseases, the cellular mechanisms that regulate OL differentiation are not fully understood. Here, we report that developing rat OLs in culture exhibit spontaneous Ca2+ local transients (sCaLTs) in their process arbors in the absence of neurons. Importantly, we find that the frequency of sCaLTs markedly increases as OLs undergo extensive process outgrowth and branching. We further show that sCaLTs are primarily generated through a combination of Ca2+ influx through store-operated Ca2+ entry (SOCE) and Ca2+ release from internal Ca2+ stores. Inhibition of sCaLTs impairs the elaboration and branching of OL processes, as well as substantially reduces the formation of large myelin sheets in culture. Together, our findings identify an important role for spontaneous local Ca2+ signaling in OL development.
Collapse
|
4
|
Melchor GS, Khan T, Reger JF, Huang JK. Remyelination Pharmacotherapy Investigations Highlight Diverse Mechanisms Underlying Multiple Sclerosis Progression. ACS Pharmacol Transl Sci 2019; 2:372-386. [PMID: 32259071 DOI: 10.1021/acsptsci.9b00068] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system characterized by a complex lesion microenvironment. Although much progress has been made in developing immunomodulatory treatments to reduce myelin damage and delay the progression of MS, there is a paucity in treatment options that address the multiple pathophysiological aspects of the disease. Currently available immune-centered therapies are able to reduce the immune-mediated damage exhibited in MS patients, however, they cannot rescue the eventual failure of remyelination or permanent neuronal damage that occurs as MS progresses. Recent advances have provided a better understanding of remyelination processes, specifically oligodendrocyte lineage cell progression following demyelination. Further there have been new findings highlighting various components of the lesion microenvironment that contribute to myelin repair and restored axonal health. In this review we discuss the complexities of myelin repair following immune-mediated damage in the CNS, the contribution of animal models of MS in providing insight on OL progression and myelin repair, and current and potential remyelination-centered therapeutic targets. As remyelination therapies continue to progress into clinical trials, we consider a dual approach targeting the inflammatory microenvironment and intrinsic remyelination mechanisms to be optimal in aiding MS patients.
Collapse
Affiliation(s)
- George S Melchor
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Tahiyana Khan
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| | - Joan F Reger
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States
| | - Jeffrey K Huang
- Department of Biology and Center for Cell Reprogramming, Georgetown University, Washington, DC 20057, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
5
|
Ma T, Li B, Le Y, Xu Y, Wang F, Tian Y, Cai Q, Liu Z, Xiao L, Li H. Demyelination contributes to depression comorbidity in a rat model of chronic epilepsy via dysregulation of Olig2/LINGO-1 and disturbance of calcium homeostasis. Exp Neurol 2019; 321:113034. [PMID: 31415741 DOI: 10.1016/j.expneurol.2019.113034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/30/2019] [Accepted: 08/11/2019] [Indexed: 01/31/2023]
Abstract
Depression is the most common comorbidity among patients with epilepsy. Despite prior assumptions that antiepileptic drugs are to blame, more and more pathological studies have shown that latent neurological alterations associated with white matter injury and demyelination may underlie this link. However, whether disturbances in cerebral myelination contribute to the initiation of depression in epilepsy remains unclear. In the present study, we investigated the connection between demyelination disorders and the development of depression comorbidity in epilepsy. We first induced spontaneous recurrent epilepticus seizure (SRS) in young rats with pilocarpine. We then established depressive behaviors by recurrent forced swimming test and evaluate the depression state by sucrose preference test. The ratio of depression comorbidity in SRS rats was then calculated. Next, myelination in SRS-Depressed (SRS-D) rats was explored via PCR, western blotting, and immunohistochemistry for the key myelin promotion factor, Olig2 and inhibition factor, LINGO-1. Finally, in situ RNA hybridization of NCX3, one of the dominant Ca2+ extrusion proteins in oligodendrocytes (OLs) was performed to explore whether Ca2+ homeostasis of OLs was disturbed in epilepsy-induced hypoxic conditions and involved in the epilepsy-depression comorbidity. Our results revealed that one-quarter of the SRS rats displayed typical depressive behaviors, which were defined as SRS-D rats. In SRS-D rats, severe demyelination was also observed, accompanied with reduced expression of MBP, Olig2, and NCX3 and increased expression of LINGO-1 in the cingulate gyrus. In SRS-Non depressed rats, no significant changes were found from the control animals. This work provides new insights into the demyelination in epilepsy-depression comorbidity, which involves dysregulation of Olig2/LINGO-1 and disturbance of Ca2+ homeostasis.
Collapse
Affiliation(s)
- Teng Ma
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Baichuan Li
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Yanping Tian
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Army Medical University, Chongqing 400038, China..
| |
Collapse
|
6
|
Carbofuran hampers oligodendrocytes development leading to impaired myelination in the hippocampus of rat brain. Neurotoxicology 2019; 70:161-179. [DOI: 10.1016/j.neuro.2018.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/14/2018] [Accepted: 11/20/2018] [Indexed: 11/21/2022]
|
7
|
Yu Y, Herman P, Rothman DL, Agarwal D, Hyder F. Evaluating the gray and white matter energy budgets of human brain function. J Cereb Blood Flow Metab 2018; 38:1339-1353. [PMID: 28589753 PMCID: PMC6092772 DOI: 10.1177/0271678x17708691] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The insatiable appetite for energy to support human brain function is mainly supplied by glucose oxidation (CMRglc(ox)). But how much energy is consumed for signaling and nonsignaling processes in gray/white matter is highly debated. We examined this issue by combining metabolic measurements of gray/white matter and a theoretical calculation of bottom-up energy budget using biophysical properties of neuronal/glial cells in conjunction with species-exclusive electrophysiological and morphological data. We calculated a CMRglc(ox)-derived budget and confirmed it with experimental results measured by PET, autoradiography, 13C-MRS, and electrophysiology. Several conserved principles were observed regarding the energy costs for brain's signaling and nonsignaling components in both human and rat. The awake resting cortical signaling processes and mass-dependent nonsignaling processes, respectively, demand ∼70% and ∼30% of CMRglc(ox). Inhibitory neurons and glia need 15-20% of CMRglc(ox), with the rest demanded by excitatory neurons. Nonsignaling demands dominate in white matter, in near opposite contrast to gray matter demands. Comparison between 13C-MRS data and calculations suggests ∼1.2 Hz glutamatergic signaling rate in the awake human cortex, which is ∼4 times lower than signaling in the rat cortex. Top-down validated bottom-up budgets could allow computation of anatomy-based CMRglc(ox) maps and accurate cellular level interpretation of brain metabolic imaging.
Collapse
Affiliation(s)
- Yuguo Yu
- 1 School of Life Science and the Collaborative Innovation Center for Brain Science, the Center for Computational Systems Biology, Fudan University, Shanghai, China
| | - Peter Herman
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA
| | - Douglas L Rothman
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Divyansh Agarwal
- 3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,6 Currently at Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fahmeed Hyder
- 2 Department of Radiology and Biomedical Imaging Yale University, New Haven, CT, USA.,3 Magnetic Resonance Research Center, Yale University, New Haven, CT, USA.,4 Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, CT, USA.,5 Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Li T, Wang L, Ma T, Wang S, Niu J, Li H, Xiao L. Dynamic Calcium Release From Endoplasmic Reticulum Mediated by Ryanodine Receptor 3 Is Crucial for Oligodendroglial Differentiation. Front Mol Neurosci 2018; 11:162. [PMID: 29867353 PMCID: PMC5968115 DOI: 10.3389/fnmol.2018.00162] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
Increased intracellular Ca2+ in oligodendrocyte progenitor cells (OPCs) is important to initiate their differentiation, but the intracellular Ca2+ channel involved in this process remains unclear. As a Ca2+-induced Ca2+ release (CICR) channel that mediates endoplasmic reticulum (ER) Ca2+ release, the role of ryanodine receptors (RyRs) in oligodendroglial development is unexplored. In the present study, we observed that among the three mammalian isoforms, oligodendroglial lineage cells selectively expressed RyR3. Strong RyR3-positive signal was distributed all over the cytoplasm and processes in OPCs and/or immature OLs (imOLs), whereas it gradually decreased and was located mainly around the perinuclear region in mature oligodendrocytes (OLs). In addition, RyR3-mediated intracellular Ca2+ waves following caffeine stimulation were correlated with the expression pattern of RyR3, in which high flat Ca2+ fluctuations and oscillatory Ca2+ waves were more frequently recorded in OPCs and/or imOLs than in OLs. Through further functional exploration, we demonstrated that pretreatment with the RyR antagonist ryanodine could neutralize the increase in intracellular Ca2+ induced by OPC differentiation and reduce the number of mature OLs. Moreover, gene-level knockdown of RyR3 by lentivirus in OPCs resulted in inhibition of OPC differentiation. Taken together, our results provide new insight into the crucial role of RyR3-mediated ER Ca2+ release in the regulation of OPC differentiation and/or myelination.
Collapse
Affiliation(s)
- Tao Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Lingyun Wang
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Teng Ma
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Shouyu Wang
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Jianqin Niu
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongli Li
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Lan Xiao
- Chongqing Key Laboratory of Neurobiology, Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| |
Collapse
|
9
|
Welsh TG, Kucenas S. Purinergic signaling in oligodendrocyte development and function. J Neurochem 2018; 145:6-18. [PMID: 29377124 DOI: 10.1111/jnc.14315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/08/2018] [Accepted: 01/21/2018] [Indexed: 12/31/2022]
Abstract
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.
Collapse
Affiliation(s)
- Taylor G Welsh
- Neuroscience Graduate Program, Charlottesville, Virginia, USA
| | - Sarah Kucenas
- Neuroscience Graduate Program, Charlottesville, Virginia, USA.,Department of Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
10
|
Lecca D, Fumagalli M, Ceruti S, Abbracchio MP. Intertwining extracellular nucleotides and their receptors with Ca2+ in determining adult neural stem cell survival, proliferation and final fate. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0433. [PMID: 27377726 DOI: 10.1098/rstb.2015.0433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2016] [Indexed: 02/07/2023] Open
Abstract
In the central nervous system (CNS), during both brain and spinal cord development, purinergic and pyrimidinergic signalling molecules (ATP, UTP and adenosine) act synergistically with peptidic growth factors in regulating the synchronized proliferation and final specification of multipotent neural stem cells (NSCs) to neurons, astrocytes or oligodendrocytes, the myelin-forming cells. Some NSCs still persist throughout adulthood in both specific 'neurogenic' areas and in brain and spinal cord parenchyma, retaining the potentiality to generate all the three main types of adult CNS cells. Once CNS anatomical structures are defined, purinergic molecules participate in calcium-dependent neuron-to-glia communication and also control the behaviour of adult NSCs. After development, some purinergic mechanisms are silenced, but can be resumed after injury, suggesting a role for purinergic signalling in regeneration and self-repair also via the reactivation of adult NSCs. In this respect, at least three different types of adult NSCs participate in the response of the adult brain and spinal cord to insults: stem-like cells residing in classical neurogenic niches, in particular, in the ventricular-subventricular zone (V-SVZ), parenchymal oligodendrocyte precursor cells (OPCs, also known as NG2-glia) and parenchymal injury-activated astrocytes (reactive astrocytes). Here, we shall review and discuss the purinergic regulation of these three main adult NSCs, with particular focus on how and to what extent modulation of intracellular calcium levels by purinoceptors is mandatory to determine their survival, proliferation and final fate.This article is part of the themed issue 'Evolution brings Ca(2+) and ATP together to control life and death'.
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| | - Maria P Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
11
|
Fields RD, Dutta DJ, Belgrad J, Robnett M. Cholinergic signaling in myelination. Glia 2017; 65:687-698. [PMID: 28101995 DOI: 10.1002/glia.23101] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/26/2016] [Accepted: 11/03/2016] [Indexed: 11/08/2022]
Abstract
There is a long history of research on acetylcholine (ACh) function in myelinating glia, but a resurgence of interest recently as a result of the therapeutic potential of manipulating ACh signaling to promote remyelination, and the broader interest in neurotransmitter signaling in activity-dependent myelination. Myelinating glia express all the major types of muscarinic and nicotinic ACh receptors at different stages of development, and acetylcholinesterase and butyrylcholinesterase are highly expressed in white matter. This review traces the history of research on ACh signaling in Schwann cells, oligodendrocytes, and in the myelin sheath, and summarizes current knowledge on the intracellular signaling and functional consequences of ACh signaling in myelinating glia. Implications of ACh in diseases, such as Alzheimer's disease, multiple sclerosis, and white matter toxicity caused by pesticides are considered, together with an outline of major questions for future research. GLIA 2017;65:687-698.
Collapse
Affiliation(s)
- R Douglas Fields
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Dipankar J Dutta
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland
| | - Jillian Belgrad
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| | - Maya Robnett
- Nervous System Development and Plasticity Section, the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland
| |
Collapse
|
12
|
Lee KI, Lin HC, Lee HT, Tsai FC, Lee TS. Loss of Transient Receptor Potential Ankyrin 1 Channel Deregulates Emotion, Learning and Memory, Cognition, and Social Behavior in Mice. Mol Neurobiol 2016; 54:3606-3617. [PMID: 27194300 DOI: 10.1007/s12035-016-9908-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/03/2016] [Indexed: 01/05/2023]
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is a non-selective cation channel that helps regulate inflammatory pain sensation and nociception and the development of inflammatory diseases. However, the potential role of the TRPA1 channel and the underlying mechanism in brain functions are not fully resolved. In this study, we demonstrated that genetic deletion of the TRPA1 channel in mice or pharmacological inhibition of its activity increased neurite outgrowth. In vivo study in mice provided evidence of the TRPA1 channel as a negative regulator in hippocampal functions; functional ablation of the TRPA1 channel in mice enhanced hippocampal functions, as evidenced by less anxiety-like behavior, and enhanced fear-related or spatial learning and memory, and novel location recognition as well as social interactions. However, the TRPA1 channel appears to be a prerequisite for motor function; functional loss of the TRPA1 channel in mice led to axonal bundle fragmentation, downregulation of myelin basic protein, and decreased mature oligodendrocyte population in the brain, for impaired motor function. The TRPA1 channel may play a crucial role in neuronal development and oligodendrocyte maturation and be a potential regulator in emotion, cognition, learning and memory, and social behavior.
Collapse
Affiliation(s)
- Kuan-I Lee
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11211, Taiwan
| | - Hui-Ching Lin
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11211, Taiwan
| | - Hsueh-Te Lee
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Chuan Tsai
- Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Tzong-Shyuan Lee
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11211, Taiwan. .,Genome Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
13
|
Cheli VT, Santiago González DA, Spreuer V, Paez PM. Voltage-gated Ca2+ entry promotes oligodendrocyte progenitor cell maturation and myelination in vitro. Exp Neurol 2014; 265:69-83. [PMID: 25542980 DOI: 10.1016/j.expneurol.2014.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 11/16/2022]
Abstract
We have previously shown that the expression of voltage-operated Ca(++) channels (VOCCs) is highly regulated in the oligodendroglial lineage and is essential for proper oligodendrocyte progenitor cell (OPC) migration. Here we assessed the role of VOCCs, in particular the L-type, in oligodendrocyte maturation. We used pharmacological treatments to activate or block voltage-gated Ca(++) uptake and siRNAs to specifically knock down the L-type VOCC in primary cultures of mouse OPCs. Activation of VOCCs by plasma membrane depolarization increased OPC morphological differentiation as well as the expression of mature oligodendrocyte markers. On the contrary, inhibition of L-type Ca(++) channels significantly delayed OPC development. OPCs transfected with siRNAs for the Cav1.2 subunit that conducts L-type Ca(++) currents showed reduce Ca(++) influx by ~75% after plasma membrane depolarization, indicating that Cav1.2 is heavily involved in mediating voltage-operated Ca(++) entry in OPCs. Cav1.2 knockdown induced a decrease in the proportion of oligodendrocytes that expressed myelin proteins, and an increase in cells that retained immature oligodendrocyte markers. Moreover, OPC proliferation, but not cell viability, was negatively affected after L-type Ca(++) channel knockdown. Additionally, we have tested the ability of L-type VOCCs to facilitate axon-glial interaction during the first steps of myelin formation using an in vitro co-culture system of OPCs with cortical neurons. Unlike control OPCs, Cav1.2 deficient oligodendrocytes displayed a simple morphology, low levels of myelin proteins expression and appeared to be less capable of establishing contacts with neurites and axons. Together, this set of in vitro experiments characterizes the involvement of L-type VOCCs on OPC maturation as well as the role played by these Ca(++) channels during the early phases of myelination.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY 14203, USA.
| |
Collapse
|
14
|
BDE-47 and 6-OH-BDE-47 modulate calcium homeostasis in primary fetal human neural progenitor cells via ryanodine receptor-independent mechanisms. Arch Toxicol 2014; 88:1537-48. [PMID: 24599297 DOI: 10.1007/s00204-014-1217-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/19/2014] [Indexed: 02/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are bioaccumulating flame retardants found in rising concentrations in human tissue. Epidemiological and animal studies have raised concern for their potential to induce developmental neurotoxicity (DNT). Considering the essential role of calcium homeostasis in neurodevelopment, PBDE-induced disturbance of intracellular calcium concentration ([Ca(2+)]i) may underlie PBDE-induced DNT. To test this hypothesis, we investigated acute effects of BDE-47 and 6-OH-BDE-47 on [Ca(2+)]i in human neural progenitor cells (hNPCs) and unraveled involved signaling pathways. Short-time differentiated hNPCs were exposed to BDE-47, 6-OH-BDE-47, and multiple inhibitors/stimulators of presumably involved signaling pathways to determine possible effects on [Ca(2+)]i by single-cell microscopy with the fluorescent dye Fura-2. Initial characterization of calcium signaling pathways confirmed the early developmental stage of hNPCs. In these cells, BDE-47 (2 μM) and 6-OH-BDE-47 (0.2 μM) induce [Ca(2+)]i transients. This increase in [Ca(2+)]i is due to extracellular Ca(2+) influx and intracellular release of Ca(2+), mainly from the endoplasmic reticulum (ER). While extracellular Ca(2+) seems to enter the cytoplasm upon 6-OH-BDE-47 by interfering with the cell membrane and independent of Ca(2+) ion channels, ER-derived Ca(2+) is released following activation of protein lipase C and inositol 1,4,5-trisphosphate receptor, but independently of ryanodine receptors. These findings illustrate that immature developing hNPCs respond to low concentrations of 6-OH-BDE-47 by an increase in [Ca(2+)]i and provide new mechanistic explanations for such BDE-induced calcium disruption. Thus, these data support the possibility of a critical window of PBDE exposure, i.e., early human brain development, which has to be acknowledged in risk assessment.
Collapse
|
15
|
Abstract
Intercellular calcium (Ca(2+)) waves (ICWs) represent the propagation of increases in intracellular Ca(2+) through a syncytium of cells and appear to be a fundamental mechanism for coordinating multicellular responses. ICWs occur in a wide diversity of cells and have been extensively studied in vitro. More recent studies focus on ICWs in vivo. ICWs are triggered by a variety of stimuli and involve the release of Ca(2+) from internal stores. The propagation of ICWs predominately involves cell communication with internal messengers moving via gap junctions or extracellular messengers mediating paracrine signaling. ICWs appear to be important in both normal physiology as well as pathophysiological processes in a variety of organs and tissues including brain, liver, retina, cochlea, and vascular tissue. We review here the mechanisms of initiation and propagation of ICWs, the key intra- and extracellular messengers (inositol 1,4,5-trisphosphate and ATP) mediating ICWs, and the proposed physiological functions of ICWs.
Collapse
Affiliation(s)
- Luc Leybaert
- Department of Basic Medical Sciences, Physiology Group, Faculty of Medicine & Health Sciences, Ghent University, Ghent, Belgium.
| | | |
Collapse
|
16
|
Lecca D, Ceruti S, Fumagalli M, Abbracchio MP. Purinergic trophic signalling in glial cells: functional effects and modulation of cell proliferation, differentiation, and death. Purinergic Signal 2012; 8:539-57. [PMID: 22528683 PMCID: PMC3360088 DOI: 10.1007/s11302-012-9310-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022] Open
Abstract
In the last decades, the discovery that glial cells do not only fill in the empty space among neurons or furnish them with trophic support but are rather essential participants to the various activities of the central and peripheral nervous system has fostered the search for the signalling pathways controlling their functions. Since the early 1990s, purines were foreseen as some of the most promising candidate molecules. Originally just a hypothesis, this has become a certainty as experimental evidence accumulated over years, as demonstrated by the exponentially growing number of articles related to the role of extracellular nucleotides and nucleosides in controlling glial cell functions. Indeed, as new functions for already known glial cells (for example, the ability of parenchymal astrocytes to behave as stem cells) or new subtypes of glial cells (for example, NG2(+) cells, also called polydendrocytes) are discovered also, new actions and new targets for the purinergic system are identified. Thus, glial purinergic receptors have emerged as new possible pharmacological targets for various acute and chronic pathologies, such as stroke, traumatic brain and spinal cord injury, demyelinating diseases, trigeminal pain and migraine, and retinopathies. In this article, we will summarize the most important and promising actions mediated by extracellular purines and pyrimidines in controlling the functions, survival, and differentiation of the various "classical" types of glial cells (i.e., astrocytes, oligodendrocytes, microglial cells, Müller cells, satellite glial cells, and enteric glial cells) but also of some rather new members of the family (e.g., polydendrocytes) and of other cells somehow related to glial cells (e.g., pericytes and spinal cord ependymal cells).
Collapse
Affiliation(s)
- Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, via Balzaretti, 9-Milan, 20133 Italy
| |
Collapse
|
17
|
Paez PM, Cheli VT, Ghiani CA, Spreuer V, Handley VW, Campagnoni AT. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia 2012; 60:1078-93. [PMID: 22447683 DOI: 10.1002/glia.22336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023]
Abstract
Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Previous work in culture has shown that basal forebrain (BF) oligodendrocyte (OLG) lineage cells respond to BDNF by increasing DNA synthesis and differentiation. Further, in the BF in vivo, reduced levels of BDNF as seen in BDNF(+/-) mice result in reduced numbers of NG2+ cells and deficits in myelin proteins throughout development and in the adult, suggesting that BDNF impacts the proliferating population of OLGs as well as differentiation in vivo. In this study, to investigate the roles BDNF may play in the repair of a demyelinating lesion, the cuprizone model was used and the corpus callosum was examined. BDNF protein levels were reduced after cuprizone treatment, suggesting that the demyelinating lesion itself elicits a decrease in BDNF. To analyze the effects of a further reduction of BDNF on OLG lineage cells following cuprizone, BDNF(+/-) mice were evaluated. These mice exhibited a blunted increase in the NG2 response at 4 and 5 weeks of cuprizone treatment. In addition, BDNF(+/-) mice exhibited decreased levels of myelin proteins during the demyelination and remyelination processes with no change in the total number of OLGs. These effects appear to be relatively specific to OLG lineage cells as comparable changes in CD11b+ microglia, GFAP+ astrocytes, and SMI32+ injured axons were not observed. These data indicate that BDNF may play a role following a demyelinating lesion by regulating the numbers of progenitors and the abilities of demyelinating and differentiating cells to express myelin proteins.
Collapse
|
19
|
Smith GST, Paez PM, Spreuer V, Campagnoni CW, Boggs JM, Campagnoni AT, Harauz G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J Neurosci Res 2011; 89:467-80. [PMID: 21312222 DOI: 10.1002/jnr.22570] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022]
Abstract
The myelin basic protein (MBP) family arises from different transcription start sites of the golli (gene of oligodendrocyte lineage) complex, with further variety generated by differential splicing. The "classical" MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath but also have multiple protein interactions. The early developmental golli isoforms have previously been shown to promote process extension and enhance Ca(2+) influx into primary and immortalized oligodendrocyte cell lines. Here, we have performed similar studies with the classical 18.5- and 21.5-kDa isoforms of MBP. In contrast to golli proteins, overexpression of classical MBP isoforms significantly reduces Ca(2+) influx in the oligodendrocyte cell line N19 as well as in primary cultures of oligodendroglial progenitor cells. Pharmacological experiments demonstrate that this effect is mediated by voltage-operated Ca(2+) channels (VOCCs) and not by ligand-gated Ca(2+) channels or Ca(2+) release from intracellular stores. The pseudo-deiminated 18.5-kDa and the full-length 21.5-kDa isoforms do not reduce Ca(2+) influx as much as the unmodified 18.5-kDa isoform. However, more efficient membrane localization (of overexpressed, pseudo-deiminated 18.5-kDa and 21.5-kDa isoforms of classical MBP containing the 21-nt 3'-untranslated region transit signal) further reduces the Ca(2+) response after plasma membrane depolarization, suggesting that binding of classical MBP isoforms to the plasma membrane is important for modulation of Ca(2+) homeostasis. Furthermore, we have found that the mature 18.5-kDa isoform expressed in oligodendrocytes colocalizes with VOCCs, particularly at the leading edge of extending membrane processes. In summary, our findings suggest a key role for classical MBP proteins in regulating voltage-gated Ca(2+) channels at the plasma membrane of oligodendroglial cells and thus also in regulation of multiple developmental stages in this cell lineage.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Multiple kinase pathways regulate voltage-dependent Ca2+ influx and migration in oligodendrocyte precursor cells. J Neurosci 2010; 30:6422-33. [PMID: 20445068 DOI: 10.1523/jneurosci.5086-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
It is becoming increasingly clear that voltage-operated Ca(2+) channels (VOCCs) play a fundamental role in the development of oligodendrocyte progenitor cells (OPCs). Because direct phosphorylation by different kinases is one of the most important mechanisms involved in VOCC modulation, the aim of this study was to evaluate the participation of serine-threonine kinases and tyrosine kinases (TKs) on Ca(2+) influx mediated by VOCCs in OPCs. Calcium imaging revealed that OPCs exhibited Ca(2+) influx after plasma membrane depolarization via L-type VOCCs. Furthermore, VOCC-mediated Ca(2+) influx declined with OPC differentiation, indicating that VOCCs are developmentally regulated in OPCs. PKC activation significantly increased VOCC activity in OPCs, whereas PKA activation produced the opposite effect. The results also indicated that OPC morphological changes induced by PKC activation were partially mediated by VOCCs. Our data clearly suggest that TKs exert an activating influence on VOCC function in OPCs. Furthermore, using the PDGF response as a model to probe the role of TK receptors (TKr) on OPC Ca(2+) uptake, we found that TKr activation potentiated Ca(2+) influx after membrane depolarization. Interestingly, this TKr modulation of VOCCs appeared to be essential for the PDGF enhancement of OPC migration rate, because cell motility was completely blocked by TKr antagonists, as well as VOCC inhibitors, in migration assays. The present study strongly demonstrates that PKC and TKrs enhance Ca(2+) influx induced by depolarization in OPCs, whereas PKA has an inhibitory effect. These kinases modulate voltage-operated Ca(2+) uptake in OPCs and participate in the modulation of process extension and migration.
Collapse
|
21
|
Parys B, Côté A, Gallo V, De Koninck P, Sík A. Intercellular calcium signaling between astrocytes and oligodendrocytes via gap junctions in culture. Neuroscience 2010; 167:1032-43. [PMID: 20211698 DOI: 10.1016/j.neuroscience.2010.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 02/23/2010] [Accepted: 03/02/2010] [Indexed: 11/16/2022]
Abstract
To understand further how oligodendrocytes regulate brain function, the mechanism of communication between oligodendrocytes and other cell types needs to be explored. An important mode of communication between various cell types in the nervous system involves gap junctions. Astroglial cells are extensively connected through gap junctions forming the glial syncytium. Although the presence of gap junctions between oligodendrocytes and astrocytes have been well documented, evidence for gap junction-mediated calcium transfer between these two glial populations is still missing. To measure functional coupling between astrocytes and oligodendrocytes and to test whether this coupling is mediated by gap junctions we used laser photostimulation and monitored Ca(2+) propagation in cultures from transgenic animals in which oligodendrocytes express enhanced green fluorescent protein (eGFP). We show that waves of Ca(2+) spread from astrocytes to oligodendrocytes and that these waves are blocked by the broad-spectrum gap junction blocker carbenoxolone, but not the neuron-specific gap junction blocker quinine. We also show that the spread of Ca(2+) waves between astrocytes and oligodendrocytes is bi-directional. Thus, increase of Ca(2+) concentration in astrocytes triggered by surrounding neuronal activity may feed back onto different neuronal populations through oligodendrocytes.
Collapse
Affiliation(s)
- B Parys
- Centre de Recherche Université Laval Robert-Giffard; 2601, chemin de la Canardière, Quebec, QC, G1J 2G3 Canada
| | | | | | | | | |
Collapse
|
22
|
Hoffmann A, Grimm C, Kraft R, Goldbaum O, Wrede A, Nolte C, Hanisch UK, Richter-Landsberg C, Brück W, Kettenmann H, Harteneck C. TRPM3 is expressed in sphingosine-responsive myelinating oligodendrocytes. J Neurochem 2010; 114:654-65. [PMID: 20163522 DOI: 10.1111/j.1471-4159.2010.06644.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelin-forming cells of the CNS and guarantee proper nerve conduction. Sphingosine, one major component of myelin, has recently been identified to activate TRPM3, a member of the melastatin-related subfamily of transient receptor potential (TRP) channels. TRPM3 has been demonstrated to be expressed in brain with unknown cellular distribution. Here, we show for the first time that TRPM3 is expressed in oligodendrocytes in vitro and in vivo. TRPM3 is present during oligodendrocyte differentiation. Immunohistochemistry of adult rat brain slices revealed staining of white matter areas, which co-localized with oligodendrocyte markers. Analysis of the developmental distribution revealed that, prior to myelination, TRPM3 channels are localized on neurons. On oligodendrocytes they are found after the onset of myelination. RT-PCR studies showed that the transcription of TRPM3 splice variants is also developmentally regulated in vitro. Ca(2+) imaging approaches revealed the presence of a sphingosine-induced Ca(2+) entry mechanism in oligodendrocytes - with a pharmacological profile similar to the profile published for heterologously expressed TRPM3. These findings indicate that TRPM3 participates as a Ca(2+)-permeable and sphingosine-activated channel in oligodendrocyte differentiation and CNS myelination.
Collapse
Affiliation(s)
- Anja Hoffmann
- Zelluläre Neurowissenschaften, Max-Delbrück-Centrum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Paez P, Fulton D, Colwell C, Campagnoni A. Voltage-operated Ca2+and Na+channels in the oligodendrocyte lineage. J Neurosci Res 2009; 87:3259-66. [DOI: 10.1002/jnr.21938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Constantinou S, Fern R. Conduction block and glial injury induced in developing central white matter by glycine, GABA, noradrenalin, or nicotine, studied in isolated neonatal rat optic nerve. Glia 2009; 57:1168-77. [DOI: 10.1002/glia.20839] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Mato S, Alberdi E, Ledent C, Watanabe M, Matute C. CB1cannabinoid receptor-dependent and -independent inhibition of depolarization-induced calcium influx in oligodendrocytes. Glia 2009; 57:295-306. [DOI: 10.1002/glia.20757] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Alberdi E, Sánchez-Gómez MV, Matute C. Calcium and glial cell death. Cell Calcium 2008; 38:417-25. [PMID: 16095689 DOI: 10.1016/j.ceca.2005.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Calcium (Ca2+) homeostasis is crucial for development and survival of virtually all types of cells including glia of the central nervous system (CNS). Astrocytes, oligodendrocytes and microglia, the major glial cell types in the CNS, are endowed with a rather sophisticated array of Ca2+-permeable receptors and channels, as well as store-operated channels and pumps, all of which determine Ca2+ homeostasis. In addition, glial cells detect functional activity in neighbouring neurons and respond to it by means of Ca2+ signals that can modulate synaptic interactions. Like in neurons, Ca2+ overload resulting from dysregulation of channels and pumps can be deleterious to glia. In this review, we summarize recent advances in the understanding Ca2+ homeostasis in glial cells, the consequences of its alteration in cell demise as well as in neurological and psychiatric disorders that experience glial cell loss.
Collapse
Affiliation(s)
- Elena Alberdi
- Departamento de Neurociencias, Facultad de Medicina y Odontología. Universidad del País Vasco, 48940 Leioa, Spain.
| | | | | |
Collapse
|
27
|
Paez PM, Spreuer V, Handley V, Feng JM, Campagnoni C, Campagnoni AT. Increased expression of golli myelin basic proteins enhances calcium influx into oligodendroglial cells. J Neurosci 2007; 27:12690-9. [PMID: 18003849 PMCID: PMC6673339 DOI: 10.1523/jneurosci.2381-07.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/28/2007] [Accepted: 10/01/2007] [Indexed: 11/21/2022] Open
Abstract
The myelin basic protein (MBP) gene encodes two families of proteins: the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. Previous work suggests that golli proteins may play a role in Ca2+ homeostasis in oligodendrocytes (OLs) and in T-cells. Overexpression of golli in OL cell lines induces elaboration of sheets and processes. Live imaging of these cells revealed a rapid retraction of the processes and sheets after depolarization with high K+. This phenomenon was associated with a significant increase in [Ca2+]int without changes in cell viability. The results indicated that golli produced its effect through Ca2+ influx, rather than Ca2+ release from intracellular stores. Furthermore, a specific [Ca2+]int chelator (BAPTA) or Cd2+, a specific blocker of voltage-operated Ca2+ channels, abolished the ability of golli to promote process extension in a dose-dependent manner. Analysis of the golli protein identified a myristoylation site at the C terminus of the golli domain, which was essential for the action of golli on Ca2+ influx, suggesting that binding of golli to the plasma membrane is important for modulating Ca2+ homeostasis. High-resolution spatiotemporal analysis along N19 processes revealed higher-amplitude local Ca2+ influx in regions with elevated levels of golli. These findings suggest a key role for golli proteins in regulating voltage-gated Ca2+ channels in OLs during process remodeling. Our observations are consistent with the hypothesis that golli proteins, as a part of a protein complex, modulate Ca2+ influx at the plasma membrane and along OL processes.
Collapse
Affiliation(s)
- Pablo M. Paez
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Vilma Spreuer
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Vance Handley
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Ji-Ming Feng
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Celia Campagnoni
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| | - Anthony T. Campagnoni
- Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles Geffen Medical School, Los Angeles, California 90095
| |
Collapse
|
28
|
Stamatakis M, Mantzaris NV. Astrocyte signaling in the presence of spatial inhomogeneities. CHAOS (WOODBURY, N.Y.) 2007; 17:033123. [PMID: 17903005 DOI: 10.1063/1.2767409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Astrocytes, a special type of glial cells, were considered to have just a supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by various neurotransmitters, such as ATP, and can generate Ca2+ and ATP waves, which can propagate over many cell lengths before being blocked. Although pathological conditions, such as spreading depression and epilepsy, have been linked to abnormal wave propagation in astrocytic cellular networks, a quantitative understanding of the underlying characteristics is still lacking. Astrocytic cellular networks are inhomogeneous, in the sense that the domain they occupy contains passive regions or gaps, which are unable to support wave propagation. Thus, this work focuses on understanding the complex interplay between single-cell signal transduction, domain inhomogeneity, and the characteristics of wave propagation and blocking in astrocytic cellular networks. The single-cell signal transduction model that was employed accounts for ATP-mediated IP3 production, the subsequent Ca2+ release from the ER, and ATP release into the extracellular space. The model is excitable and thus an infinite range of wave propagation is observed if the domain of propagation is homogeneous. This is not always the case for inhomogeneous domains. To model wave propagation in inhomogeneous astrocytic networks, a reaction-diffusion framework was developed and one-gap as well as multiple-gap cases were simulated using an efficient finite-element algorithm. The minimum gap length that blocks the wave was computed as a function of excitability levels and geometric characteristics of the inhomogeneous network, such as the length of the active regions (cells). Complex transient patterns, such as wave reflection, wave trapping, and generation of echo waves, were also predicted by the model, and their relationship to the geometric characteristics of the network was evaluated. Therefore, the proposed model can help in the formulation of testable hypotheses to explain the observed abnormal wave propagation in pathological situations.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | | |
Collapse
|
29
|
Abstract
The function of oligodendrocytes is to myelinate CNS axons. Oligodendrocytes and the axons they myelinate are functional units, and neurotransmitters released by axons can influence all stages of oligodendrocyte development via calcium dependent mechanisms. Some of the clearest functional evidence is for adenosine, ATP, and glutamate, which are released by electrically active axons and regulate the migration and proliferation of oligodendrocyte progenitor cells and their differentiation into myelinating oligodendrocytes. Glutamate and ATP, released by both axons and astrocytes, continue to mediate Ca(2+) signaling in mature oligodendrocytes, acting via AMPA and NMDA glutamate receptors, and heterogeneous P2X and P2Y purinoceptors. Physiological signalling between axons, astrocytes, and oligodendrocytes is likely to play an important role in myelin maintenance throughout life. Significantly, ATP- and glutamate-mediated Ca(2+) signaling are also major components of oligodendrocyte and myelin damage in numerous pathologies, most notably ischemia, injury, periventricular leukomalacia, and multiple sclerosis. In addition, NG2-expressing glia (synantocytes) in the adult CNS are highly reactive cells that respond rapidly to any CNS insult by a characteristic gliosis, and are able to regenerate oligodendrocytes and possibly neurons. Glutamate and ATP released by neurons and astrocytes evoke Ca(2+) signaling in NG2-glia (synantocytes), and it is proposed these regulate their differentiation capacity and response to injury. In summary, clear roles have been demonstrated for neurotransmitter-mediated Ca(2+) signaling in oligodendrocyte development and pathology. A key issue for future studies is to determine the physiological roles of neurotransmitters in mature oligodendrocytes and NG2-glia (synantocytes).
Collapse
Affiliation(s)
- Arthur M Butt
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
30
|
Stamatakis M, Mantzaris NV. Modeling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks. J Theor Biol 2006; 241:649-68. [PMID: 16460762 DOI: 10.1016/j.jtbi.2006.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 11/12/2005] [Accepted: 01/03/2006] [Indexed: 11/17/2022]
Abstract
Astrocytes, a special type of glial cells, were considered to have supporting role in information processing in the brain. However, several recent studies have shown that they can be chemically stimulated by neurotransmitters and use a form of signaling, in which ATP acts as an extracellular messenger. Pathological conditions, such as spreading depression, have been linked to abnormal range of wave propagation in astrocytic cellular networks. Nevertheless, the underlying intra- and inter-cellular signaling mechanisms remain unclear. Motivated by the above, we constructed a model to understand the relationship between single-cell signal transduction mechanisms and wave propagation and blocking in astrocytic networks. The model incorporates ATP-mediated IP3 production, the subsequent Ca2+ release from the ER through IP3R channels and ATP release into the extracellular space. For the latter, two hypotheses were tested: Ca2+- or IP3-dependent ATP release. In the first case, single astrocytes can exhibit excitable behavior and frequency-encoded oscillations. Homogeneous, one-dimensional astrocytic networks can propagate waves with infinite range, while in two dimensions, spiral waves can be generated. However, in the IP3-dependent ATP release case, the specific coupling of the driver ATP-IP3 system with the driven Ca2+ subsystem leads to one- and two-dimensional wave patterns with finite range of propagation.
Collapse
Affiliation(s)
- Michail Stamatakis
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA
| | | |
Collapse
|
31
|
Shiga H, Asou H, Ito E. Advancement of differentiation of oligodendrocyte progenitor cells by a cascade including protein kinase A and cyclic AMP-response element binding protein. Neurosci Res 2005; 53:436-41. [PMID: 16198437 DOI: 10.1016/j.neures.2005.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 09/07/2005] [Indexed: 01/24/2023]
Abstract
A transcription factor, cyclic AMP-response element binding protein (CREB), which is phosphorylated by protein kinases (PKA and PKC), is known to be involved in the regulation of oligodendrocyte differentiation. However, it is still unclear whether protein kinase A (PKA) and protein kinase C (PKC) are used simultaneously or at different time points to phosphorylate CREB in oligodendrocytes and whether CREB phosphorylation advances oligodendrocyte differentiation or vise versa. Our previous experiments have shown that in the differentiation process from immature to mature cells, CREB phosphorylation depends on PKC activity and leads to the progression of differentiation. In order to gain a better understanding of the process of differentiation from progenitor to immature cells, we identified which protein kinase, i.e., PKA or PKC, regulates CREB phosphorylation and we determined whether CREB phosphorylation advances differentiation or the reverse. Our results showed that CREB phosphorylation is principally regulated by PKA activity in progenitor cells but not by PKC activity, and that this phosphorylation advances the differentiation of progenitor cells to immature cells in oligodendrocytes.
Collapse
Affiliation(s)
- Hatsuki Shiga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan
| | | | | |
Collapse
|
32
|
Shiga H, Yamane Y, Kubo M, Sakurai Y, Asou H, Ito E. Differentiation of immature oligodendrocytes is regulated by phosphorylation of cyclic AMP-response element binding protein by a protein kinase C signaling cascade. J Neurosci Res 2005; 80:767-76. [PMID: 15898102 DOI: 10.1002/jnr.20513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous experiments showed that the expression and phosphorylation levels of cyclic AMP-response element binding protein (CREB) are important factors that regulate oligodendrocyte differentiation. The present study was designed to determine whether CREB phosphorylation advances oligodendrocyte differentiation or vice versa and to identify the protein kinase that primarily regulates CREB phosphorylation. We examined the expression and phosphorylation levels of CREB in developing oligodendrocytes at a specific differentiation stage by double-immunocytochemical staining with specific differentiation markers and antibody for phosphorylated CREB. We found that the CREB expression level increased along oligodendrocyte differentiation, and that its phosphorylated level was highest in immature oligodendrocytes. We also showed that CREB phosphorylation was regulated principally by protein kinase C (PKC) activity in immature oligodendrocytes. Our findings suggest that CREB phosphorylation is dependent on a PKC signaling cascade, and this phosphorylation activates CREB-mediated transcription and advances the differentiation of immature to mature oligodendrocytes.
Collapse
Affiliation(s)
- Hatsuki Shiga
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Kita-ku, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Jacobs EC, Pribyl TM, Feng JM, Kampf K, Spreur V, Campagnoni C, Colwell CS, Reyes SD, Martin M, Handley V, Hiltner TD, Readhead C, Jacobs RE, Messing A, Fisher RS, Campagnoni AT. Region-specific myelin pathology in mice lacking the golli products of the myelin basic protein gene. J Neurosci 2005; 25:7004-13. [PMID: 16049176 PMCID: PMC6724835 DOI: 10.1523/jneurosci.0288-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/07/2005] [Accepted: 06/09/2005] [Indexed: 01/07/2023] Open
Abstract
The myelin basic protein (MBP) gene encodes two families of proteins, the classic MBP constituents of myelin and the golli-MBPs, the function of which is less well understood. In this study, targeted ablation of the golli-MBPs, but not the classic MBPs, resulted in a distinct phenotype unlike that of knock-outs (KOs) of the classic MBPs or other myelin proteins. Although the golli KO animals did not display an overt dysmyelinating phenotype, they did exhibit delayed and/or hypomyelination in selected areas of the brain, such as the visual cortex and the optic nerve, as determined by Northern and Western blots and immunohistochemical analysis with myelin protein markers. Hypomyelination in some areas, such as the visual cortex, persisted into adulthood. Ultrastructural analysis of the KOs confirmed both the delay and hypomyelination and revealed abnormalities in myelin structure and in some oligodendrocytes. Abnormal visual-evoked potentials indicated that the hypomyelination in the visual cortex had functional consequences in the golli KO brain. Evidence that the abnormal myelination in these animals was a consequence of intrinsic problems with the oligodendrocyte was indicated by an impaired ability of oligodendrocytes to form myelin sheets in culture and by the presence of abnormal Ca2+ transients in purified cortical oligodendrocytes studied in vitro. The Ca2+ results reported in this study complement previous results implicating golli proteins in modulating intracellular signaling in T-cells. Together, all these findings suggest a role for golli proteins in oligodendrocyte differentiation, migration, and/or myelin elaboration in the brain.
Collapse
Affiliation(s)
- Erin C Jacobs
- Neuropsychiatric Institute, University of California Los Angeles School of Medicine, Los Angeles, California 90024, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Agresti C, Meomartini ME, Amadio S, Ambrosini E, Serafini B, Franchini L, Volonté C, Aloisi F, Visentin S. Metabotropic P2 receptor activation regulates oligodendrocyte progenitor migration and development. Glia 2005; 50:132-44. [PMID: 15657938 DOI: 10.1002/glia.20160] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To gain insights into the role of purinergic receptors in oligodendrocyte development, we characterized the expression and functional activity of P2 receptors in cultured rat oligodendrocyte progenitors and investigated the effects of ATP and its breakdown products on the migration and proliferation of this immature glial cell population. Using Western blot analysis, we show that oligodendrocyte progenitors express several P2X (P2X(1,2,3,4,7)) and P2Y (P2Y(1,2,4)) receptors. Intracellular Ca(2+) recording by Fura-2 video imaging allowed to determine the rank potency order of the P2 agonists tested: ADPbetaS = ADP = Benzoyl ATP > ATP > ATPgammaS > UTP, alpha,beta-meATP ineffective. Based on the above findings, on pharmacological inhibition by the antagonists oxATP and MRS2179, and on the absence of alpha,betameATP-induced inward current in whole-cell recording, P2X(7) and P2Y(1) were identified as the main ionotropic and metabotropic P2 receptors active in OPs. As a functional correlate of these findings, we show that ATP and, among metabotropic agonists, ADP and the P2Y(1)-specific agonist ADPbetaS, but not UTP, induce oligodendrocyte progenitor migration. Moreover, ATP and ADP inhibited the proliferation of oligodendrocyte progenitors induced by platelet-derived growth factor, both in purified cultures and in cerebellar tissue slices. The effects of ATP and ADP on cell migration and proliferation were prevented by the P2Y(1) antagonist MRS2179. By confocal laser scanning microscopy, P2Y(1) receptors were localized in NG2-labeled oligodendrocyte progenitors in the developing rat brain. These data indicate that ATP and ADP may regulate oligodendrocyte progenitor functions by a mechanism that involves mainly activation of P2Y(1) receptors.
Collapse
Affiliation(s)
- C Agresti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Agresti C, Meomartini ME, Amadio S, Ambrosini E, Volonté C, Aloisi F, Visentin S. ATP regulates oligodendrocyte progenitor migration, proliferation, and differentiation: involvement of metabotropic P2 receptors. ACTA ACUST UNITED AC 2005; 48:157-65. [PMID: 15850654 DOI: 10.1016/j.brainresrev.2004.12.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 10/25/2022]
Abstract
Extracellular nucleotides act as potent signaling molecules in the neuron-glia and glia-glia communication, via the activation of specific ligand-gated P2X and G-protein-coupled metabotropic P2Y receptors. Most of the data available about the effects of P2 receptor activation in the CNS concern astrocytes, microglia, and neurons. To gain insights into the role of purinergic receptors in oligodendrocyte development, we characterized the expression and functional activity of P2 receptors in rat oligodendrocyte progenitors (OPs) and investigated the effects of ATP and its breakdown products on their functions. We describe here that rat OPs express different types of P2 receptors and that nucleotide-induced Ca(2+) raises in these progenitor cells are mainly due to the activation of P2X(7) ionotropic and ADP-sensitive P2Y(1) metabotropic receptors. We also show that ATP and ADP stimulate OP migration, inhibit the mitogenic response of OPs to PDGF and promote oligodendrocyte differentiation. The pharmacological profile of the nucleotide-induced effects demonstrates the important regulatory role of P2Y(1) receptor signaling in OP functions. These findings suggest that ATP, which is released in high amounts under inflammatory conditions and following cell death, might regulate remyelination processes in inflammatory demyelinating diseases of the CNS, like multiple sclerosis.
Collapse
Affiliation(s)
- C Agresti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Roma, Italy.
| | | | | | | | | | | | | |
Collapse
|
36
|
Nagy JI, Ionescu AV, Lynn BD, Rash JE. Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia 2003; 44:205-18. [PMID: 14603462 PMCID: PMC1852517 DOI: 10.1002/glia.10278] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oligodendrocytes in vivo form heterologous gap junctions with astrocytes. These oligodendrocyte/astrocyte (A/O) gap junctions contain multiple connexins (Cx), including Cx26, Cx30, and Cx43 on the astrocyte side, and Cx32, Cx29, and Cx47 on the oligodendrocyte side. We investigated connexin associations at A/O gap junctions on oligodendrocytes in normal and Cx32 knockout (KO) mice. Immunoblotting and immunolabeling by several different antibodies indicated the presence of Cx32 in liver and brain of normal mice, but the absence of Cx32 in liver and brain of Cx32 KO mice, confirming the specificity and efficacy of the antibodies, as well as allowing the demonstration of Cx32 expression by oligodendrocytes. Oligodendrocytes throughout brain were decorated with numerous Cx30-positive puncta, which also were immunolabeled for both Cx32 and Cx43. In Cx32 KO mice, astrocytic Cx30 association with oligodendrocyte somata was nearly absent, Cx26 was partially reduced, and Cx43 was present in abundance. In normal and Cx32 KO mice, oligodendrocyte Cx29 was sparsely distributed, whereas Cx47-positive puncta were densely localized on oligodendrocyte somata. These results demonstrate that astrocyte Cx30 and oligodendrocyte Cx47 are widely present at A/O gap junctions. Immunolabeling patterns for these six connexins in Cx32 KO brain have implications for deciphering the organization of heterotypic connexin coupling partners at A/O junctions. The persistence and abundance of Cx43 and Cx47 at these junctions after Cx32 deletion, together with the paucity of Cx29 normally present at these junctions, suggests Cx43/Cx47 coupling at A/O junctions. Reductions in Cx30 and Cx26 after Cx32 deletion suggest that these astrocytic connexins likely form junctions with Cx32 and that their incorporation into A/O gap junctions is dependent on the presence of oligodendrocytic Cx32.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | |
Collapse
|
37
|
Hayat S, Wigley CB, Robbins J. Intracellular calcium handling in rat olfactory ensheathing cells and its role in axonal regeneration. Mol Cell Neurosci 2003; 22:259-70. [PMID: 12676535 DOI: 10.1016/s1044-7431(03)00051-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intracellular calcium handling by rat olfactory ensheathing cells (OECs) is implicated in their support for regrowth of adult CNS neurites in a coculture model of axonal regeneration. Pretreatment of OECs with BAPTA-AM to sequester glial intracellular calcium ([Ca(2+)](i)) reduces significantly the numbers of cocultured neurons regrowing neurites. The mean resting [Ca(2+)](i) of OECs cultured alone or with neurons was 300 nM in an external solution containing 2.5 mM calcium ([Ca(2+)](o)). In high [K(+)](o) or zero [Ca(2+)](o), resting [Ca(2+)](i) significantly decreased. [Ca(2+)](i) significantly increased when [Ca(2+)](o) was increased to 20 mM, lonomycin, thapsigargin, and thimerosal increased [Ca(2+)](i), and caffeine, ryanodine, and cyclopiazonic acid were without effect. Of the receptor agonists tested, none induced a change in [Ca(2+)](i). The calcium influx induced by high [Ca(2+)](o) was blocked by La(3+) and SKF96365, partially inhibited by Cd(2+), and insensitive to Ni(2+) and nifedipine. Pretreatment of OECs with La(3+) reduced neurite regrowth in cocultures in a concentration-dependent manner over the range that blocked the non-voltage-gated calcium flux through a putative TRP-like channel, which, we propose, is activated in OEC-mediated axonal regeneration.
Collapse
Affiliation(s)
- Shaista Hayat
- Neural Damage and Repair GroupCentre for Neuroscience Research, King's College London, Guys Campus, SE1 1UL, London, UK
| | | | | |
Collapse
|
38
|
Molina-Holgado E, Khorchid A, Liu HN, Almazan G. Regulation of muscarinic receptor function in developing oligodendrocytes by agonist exposure. Br J Pharmacol 2003; 138:47-56. [PMID: 12522072 PMCID: PMC1573629 DOI: 10.1038/sj.bjp.0705002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Oligodendrocytes, the myelin forming cells in the CNS, express muscarinic acetylcholine receptors (mAChR), primarily M3, coupled to various signal transduction pathways. 2 In the present study we have investigated whether mAChR undergo functional agonist-induced regulation in cultured oligodendrocyte progenitors and differentiated oligodendrocytes. 3 The muscarinic agonist, carbachol (CCh) caused a time-dependent desensitization of phosphoinositide (PI) hydrolysis, and the internalization and down-regulation of receptors. Short-time desensitization (5 min) of PI hydrolysis occurred without receptor internalization and reached 54% by 1 h. The same treatment decreased cell surface receptors labelled with the non-permeable ligand [(3)H]-NMS by 47%, while total receptor density ([(3)H]-scopolamine binding) decreased by 30%. Longer CCh treatment down-regulated receptors by 70% and desensitized the PI response by 80%. 4 Although protein kinase C (PKC) activation desensitized mAChR, CCh-mediated desensitization was independent of PKC. 5 Inhibition of receptor endocytosis by low temperature during the pre-stimulation period or in the presence of hyperosmotic sucrose (0.5 M) blocked desensitization, receptor internalization and down-regulation. 6 Recovery of surface mAChR and their functional activity following down-regulation was slow, returning to control levels by 24 h after agonist removal. In progenitor cells, dose-response curves for CCh-mediated PI hydrolysis and c-fos mRNA expression showed that newly synthesized mAChR were supersensitive after recovery. 7 Overall, the present results provide evidence of functional agonist-mediated mAChR regulation in brain oligodendroglial cells.
Collapse
Affiliation(s)
| | - Amani Khorchid
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William Osler Promenade, Montreal, H3G 1Y6 Canada
| | - Hsueh-Ning Liu
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William Osler Promenade, Montreal, H3G 1Y6 Canada
| | - Guillermina Almazan
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir-William Osler Promenade, Montreal, H3G 1Y6 Canada
- Author for correspondence:
| |
Collapse
|
39
|
Koizumi S, Saito Y, Nakazawa K, Nakajima K, Sawada JI, Kohsaka S, Illes P, Inoue K. Spatial and temporal aspects of Ca2+ signaling mediated by P2Y receptors in cultured rat hippocampal astrocytes. Life Sci 2002; 72:431-42. [PMID: 12467884 DOI: 10.1016/s0024-3205(02)02273-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
ATP produces a variety of Ca2+ responses in astrocytes. To address the complex spatio-temporal Ca2+ signals, we analyzed the ATP-evoked increase in intracellular Ca2+ concentration ([Ca2+]i) in cultured rat hippocampal astrocytes using fura-2 or fluo-3 based Ca2+ imaging techniques. ATP at less than 10 nM produced elementary Ca2+ release event "puffs" in a manner independent of extracellular Ca2+. Stimulation with higher ATP concentrations (3 or 10 micro M) resulted in global Ca2+ responses such as intercellular Ca2+ wave. These Ca2+ responses were mainly mediated by metabotropic P2Y receptors. ATP acting on both P2Y1 and P2Y2 receptors produced a transient Ca2+ release by inositol 1,4,5-trisphosphate (InsP3). When cells were stimulated with ATP much longer, the transient [Ca2+]i elevation was followed by sustained Ca2+ entry from the extracellular space. This sustained rise in [Ca2+]i was inhibited by Zn2+ (<10 micro M), an inhibitor of capacitative Ca2+ entry (CCE). CCE induced by cyclopiazonic acid or thapsigargin and Ca2+ entry evoked by ATP share the same pharmacological profile in astrocytes. Taken together, the hierarchical Ca2+ responses to ATP were observed in hippocampal astrocytes, i.e., puffs, global Ca2+ release by InsP3, and CCE in response to depletion of InsP3-sensitive Ca2+ stores. It should be noted that these Ca2+ signals and their modulation by Zn2+ could occur in the hippocampus in situ since both ATP and Zn2+ are rich in the hippocampus and could be released by excitatory stimulation.
Collapse
Affiliation(s)
- Schuichi Koizumi
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, 158, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stevens B, Porta S, Haak LL, Gallo V, Fields RD. Adenosine: a neuron-glial transmitter promoting myelination in the CNS in response to action potentials. Neuron 2002; 36:855-68. [PMID: 12467589 PMCID: PMC1201407 DOI: 10.1016/s0896-6273(02)01067-x] [Citation(s) in RCA: 414] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuronal activity influences myelination of the brain, but the molecular mechanisms involved are largely unknown. Here, we report that oligodendrocyte progenitor cells (OPCs) express functional adenosine receptors, which are activated in response to action potential firing. Adenosine acts as a potent neuron-glial transmitter to inhibit OPC proliferation, stimulate differentiation, and promote the formation of myelin. This neuron-glial signal provides a molecular mechanism for promoting oligodendrocyte development and myelination in response to impulse activity and may help resolve controversy on the opposite effects of impulse activity on myelination in the central and peripheral nervous systems.
Collapse
Affiliation(s)
| | | | | | | | - R. Douglas Fields
- Laboratory of Cellular and Synaptic Neurophysiology, National Institutes of Health, NICHD, Bethesda, Maryland 20892
| |
Collapse
|
41
|
Khorchid A, Cui Q, Molina-Holgado E, Almazan G. Developmental regulation of alpha 1A-adrenoceptor function in rat brain oligodendrocyte cultures. Neuropharmacology 2002; 42:685-96. [PMID: 11985827 DOI: 10.1016/s0028-3908(02)00013-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we examined the effect of norepinephrine (NE) on phosphatidylinositol-4,5-bisphosphate (PI) hydrolysis in progenitors and differentiated oligodendrocytes. NE caused a time- and concentration-dependent increase in total inositol phosphate (IP(t)) formation. The magnitude of this response increased as oligodendrocytes matured and was accompanied with an increase in alpha(1)-adrenoceptor (alpha(1)-AR) levels. To pharmacologically characterize the alpha(1)-AR subtype mediating PI hydrolysis in 12-day differentiated oligodendrocytes, various selective antagonists were used. Prazosin, the non-selective 1-AR antagonist, blocked NE-mediated IP(t) formation. Similarly, the alpha(1A)-AR selective competitive antagonists, 5-methyl urapidil (5-MU) and WB4104, were potent blockers of NE-mediated IP(t) formation. In contrast, the alpha(1B)- and alpha(1D)-AR antagonist, chloroethylclonidine and the alpha(1D)-AR antagonist, BMY 7378, had no effect. These results suggest that NE-induced PI hydrolysis in differentiated oligodendrocytes was mediated through the alpha(1A)-AR. Furthermore, this response was prevented by EGTA and CdCl(2), suggesting a requirement for extracellular calcium. The presence of alpha(1)-AR subtypes in oligodendrocytes was confirmed by reverse transcriptase coupled polymerase chain reaction and by immunoprecipitation, with subtype specific antibodies. The results indicated that mRNA and protein for the alpha(1A)-, alpha(1B)- and alpha(1D)-AR subtypes were expressed. In conclusion, our findings show that oligodendrocytes express all three alpha(1)-AR subtypes but that only the alpha(1A)-AR was involved in NE-mediated IP(t) formation.
Collapse
MESH Headings
- Adrenergic alpha-Agonists/pharmacology
- Animals
- Animals, Newborn
- Brain/cytology
- Brain/drug effects
- Brain/growth & development
- Brain/physiology
- Cadmium Chloride/pharmacology
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Egtazic Acid/pharmacology
- Inositol Phosphates/biosynthesis
- Norepinephrine/pharmacology
- Norepinephrine/physiology
- Oligodendroglia/cytology
- Oligodendroglia/drug effects
- Oligodendroglia/metabolism
- Oligodendroglia/physiology
- Phosphatidylinositol Phosphates/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/physiology
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/physiology
Collapse
Affiliation(s)
- Amani Khorchid
- Department of Pharmacology, McGill University, 3655 Promenade Sir William Osler, Room 1321, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
42
|
Ragheb F, Molina-Holgado E, Cui QL, Khorchid A, Liu HN, Larocca JN, Almazan G. Pharmacological and functional characterization of muscarinic receptor subtypes in developing oligodendrocytes. J Neurochem 2001; 77:1396-406. [PMID: 11389190 DOI: 10.1046/j.1471-4159.2001.00356.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study focused on the molecular and pharmacological characterization of muscarinic acetylcholine receptors expressed by progenitors and differentiated oligodendrocytes. We also analyzed the role of muscarinic receptors in regulating downstream signal transduction pathways and the functional significance of receptor expression in oligodendrocytes. RT-PCR analysis revealed the expression of transcripts for M3, and to a lesser extent M4, followed by M1, M2 and M5 receptor subtypes in both progenitors and differentiated oligodendrocytes. Competition binding experiments using [(3)H]N-methylscopolamine and several antagonists, as well as inhibition of carbachol-mediated phosphoinositide hydrolysis, showed that M3 is the main subtype expressed in these cells. In progenitors the activation of p42/44-mitogen-activated protein kinase (MAPK) and cAMP-response element binding protein (CREB) as well as c-fos mRNA expression were blocked by the M3 relatively selective antagonist, 4-DAMP, and its irreversible analogue, 4-DAMP-mustard. Carbachol increased proliferation of progenitors, an effect prevented by atropine and 4-DAMP, as well as by the MAPK kinase inhibitor PD98059. These results indicate that carbachol modulates oligodendrocyte progenitor proliferation through M3 receptors, involving activation of a MAPK signaling pathway. Receptor density and phosphoinositide hydrolysis are down-regulated during oligodendrocyte differentiation. Functional consequences of these events are a reduction in carbachol-stimulated p42/44(MAPK) and CREB phosphorylation, as well as induction of c-fos.
Collapse
Affiliation(s)
- F Ragheb
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Intracellular Ca2+ is the key signal that regulates the efficacy of neurotransmitter release and synaptic plasticity in neurons but is also an important second messenger involved in the signal transduction and modulation of gene expression in both excitable and non-excitable cells. Glial cells, including cells of oligodendroglial (OLG) lineage, are capable of responding to extracellular stimuli via changes in the intracellular Ca2+. This review article focuses on the mechanisms of Ca2+ signalling in cells of OLG lineage with the goal of providing the basis for understanding the relevance of receptor- and non-receptor-mediated signalling to oligodendroglial development, myelination, and demyelination. Conclusions to date indicate that cells of OLG lineage exhibit remarkable plasticity with regard to the expression of ion channels and receptors linked to Ca2+ signalling and that perturbation of [Ca2](i) homeostasis contributes to the pathogenesis of demyelinating diseases.
Collapse
Affiliation(s)
- B Soliven
- Department of Neurology and Comm. on Neurobiology, The Brain Research Institute, University of Chicago, 5841 S. Maryland, Chicago, IL 60637, USA.
| |
Collapse
|
44
|
Grouzmann E, Meyer C, Bürki E, Brunner H. Neuropeptide Y Y2 receptor signalling mechanisms in the human glioblastoma cell line LN319. Peptides 2001; 22:379-86. [PMID: 11287092 DOI: 10.1016/s0196-9781(01)00344-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y (NPY) regulates neurotransmitter release through activation of the Y2 receptor subtype. We have recently characterized a human glioblastoma cell line, LN319, that expresses exclusively NPY Y2 receptors and have demonstrated that NPY triggers transient decreases in cAMP and increases in intracellular calcium responses. The present study was designed to further characterize calcium signalling by NPY and bradykinin (BK) in LN319 cells. Both agonists elevated free intracellular calcium ([Ca(2+)](i)) without soliciting calcium influx. NPY appeared to activate two distinct signalling cascades that liberate calcium from thapsigargin- and ryanodine-insensitive compartments. One pathway proceeded through phospholipase C (PLC)-dependent phosphatidylinositol turnover, while the other triggered calcium release through a so far unidentified mediator. Part of the response was sensitive to pertussis toxin (PTX) under conditions where the toxin totally abolished the NPY-mediated effects on cAMP. The calcium release induced by BK on the other hand was largely PTX-insensitive, PLC-dependent, and from both thapsigargin- and ryanodine-sensitive stores. Following stimulation with NPY, subsequent [Ca(2+)](i) responses to NPY were strongly depressed. Partial heterologous desensitization occurred, when BK was used as the first agonist, whereas NPY had no effect on a subsequent stimulation with BK. These data suggest that NPY-induced calcium mobilization in LN319 cells involves two different G proteins and signalling mediators, and a hitherto unidentified calcium compartment. Homologous desensitization of NPY signalling might be explained by receptor-G protein uncoupling, while heterologous desensitization by BK could be the result of either transient depletion or inhibition of a mediator in the calcium signalling cascades activated by NPY.
Collapse
Affiliation(s)
- E Grouzmann
- Division of Hypertension, Lausanne University Hospital, 1011, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
45
|
Mercier F, Hatton GI. Connexin 26 and basic fibroblast growth factor are expressed primarily in the subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity? J Comp Neurol 2001; 431:88-104. [PMID: 11169992 DOI: 10.1002/1096-9861(20010226)431:1<88::aid-cne1057>3.0.co;2-d] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The gap junction protein connexin 26 (Cx26) has been detected previously in the parenchyma of the developing brain and in the developing and adult meninges, but there is no clear evidence for the presence of this connexin in adult brain parenchyma. Confocal mapping of Cx26 through serial sections of the meningeal-intact rat brain with four antibodies revealed an intense Cx26 immunoreactivity in both parenchyma and extraparenchyma. In the extraparenchyma, a continuum of Cx26-immunoreactive puncta was observed throughout the three meningeal layers, the perineurium of cranial nerves, and meningeal projections into the brain, including sheaths of blood vessels and stroma of the choroid plexus. In the parenchyma, Cx26-immunoreactive puncta were located primarily in subependymal, subpial, and perivascular zones and were associated primarily with glial fibrillary acidic protein-positive (GFAP+) astrocytes, the nuclei of which are strongly immunoreactive for basic fibroblast growth factor (bFGF). Although it was found to a lesser extent than in astrocytes, bFGF immunoreactivity also was intense in the nuclei of meningeal fibroblasts. In addition, we have found a close correlation between the distribution of Cx26 and vimentin immunoreactivities in the meninges and their projections into the brain. We previously showed vimentin and S100beta immunoreactivities through a network of meningeal fibroblasts in the three layers of meninges, perivascular cells, and ependymocytes and in a population of astrocytes. The related topography of this network with GFAP+ astrocytes has also been demonstrated. Considering that connexin immunoreactivity may reflect the presence of functional gap junctions, the present results are consistent with our hypothesis that all of these various cell types may communicate in a cooperative network.
Collapse
Affiliation(s)
- F Mercier
- Department of Neuroscience, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
46
|
Yu C, Takeda M, Soliven B. Regulation of cell cycle proteins by TNF-alpha and TGF-beta in cells of oligodendroglial lineage. J Neuroimmunol 2000; 108:2-10. [PMID: 10900331 DOI: 10.1016/s0165-5728(99)00278-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proliferation and apoptosis are two dynamic, interrelated processes that are regulated by growth factors and cytokines. We investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) on apoptosis and regulation of cell cycle proteins in OLG lineage cells. We found that: (1) both cytokines enhanced apoptosis in neonatal pre-OLGs but only TNFalpha-mediated apoptosis persisted in the presence of a mitogen, fibroblast growth factor (FGF); (2) cell cycle proteins such as p21(waf1/cip1), p27(kip1), cyclin D1 and PCNA were differentially regulated by TNF-alpha and TGF-beta. We conclude that differential modulation of cell cycle proteins by TNF-alpha and TGF-beta contributes to the diversity of their biological effects in OLG lineage cells.
Collapse
Affiliation(s)
- C Yu
- Department of Neurology, The Brain Research Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
47
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
48
|
Belachew S, Malgrange B, Rigo JM, Rogister B, Leprince P, Hans G, Nguyen L, Moonen G. Glycine triggers an intracellular calcium influx in oligodendrocyte progenitor cells which is mediated by the activation of both the ionotropic glycine receptor and Na+-dependent transporters. Eur J Neurosci 2000; 12:1924-30. [PMID: 10886333 DOI: 10.1046/j.1460-9568.2000.00085.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using fluo-3 calcium imaging, we demonstrate that glycine induces an increase in intracellular calcium concentration ([Ca2+]i) in cortical oligodendrocyte progenitor (OP) cells. This effect results from a calcium entry through voltage-gated calcium channels (VGCC), as it is observed only in OP cells expressing such channels, and it is abolished either by removal of calcium from the extracellular medium or by application of an L-type VGCC blocker. Glycine-triggered Ca2+ influx in OP cells actually results from an initial depolarization that is the consequence of the activation of both the ionotropic glycine receptor (GlyR) and Na+-dependent transporters, most probably the glycine transporters 1 (GLYT1) and/or 2 (GLYT2) which are colocalized in these cells. Through this GlyR- and transporter-mediated effect on OP intrcellular calcium concentration [Ca2+]i, glycine released by neurons may, as well as other neurotransmitters, serve as a signal between neurons and OP during development.
Collapse
Affiliation(s)
- S Belachew
- Department of Human Physiology and Pathophysiology, University of Liège, 17 Place Delcour, B-4020 Liège, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 2000. [PMID: 10662834 DOI: 10.1523/jneurosci.20-04-01435.2000] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Electrophysiological properties of gap junction channels and mechanisms involved in the propagation of intercellular calcium waves were studied in cultured spinal cord astrocytes from sibling wild-type (WT) and connexin43 (Cx43) knock-out (KO) mice. Comparison of the strength of coupling between pairs of WT and Cx43 KO spinal cord astrocytes indicates that two-thirds of total coupling is attributable to channels formed by Cx43, with other connexins contributing the remaining one-third of junctional conductance. Although such a difference in junctional conductance was expected to result in the reduced diffusion of signaling molecules through the Cx43 KO spinal cord syncytium, intercellular calcium waves were found to propagate with the same velocity and amplitude and to the same number of cells as between WT astrocytes. Measurements of calcium wave propagation in the presence of purinoceptor blockers indicate that calcium waves in Cx43 KO spinal cord astrocytes are mediated primarily by extracellular diffusion of ATP; measurements of responses to purinoceptor agonists revealed that the functional P2Y receptor subtype is shifted in the Cx43 KO astrocytes, with a markedly potentiated response to ATP and UTP. Thus, the reduction in gap junctional communication in Cx43 KO astrocytes leads to an increase in autocrine communication, which is a consequence of a functional switch in the P2Y nucleotide receptor subtype. Intercellular communication via calcium waves therefore is sustained in Cx43 null mice by a finely tuned interaction between gap junction-dependent and independent mechanisms.
Collapse
|
50
|
Simpson PB. The local control of cytosolic Ca2+ as a propagator of CNS communication--integration of mitochondrial transport mechanisms and cellular responses. J Bioenerg Biomembr 2000; 32:5-13. [PMID: 11768762 DOI: 10.1023/a:1005552126516] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ca2+ signals propagate in wave form along individual cells of the central nervous system (CNS) and through networks of connected cells of neuronal and multiple glial cell types. In order for wave fronts to convey information, signaling mechanisms are required that allow waves to propagate reproducibly and without decrement in signal strength over long distances. CNS Ca2+ waves are under specific integrated local control, made possible by interactions at local subcellular microdomains between endoplasmic reticulum and mitochondria. Active mitochondria located near the mouth of inositol trisphosphate receptor (InsP3R) channel clusters in glia take up Ca2+, which may prevent a buildup of Ca2+ around the InsP3R channel, thereby decreasing the rate of Ca2+-induced receptor inactivation, and prolonging channel open time. Mitochondria may amplify InsP3-dependent Ca2+ signals by a transient permeability transition in response to Ca2+ uptake into the mitochondrion. Other evidence suggests privileged access into mitochondria for Ca2+ entering neurons by glutamatergic receptor channels. This enables specific signal modulation as the Ca2+ wave is propagated into neurons, such that mitochondria located close to glutamate channels can prolong the neuronal cytosolic response time by successive uptake and release of Ca2+. Disruption of mitochondrial function deregulates the ability of CNS-derived cells to undergo normal Ca2+ signaling and wave propagation.
Collapse
Affiliation(s)
- P B Simpson
- Department of Pharmacology, Neuroscience Research Centre, Merck Sharp & Dohme Research Laboratories, Harlow, Essex, United Kingdom.
| |
Collapse
|