1
|
Schworer EK, Zammit MD, Wang J, Handen BL, Betthauser T, Laymon CM, Tudorascu DL, Cohen AD, Zaman SH, Ances BM, Mapstone M, Head E, Klunk WE, Christian BT, Hartley SL. Amyloid age and tau PET timeline to symptomatic Alzheimer's disease in Down syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.08.24311702. [PMID: 39211859 PMCID: PMC11361254 DOI: 10.1101/2024.08.08.24311702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Adults with Down syndrome (DS) are at risk for Alzheimer's disease (AD). Recent natural history cohort studies have characterized AD biomarkers, with a focus on PET amyloid-beta (Aβ) and PET tau. Leveraging these well-characterized biomarkers, the present study examined the timeline to symptomatic AD based on estimated years since reaching Aβ+, referred to as "amyloid age", and in relation to tau in a large cohort of individuals with DS. Methods In this multicenter cohort study, 25 - 57-year-old adults with DS (n = 167) were assessed twice from 2017 to 2022, with approximately 32 months between visits as part of the Alzheimer Biomarker Consortium - Down Syndrome. Adults with DS completed amyloid and tau PET scans, and were administered the modified Cued Recall Test and the Down Syndrome Mental Status Examination. Study partners completed the National Task Group-Early Detection Screen for Dementia. Findings Mixed linear regressions showed significant quadratic associations between amyloid age and cognitive performance and cubic associations between amyloid age and tau, both at baseline and across 32 months. Using broken stick regression models, differences in mCRT scores were detected beginning 2.7 years following Aβ+ in cross-sectional models, with an estimated decline of 1.3 points per year. Increases in tau began, on average, 2.7 - 6.1 years following Aβ+. On average, participants with mild cognitive impairment were 7.4 years post Aβ+ and those with dementia were 12.7 years post Aβ+. Interpretation There is a short timeline to initial cognitive decline and dementia from Aβ+ (Centiloid = 18) and tau deposition in DS relative to late onset AD. The established timeline based on amyloid age (or equivalent Centiloid values) is important for clinical practice and informing AD clinical trials, and avoids limitations of timelines based on chronological age. Funding. National Institute on Aging and the National Institute for Child Health and Human Development. Research in Context Evidence before this study: We searched PubMed for articles published involving the progression of Aβ and tau deposition in adults with Down syndrome from database inception to March 1, 2024. Terms included "amyloid", "Down syndrome", "tau", "Alzheimer's disease", "cognitive decline", and "amyloid chronicity," with no language restrictions. One previous study outlined the progression of tau in adults with Down syndrome without consideration of cognitive decline or clinical status. Other studies reported cognitive decline associated with Aβ burden and estimated years to AD symptom onset in Down syndrome. Amyloid age estimates have also been created for older neurotypical adults and compared to cognitive performance, but this has not been investigated in Down syndrome.Added value of this study: The timeline to symptomatic Alzheimer's disease in relation to amyloid, expressed as duration of Aβ+, and tau has yet to be described in adults with Down syndrome. Our longitudinal study is the first to provide a timeline of cognitive decline and transition to mild cognitive impairment and dementia in relation to Aβ+.Implications of all the available evidence: In a cohort study of 167 adults with Down syndrome, cognitive decline began 2.7 - 5.4 years and tau deposition began 2.7 - 6.1 years following Aβ+ (Centiloid = 18). Adults with Down syndrome converted to MCI after ~7 years and dementia after ~12-13 years of Aβ+. This shortened timeline to AD symptomology from Aβ+ and tau deposition in DS based on amyloid age (or corresponding Centiloid values) can inform clinical AD intervention trials and is of use in clinical settings.
Collapse
|
2
|
Staurenghi E, Testa G, Leoni V, Cecci R, Floro L, Giannelli S, Barone E, Perluigi M, Leonarduzzi G, Sottero B, Gamba P. Altered Brain Cholesterol Machinery in a Down Syndrome Mouse Model: A Possible Common Feature with Alzheimer's Disease. Antioxidants (Basel) 2024; 13:435. [PMID: 38671883 PMCID: PMC11047305 DOI: 10.3390/antiox13040435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Down syndrome (DS) is a complex chromosomal disorder considered as a genetically determined form of Alzheimer's disease (AD). Maintenance of brain cholesterol homeostasis is essential for brain functioning and development, and its dysregulation is associated with AD neuroinflammation and oxidative damage. Brain cholesterol imbalances also likely occur in DS, concurring with the precocious AD-like neurodegeneration. In this pilot study, we analyzed, in the brain of the Ts2Cje (Ts2) mouse model of DS, the expression of genes encoding key enzymes involved in cholesterol metabolism and of the levels of cholesterol and its main precursors and products of its metabolism (i.e., oxysterols). The results showed, in Ts2 mice compared to euploid mice, the downregulation of the transcription of the genes encoding the enzymes 3-hydroxy-3-methylglutaryl-CoA reductase and 24-dehydrocholesterol reductase, the latter originally recognized as an indicator of AD, and the consequent reduction in total cholesterol levels. Moreover, the expression of genes encoding enzymes responsible for brain cholesterol oxidation and the amounts of the resulting oxysterols were modified in Ts2 mouse brains, and the levels of cholesterol autoxidation products were increased, suggesting an exacerbation of cerebral oxidative stress. We also observed an enhanced inflammatory response in Ts2 mice, underlined by the upregulation of the transcription of the genes encoding for α-interferon and interleukin-6, two cytokines whose synthesis is increased in the brains of AD patients. Overall, these results suggest that DS and AD brains share cholesterol cycle derangements and altered oxysterol levels, which may contribute to the oxidative and inflammatory events involved in both diseases.
Collapse
Affiliation(s)
- Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Valerio Leoni
- Laboratory of Clinical Pathology, Hospital Pio XI of Desio, ASST-Brianza and Department of Medicine and Surgery, University of Milano-Bicocca, 20832 Desio, Italy;
| | - Rebecca Cecci
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Lucrezia Floro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University, 00185 Roma, Italy; (E.B.); (M.P.)
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Barbara Sottero
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (E.S.); (R.C.); (L.F.); (S.G.); (G.L.); (B.S.); (P.G.)
| |
Collapse
|
3
|
Gorijala P, Aslam MM, Dang LT, Xicota L, Fernandez MV, Sung YJ, Fan K, Feingold E, Surace EI, Chhatwal JP, Hom CL, Hartley SL, Hassenstab J, Perrin RJ, Mapstone M, Zaman SH, Ances BM, Kamboh MI, Lee JH, Cruchaga C. Alzheimer's polygenic risk scores are associated with cognitive phenotypes in Down syndrome. Alzheimers Dement 2024; 20:1038-1049. [PMID: 37855447 PMCID: PMC10916941 DOI: 10.1002/alz.13506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023]
Abstract
INTRODUCTION This study aimed to investigate the influence of the overall Alzheimer's disease (AD) genetic architecture on Down syndrome (DS) status, cognitive measures, and cerebrospinal fluid (CSF) biomarkers. METHODS AD polygenic risk scores (PRS) were tested for association with DS-related traits. RESULTS The AD risk PRS was associated with disease status in several cohorts of sporadic late- and early-onset and familial late-onset AD, but not in familial early-onset AD or DS. On the other hand, lower DS Mental Status Examination memory scores were associated with higher PRS, independent of intellectual disability and APOE (PRS including APOE, PRSAPOE , p = 2.84 × 10-4 ; PRS excluding APOE, PRSnonAPOE , p = 1.60 × 10-2 ). PRSAPOE exhibited significant associations with Aβ42, tTau, pTau, and Aβ42/40 ratio in DS. DISCUSSION These data indicate that the AD genetic architecture influences cognitive and CSF phenotypes in DS adults, supporting common pathways that influence memory decline in both traits. HIGHLIGHTS Examination of the polygenic risk of AD in DS presented here is the first of its kind. AD PRS influences memory aspects in DS individuals, independently of APOE genotype. These results point to an overlap between the genes and pathways that leads to AD and those that influence dementia and memory decline in the DS population. APOE ε4 is linked to DS cognitive decline, expanding cognitive insights in adults.
Collapse
Affiliation(s)
- Priyanka Gorijala
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Muaaz Aslam
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Lam‐Ha T. Dang
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - L. Xicota
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Maria V. Fernandez
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Kang‐Hsien Fan
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Eleanor Feingold
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Ezequiel I. Surace
- Laboratory of Neurodegenerative Diseases ‐ Institute of Neurosciences (INEU‐Fleni‐ CONICET)Buenos AiresArgentina
| | - Jasmeer P Chhatwal
- Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Christy L. Hom
- Dept. of Psychiatry and Human BehaviorUniversity of CaliforniaIrvine School of MedicineCaliforniaUSA
| | | | | | - Sigan L. Hartley
- Waisman Center and School of Human EcologyUniversity of Wisconsin‐ MadisonMadisonWisconsinUSA
| | - Jason Hassenstab
- Department of Neurology and Psychological & Brain SciencesWashington UniversitySt. LouisMissouriUSA
| | - Richard J. Perrin
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Mark Mapstone
- Department of NeurologyUniversity of California‐IrvineIrvineCaliforniaUSA
| | - Shahid H Zaman
- Cambridge Intellectual and Developmental Disabilities Research GroupDepartment of PsychiatryUniversity of CambridgeDouglas HouseCambridgeUK
- Cambridgeshire and Peterborough NHS Foundation TrustElizabeth HouseFulbourn HospitalFulbournCambridgeUK
| | - Beau M Ances
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - M. Ilyas Kamboh
- Department of Human GeneticsUniversity of PittsburghSchool of Public HealthPittsburghPennsylvaniaUSA
| | - Joseph H Lee
- Department of EpidemiologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Sergievsky CenterTaub Institute for Research on Alzheimer's Disease and the Aging Brainand Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
- Neurogenomics and Informatics CenterWashington University School of MedicineSt. LouisMissouriUSA
- Hope Center for Neurologic DiseasesWashington UniversitySt. LouisMissouriUSA
| |
Collapse
|
4
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
5
|
Miyoshi E, Morabito S, Henningfield CM, Rahimzadeh N, Kiani Shabestari S, Das S, Michael N, Reese F, Shi Z, Cao Z, Scarfone V, Arreola MA, Lu J, Wright S, Silva J, Leavy K, Lott IT, Doran E, Yong WH, Shahin S, Perez-Rosendahl M, Head E, Green KN, Swarup V. Spatial and single-nucleus transcriptomic analysis of genetic and sporadic forms of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550282. [PMID: 37546983 PMCID: PMC10402031 DOI: 10.1101/2023.07.24.550282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) depends on environmental and heritable factors, with remarkable differences evident between individuals at the molecular level. Here we present a transcriptomic survey of AD using spatial transcriptomics (ST) and single-nucleus RNA-seq in cortical samples from early-stage AD, late-stage AD, and AD in Down Syndrome (AD in DS) donors. Studying AD in DS provides an opportunity to enhance our understanding of the AD transcriptome, potentially bridging the gap between genetic mouse models and sporadic AD. Our analysis revealed spatial and cell-type specific changes in disease, with broad similarities in these changes between sAD and AD in DS. We performed additional ST experiments in a disease timecourse of 5xFAD and wildtype mice to facilitate cross-species comparisons. Finally, amyloid plaque and fibril imaging in the same tissue samples used for ST enabled us to directly link changes in gene expression with accumulation and spread of pathology.
Collapse
Affiliation(s)
- Emily Miyoshi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Samuel Morabito
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Negin Rahimzadeh
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Mathematical, Computational, and Systems Biology (MCSB) Program, University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| | - Sepideh Kiani Shabestari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Sudeshna Das
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Neethu Michael
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Fairlie Reese
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Zechuan Shi
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Zhenkun Cao
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Vanessa Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Miguel A Arreola
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Jackie Lu
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Sierra Wright
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Justine Silva
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Kelsey Leavy
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - Eric Doran
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA, USA
| | - William H Yong
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Saba Shahin
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Mari Perez-Rosendahl
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California Irvine , Irvine, CA, USA
| | - Kim N Green
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders (MIND), University of California Irvine, Irvine, CA, USA
- Center for Complex Biological Systems (CCBS), University of California Irvine, Irvine, CA, USA
| |
Collapse
|
6
|
Fleming V, Hom CL, Clare ICH, Hurd-Thomas SL, Krinsky-McHale S, Handen B, Hartley SL. Cognitive outcome measures for tracking Alzheimer's disease in Down syndrome. INTERNATIONAL REVIEW OF RESEARCH IN DEVELOPMENTAL DISABILITIES 2022; 62:227-263. [PMID: 37396708 PMCID: PMC10312212 DOI: 10.1016/bs.irrdd.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Down syndrome (DS) is now viewed as a genetic type of Alzheimer's disease (AD), given the near-universal presence of AD pathology in middle adulthood and the elevated risk for developing clinical AD in DS. As the field of DS prepares for AD clinical intervention trials, there is a strong need to identify cognitive measures that are specific and sensitive to the transition from being cognitively stable to the prodromal (e.g., Mild Cognitive Impairment-Down syndrome) and clinical AD (e.g., Dementia) stages of the disease in DS. It is also important to determine cognitive measures that map onto biomarkers of early AD pathology during the transition from the preclinical to the prodromal stage of the disease, as this transition period is likely to be targeted and tracked in AD clinical trials. The present chapter discusses the current state of research on cognitive measures that could be used to screen/select study participants and as potential outcome measures in future AD clinical trials with adults with DS. In this chapter, we also identify key challenges that need to be overcome and questions that need to be addressed by the DS field as it prepares for AD clinical trials in the coming years.
Collapse
Affiliation(s)
- Victoria Fleming
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, United States
| | - Christy L Hom
- Department of Psychiatry and Human Behavior, University of California, Irvine School of Medicine, Orange, CA, United States
| | - Isabel C H Clare
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Benjamin Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- School of Human Ecology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
8
|
Hamadelseed O, Elkhidir IH, Skutella T. Psychosocial Risk Factors for Alzheimer's Disease in Patients with Down Syndrome and Their Association with Brain Changes: A Narrative Review. Neurol Ther 2022; 11:931-953. [PMID: 35596914 PMCID: PMC9338203 DOI: 10.1007/s40120-022-00361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Several recent epidemiological studies attempted to identify risk factors for Alzheimer’s disease. Age, family history, genetic factors (APOE genotype, trisomy 21), physical activity, and a low level of schooling are significant risk factors. In this review, we summarize the known psychosocial risk factors for the development of Alzheimer’s disease in patients with Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. We completed a comprehensive review of the literature on PubMed, Google Scholar, and Web of Science about psychosocial risk factors for Alzheimer’s disease, for Alzheimer’s disease in Down syndrome, and Alzheimer’s disease in Down syndrome and their association with neuroanatomical changes in the brains of people with Down syndrome. Alzheimer’s disease causes early pathological changes in individuals with Down syndrome, especially in the hippocampus and corpus callosum. People with Down syndrome living with dementia showed reduced volumes of brain areas affected by Alzheimer’s disease as the hippocampus and corpus callosum in association with cognitive decline. These changes occur with increasing age, and the presence or absence of psychosocial risk factors impacts the degree of cognitive function. Correlating Alzheimer’s disease biomarkers in Down syndrome and cognitive function scores while considering the effect of psychosocial risk factors helps us identify the mechanisms leading to Alzheimer’s disease at an early age. Also, this approach enables us to create more sensitive and relevant clinical, memory, and reasoning assessments for people with Down syndrome.
Collapse
Affiliation(s)
- Osama Hamadelseed
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany.
| | - Ibrahim H Elkhidir
- Faculty of Medicine, University of Khartoum, Alqasr St., Khartoum, Sudan
| | - Thomas Skutella
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| |
Collapse
|
9
|
Iulita MF, Garzón Chavez D, Klitgaard Christensen M, Valle Tamayo N, Plana-Ripoll O, Rasmussen SA, Roqué Figuls M, Alcolea D, Videla L, Barroeta I, Benejam B, Altuna M, Padilla C, Pegueroles J, Fernandez S, Belbin O, Carmona-Iragui M, Blesa R, Lleó A, Bejanin A, Fortea J. Association of Alzheimer Disease With Life Expectancy in People With Down Syndrome. JAMA Netw Open 2022; 5:e2212910. [PMID: 35604690 PMCID: PMC9127560 DOI: 10.1001/jamanetworkopen.2022.12910] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
IMPORTANCE People with Down syndrome have a high risk of developing Alzheimer disease dementia. However, penetrance and age at onset are considered variable, and the association of this disease with life expectancy remains unclear because of underreporting in death certificates. OBJECTIVE To assess whether the variability in symptom onset of Alzheimer disease in Down syndrome is similar to autosomal dominant Alzheimer disease and to assess its association with mortality. DESIGN, SETTING, AND PARTICIPANTS This study combines a meta-analysis with the assessment of mortality data from US death certificates (n = 77 347 case records with a International Classification of Diseases code for Down syndrome between 1968 to 2019; 37 900 [49%] female) and from a longitudinal cohort study (n = 889 individuals; 46% female; 3.2 [2.1] years of follow-up) from the Down Alzheimer Barcelona Neuroimaging Initiative (DABNI). MAIN OUTCOMES AND MEASURES A meta-analysis was conducted to investigate the age at onset, age at death, and duration of Alzheimer disease dementia in Down syndrome. PubMed/Medline, Embase, Web of Science, and CINAHL were searched for research reports, and OpenGray was used for gray literature. Studies with data about the age at onset or diagnosis, age at death, and disease duration were included. Pooled estimates with corresponding 95% CIs were calculated using random-effects meta-analysis. The variability in disease onset was compared with that of autosomal dominant Alzheimer disease. Based on these estimates, a hypothetical distribution of age at death was constructed, assuming fully penetrant Alzheimer disease. These results were compared with real-world mortality data. RESULTS In this meta-analysis, the estimate of age at onset was 53.8 years (95% CI, 53.1-54.5 years; n = 2695); the estimate of age at death, 58.4 years (95% CI, 57.2-59.7 years; n = 324); and the estimate of disease duration, 4.6 years (95% CI, 3.7-5.5 years; n = 226). Coefficients of variation and 95% prediction intervals of age at onset were comparable with those reported in autosomal dominant Alzheimer disease. US mortality data revealed an increase in life expectancy in Down syndrome (median [IQR], 1 [0.3-16] years in 1968 to 57 [49-61] years in 2019), but with clear ceiling effects in the highest percentiles of age at death in the last decades (90th percentile: 1990, age 63 years; 2019, age 65 years). The mortality data matched the limits projected by a distribution assuming fully penetrant Alzheimer disease in up to 80% of deaths (corresponding to the highest percentiles). This contrasts with dementia mentioned in 30% of death certificates but is in agreement with the mortality data in DABNI (78.9%). Important racial disparities persisted in 2019, being more pronounced in the lower percentiles (10th percentile: Black individuals, 1 year; White individuals, 30 years) than in the higher percentiles (90th percentile: Black individuals, 64 years; White individuals, 66 years). CONCLUSIONS AND RELEVANCE These findings suggest that the mortality data and the consistent age at onset were compatible with fully penetrant Alzheimer disease. Lifespan in persons with Down syndrome will not increase until disease-modifying treatments for Alzheimer disease are available.
Collapse
Affiliation(s)
- Maria Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Diana Garzón Chavez
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Natalia Valle Tamayo
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | | | - Sonja A. Rasmussen
- Departments of Pediatrics and Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida
- Department of Epidemiology, University of Florida College of Public Health and Health Professions and College of Medicine, Gainesville, Florida
| | - Marta Roqué Figuls
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau, Barcelona, Spain
| | - Daniel Alcolea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Laura Videla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Isabel Barroeta
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Bessy Benejam
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Miren Altuna
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Concepción Padilla
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Jordi Pegueroles
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Susana Fernandez
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Olivia Belbin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - María Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| | - Rafael Blesa
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alberto Lleó
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases, Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain
| |
Collapse
|
10
|
Cell models for Down syndrome-Alzheimer’s disease research. Neuronal Signal 2022; 6:NS20210054. [PMID: 35449591 PMCID: PMC8996251 DOI: 10.1042/ns20210054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022] Open
Abstract
Down syndrome (DS) is the most common chromosomal abnormality and leads to intellectual disability, increased risk of cardiac defects, and an altered immune response. Individuals with DS have an extra full or partial copy of chromosome 21 (trisomy 21) and are more likely to develop early-onset Alzheimer’s disease (AD) than the general population. Changes in expression of human chromosome 21 (Hsa21)-encoded genes, such as amyloid precursor protein (APP), play an important role in the pathogenesis of AD in DS (DS-AD). However, the mechanisms of DS-AD remain poorly understood. To date, several mouse models with an extra copy of genes syntenic to Hsa21 have been developed to characterise DS-AD-related phenotypes. Nonetheless, due to genetic and physiological differences between mouse and human, mouse models cannot faithfully recapitulate all features of DS-AD. Cells differentiated from human-induced pluripotent stem cells (iPSCs), isolated from individuals with genetic diseases, can be used to model disease-related cellular and molecular pathologies, including DS. In this review, we will discuss the limitations of mouse models of DS and how these can be addressed using recent advancements in modelling DS using human iPSCs and iPSC-mouse chimeras, and potential applications of iPSCs in preclinical studies for DS-AD.
Collapse
|
11
|
Wegiel J, Flory M, Kuchna I, Nowicki K, Wegiel J, Ma SY, Zhong N, Bobrowicz TW, de Leon M, Lai F, Silverman WP, Wisniewski T. Developmental deficits and staging of dynamics of age associated Alzheimer's disease neurodegeneration and neuronal loss in subjects with Down syndrome. Acta Neuropathol Commun 2022; 10:2. [PMID: 34983655 PMCID: PMC8728914 DOI: 10.1186/s40478-021-01300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The increased life expectancy of individuals with Down syndrome (DS) is associated with increased prevalence of trisomy 21-linked early-onset Alzheimer's disease (EOAD) and dementia. The aims of this study of 14 brain regions including the entorhinal cortex, hippocampus, basal ganglia, and cerebellum in 33 adults with DS 26-72 years of age were to identify the magnitude of brain region-specific developmental neuronal deficits contributing to intellectual deficits, to apply this baseline to identification of the topography and magnitude of neurodegeneration and neuronal and volume losses caused by EOAD, and to establish age-based staging of the pattern of genetically driven neuropathology in DS. Both DS subject age and stage of dementia, themselves very strongly correlated, were strong predictors of an AD-associated decrease of the number of neurons, considered a major contributor to dementia. The DS cohort was subclassified by age as pre-AD stage, with 26-41-year-old subjects with a full spectrum of developmental deficit but with very limited incipient AD pathology, and 43-49, 51-59, and 61-72-year-old groups with predominant prevalence of mild, moderately severe, and severe dementia respectively. This multiregional study revealed a 28.1% developmental neuronal deficit in DS subjects 26-41 years of age and 11.9% AD-associated neuronal loss in DS subjects 43-49 years of age; a 28.0% maximum neuronal loss at 51-59 years of age; and a 11.0% minimum neuronal loss at 61-72 years of age. A total developmental neuronal deficit of 40.8 million neurons and AD-associated neuronal loss of 41.6 million neurons reflect a comparable magnitude of developmental neuronal deficit contributing to intellectual deficits, and AD-associated neuronal loss contributing to dementia. This highly predictable pattern of pathology indicates that successful treatment of DS subjects in the fourth decade of life may prevent AD pathology and functional decline.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Shuang Yong Ma
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | | | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Wayne P. Silverman
- Department of Pediatrics, Irvine Medical Center, University of California, Irvine, CA USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
12
|
Maxwell AM, Yuan P, Rivera BM, Schaaf W, Mladinov M, Prasher VP, Robinson AC, DeGrado WF, Condello C. Emergence of distinct and heterogeneous strains of amyloid beta with advanced Alzheimer's disease pathology in Down syndrome. Acta Neuropathol Commun 2021; 9:201. [PMID: 34961556 PMCID: PMC8711167 DOI: 10.1186/s40478-021-01298-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Amyloid beta (Aβ) is thought to play a critical role in the pathogenesis of Alzheimer's disease (AD). Prion-like Aβ polymorphs, or "strains", can have varying pathogenicity and may underlie the phenotypic heterogeneity of the disease. In order to develop effective AD therapies, it is critical to identify the strains of Aβ that might arise prior to the onset of clinical symptoms and understand how they may change with progressing disease. Down syndrome (DS), as the most common genetic cause of AD, presents promising opportunities to compare such features between early and advanced AD. In this work, we evaluate the neuropathology and Aβ strain profile in the post-mortem brain tissues of 210 DS, AD, and control individuals. We assayed the levels of various Aβ and tau species and used conformation-sensitive fluorescent probes to detect differences in Aβ strains among individuals and populations. We found that these cohorts have some common but also some distinct strains from one another, with the most heterogeneous populations of Aβ emerging in subjects with high levels of AD pathology. The emergence of distinct strains in DS at these later stages of disease suggests that the confluence of aging, pathology, and other DS-linked factors may favor conditions that generate strains that are unique from sporadic AD.
Collapse
|
13
|
Fortea J, Zaman SH, Hartley S, Rafii MS, Head E, Carmona-Iragui M. Alzheimer's disease associated with Down syndrome: a genetic form of dementia. Lancet Neurol 2021; 20:930-942. [PMID: 34687637 PMCID: PMC9387748 DOI: 10.1016/s1474-4422(21)00245-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 02/03/2023]
Abstract
Adults with Down syndrome develop the neuropathological hallmarks of Alzheimer's disease and are at very high risk of developing early-onset dementia, which is now the leading cause of death in this population. Diagnosis of dementia remains a clinical challenge because of the lack of validated diagnostic criteria in this population, and because symptoms are overshadowed by the intellectual disability associated with Down syndrome. In people with Down syndrome, fluid and imaging biomarkers have shown good diagnostic performances and a strikingly similar temporality of changes with respect to sporadic and autosomal dominant Alzheimer's disease. Most importantly, there are no treatments to prevent Alzheimer's disease, even though adults with Down syndrome could be an optimal population in whom to conduct Alzheimer's disease prevention trials. Unprecedented research activity in Down syndrome is rapidly changing this bleak scenario that will translate into disease-modifying therapies that could benefit other populations.
Collapse
Affiliation(s)
- Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Madrid, Spain.
| | - Shahid H Zaman
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Sigan Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute (ATRI), Keck School of Medicine, University of Southern California, San Diego, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu y Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Madrid, Spain
| |
Collapse
|
14
|
Rujeedawa T, Carrillo Félez E, Clare ICH, Fortea J, Strydom A, Rebillat AS, Coppus A, Levin J, Zaman SH. The Clinical and Neuropathological Features of Sporadic (Late-Onset) and Genetic Forms of Alzheimer's Disease. J Clin Med 2021; 10:4582. [PMID: 34640600 PMCID: PMC8509365 DOI: 10.3390/jcm10194582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to compare and highlight the clinical and pathological aspects of genetic versus acquired Alzheimer's disease: Down syndrome-associated Alzheimer's disease in (DSAD) and Autosomal Dominant Alzheimer's disease (ADAD) are compared with the late-onset form of the disease (LOAD). DSAD and ADAD present in a younger population and are more likely to manifest with non-amnestic (such as dysexecutive function features) in the prodromal phase or neurological features (such as seizures and paralysis) especially in ADAD. The very large variety of mutations associated with ADAD explains the wider range of phenotypes. In the LOAD, age-associated comorbidities explain many of the phenotypic differences.
Collapse
Affiliation(s)
- Tanzil Rujeedawa
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Eva Carrillo Félez
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
| | - Isabel C. H. Clare
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), 28031 Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana Síndrome de Down, 08029 Barcelona, Spain
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK;
- South London and the Maudsley NHS Foundation Trust, The LonDowns Consortium, London SE5 8AZ, UK
| | | | - Antonia Coppus
- Department for Primary and Community Care, Department of Primary and Community Care (149 ELG), Radboud University Nijmegen Medical Center, P.O. Box 9101, 6525 GA Nijmegen, The Netherlands;
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität München, 80539 Munich, Germany;
- German Center for Neurodegenerative Diseases, Feodor-Lynen-Strasse 17, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Cambridge CB2 8PQ, UK; (T.R.); (E.C.F.); (I.C.H.C.)
- Cambridgeshire and Peterborough Foundation NHS Trust, Fulbourn CB21 5EF, UK
| |
Collapse
|
15
|
Do Carmo S, Kannel B, Cuello AC. Nerve Growth Factor Compromise in Down Syndrome. Front Aging Neurosci 2021; 13:719507. [PMID: 34434101 PMCID: PMC8381049 DOI: 10.3389/fnagi.2021.719507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
The basal forebrain cholinergic system relies on trophic support by nerve growth factor (NGF) to maintain its phenotype and function. In Alzheimer's disease (AD), basal forebrain cholinergic neurons (BFCNs) undergo progressive atrophy, suggesting a deficit in NGF trophic support. Within the central nervous system, NGF maturation and degradation are tightly regulated by an activity-dependent metabolic cascade. Here, we present a brief overview of the characteristics of Alzheimer's pathology in Down syndrome (DS) with an emphasis on this NGF metabolic pathway's disruption during the evolving Alzheimer's pathology. Such NGF dysmetabolism is well-established in Alzheimer's brains with advanced pathology and has been observed in mild cognitive impairment (MCI) and non-demented individuals with elevated brain amyloid levels. As individuals with DS inexorably develop AD, we then review findings that support the existence of a similar NGF dysmetabolism in DS coinciding with atrophy of the basal forebrain cholinergic system. Lastly, we discuss the potential of NGF-related biomarkers as indicators of an evolving Alzheimer's pathology in DS.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Benjamin Kannel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Pharmacology, Oxford University, Oxford, United Kingdom
| |
Collapse
|
16
|
The Association between Sex and Risk of Alzheimer's Disease in Adults with Down Syndrome. J Clin Med 2021; 10:jcm10132966. [PMID: 34279450 PMCID: PMC8268850 DOI: 10.3390/jcm10132966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Sex differences in the risk of Alzheimer’s Disease (AD) in adults with Down Syndrome (DS) have not been extensively investigated, and existing studies have found conflicting results. This study examined the effect of sex on the risk of AD in adults with DS, adjusted for covariates. Methods: Adults with DS were assessed longitudinally for the development of AD. Competing risk survival analyses were used to determine the effect of sex alone and after adjustment for APOE-ε4 status, ethnicity, and level of intellectual disability (ID). Results: Sex differences were significant only in adults over 60 years of age, where men with DS were 6.32 (95% CI: 2.11–18.96, p < 0.001) times more likely to develop AD compared with age-matched women with DS. Conclusions: There is an age-associated effect of sex on the risk of AD, with men over 60 years old having six times the risk of AD compared with age-matched women, independent of APOE-ε4 status, ethnicity, and level of ID.
Collapse
|
17
|
Screening of Cognitive Changes in Adults with Intellectual Disabilities: A Systematic Review. Brain Sci 2020; 10:brainsci10110848. [PMID: 33198271 PMCID: PMC7698112 DOI: 10.3390/brainsci10110848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 11/30/2022] Open
Abstract
Background and Aims: Screening and assessment of cognitive changes in adults with Intellectual Disabilities (ID), mainly Down Syndrome (DS), is crucial to offer appropriate services to their needs. We present a systematic review of the existing instruments assessing dementia, aiming to support researchers and clinicians’ best practice. Methods: Searches were carried out in the databases Web of Science; PubMed; PsycINFO in March 2019 and updated in October 2020. Studies were selected and examined if they: (1) focused on assessing age-related cognitive changes in persons with ID; (2) included adults and/or older adults; (3) included scales and batteries for cognitive assessment. Results: Forty-eight cross-sectional studies and twenty-seven longitudinal studies were selected representing a total sample of 6451 participants (4650 DS and 1801 with other ID). In those studies, we found 39 scales, questionnaires, and inventories, and 13 batteries for assessing cognitive and behavioural changes in adults with DS and other ID. Conclusion: The most used instrument completed by an informant or carer was the Dementia Questionnaire for Learning Disabilities (DLD), and its previous versions. We discuss the strengths and limitations of the instruments and outline recommendations for future use.
Collapse
|
18
|
Martínez-Cué C, Rueda N. Signalling Pathways Implicated in Alzheimer's Disease Neurodegeneration in Individuals with and without Down Syndrome. Int J Mol Sci 2020; 21:E6906. [PMID: 32962300 PMCID: PMC7555886 DOI: 10.3390/ijms21186906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS), the most common cause of intellectual disability of genetic origin, is characterized by alterations in central nervous system morphology and function that appear from early prenatal stages. However, by the fourth decade of life, all individuals with DS develop neuropathology identical to that found in sporadic Alzheimer's disease (AD), including the development of amyloid plaques and neurofibrillary tangles due to hyperphosphorylation of tau protein, loss of neurons and synapses, reduced neurogenesis, enhanced oxidative stress, and mitochondrial dysfunction and neuroinflammation. It has been proposed that DS could be a useful model for studying the etiopathology of AD and to search for therapeutic targets. There is increasing evidence that the neuropathological events associated with AD are interrelated and that many of them not only are implicated in the onset of this pathology but are also a consequence of other alterations. Thus, a feedback mechanism exists between them. In this review, we summarize the signalling pathways implicated in each of the main neuropathological aspects of AD in individuals with and without DS as well as the interrelation of these pathways.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain;
| | | |
Collapse
|
19
|
Lai F, Mhatre PG, Yang Y, Wang M, Schupf N, Rosas HD. Sex differences in risk of Alzheimer's disease in adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12084. [PMID: 32995462 PMCID: PMC7507514 DOI: 10.1002/dad2.12084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Adults with Down syndrome (DS) older than 40 have Alzheimer's disease (AD) neuropathology and high risk for dementia, but little is known about the relationship of sex to AD risk in this population. METHODS Using nonparametric methods and Cox proportional hazards models we analyzed differences in incidence of dementia, by sex, presence of an apolipoprotein E (APOE) ε4 or ε2 allele, and dementia duration and decline in 246 adults over 40 with DS. RESULTS There was no significant sex difference in risk of AD or rate of cognitive decline. APOE ε4 allele significantly increased risk of AD irrespective of sex. No significant interactions were found between sex and APOE status on AD risk. Among those who died, dementia duration was significantly longer in women. DISCUSSION This study showed no effect of sex nor interaction between sex and APOE for risk of AD in adults with DS; however, women had longer dementia duration.
Collapse
Affiliation(s)
- Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMcLean HospitalBelmontMassachusettsUSA
| | - Pooja G. Mhatre
- Department of EpidemiologyMailman School of Public HealthColumbia UniversityNew YorkNew YorkUSA
| | - Yuchen Yang
- Department of BiostatisticsBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Mei‐Cheng Wang
- Department of BiostatisticsBloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain and G.H. Sergievsky CenterColumbia UniversityNew YorkNew YorkUSA
- Departments of Neurology and PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurologyMcLean HospitalBelmontMassachusettsUSA
- Department of RadiologyAthinoula A. Martinos Center for Biomedical ImagingCharlestownMassachusettsUSA
| |
Collapse
|
20
|
Thomas MSC, Ojinaga Alfageme O, D'Souza H, Patkee PA, Rutherford MA, Mok KY, Hardy J, Karmiloff-Smith A. A multi-level developmental approach to exploring individual differences in Down syndrome: genes, brain, behaviour, and environment. RESEARCH IN DEVELOPMENTAL DISABILITIES 2020; 104:103638. [PMID: 32653761 PMCID: PMC7438975 DOI: 10.1016/j.ridd.2020.103638] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 05/06/2023]
Abstract
In this article, we focus on the causes of individual differences in Down syndrome (DS), exemplifying the multi-level, multi-method, lifespan developmental approach advocated by Karmiloff-Smith (1998, 2009, 2012, 2016). We evaluate the possibility of linking variations in infant and child development with variations in the (elevated) risk for Alzheimer's disease (AD) in adults with DS. We review the theoretical basis for this argument, considering genetics, epigenetics, brain, behaviour and environment. In studies 1 and 2, we focus on variation in language development. We utilise data from the MacArthur-Bates Communicative Development Inventories (CDI; Fenson et al., 2007), and Mullen Scales of Early Learning (MSEL) receptive and productive language subscales (Mullen, 1995) from 84 infants and children with DS (mean age 2;3, range 0;7 to 5;3). As expected, there was developmental delay in both receptive and expressive vocabulary and wide individual differences. Study 1 examined the influence of an environmental measure (socio-economic status as measured by parental occupation) on the observed variability. SES did not predict a reliable amount of the variation. Study 2 examined the predictive power of a specific genetic measure (apolipoprotein APOE genotype) which modulates risk for AD in adulthood. There was no reliable effect of APOE genotype, though weak evidence that development was faster for the genotype conferring greater AD risk (ε4 carriers), consistent with recent observations in infant attention (D'Souza, Mason et al., 2020). Study 3 considered the concerted effect of the DS genotype on early brain development. We describe new magnetic resonance imaging methods for measuring prenatal and neonatal brain structure in DS (e.g., volumes of supratentorial brain, cortex, cerebellar volume; Patkee et al., 2019). We establish the methodological viability of linking differences in early brain structure to measures of infant cognitive development, measured by the MSEL, as a potential early marker of clinical relevance. Five case studies are presented as proof of concept, but these are as yet too few to discern a pattern.
Collapse
Affiliation(s)
- Michael S C Thomas
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom.
| | - Olatz Ojinaga Alfageme
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom; Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Hana D'Souza
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom; Department of Psychology & Newnham College, University of Cambridge, Cambridge CB3 9DF, United Kingdom
| | - Prachi A Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Mary A Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas's Hospital, London, SE1 7EH, United Kingdom
| | - Kin Y Mok
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - John Hardy
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
21
|
D’Souza H, Mason L, Mok KY, Startin CM, Hamburg S, Hithersay R, Baksh RA, Hardy J, Strydom A, Thomas MSC. Differential Associations of Apolipoprotein E ε4 Genotype With Attentional Abilities Across the Life Span of Individuals With Down Syndrome. JAMA Netw Open 2020; 3:e2018221. [PMID: 32986108 PMCID: PMC7522696 DOI: 10.1001/jamanetworkopen.2020.18221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPORTANCE Risk of Alzheimer disease (AD) is particularly high for individuals with Down syndrome (DS). The ε4 allele of the apolipoprotein E gene (APOE ε4) is associated with an additional risk for AD. In typical development, there is evidence that the APOE ε4 genotype is associated with an early cognitive advantage. Here we investigate associations of APOE ε4 with attention across the life span of individuals with DS. OBJECTIVE To investigate associations between APOE ε4 and attentional abilities in young children and in adults with DS. DESIGN, SETTINGS, AND PARTICIPANTS In this cross-sectional study, data were collected from 80 young children with DS (8-62 months of age) and 240 adults with DS (16-71 years of age) during the period from 2013 to 2018 at a research center to examine the association between APOE status (ε4 carrier vs ε4 noncarrier) and attentional abilities. EXPOSURE APOE status (ε4 carrier vs ε4 noncarrier). MAIN OUTCOMES AND MEASURES For the children, attentional ability was assessed using an eye-tracking paradigm, the gap-overlap task; the size of the gap effect was the primary outcome. For the adults, attentional ability was assessed using the CANTAB simple reaction time task; the standard deviation of response time latencies was the primary outcome. Cross-sectional developmental trajectories were constructed linking attentional ability with age in ε4 carriers and ε4 noncarriers for children and adults separately. RESULTS The child sample comprised 23 ε4 carriers and 57 ε4 noncarriers. The adult sample comprised 61 ε4 carriers and 179 ε4 noncarriers. For the children, a significant difference between trajectory intercepts (ηp2 = 0.14) indicated that ε4 carriers (B = 100.24 [95% CI, 18.52-181.96]) exhibited an attentional advantage over ε4 noncarriers (B = 314.78 [95% CI, 252.17-377.39]). There was an interaction between APOE status and age (ηp2 = 0.10); while the gap effect decreased with age for ε4 noncarriers (B = -4.58 [95% CI, -6.67 to -2.48]), reflecting the development of the attention system, there was no change across age in ε4 carriers (B = 0.77 [95% CI, -1.57 to 3.12]). For the adults, there was no main effect of ε4 carrier status, but there was an interaction between APOE status and age (B = 0.02 [95% CI, 0.004-0.07]), so that ε4 carriers had poorer attentional ability than ε4 noncarriers at older ages. CONCLUSIONS AND RELEVANCE APOE ε4 is associated with an attentional advantage early in development and a disadvantage later in life for individuals with DS, similar to the pattern reported in typical development. Understanding the differential role of APOE across the life span is an important step toward future interventions.
Collapse
Affiliation(s)
- Hana D’Souza
- Department of Psychology and Newnham College, University of Cambridge, Cambridge, United Kingdom
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| | - Luke Mason
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - Kin Y. Mok
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Queen Square Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Carla M. Startin
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
- Department of Psychology, University of York, York, United Kingdom
| | - Sarah Hamburg
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| | - Rosalyn Hithersay
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
| | - R. Asaad Baksh
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
| | - John Hardy
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Queen Square Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- UK Dementia Research Institute at University College London, University College London Institute of Neurology, Department of Neurodegenerative Disease, University College London, London, United Kingdom
- Reta Lila Weston Institute, Queen Square Institute of Neurology, University College London, London, United Kingdom
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, United Kingdom
- Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong SAR, People’s Republic of China
| | - Andre Strydom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
- Institute of Psychiatry, Psychology, and Neuroscience, Department of Forensic and Neurodevelopmental Sciences, King’s College London, London, United Kingdom
- South London and the Maudsley National Health Service Foundation Trust, London, United Kingdom
| | - Michael S. C. Thomas
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
- The London Down Syndrome (LonDownS) Consortium, London, United Kingdom
| |
Collapse
|
22
|
Snyder HM, Bain LJ, Brickman AM, Carrillo MC, Esbensen AJ, Espinosa JM, Fernandez F, Fortea J, Hartley SL, Head E, Hendrix J, Kishnani PS, Lai F, Lao P, Lemere C, Mobley W, Mufson EJ, Potter H, Zaman SH, Granholm AC, Rosas HD, Strydom A, Whitten MS, Rafii MS. Further understanding the connection between Alzheimer's disease and Down syndrome. Alzheimers Dement 2020; 16:1065-1077. [PMID: 32544310 PMCID: PMC8865308 DOI: 10.1002/alz.12112] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.
Collapse
Affiliation(s)
- Heather M. Snyder
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Lisa J. Bain
- Independent Science Writer, Elverson, Pennsylvania, USA
| | - Adam M. Brickman
- Department of Neurology, College of Physicians and Surgeons, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Maria C. Carrillo
- Alzheimer’s Association, Medical & Scientific Relations, Chicago, Illinois, USA
| | - Anna J. Esbensen
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children’s Hospital Medical Center & University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joaquin M. Espinosa
- Department of Pharmacology, Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Fabian Fernandez
- Departments of Psychology and Neurology, BIO5 Institute, and The Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Juan Fortea
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autonoma de Barcelona, CIBERNED, Barcelona, Spain
- Down Medical Center, Catalan Down Syndrome Foundation, Barcelona, Spain
| | - Sigan L. Hartley
- Department of Human Development and Family Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth Head
- Department of Pathology & Laboratory Medicine, University of California, Irvine, Irvine, California, USA
| | - James Hendrix
- LuMind IDSC Foundation, Burlington, Massachusetts, USA
| | - Priya S. Kishnani
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Florence Lai
- Department of Neurology, Harvard University/Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick Lao
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Cynthia Lemere
- Department of Neurology, Brigham & Women’s Hospital and Harvard University, Boston, Massachusetts, USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, California, USA
| | | | - Huntington Potter
- Rocky Mountain Alzheimer’s Disease Center and Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Denver, Colorado, USA
| | - Shahid H. Zaman
- Cambridge Intellectual & Developmental Disability Research Group, Department of Psychiatry University of Cambridge, Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, Colorado, USA
- Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| | - H. Diana Rosas
- Departments of Neurology and Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Andre Strydom
- Department of Forensic and Neurodevelopmental Sciences, Psychology and Neuroscience, King’s College London, South London and the Maudsley NHS Foundation Trust, LonDowns Consortium, Institute of Psychiatry, London, UK
| | | | - Michael S. Rafii
- Alzheimer’s Therapeutics Research Institute and Department of Neurology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
23
|
Martínez-Cué C, Rueda N. Cellular Senescence in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:16. [PMID: 32116562 PMCID: PMC7026683 DOI: 10.3389/fncel.2020.00016] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a homeostatic biological process characterized by a permanent state of cell cycle arrest that can contribute to the decline of the regenerative potential and function of tissues. The increased presence of senescent cells in different neurodegenerative diseases suggests the contribution of senescence in the pathophysiology of these disorders. Although several factors can induce senescence, DNA damage, oxidative stress, neuroinflammation, and altered proteostasis have been shown to play a role in its onset. Oxidative stress contributes to accelerated aging and cognitive dysfunction stages affecting neurogenesis, neuronal differentiation, connectivity, and survival. During later life stages, it is implicated in the progression of cognitive decline, synapse loss, and neuronal degeneration. Also, neuroinflammation exacerbates oxidative stress, synaptic dysfunction, and neuronal death through the harmful effects of pro-inflammatory cytokines on cell proliferation and maturation. Both oxidative stress and neuroinflammation can induce DNA damage and alterations in DNA repair that, in turn, can exacerbate them. Another important feature associated with senescence is altered proteostasis. Because of the disruption in the function and balance of the proteome, senescence can modify the proper synthesis, folding, quality control, and degradation rate of proteins producing, in some diseases, misfolded proteins or aggregation of abnormal proteins. There is an extensive body of literature that associates cellular senescence with several neurodegenerative disorders including Alzheimer’s disease (AD), Down syndrome (DS), and Parkinson’s disease (PD). This review summarizes the evidence of the shared neuropathological events in these neurodegenerative diseases and the implication of cellular senescence in their onset or aggravation. Understanding the role that cellular senescence plays in them could help to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
24
|
Chen XQ, Mobley WC. Alzheimer Disease Pathogenesis: Insights From Molecular and Cellular Biology Studies of Oligomeric Aβ and Tau Species. Front Neurosci 2019; 13:659. [PMID: 31293377 PMCID: PMC6598402 DOI: 10.3389/fnins.2019.00659] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary human and financial burdens. Studies of pathogenesis are essential for defining targets for discovering disease-modifying treatments. Past studies of AD neuropathology provided valuable, albeit limited, insights. Nevertheless, building on these findings, recent studies have provided an increasingly rich harvest of genetic, molecular and cellular data that are creating unprecedented opportunities to both understand and treat AD. Among the most significant are those documenting the presence within the AD brain of toxic oligomeric species of Aβ and tau. Existing data support the view that such species can propagate and spread within neural circuits. To place these findings in context we first review the genetics and neuropathology of AD, including AD in Down syndrome (AD-DS). We detail studies that support the existence of toxic oligomeric species while noting the significant unanswered questions concerning their precise structures, the means by which they spread and undergo amplification and how they induce neuronal dysfunction and degeneration. We conclude by offering a speculative synthesis for how oligomers of Aβ and tau initiate and drive pathogenesis. While 100 years after Alzheimer's first report there is much still to learn about pathogenesis and the discovery of disease-modifying treatments, the application of new concepts and sophisticated new tools are poised to deliver important advances for combatting AD.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
25
|
Abstract
During the past decades, life expectancy of subjects with Down syndrome (DS) has greatly improved, but age-specific mortality rates are still important and DS subjects are characterized by an acceleration of the ageing process, which affects particularly the immune and central nervous systems. In this chapter, we will first review the characteristics of the ageing phenomenon in brain and in immune system in DS and we will then discuss the biological hallmarks of ageing in this specific population. Finally, we will also consider in detail the knowledge on epigenetics in DS, particularly DNA methylation.
Collapse
|
26
|
Abstract
Virtually all adults with Down syndrome (DS) show the neuropathological changes of Alzheimer disease (AD) by the age of 40 years. This association is partially due to overexpression of amyloid precursor protein, encoded by APP, as a result of the location of this gene on chromosome 21. Amyloid-β accumulates in the brain across the lifespan of people with DS, which provides a unique opportunity to understand the temporal progression of AD and the epigenetic factors that contribute to the age of dementia onset. This age dependency in the development of AD in DS can inform research into the presentation of AD in the general population, in whom a longitudinal perspective of the disease is not often available. Comparison of the risk profiles, biomarker profiles and genetic profiles of adults with DS with those of individuals with AD in the general population can help to determine common and distinct pathways as well as mechanisms underlying increased risk of dementia. This Review evaluates the similarities and differences between the pathological cascades and genetics underpinning DS and AD with the aim of providing a platform for common exploration of these disorders.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics and Neurology, School of Medicine, University of California, Irvine, CA, USA.
| | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
27
|
Abstract
Down syndrome (DS; Trisomy 21) is the most common chromosomal disorder in humans. It has numerous associated neurologic phenotypes including intellectual disability, sleep apnea, seizures, behavioral problems, and dementia. With improved access to medical care, people with DS are living longer than ever before. As more individuals with DS reach old age, the necessity for further life span research is essential and cannot be overstated. There is currently a scarcity of information on common medical conditions encountered as individuals with DS progress into adulthood and old age. Conflicting information and uncertainty about the relative risk of dementia for adults with DS is a source of distress for the DS community that creates a major obstacle to proper evaluation and treatment. In this chapter, we discuss the salient neurologic phenotypes of DS, including Alzheimer's disease (AD), and current understanding of their biologic bases and management.
Collapse
Affiliation(s)
- Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | | | - Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
28
|
Davidson YS, Robinson A, Prasher VP, Mann DMA. The age of onset and evolution of Braak tangle stage and Thal amyloid pathology of Alzheimer's disease in individuals with Down syndrome. Acta Neuropathol Commun 2018; 6:56. [PMID: 29973279 PMCID: PMC6030772 DOI: 10.1186/s40478-018-0559-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022] Open
Abstract
While post mortem studies have identified the major cell types and functional systems affected in Alzheimer’s disease (AD) the initial sites and molecular characteristics of pathology are still unclear. Because individuals with Down syndrome (DS) (trisomy 21) develop the full pathological changes of AD in a predictable way by the time they reach middle to late age, a study of the brains of such persons at different ages makes an ideal ‘model system’ in which the sites of earliest onset of pathology can be detected and the subsequent progression of changes be monitored. In the present study we have examined the brains of 56 individuals with DS ranging from new-born to 76 years for the presence of amyloid and tau pathology in key cortical and subcortical regions. Amyloid pathology was found to commence in the late teens to twenties as a deposition of diffuse plaques initially within the temporal neocortex, quickly involving other neocortical regions but only reaching subcortical regions and cerebellum by the late forties. Cerebral amyloid angiopathy did not regularly commence until after 45–50 years of age. Tau pathology usually commenced after 35 years of age, initially involving not only entorhinal areas and hippocampus but also subcortical regions such as locus caeruleus (LC) and dorsal raphe nucleus (DRN). Later, tau pathology spread throughout the neocortex reaching occipital lobes in most instances by mid-50 years of age. Such a pattern of spread is consistent with that seen in typical AD. We found no evidence that tau pathology might commence within the brain in DS before amyloid deposition had occurred, but there was limited data that suggests tau pathology in LC or DRN might predate that in entorhinal areas and hippocampus or at least be coincident.
Collapse
|
29
|
Chen XQ, Sawa M, Mobley WC. Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in Down syndrome. Free Radic Biol Med 2018; 114:52-61. [PMID: 29031834 PMCID: PMC5748266 DOI: 10.1016/j.freeradbiomed.2017.10.341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/15/2022]
Abstract
Neurotrophic factors, including the members of the neurotrophin family, play important roles in the development and maintenance of the nervous system. Trophic factor signals must be transmitted over long distances from axons and dendrites to the cell bodies of neurons. A mode of signaling well suited to the challenge of robust long distance signaling is the signaling endosome. We review the biology of signaling endosomes and the "signaling endosome hypothesis". Evidence for disruption of signaling endosome function in disorders of the nervous system is also reviewed. Changes in endosome structure in Alzheimer disease (AD) and Down syndrome (DS) are present early in these disorders. Data for the APP products responsible are reviewed and the consequent changes in signaling from endosomes discussed. We conclude by pointing to the need for additional studies to explore the biology of signaling endosomes in normal neurons and to elucidate their role in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- University of California, San Diego, La Jolla, CA 92093, United States.
| | - Mariko Sawa
- University of California, San Diego, La Jolla, CA 92093, United States
| | - William C Mobley
- University of California, San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
30
|
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's Disease. Free Radic Biol Med 2018; 114:40-51. [PMID: 28988799 PMCID: PMC5748263 DOI: 10.1016/j.freeradbiomed.2017.10.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Individuals with Down syndrome (DS) have an increased risk of early-onset Alzheimer's Disease (AD), largely owing to a triplication of the APP gene, located on chromosome 21. In DS and AD, defects in endocytosis and lysosomal function appear at the earliest stages of disease development and progress to widespread failure of intraneuronal waste clearance, neuritic dystrophy and neuronal cell death. The same genetic factors that cause or increase AD risk are also direct causes of endosomal-lysosomal dysfunction, underscoring the essential partnership between this dysfunction and APP metabolites in AD pathogenesis. The appearance of APP-dependent endosome anomalies in DS beginning in infancy and evolving into the full range of AD-related endosomal-lysosomal deficits provides a unique opportunity to characterize the earliest pathobiology of AD preceding the classical neuropathological hallmarks. Facilitating this characterization is the authentic recapitulation of this endosomal pathobiology in peripheral cells from people with DS and in trisomy mouse models. Here, we review current research on endocytic-lysosomal dysfunction in DS and AD, the emerging importance of APP/βCTF in initiating this dysfunction, and the potential roles of additional trisomy 21 genes in accelerating endosomal-lysosomal impairment in DS. Collectively, these studies underscore the growing value of investigating DS to probe the biological origins of AD as well as to understand and ameliorate the developmental disability of DS.
Collapse
Affiliation(s)
- Daniel J Colacurcio
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anna Pensalfini
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ying Jiang
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
| | - Ralph A Nixon
- Center for Dementia Research, Nathan S. Kline Institute, Orangeburg, NY 10962, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Cell Biology, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
31
|
Rajan KB, Barnes LL, Wilson RS, McAninch EA, Weuve J, Sighoko D, Evans DA. Racial Differences in the Association Between Apolipoprotein E Risk Alleles and Overall and Total Cardiovascular Mortality Over 18 Years. J Am Geriatr Soc 2017; 65:2425-2430. [PMID: 28898389 PMCID: PMC6201232 DOI: 10.1111/jgs.15059] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES To examine the difference in the association between apolipoprotein (APO)E allele and overall and cardiovascular mortality between African Americans (AAs) and European Americans (EAs). DESIGN Longitudinal, cohort study of 18 years. SETTING Biracial urban US population sample. PARTICIPANTS 4,917, 68% AA and 32% EA. MEASUREMENTS APOE genotype and mortality based on National Death Index. RESULTS A higher proportion of AAs than of EAs had an APOE ε2 allele (ε2ε2/ε2ε3/ε2ε4; 22% vs 13%) and an APOE ε4 allele (ε3ε4/ε4ε4; 33% vs 24%). After adjusting for known risk factors, the risk of mortality was 19% less with the APOE ε2 allele (hazard ratio (HR) = 0.81, 95% confidence interval (CI) = 0.76-0.87), and the risk of cardiovascular mortality was 35% less (HR = 0.65, 95% CI = 0.58-0.76) than with the ε3ε3 allele. The risk of mortality was 10% greater with the APOE ε4 allele (HR = 1.10, 95% CI = 1.04-1.16), and the risk of cardiovascular mortality was 20% greater (HR = 1.20, 95% CI = 1.07-1.29) than with the ε3ε3 allele. No difference in the association between APOE allele and mortality was observed between AAs and EAs. CONCLUSION The APOE ε4 allele increased the risk of overall and cardiovascular mortality, whereas the APOE ε2 allele decreased the risk of overall and cardiovascular mortality. There was no racial difference in the association between these alleles and mortality.
Collapse
Affiliation(s)
- Kumar B. Rajan
- Rush Institute for Healthy Aging; Rush University Medical Center, Chicago, Illinois
| | - Lisa L. Barnes
- Rush Alzheimer’s Disease Center; Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences; Rush University Medical Center, Chicago, Illinois
| | - Robert S. Wilson
- Rush Alzheimer’s Disease Center; Rush University Medical Center, Chicago, Illinois
- Department of Neurological Sciences; Rush University Medical Center, Chicago, Illinois
| | | | - Jennifer Weuve
- Department of Epidemiology, Boston University, Boston, Massachusetts
| | - Dominique Sighoko
- Breast Cancer Task Force, Rush University Medical Center, Chicago, Illinois
| | - Denis A. Evans
- Rush Institute for Healthy Aging; Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
32
|
Abstract
Down syndrome (Trisomy 21; DS) is a unique disease known to be associated with early-onset Alzheimer's disease (AD). The initial presentation of AD in DS is usually difficult to recognize, owing to the underlying intellectual disabilities. Using biomarkers as a prediction tool for detecting AD in at-risk people with DS may benefit patient care. The objective of this review is to discuss the utility of biomarkers in DS on the basis of the pathophysiology of the disease and to provide an update on recent studies in this field. Only through the comprehensive assessment of clinical symptoms, imaging studies, and biomarker analyses can people with DS who are at risk for AD be diagnosed early. Studies for biomarkers of AD in DS have focused on the common pathophysiology of AD in people with DS and in the general population. The most extensively studied biomarkers are amyloid and tau. Owing to the nature of amyloid precursor protein overproduction in DS, the baseline β-amyloid (Aβ) plasma levels are higher than those in controls. Hence, the changes in Aβ are considered to be a predictive marker for AD in DS. In addition, other markers related to telomere length, neuroinflammation, and methylation have been investigated for their correlation with AD progression. Future studies including different ethnic groups may be helpful to collect sufficient data to monitor drug safety and efficacy, stratify patients at risk for AD, and quantify the benefit of treatment.
Collapse
Affiliation(s)
- Ni-Chung Lee
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yin-Hsiu Chien
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wuh-Liang Hwu
- Department of Medical Genetics and Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
33
|
Lee JH, Lee AJ, Dang LH, Pang D, Kisselev S, Krinsky-McHale SJ, Zigman WB, Luchsinger JA, Silverman W, Tycko B, Clark LN, Schupf N. Candidate gene analysis for Alzheimer's disease in adults with Down syndrome. Neurobiol Aging 2017; 56:150-158. [PMID: 28554490 DOI: 10.1016/j.neurobiolaging.2017.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022]
Abstract
Individuals with Down syndrome (DS) overexpress many genes on chromosome 21 due to trisomy and have high risk of dementia due to the Alzheimer's disease (AD) neuropathology. However, there is a wide range of phenotypic differences (e.g., age at onset of AD, amyloid β levels) among adults with DS, suggesting the importance of factors that modify risk within this particularly vulnerable population, including genotypic variability. Previous genetic studies in the general population have identified multiple genes that are associated with AD. This study examined the contribution of polymorphisms in these genes to the risk of AD in adults with DS ranging from 30 to 78 years of age at study entry (N = 320). We used multiple logistic regressions to estimate the likelihood of AD using single-nucleotide polymorphisms (SNPs) in candidate genes, adjusting for age, sex, race/ethnicity, level of intellectual disability and APOE genotype. This study identified multiple SNPs in APP and CST3 that were associated with AD at a gene-wise level empirical p-value of 0.05, with odds ratios in the range of 1.5-2. SNPs in MARK4 were marginally associated with AD. CST3 and MARK4 may contribute to our understanding of potential mechanisms where CST3 may contribute to the amyloid pathway by inhibiting plaque formation, and MARK4 may contribute to the regulation of the transition between stable and dynamic microtubules.
Collapse
Affiliation(s)
- Joseph H Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA.
| | - Annie J Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lam-Ha Dang
- Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| | - Deborah Pang
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Sergey Kisselev
- Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - Warren B Zigman
- Department of Psychology, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA
| | - José A Luchsinger
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Tycko
- Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Lorraine N Clark
- Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Pathology & Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Nicole Schupf
- Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Taub Institute, College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Epidemiology, School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
34
|
Coppus A. Comparing Generational Differences in Persons With Down Syndrome. JOURNAL OF POLICY AND PRACTICE IN INTELLECTUAL DISABILITIES 2016. [DOI: 10.1111/jppi.12214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonia Coppus
- Radboud University Medical Center; Nijmegen
- Center for the Intellectually Disabled; ORO, Helmond
- Erasmus MC University Medical Center; Rotterdam The Netherlands
| |
Collapse
|
35
|
Day RJ, McCarty KL, Ockerse KE, Head E, Rohn TT. Proteolytic Cleavage of Apolipoprotein E in the Down Syndrome Brain. Aging Dis 2016; 7:267-77. [PMID: 27330841 PMCID: PMC4898923 DOI: 10.14336/ad.2015.1020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/20/2015] [Indexed: 11/17/2022] Open
Abstract
Down syndrome (DS) is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Many of the neuropathological features of early-onset Alzheimer’s disease (AD) including senile plaques and neurofibrillary tangles (NFTs) are also present in people with DS as a result of triplication of the amyloid precursor gene on chromosome 21. Evidence suggests that harboring one or both apolipoprotein E4 (APOE4) alleles may increase the risk for AD due to the proteolytic cleavage of apoE4 and a subsequent loss of function. To investigate a role for the apoE proteolysis in vivo, we compared three autopsy groups; 7 DS with AD neuropathology cases over 40 years, 5 young DS cases without AD pathology under 40 years (YDS) and 5 age-matched control cases over 40 years by immunohistochemistry utilizing an antibody that detects the amino-terminal fragment of apoE. Application of this antibody, termed the amino-terminal apoE fragment antibody (nApoECF) revealed labeling of pyramidal neurons in the frontal cortex of YDS cases, whereas in the DS-AD group, labeling with nApoECF was prominent within NFTs. NFT labeling with nApoECF was significantly greater in the hippocampus versus the frontal cortex in the same DS-AD cases, suggesting a regional distribution of truncated apoE. Colocalization immunofluorescence experiments indicated that 52.5% and 53.2% of AT8- and PHF-1-positive NFTs, respectively, also contained nApoECF. Collectively, these data support a role for the proteolytic cleavage of apoE in DS and suggest that apoE fragmentation is closely associated with NFTs.
Collapse
Affiliation(s)
- Ryan J Day
- 1Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - Katie L McCarty
- 2Department of Pharmacology& Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Kayla E Ockerse
- 1Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - Elizabeth Head
- 2Department of Pharmacology& Nutritional Sciences, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, 40536, USA
| | - Troy T Rohn
- 1Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| |
Collapse
|
36
|
Ballard C, Mobley W, Hardy J, Williams G, Corbett A. Dementia in Down's syndrome. Lancet Neurol 2016; 15:622-36. [PMID: 27302127 DOI: 10.1016/s1474-4422(16)00063-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
Abstract
Down's syndrome is the most common genetic cause of learning difficulties, and individuals with this condition represent the largest group of people with dementia under the age of 50 years. Genetic drivers result in a high frequency of Alzheimer's pathology in these individuals, evident from neuroimaging, biomarker, and neuropathological findings, and a high incidence of cognitive decline and dementia. However, cognitive assessment is challenging, and diagnostic methods have not been fully validated for use in these patients; hence, early diagnosis remains difficult. Evidence regarding the benefits of cholinesterase inhibitors and other therapeutic options to treat or delay progressive cognitive decline or dementia is very scarce. Despite close similarities with late-onset Alzheimer's disease, individuals with Down's syndrome respond differently to treatment, and a targeted approach to drug development is thus necessary. Genetic and preclinical studies offer opportunities for treatment development, and potential therapies have been identified using these approaches.
Collapse
Affiliation(s)
- Clive Ballard
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - William Mobley
- Center for Neural Circuits and Behavior, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - John Hardy
- Department of Molecular Neuroscience, University College London, London, UK
| | - Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Anne Corbett
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| |
Collapse
|
37
|
Karmiloff-Smith A, Al-Janabi T, D'Souza H, Groet J, Massand E, Mok K, Startin C, Fisher E, Hardy J, Nizetic D, Tybulewicz V, Strydom A. The importance of understanding individual differences in Down syndrome. F1000Res 2016; 5:F1000 Faculty Rev-389. [PMID: 27019699 PMCID: PMC4806704 DOI: 10.12688/f1000research.7506.1] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 12/24/2022] Open
Abstract
In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels-genetic, cellular, neural, cognitive, behavioral, and environmental-constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer's disease in this high-risk population.
Collapse
Affiliation(s)
- Annette Karmiloff-Smith
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Tamara Al-Janabi
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| | - Hana D'Souza
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Jurgen Groet
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
| | - Esha Massand
- Centre for Brain & Cognitive Development, Birkbeck University of London, London, WC1E 7HX, UK
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
| | - Kin Mok
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, WC1N 3BG, UK
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Carla Startin
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| | - Elizabeth Fisher
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - John Hardy
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Department of Molecular Neuroscience, University College London Institute of Neurology, London, WC1N 3BG, UK
| | - Dean Nizetic
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- The Blizard Institute, Barts & The London School of Medicine, Queen Mary University of London, London, E1 2AT, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Biopolis, 138673, Singapore
| | - Victor Tybulewicz
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Francis Crick Institute, London, NW7 1AA, UK
- Department of Medicine, Imperial College London, London, W12 0NN, UK
| | - Andre Strydom
- The London Down Syndrome Consortium (LonDownS), University College London, London, UK
- Division of Psychiatry, University College London, London, W1T 7NF, UK
| |
Collapse
|
38
|
Prasher VP, Sachdeva N, Tarrant N. Diagnosing dementia in adults with Down's syndrome. Neurodegener Dis Manag 2016; 5:249-56. [PMID: 26107323 DOI: 10.2217/nmt.15.8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Individuals with Down's syndrome (DS) are living longer and many will survive into their fifth or sixth decade of life. Among the DS population, the prevalence of dementia in Alzheimer's disease increases from 9.4% in age group 30-39 years to 54.5% age group 60-69 years. The psychopathology of dementia in Alzheimer's disease is similar to that seen in the general population although differences are apparent due to the underlying intellectual disability in DS and on the reliance on collateral information from informants. The diagnostic workup follows accepted practice although neuropsychological tests and neuroimaging will only be adjuncts to the clinical assessment; such investigations have limited diagnostic value. Presently, research is focused on identifying genetic and biological measures of Alzheimer's disease in DS.
Collapse
Affiliation(s)
- Vee P Prasher
- Birmingham Community Healthcare NHS Trust, Birmingham Learning Disability Service, The Greenfields, 30 Brookfield Road, Birmingham, B30 3QY, UK
| | - Niyati Sachdeva
- Birmingham Community Healthcare NHS Trust, Birmingham Learning Disability Service, The Greenfields, 30 Brookfield Road, Birmingham, B30 3QY, UK
| | - Nick Tarrant
- Birmingham Community Healthcare NHS Trust, Birmingham Learning Disability Service, The Greenfields, 30 Brookfield Road, Birmingham, B30 3QY, UK
| |
Collapse
|
39
|
Vega JN, Hohman TJ, Pryweller JR, Dykens EM, Thornton-Wells TA. Resting-State Functional Connectivity in Individuals with Down Syndrome and Williams Syndrome Compared with Typically Developing Controls. Brain Connect 2015; 5:461-75. [PMID: 25712025 PMCID: PMC4601631 DOI: 10.1089/brain.2014.0266] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The emergence of resting-state functional connectivity (rsFC) analysis, which examines temporal correlations of low-frequency (<0.1 Hz) blood oxygen level-dependent signal fluctuations between brain regions, has dramatically improved our understanding of the functional architecture of the typically developing (TD) human brain. This study examined rsFC in Down syndrome (DS) compared with another neurodevelopmental disorder, Williams syndrome (WS), and TD. Ten subjects with DS, 18 subjects with WS, and 40 subjects with TD each participated in a 3-Tesla MRI scan. We tested for group differences (DS vs. TD, DS vs. WS, and WS vs. TD) in between- and within-network rsFC connectivity for seven functional networks. For the DS group, we also examined associations between rsFC and other cognitive and genetic risk factors. In DS compared with TD, we observed higher levels of between-network connectivity in 6 out 21 network pairs but no differences in within-network connectivity. Participants with WS showed lower levels of within-network connectivity and no significant differences in between-network connectivity relative to DS. Finally, our comparison between WS and TD controls revealed lower within-network connectivity in multiple networks and higher between-network connectivity in one network pair relative to TD controls. While preliminary due to modest sample sizes, our findings suggest a global difference in between-network connectivity in individuals with neurodevelopmental disorders compared with controls and that such a difference is exacerbated across many brain regions in DS. However, this alteration in DS does not appear to extend to within-network connections, and therefore, the altered between-network connectivity must be interpreted within the framework of an intact intra-network pattern of activity. In contrast, WS shows markedly lower levels of within-network connectivity in the default mode network and somatomotor network relative to controls. These findings warrant further investigation using a task-based procedure that may help disentangle the relationship between brain function and cognitive performance across the spectrum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jennifer N. Vega
- Neuroscience Graduate Program, Center for Cognitive Medicine, Vanderbilt University, Nashville, Tennessee
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Timothy J. Hohman
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jennifer R. Pryweller
- Interdisciplinary Studies in Neuroimaging of Neurodevelopmental Disorders, The Graduate School, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| | - Elisabeth M. Dykens
- Center for Cognitive Medicine, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee
| | - Tricia A. Thornton-Wells
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
40
|
Rafii MS, Wishnek H, Brewer JB, Donohue MC, Ness S, Mobley WC, Aisen PS, Rissman RA. The down syndrome biomarker initiative (DSBI) pilot: proof of concept for deep phenotyping of Alzheimer's disease biomarkers in down syndrome. Front Behav Neurosci 2015; 9:239. [PMID: 26441570 PMCID: PMC4568340 DOI: 10.3389/fnbeh.2015.00239] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022] Open
Abstract
To gain further knowledge on the preclinical phase of Alzheimer’s disease (AD), we sought to characterize cognitive performance, neuroimaging and plasma-based AD biomarkers in a cohort of non-demented adults with down syndrome (DS). The goal of the down syndrome biomarker Initiative (DSBI) pilot is to test feasibility of this approach for future multicenter studies. We enrolled 12 non-demented participants with DS between the ages of 30–60 years old. Participants underwent extensive cognitive testing, volumetric MRI, amyloid positron emission tomography (PET; 18F-florbetapir), fluorodeoxyglucose (FDG) PET (18F-fluorodeoxyglucose) and retinal amyloid imaging. In addition, plasma beta-amyloid (Aβ) species were measured and Apolipoprotein E (ApoE) genotyping was performed. Results from our multimodal analysis suggest greater hippocampal atrophy with amyloid load. Additionally, we identified an inverse relationship between amyloid load and regional glucose metabolism. Cognitive and functional measures did not correlate with amyloid load in DS but did correlate with regional FDG PET measures. Biomarkers of AD can be readily studied in adults with DS as in other preclinical AD populations. Importantly, all subjects in this feasibility study were able to complete all test procedures. The data indicate that a large, multicenter longitudinal study is feasible to better understand the trajectories of AD biomarkers in this enriched population. This trial is registered with ClinicalTrials.gov, number NCT02141971.
Collapse
Affiliation(s)
- Michael S Rafii
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UC San Diego School of Medicine, University of California, San Diego La Jolla, CA, USA
| | - Hannah Wishnek
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UC San Diego School of Medicine, University of California, San Diego La Jolla, CA, USA
| | - James B Brewer
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UC San Diego School of Medicine, University of California, San Diego La Jolla, CA, USA
| | - Michael C Donohue
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - Seth Ness
- Janssen Research and Development LLC Titusville, NJ, USA
| | - William C Mobley
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UC San Diego School of Medicine, University of California, San Diego La Jolla, CA, USA
| | - Paul S Aisen
- Department of Neurology, University of Southern California Los Angeles, CA, USA
| | - Robert A Rissman
- Alzheimer's Disease Cooperative Study, Department of Neurosciences, UC San Diego School of Medicine, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
41
|
Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, Tybulewicz VLJ, Fisher EMC, Strydom A. A genetic cause of Alzheimer disease: mechanistic insights from Down syndrome. Nat Rev Neurosci 2015; 16:564-74. [PMID: 26243569 PMCID: PMC4678594 DOI: 10.1038/nrn3983] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Down syndrome, which arises in individuals carrying an extra copy of chromosome 21, is associated with a greatly increased risk of early-onset Alzheimer disease. It is thought that this risk is conferred by the presence of three copies of the gene encoding amyloid precursor protein (APP)--an Alzheimer disease risk factor--although the possession of extra copies of other chromosome 21 genes may also play a part. Further study of the mechanisms underlying the development of Alzheimer disease in people with Down syndrome could provide insights into the mechanisms that cause dementia in the general population.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Tamara Al-Janabi
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Annette Karmiloff-Smith
- Centre for Brain and Cognitive Development, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Dean Nizetic
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, 11 Mandalay Road, Singapore 308232; and the Blizard Institute, Barts and the London School of Medicine, Queen Mary University of London, 4 Newark Street, London E1 2AT, UK
| | | | - Elizabeth M C Fisher
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - André Strydom
- Division of Psychiatry, University College London, Maple House, 149 Tottenham Court Road, London W1T 7NF, UK
| |
Collapse
|
42
|
Fernandez F, Reeves RH. Assessing cognitive improvement in people with Down syndrome: important considerations for drug-efficacy trials. Handb Exp Pharmacol 2015; 228:335-80. [PMID: 25977089 DOI: 10.1007/978-3-319-16522-6_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Experimental research over just the past decade has raised the possibility that learning deficits connected to Down syndrome (DS) might be effectively managed by medication. In the current chapter, we touch on some of the work that paved the way for these advances and discuss the challenges associated with translating them. In particular, we highlight sources of phenotypic variability in the DS population that are likely to impact performance assessments. Throughout, suggestions are made on how to detect meaningful changes in cognitive-adaptive function in people with DS during drug treatment. The importance of within-subjects evaluation is emphasized.
Collapse
Affiliation(s)
- Fabian Fernandez
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA,
| | | |
Collapse
|
43
|
Hartley D, Blumenthal T, Carrillo M, DiPaolo G, Esralew L, Gardiner K, Granholm AC, Iqbal K, Krams M, Lemere C, Lott I, Mobley W, Ness S, Nixon R, Potter H, Reeves R, Sabbagh M, Silverman W, Tycko B, Whitten M, Wisniewski T. Down syndrome and Alzheimer's disease: Common pathways, common goals. Alzheimers Dement 2014; 11:700-9. [PMID: 25510383 DOI: 10.1016/j.jalz.2014.10.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Revised: 08/26/2014] [Accepted: 10/02/2014] [Indexed: 12/17/2022]
Abstract
In the United States, estimates indicate there are between 250,000 and 400,000 individuals with Down syndrome (DS), and nearly all will develop Alzheimer's disease (AD) pathology starting in their 30s. With the current lifespan being 55 to 60 years, approximately 70% will develop dementia, and if their life expectancy continues to increase, the number of individuals developing AD will concomitantly increase. Pathogenic and mechanistic links between DS and Alzheimer's prompted the Alzheimer's Association to partner with the Linda Crnic Institute for Down Syndrome and the Global Down Syndrome Foundation at a workshop of AD and DS experts to discuss similarities and differences, challenges, and future directions for this field. The workshop articulated a set of research priorities: (1) target identification and drug development, (2) clinical and pathological staging, (3) cognitive assessment and clinical trials, and (4) partnerships and collaborations with the ultimate goal to deliver effective disease-modifying treatments.
Collapse
Affiliation(s)
- Dean Hartley
- Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, USA.
| | - Thomas Blumenthal
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Maria Carrillo
- Medical and Scientific Relations, Alzheimer's Association, Chicago, IL, USA
| | - Gilbert DiPaolo
- Department of Pathology and Cell Biology, Columbia University Medical Center and The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, New York, NY, USA
| | - Lucille Esralew
- Department of Behavioral Health, Trinitas Regional Medical Center, Elizabeth, NJ, USA
| | - Katheleen Gardiner
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Pediatrics, University of Colorado, Denver, CO, USA
| | - Ann-Charlotte Granholm
- Department of Neuroscience and the Center on Aging, Medical University of South Carolina, Columbia, SC, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | | | - Cynthia Lemere
- Department of Neurology and the Anne Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ira Lott
- Department of Pediatrics, University of California, Irvine, CA, USA
| | - William Mobley
- Department of Neurosciences, University of California, San Diego, CA, USA
| | - Seth Ness
- Janssen Research & Development, Raritan, NJ, USA
| | - Ralph Nixon
- Department of Psychiatry and Cell Biology, New York University, Langone Medical Center, New York, NY, USA
| | - Huntington Potter
- Linda Crnic Institute for Down Syndrome, University of Colorado, Aurora, CO, USA; Department of Neurology, University of Colorado, Denver, CO, USA
| | - Roger Reeves
- Department of Physiology, McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marwan Sabbagh
- Banner Sun Health Research Institute, Banner Health, Sun City, AZ, USA
| | - Wayne Silverman
- Department of Behavioral Psychology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin Tycko
- Department of Pathology and Cell Biology, Columbia University Medical Center and The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, New York, NY, USA
| | | | - Thomas Wisniewski
- Department of Neurology, Pathology, and Psychiatry, New York University, Langone Medical Center, New York, NY, USA
| |
Collapse
|
44
|
Ghezzo A, Salvioli S, Solimando MC, Palmieri A, Chiostergi C, Scurti M, Lomartire L, Bedetti F, Cocchi G, Follo D, Pipitone E, Rovatti P, Zamberletti J, Gomiero T, Castellani G, Franceschi C. Age-related changes of adaptive and neuropsychological features in persons with Down Syndrome. PLoS One 2014; 9:e113111. [PMID: 25419980 PMCID: PMC4242614 DOI: 10.1371/journal.pone.0113111] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/20/2014] [Indexed: 11/19/2022] Open
Abstract
Down Syndrome (DS) is characterised by premature aging and an accelerated decline of cognitive functions in the vast majority of cases. As the life expectancy of DS persons is rapidly increasing, this decline is becoming a dramatic health problem. The aim of this study was to thoroughly evaluate a group of 67 non-demented persons with DS of different ages (11 to 66 years), from a neuropsychological, neuropsychiatric and psychomotor point of view in order to evaluate in a cross-sectional study the age-related adaptive and neuropsychological features, and to possibly identify early signs predictive of cognitive decline. The main finding of this study is that both neuropsychological functions and adaptive skills are lower in adult DS persons over 40 years old, compared to younger ones. In particular, language and short memory skills, frontal lobe functions, visuo-spatial abilities and adaptive behaviour appear to be the more affected domains. A growing deficit in verbal comprehension, along with social isolation, loss of interest and greater fatigue in daily tasks, are the main features found in older, non demented DS persons evaluated in our study. It is proposed that these signs can be alarm bells for incipient dementia, and that neuro-cognitive rehabilitation and psycho-pharmacological interventions must start as soon as the fourth decade (or even earlier) in DS persons, i.e. at an age where interventions can have the greatest efficacy.
Collapse
Affiliation(s)
- Alessandro Ghezzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Associazione Nazionale Famiglie di Persone con Disabilitá Affettiva e/o Relazionale (ANFFAS) Onlus, Macerata, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” – CIG, University of Bologna, Bologna, Italy
| | | | - Alice Palmieri
- Service for Disabled Students - University of Bologna, Bologna, Italy
| | | | - Maria Scurti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” – CIG, University of Bologna, Bologna, Italy
| | - Laura Lomartire
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” – CIG, University of Bologna, Bologna, Italy
| | - Federica Bedetti
- Operative Unit of Neonatology – Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Guido Cocchi
- Operative Unit of Neonatology – Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniela Follo
- CEPS Centro Emiliano studi sociali per la trisomia 21, Bologna, Italy
| | | | - Paolo Rovatti
- Comune di Bologna - Settore Salute, Sport e Città Sana, Bologna, Italy
| | | | - Tiziano Gomiero
- Project DAD (Down Alzheimer Dementia), Associazione Nazionale Famiglie di Persone con Disabilitá Affettiva e/o Relazionale (ANFFAS) Trentino Onlus, Trient, Italy
| | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
- Interdepartmental Centre “L. Galvani” – CIG, University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences, Bologna, Italy
- National Research Council of Italy, CNR, Institute for Organic Synthesis and Photoreactivity (ISOF), Bologna, Italy
- National Research Council of Italy, CNR, Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| |
Collapse
|
45
|
Patel A, Rees SD, Kelly MA, Bain SC, Barnett AH, Prasher A, Arshad H, Prasher VP. Genetic variants conferring susceptibility to Alzheimer's disease in the general population; do they also predispose to dementia in Down's syndrome. BMC Res Notes 2014; 7:42. [PMID: 24438528 PMCID: PMC3929558 DOI: 10.1186/1756-0500-7-42] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Down’s syndrome (DS) is caused by either complete or partial triplication of chromosome 21, affecting approximately 1/1000 live births, and it is widely accepted that individuals with DS are more likely to develop dementia of Alzheimer’s disease (DAD) compared with the general population. Recent collaborative genome-wide association studies of large case control data sets of individuals with and without Alzhemier’s disease (AD) have revealed new risk variants for dementia, as well as confirming previously identified risk variants. In this study, nine AD-derived SNPs, near or within the CR1 (rs3818361), BIN1 (rs744373), CD2AP (rs9349407), EPHA1 (rs11767557), CLU (rs1532278), MS4A6A/4A (rs610932), PICALM (rs561655), ABCA7 (rs3764650) and CD33 (rs3865444) genes were genotyped in 295 individuals with DS. Results There were no significant associations between these nine GWAS-derived SNPs and DAD in British Caucasian individuals with DS. Interestingly the CR1 rs3818361 variant appeared to be associated with mortality in our cohort, particularly in the subjects without dementia. To our knowledge, this is the first time that this variant has been implicated as a determinant of mortality and the finding warrants further investigation in other cohorts with DS. Conclusions This study shows negative associations of nine AD-derived SNPs with DAD in DS. This may be due to the modest size of our cohort, which may indicate that our study is insufficiently powered to pick up such associations. We cannot conclusively exclude a role for these SNPs in DAD in DS. Clearly, efforts to investigate genetic variants with small effects on disease risk require a much larger cohort of individuals with DS. In fact, we hypothesize that a sample size of 4465 individuals with DS would be needed to determine the role in DAD in DS of the nine AD-derived SNPs investigated in this study. We therefore recommend that all national and international clinics with access to individuals with DS should contribute DNA samples to form DS consortia.
Collapse
Affiliation(s)
- Ashok Patel
- Department of Biomolecular and Sport Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, UK.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Rohn TT, McCarty KL, Love JE, Head E. Is Apolipoprotein E4 an Important Risk Factor for Dementia in Persons with Down Syndrome? ACTA ACUST UNITED AC 2014; 1. [PMID: 25594074 DOI: 10.13188/2376-922x.1000004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Down syndrome is one of the most common genetic causes of intellectual disability and is characterized by a number of behavioral as well as cognitive symptoms. Triplication of all or part of human chromosome 21 has been considered as the main cause of Down syndrome. Due to the location of the amyloid precursor protein on chromosome 21, many of the neuropathological features of early-onset Alzheimer's disease including senile plaques and neurofibrillary tangles are also present in Down syndrome patients who are either demented or nondemented. Significant advances in medical treatment have increased longevity in people with Down syndrome resulting in an increased population that may be subjected to many of the same risk factors as those with Alzheimer's disease. It is well established that harboring one or both apolipoprotein E4 alleles greatly increases the risk for Alzheimer's disease. However, whether apolipoprotein E4 contributes to an earlier onset of dementia or increased mortality in Down syndrome patients is still a matter of debate. The purpose of this mini review is to provide an updated assessment on apolipoprotein E4 status and risk potential of developing dementia and mortality associated with Down syndrome.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Science Building, Boise State University, USA
| | - Katie L McCarty
- University of Kentucky, Department of Pharmacology & Nutritional Sciences, Sanders-Brown Center on Aging, Lexington, KY
| | | | | |
Collapse
|
47
|
Zigman WB. Atypical aging in down syndrome. ACTA ACUST UNITED AC 2013; 18:51-67. [DOI: 10.1002/ddrr.1128] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Warren B. Zigman
- Department of Psychology, Laboratory of Community Psychology, NYS Institute for Basic Research in Developmental Disabilities; Staten Island; New York
| |
Collapse
|
48
|
Evidence that PICALM affects age at onset of Alzheimer's dementia in Down syndrome. Neurobiol Aging 2013; 34:2441.e1-5. [PMID: 23601808 PMCID: PMC3898582 DOI: 10.1016/j.neurobiolaging.2013.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/14/2013] [Accepted: 03/17/2013] [Indexed: 02/04/2023]
Abstract
It is known that individuals with Down syndrome develop Alzheimer’s disease with an early age at onset, although associated genetic risk factors have not been widely studied. We tested whether genes that increase the risk of late-onset Alzheimer’s disease influence the age at onset in Down syndrome using genome-wide association data for age at onset of dementia in a small sample of individuals (N = 67) with Down syndrome. We tested for association with loci previously associated with Alzheimer’s disease risk and, despite the small size of the study, we detected associations with age at onset of Alzheimer’s disease in Down syndrome with PICALM (β = 3.31, p = 0.011) and the APOE loci (β = 3.58, p = 0.014). As dementia in people with Down syndrome is relatively understudied, we make all of these data publicly available to encourage further analyses of the problem of Alzheimer’s disease in Down syndrome.
Collapse
|
49
|
Lott IT, Doran E, Nguyen VQ, Tournay A, Movsesyan N, Gillen DL. Down syndrome and dementia: seizures and cognitive decline. J Alzheimers Dis 2012; 29:177-85. [PMID: 22214782 DOI: 10.3233/jad-2012-111613] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective of this study was to determine the association of seizures and cognitive decline in adults with Down syndrome (DS) and Alzheimer's-type dementia. A retrospective data analysis was carried out following a controlled study of antioxidant supplementation for dementia in DS. Observations were made at baseline and every 6 months for 2 years. Seizure history was obtained from study records. The primary outcome measures comprised the performance-based Severe Impairment Battery (SIB) and Brief Praxis Test (BPT). Secondary outcome measures comprised the informant-based Dementia Questionnaire for Mentally Retarded Persons and Vineland Adaptive Behavior Scales. Because a large proportion of patients with seizures had such severe cognitive decline as to become untestable on the performance measures, time to "first inability to test" was measured. Adjustments were made for the potentially confounding co-variates of age, gender, APOE4 status, baseline cognitive impairment, years since dementia onset at baseline, and treatment assignment. The estimated odds ratio for the time to "first inability to test" on SIB comparing those with seizures to those without is 11.02 (95% CI: 1.59, 76.27), a ratio that is significantly different from 1 (p = 0.015). Similarly, we estimated an odds ratio of 9.02 (95% CI: 1.90, 42.85) on BPT, a ratio also significantly different than 1 (p = 0.006). Results from a secondary analysis of the informant measures showed significant decline related to seizures. We conclude that there is a strong association of seizures with cognitive decline in demented individuals with DS. Prospective studies exploring this relationship in DS are indicated.
Collapse
Affiliation(s)
- Ira T Lott
- Department of Pediatrics, School of Medicine, University of California, Irvine (UCI), Orange, CA92868, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Kang Y, Dong X, Zhou Q, Zhang Y, Cheng Y, Hu R, Su C, Jin H, Liu X, Ma D, Tian W, Li X. Identification of novel candidate maternal serum protein markers for Down syndrome by integrated proteomic and bioinformatic analysis. Prenat Diagn 2012; 32:284-92. [PMID: 22430729 DOI: 10.1002/pd.3829] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study aimed to identify candidate protein biomarkers from maternal serum for Down syndrome (DS) by integrated proteomic and bioinformatics analysis. METHODS A pregnancy DS group of 18 women and a control group with the same number were prepared, and the maternal serum proteins were analyzed by isobaric tags for relative and absolute quantitation and mass spectrometry, to identify DS differentially expressed maternal serum proteins (DS-DEMSPs). Comprehensive bioinformatics analysis was then employed to analyze DS-DEMSPs both in this paper and seven related publications. RESULTS Down syndrome differentially expressed maternal serum proteins from different studies are significantly enriched with common Gene Ontology functions, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, transcription factor binding sites, and Pfam protein domains, However, the DS-DEMSPs are less functionally related to known DS-related genes. These evidences suggest that common molecular mechanisms induced by secondary effects may be present upon DS carrying. A simple scoring scheme revealed Alpha-2-macroglobulin, Apolipoprotein A1, Apolipoprotein E, Complement C1s subcomponent, Complement component 5, Complement component 8, alpha polypeptide, Complement component 8, beta polypeptide and Fibronectin as potential DS biomarkers. CONCLUSION The integration of proteomics and bioinformatics studies provides a novel approach to develop new prenatal screening methods for noninvasive yet accurate diagnosis of DS.
Collapse
Affiliation(s)
- Yuan Kang
- Obstetrics & Gynecology Hospital, Fudan University, Fudan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|