1
|
Zhang W, Jiang M, Teo KAC, Bhuvanakantham R, Fong L, Sim WKJ, Guo Z, Foo CHV, Chua RHJ, Padmanabhan P, Leong V, Lu J, Gulyás B, Guan C. Revealing the spatiotemporal brain dynamics of covert speech compared with overt speech: A simultaneous EEG-fMRI study. Neuroimage 2024; 293:120629. [PMID: 38697588 DOI: 10.1016/j.neuroimage.2024.120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024] Open
Abstract
Covert speech (CS) refers to speaking internally to oneself without producing any sound or movement. CS is involved in multiple cognitive functions and disorders. Reconstructing CS content by brain-computer interface (BCI) is also an emerging technique. However, it is still controversial whether CS is a truncated neural process of overt speech (OS) or involves independent patterns. Here, we performed a word-speaking experiment with simultaneous EEG-fMRI. It involved 32 participants, who generated words both overtly and covertly. By integrating spatial constraints from fMRI into EEG source localization, we precisely estimated the spatiotemporal dynamics of neural activity. During CS, EEG source activity was localized in three regions: the left precentral gyrus, the left supplementary motor area, and the left putamen. Although OS involved more brain regions with stronger activations, CS was characterized by an earlier event-locked activation in the left putamen (peak at 262 ms versus 1170 ms). The left putamen was also identified as the only hub node within the functional connectivity (FC) networks of both OS and CS, while showing weaker FC strength towards speech-related regions in the dominant hemisphere during CS. Path analysis revealed significant multivariate associations, indicating an indirect association between the earlier activation in the left putamen and CS, which was mediated by reduced FC towards speech-related regions. These findings revealed the specific spatiotemporal dynamics of CS, offering insights into CS mechanisms that are potentially relevant for future treatment of self-regulation deficits, speech disorders, and development of BCI speech applications.
Collapse
Affiliation(s)
- Wei Zhang
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Muyun Jiang
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | - Kok Ann Colin Teo
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore; Division of Neurosurgery, National University Health System, Singapore
| | - Raghavan Bhuvanakantham
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - LaiGuan Fong
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore
| | - Wei Khang Jeremy Sim
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; IGP-Neuroscience, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore
| | - Zhiwei Guo
- School of Computer Science and Engineering, Nanyang Technological University, Singapore
| | | | | | - Parasuraman Padmanabhan
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Victoria Leong
- Division of Psychology, Nanyang Technological University, Singapore; Department of Pediatrics, University of Cambridge, United Kingdom
| | - Jia Lu
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; DSO National Laboratories, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Balázs Gulyás
- Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
2
|
Ganesan S, Yang WFZ, Chowdhury A, Zalesky A, Sacchet MD. Within-subject reliability of brain networks during advanced meditation: An intensively sampled 7 Tesla MRI case study. Hum Brain Mapp 2024; 45:e26666. [PMID: 38726831 PMCID: PMC11082832 DOI: 10.1002/hbm.26666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 03/10/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced meditation such as jhana meditation can produce various altered states of consciousness (jhanas) and cultivate rewarding psychological qualities including joy, peace, compassion, and attentional stability. Mapping the neurobiological substrates of jhana meditation can inform the development and application of advanced meditation to enhance well-being. Only two prior studies have attempted to investigate the neural correlates of jhana meditation, and the rarity of adept practitioners has largely restricted the size and extent of these studies. Therefore, examining the consistency and reliability of observed brain responses associated with jhana meditation can be valuable. In this study, we aimed to characterize functional magnetic resonance imaging (fMRI) reliability within a single subject over repeated runs in canonical brain networks during jhana meditation performed by an adept practitioner over 5 days (27 fMRI runs) inside an ultra-high field 7 Tesla MRI scanner. We found that thalamus and several cortical networks, that is, the somatomotor, limbic, default-mode, control, and temporo-parietal, demonstrated good within-subject reliability across all jhanas. Additionally, we found that several other relevant brain networks (e.g., attention, salience) showed noticeable increases in reliability when fMRI measurements were adjusted for variability in self-reported phenomenology related to jhana meditation. Overall, we present a preliminary template of reliable brain areas likely underpinning core neurocognitive elements of jhana meditation, and highlight the utility of neurophenomenological experimental designs for better characterizing neuronal variability associated with advanced meditative states.
Collapse
Affiliation(s)
- Saampras Ganesan
- Department of PsychiatryMelbourne Neuropsychiatry CentreCarltonVictoriaAustralia
- Department of Biomedical EngineeringThe University of MelbourneCarltonVictoriaAustralia
- Contemplative Studies Centre, Melbourne School of Psychological SciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Winson F. Z. Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Avijit Chowdhury
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew Zalesky
- Department of PsychiatryMelbourne Neuropsychiatry CentreCarltonVictoriaAustralia
- Department of Biomedical EngineeringThe University of MelbourneCarltonVictoriaAustralia
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Saito Y, Yoshida S, Ueda R, Senoo A. Association of Neural Activities in Language Processing and Memory with Rapid Reading. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 70:273-282. [PMID: 39431177 PMCID: PMC11487372 DOI: 10.14789/jmj.jmj23-0022-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/29/2023] [Indexed: 10/22/2024]
Abstract
Objectives To elucidate physiological changes in the brain caused by rapid reading, we herein focused on brain areas related to language processing and reading comprehension and memory processes and evaluated changes in neural activities associated with reading speed and comprehension using functional magnetic resonance imaging (fMRI). Materials This study included 23 nonrapid and 23 rapid readers matched for age, gender, and handedness. T1 weighted image and fMRI were acquired using 3T MRI. Methods The neural activity was compared between nonrapid and rapid readers using fMRI. The correlation between neural activity and reading speed and comprehension was also determined. Results The neural activities of rapid readers were significantly lower in Wernicke's and Broca's areas, left angular and supramarginal gyri, and hippocampus. Furthermore, reading speed was negatively correlated with neural activities in these areas. Conversely, reading comprehension was negatively correlated with the neural activities in the left angular gyrus. Conclusions Rapid readers exhibited reduced language processing, including phonological transformation, analysis, inner speech, semantic and syntactic processes, and constant reading comprehension during rapid reading.
Collapse
|
4
|
Perez-Diaz O, Barrós-Loscertales A, Schjoedt U, González-Mora JL, Rubia K, Suero J, Hernández SE. Monitoring the neural activity associated with praying in Sahaja Yoga meditation. BMC Neurosci 2023; 24:61. [PMID: 37957605 PMCID: PMC10642040 DOI: 10.1186/s12868-023-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Sahaja Yoga Meditation draws on many religious traditions and uses a variety of techniques including Christian prayer to reach a state known as thoughtless awareness, or mental silence. While there are many studies on the neural correlates of meditation, few studies have focused on the neural correlates of praying. Thus, the aim of our research was to study the neural activity associated with the prayer practices in Sahaja Yoga Mediation, which have not been studied before, to explore effects beyond repetitive speech or "mantra effects". Sixteen experienced Sahaja Yoga Meditation practitioners were scanned using task based functional Magnetic Resonance Imaging while performing formalised and improvised forms of praying and their equivalent secular tasks. RESULTS Our results showed the deactivation of bilateral thalamus during both prayers compared to secular conditions and the activation in the medial prefrontal cortex that was reduced by religious and formalised secular speech conditions but increased during improvised secular speech; similarly, frontal regions were deactivated when comparing prayers to their secular equivalents. DISCUSSION These results seem to depict two important factors related with praying in Sahaja Yoga Meditation merging inner concentration and social cognition. First, the perception of the surroundings mediated by the thalamus may be decreased during these prayers probably due to the establishment of inner concentration and, second, frontal deactivation effects could be related to reduced social judgement and 'mentalizing', particularly in the medial prefrontal cortex. Our findings suggest that praying by Sahaja Yoga Meditation practitioners is neurophenomenologically different from the social cognitive attempt of praying within Christian praying practices.
Collapse
Affiliation(s)
| | | | - Uffe Schjoedt
- Department of the Study of Religion, Aarhus University, Aarhus, Denmark
| | - José L González-Mora
- Instituto Universitario de Neurociencia, Universidad de La Laguna, Tenerife, Spain
| | - Katya Rubia
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - José Suero
- Centro de Salud Jazmín, Sermas, Madrid, Spain
| | | |
Collapse
|
5
|
Jakimovski D, Zivadinov R, Weinstock Z, Fuchs TA, Bartnik A, Dwyer MG, Bergsland N, Weinstock-Guttman B, Benedict RHB. Cortical thickness and cognition in older people with multiple sclerosis. J Neurol 2023; 270:5223-5234. [PMID: 37634161 DOI: 10.1007/s00415-023-11945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The structural changes associated with cognitive performance in older people with multiple sclerosis (PwMS; age ≥ 50 years old) remain unknown. OBJECTIVE To determine the relationship between whole-brain (WBV), thalamus as the largest deep gray matter nuclei, and cortex-specific volume measurements with both cognitive impairment and numerical performance in older PwMS. The main hypothesis is that cognitive impairment (CI) in older PwMS is explained by cortical thinning in addition to global and thalamic neurodegenerative changes. METHODS A total of 101 older PwMS underwent cognitive and neuroimaging assessment. Cognitive assessment included tests established as sensitive in MS samples (Minimal Assessment of Cognitive Function in MS; MACFIMS), as well as those tests often utilized in Alzheimer's dementia studies (Wechsler's Memory Scale, Boston Naming Test, Visual Motor Integration and language). Cognitive impairment (CI) was based on -1.5 standard deviations in at least 2 cognitive domains (executive function, learning and memory, spatial processing, processing speed and working memory and language) when compared to healthy controls. WBV and thalamic volume were calculated using SIENAX/FIRST and cortical thickness using FreeSurfer. Differences in cortical thickness between CI and cognitively preserved (CP) were determined using age, sex, education, depression and WBV-adjusted analysis of covariance (ANCOVA). The relationship between domain-specific cognitive performance and cortical thickness was analyzed by linear regression models adjusted for age, sex, education, depression, WBV and thalamic volume. Benjamini-Hochberg-adjusted p-values lower than 0.05 were considered significant. RESULTS The average age of the study population was 62.6 (5.9) years old. After adjustment, CI PwMS had significantly thinner left fusiform (p = 0.0003), left inferior (p = 0.0032), left transverse (p = 0.0013), and bilateral superior temporal gyri (p = 0.002 and p = 0.0011) when compared to CP PwMS. After adjusting for age, sex, education, depression WBV, and thalamic volume, CI status was additionally predicted by the thickness of the left fusiform (p = 0.001) and left cuneus gyri (p = 0.004). After the adjustment, SDMT scores were additionally associated with left fusiform gyrus (p < 0.001) whereas letter-based verbal fluency performance with left pars opercularis gyrus (p < 0.001). CONCLUSION In addition to global and thalamic neurodegenerative changes, the presence of CI in older PwMS is additionally explained by the thickness of multiple cortical regions.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA.
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
- Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Zachary Weinstock
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Tom A Fuchs
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Alexander Bartnik
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 100 High St., Buffalo, NY, 14203, USA
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
6
|
Moon J, Chau T. Online Ternary Classification of Covert Speech by Leveraging the Passive Perception of Speech. Int J Neural Syst 2023; 33:2350048. [PMID: 37522623 DOI: 10.1142/s012906572350048x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Brain-computer interfaces (BCIs) provide communicative alternatives to those without functional speech. Covert speech (CS)-based BCIs enable communication simply by thinking of words and thus have intuitive appeal. However, an elusive barrier to their clinical translation is the collection of voluminous examples of high-quality CS signals, as iteratively rehearsing words for long durations is mentally fatiguing. Research on CS and speech perception (SP) identifies common spatiotemporal patterns in their respective electroencephalographic (EEG) signals, pointing towards shared encoding mechanisms. The goal of this study was to investigate whether a model that leverages the signal similarities between SP and CS can differentiate speech-related EEG signals online. Ten participants completed a dyadic protocol where in each trial, they listened to a randomly selected word and then subsequently mentally rehearsed the word. In the offline sessions, eight words were presented to participants. For the subsequent online sessions, the two most distinct words (most separable in terms of their EEG signals) were chosen to form a ternary classification problem (two words and rest). The model comprised a functional mapping derived from SP and CS signals of the same speech token (features are extracted via a Riemannian approach). An average ternary online accuracy of 75.3% (60% chance level) was achieved across participants, with individual accuracies as high as 93%. Moreover, we observed that the signal-to-noise ratio (SNR) of CS signals was enhanced by perception-covert modeling according to the level of high-frequency ([Formula: see text]-band) correspondence between CS and SP. These findings may lead to less burdensome data collection for training speech BCIs, which could eventually enhance the rate at which the vocabulary can grow.
Collapse
Affiliation(s)
- Jae Moon
- Institute of Biomedical Engineering, University of Toronto, Holland Bloorview Kid's Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Tom Chau
- Institute of Biomedical Engineering, University of Toronto, Holland Bloorview Kid's Rehabilitation Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Hauw F, El Soudany M, Rosso C, Daunizeau J, Cohen L. A single case neuroimaging study of tickertape synesthesia. Sci Rep 2023; 13:12185. [PMID: 37500762 PMCID: PMC10374523 DOI: 10.1038/s41598-023-39276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/22/2023] [Indexed: 07/29/2023] Open
Abstract
Reading acquisition is enabled by deep changes in the brain's visual system and language areas, and in the links subtending their collaboration. Disruption of those plastic processes commonly results in developmental dyslexia. However, atypical development of reading mechanisms may occasionally result in ticker-tape synesthesia (TTS), a condition described by Francis Galton in 1883 wherein individuals "see mentally in print every word that is uttered (…) as from a long imaginary strip of paper". While reading is the bottom-up translation of letters into speech, TTS may be viewed as its opposite, the top-down translation of speech into internally visualized letters. In a series of functional MRI experiments, we studied MK, a man with TTS. We showed that a set of left-hemispheric areas were more active in MK than in controls during the perception of normal than reversed speech, including frontoparietal areas involved in speech processing, and the Visual Word Form Area, an occipitotemporal region subtending orthography. Those areas were identical to those involved in reading, supporting the construal of TTS as upended reading. Using dynamic causal modeling, we further showed that, parallel to reading, TTS induced by spoken words and pseudowords relied on top-down flow of information along distinct lexical and phonological routes, involving the middle temporal and supramarginal gyri, respectively. Future studies of TTS should shed new light on the neurodevelopmental mechanisms of reading acquisition, their variability and their disorders.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France.
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France.
| | - Mohamed El Soudany
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Charlotte Rosso
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Urgences Cérébro-Vasculaires, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean Daunizeau
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France
| |
Collapse
|
8
|
Voigtlaender VA, Sandhaeger F, Hawellek DJ, Hage SR, Siegel M. Neural representations of the content and production of human vocalization. Proc Natl Acad Sci U S A 2023; 120:e2219310120. [PMID: 37253014 PMCID: PMC10265962 DOI: 10.1073/pnas.2219310120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Speech, as the spoken form of language, is fundamental for human communication. The phenomenon of covert inner speech implies functional independence of speech content and motor production. However, it remains unclear how a flexible mapping between speech content and production is achieved on the neural level. To address this, we recorded magnetoencephalography in humans performing a rule-based vocalization task. On each trial, vocalization content (one of two vowels) and production form (overt or covert) were instructed independently. Using multivariate pattern analysis, we found robust neural information about vocalization content and production, mostly originating from speech areas of the left hemisphere. Production signals dynamically transformed upon presentation of the content cue, whereas content signals remained largely stable throughout the trial. In sum, our results show dissociable neural representations of vocalization content and production in the human brain and provide insights into the neural dynamics underlying human vocalization.
Collapse
Affiliation(s)
- Vera A. Voigtlaender
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076Tübingen, Germany
| | - Florian Sandhaeger
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, 72076Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, 72076Tübingen, Germany
| | - David J. Hawellek
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, 72076Tübingen, Germany
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4051Basel, Switzerland
| | - Steffen R. Hage
- Centre for Integrative Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Centre, University of Tübingen, 72076Tübingen, Germany
| | - Markus Siegel
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, 72076Tübingen, Germany
- Magnetoencephalography (MEG) Center, University of Tübingen, 72076Tübingen, Germany
| |
Collapse
|
9
|
Maitra R, Horne CM, O’Daly O, Papanastasiou E, Gaser C. Psychotic Like Experiences in Healthy Adolescents are Underpinned by Lower Fronto-Temporal Cortical Gyrification: a Study from the IMAGEN Consortium. Schizophr Bull 2023; 49:309-318. [PMID: 36226895 PMCID: PMC10016412 DOI: 10.1093/schbul/sbac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND AND HYPOTHESIS Psychotic Like Experiences (PLEs) are widely prevalent in children and adolescents and increase the risk of developing psychosis. Cortical gyrification characterizes brain development from in utero till about the first 2 years of life and can be measured in later years as static gyrification changes demonstrating neurodevelopment and dynamic gyrification changes reflecting brain maturation during adolescence. We hypothesized that PLEs would be associated with static cortical gyrification changes reflecting a neurodevelopmental abnormality. STUDY DESIGN We studied 1252 adolescents recruited in the IMAGEN consortium. We used a longitudinal study design, with Magnetic Resonance Imaging measurements at age 14 years and age 19 years; measurement of PLEs using the Community Assessment of Psychic Experiences (CAPE) questionnaire at age 19 years; and clinical diagnoses at age 23 years. STUDY RESULTS Our results show static gyrification changes in adolescents with elevated PLEs on 3 items of the CAPE-voice hearing, unusual experiences of receiving messages, and persecutory ideas-with lower cortical gyrification in fronto-temporal regions in the left hemisphere. This group also demonstrated dynamic gyrification changes with higher cortical gyrification in right parietal cortex in late adolescence; a finding that we replicated in an independent sample of patients with first-episode psychosis. Adolescents with high PLEs were also 5.6 times more likely to transition to psychosis in adulthood by age 23 years. CONCLUSIONS This is the largest study in adolescents that demonstrates fronto-temporal abnormality of cortical gyrification as a potential biomarker for vulnerability to PLEs and transition to psychosis.
Collapse
Affiliation(s)
- Raka Maitra
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Charlotte M Horne
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Owen O’Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
| | - Evangelos Papanastasiou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s CollegeLondon, UK
- Therapeutic Area CNS, Boehringer Ingelheim International GmbH, Inghelheim, Germany
| | - Christian Gaser
- Departments of Neurology, Jena University Hospital, Jena, Germany
- Departments of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
10
|
Lu L, Han M, Zou G, Zheng L, Gao JH. Common and distinct neural representations of imagined and perceived speech. Cereb Cortex 2022; 33:6486-6493. [PMID: 36587299 DOI: 10.1093/cercor/bhac519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/02/2023] Open
Abstract
Humans excel at constructing mental representations of speech streams in the absence of external auditory input: the internal experience of speech imagery. Elucidating the neural processes underlying speech imagery is critical to understanding this higher-order brain function in humans. Here, using functional magnetic resonance imaging, we investigated the shared and distinct neural correlates of imagined and perceived speech by asking participants to listen to poems articulated by a male voice (perception condition) and to imagine hearing poems spoken by that same voice (imagery condition). We found that compared to baseline, speech imagery and perception activated overlapping brain regions, including the bilateral superior temporal gyri and supplementary motor areas. The left inferior frontal gyrus was more strongly activated by speech imagery than by speech perception, suggesting functional specialization for generating speech imagery. Although more research with a larger sample size and a direct behavioral indicator is needed to clarify the neural systems underlying the construction of complex speech imagery, this study provides valuable insights into the neural mechanisms of the closely associated but functionally distinct processes of speech imagery and perception.
Collapse
Affiliation(s)
- Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China
| | - Meizhen Han
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Guangyuan Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Weichenberger M, Bug MU, Brühl R, Ittermann B, Koch C, Kühn S. Air-conducted ultrasound below the hearing threshold elicits functional changes in the cognitive control network. PLoS One 2022; 17:e0277727. [PMID: 36512612 PMCID: PMC9747049 DOI: 10.1371/journal.pone.0277727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/02/2022] [Indexed: 12/15/2022] Open
Abstract
Air-conducted ultrasound (> 17.8 kHz; US) is produced by an increasing number of technical devices in our daily environment. While several studies indicate that exposure to US in public spaces can lead to subjective symptoms such as 'annoyance' or 'difficulties in concentration', the effects of US on brain activity are poorly understood. In the present study, individual hearing thresholds (HT) for sounds in the US frequency spectrum were assessed in 21 normal-hearing participants. The effects of US were then investigated by means of functional magnetic resonance imaging (fMRI). 15 of these participants underwent three resting-state acquisitions, two with a 21.5 kHz tone presented monaurally at 5 dB above (ATC) and 10 dB below (BTC) the HT and one without auditory stimulation (NTC), as well as three runs of an n-back working memory task involving similar stimulus conditions (n-ATC, n-BTC, n-NTC). Comparing data gathered during n-NTC vs. fixation, we found that task performance was associated with the recruitment of regions within the cognitive control network, including prefrontal and parietal areas as well as the cerebellum. Direct contrasts of the two stimulus conditions (n-ATC & n-BTC) vs. n-NTC showed no significant differences in brain activity, irrespective of whether a whole-brain or a region of interest approach with primary auditory cortex as the seed was used. Likewise, no differences were found when the resting-state runs were compared. However, contrast analysis (n-BTC vs. n-ATC) revealed a strong activation in bilateral inferior frontal gyrus (IFG, triangular part) only when US was presented below the HT (p < 0.001, cluster > 30). In addition, IFG activation was also associated with faster reaction times during n-BTC (p = 0.033) as well as with verbal reports obtained after resting-state, i.e., the more unpleasant sound was perceived during BTC vs. ATC, the higher activation in bilateral IFG was and vice versa (p = 0.003). While this study provides no evidence for activation of primary auditory cortex in response to audible US (even though participants heard the sounds), it indicates that US can lead to changes in the cognitive control network and affect cognitive performance only when presented below the HT. Activation of bilateral IFG could reflect an increase in cognitive demand when focusing on task performance in the presence of slightly unpleasant and/or distracting US that may not be fully controllable by attentional mechanisms.
Collapse
Affiliation(s)
- Markus Weichenberger
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Berlin, Germany
- * E-mail:
| | - Marion U. Bug
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Christian Koch
- Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Simone Kühn
- Max Planck Institute for Human Development, Lise Meitner Group for Environmental Neuroscience, Berlin, Germany
- University Clinic Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Hamburg, Germany
| |
Collapse
|
12
|
Ganesan S, Beyer E, Moffat B, Van Dam NT, Lorenzetti V, Zalesky A. Focused attention meditation in healthy adults: A systematic review and meta-analysis of cross-sectional functional MRI studies. Neurosci Biobehav Rev 2022; 141:104846. [PMID: 36067965 DOI: 10.1016/j.neubiorev.2022.104846] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/17/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
Abstract
Meditation trains the mind to focus attention towards an object or experience. Among different meditation techniques, focused attention meditation is considered foundational for more advanced practices. Despite renewed interest in its functional neural correlates, there is no unified neurocognitive model of focused attention meditation developed via quantitative synthesis of contemporary literature. Hence, we performed a quantitative systematic review and meta-analysis of all functional MRI studies examining focussed attention meditation. Following PRISMA guidelines, 28 studies were included in this review, of which 10 studies (200 participants) were amenable to activation likelihood estimation meta-analysis. We found that regions comprising three key functional brain networks i.e., Default-mode, Salience, and Executive Control, were consistently implicated in focused attention meditation. Furthermore, meditation expertise, mindfulness levels and attentional skills were found to significantly influence the magnitude, but not regional extent, of activation and functional connectivity in these networks. Aggregating all evidence, we present a unified neurocognitive brain-network model of focused attention meditation.
Collapse
Affiliation(s)
- Saampras Ganesan
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia.
| | - Emillie Beyer
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health, Australian Catholic University, Fitzroy, Victoria 3065, Australia.
| | - Bradford Moffat
- Melbourne Brain Centre Imaging Unit, Department of Radiology, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Nicholas T Van Dam
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| | - Valentina Lorenzetti
- Neuroscience of Addiction and Mental Health Program, Healthy Brain and Mind Research Centre, School of Behavioral and Health Sciences, Faculty of Health, Australian Catholic University, Fitzroy, Victoria 3065, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Carlton, Victoria 3053, Australia; Department of Biomedical Engineering, The University of Melbourne, Carlton, Victoria 3053, Australia.
| |
Collapse
|
13
|
Carota F, Schoffelen JM, Oostenveld R, Indefrey P. The Time Course of Language Production as Revealed by Pattern Classification of MEG Sensor Data. J Neurosci 2022; 42:5745-5754. [PMID: 35680410 PMCID: PMC9302460 DOI: 10.1523/jneurosci.1923-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Language production involves a complex set of computations, from conceptualization to articulation, which are thought to engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexical semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to what extent such "earliness" is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals, foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories early on, from 150 to 250 ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-350 ms, followed by the latency of phonological neighborhood density (350-450 ms). Our results suggest a progression of neural activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing overt speech, thus supporting serial cascading models of word production.SIGNIFICANCE STATEMENT Current psycholinguistic models make divergent predictions on how a preverbal message is mapped onto articulatory output during the language planning. Serial models predict a cascading sequence of hierarchically organized neural computations from conceptualization to articulation. In contrast, parallel models posit early simultaneous activation of multiple conceptual, phonological, and articulatory information in the language system. Here we asked whether such earliness is a distinctive property of the neural dynamics of word production. The combination of the millisecond precision of MEG with multivariate pattern analyses revealed subsequent onset times for the neural events supporting semantic and phonological/phonetic operations, progressing from posterior occipitotemporal to frontal sensor areas. The findings bring new insights for refining current theories of language production.
Collapse
Affiliation(s)
- Francesca Carota
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Cognitive Neuroscience, Radboud University, 6525 Nijmegen, The Netherlands
| | - Jan-Mathijs Schoffelen
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Cognitive Neuroscience, Radboud University, 6525 Nijmegen, The Netherlands
| | - Robert Oostenveld
- Donders Institute for Cognitive Neuroscience, Radboud University, 6525 Nijmegen, The Netherlands
- NatMEG, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Peter Indefrey
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Cognitive Neuroscience, Radboud University, 6525 Nijmegen, The Netherlands
- Institut für Sprache und Information at, Heinrich Heine University, Düsseldorf 40225, Germany
| |
Collapse
|
14
|
Skipper JI. A voice without a mouth no more: The neurobiology of language and consciousness. Neurosci Biobehav Rev 2022; 140:104772. [PMID: 35835286 DOI: 10.1016/j.neubiorev.2022.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Most research on the neurobiology of language ignores consciousness and vice versa. Here, language, with an emphasis on inner speech, is hypothesised to generate and sustain self-awareness, i.e., higher-order consciousness. Converging evidence supporting this hypothesis is reviewed. To account for these findings, a 'HOLISTIC' model of neurobiology of language, inner speech, and consciousness is proposed. It involves a 'core' set of inner speech production regions that initiate the experience of feeling and hearing words. These take on affective qualities, deriving from activation of associated sensory, motor, and emotional representations, involving a largely unconscious dynamic 'periphery', distributed throughout the whole brain. Responding to those words forms the basis for sustained network activity, involving 'default mode' activation and prefrontal and thalamic/brainstem selection of contextually relevant responses. Evidence for the model is reviewed, supporting neuroimaging meta-analyses conducted, and comparisons with other theories of consciousness made. The HOLISTIC model constitutes a more parsimonious and complete account of the 'neural correlates of consciousness' that has implications for a mechanistic account of mental health and wellbeing.
Collapse
|
15
|
刘 艳, 龚 安, 丁 鹏, 赵 磊, 钱 谦, 周 建, 苏 磊, 伏 云. [Key technology of brain-computer interaction based on speech imagery]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:596-611. [PMID: 35788530 PMCID: PMC10950764 DOI: 10.7507/1001-5515.202107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Speech expression is an important high-level cognitive behavior of human beings. The realization of this behavior is closely related to human brain activity. Both true speech expression and speech imagination can activate part of the same brain area. Therefore, speech imagery becomes a new paradigm of brain-computer interaction. Brain-computer interface (BCI) based on speech imagery has the advantages of spontaneous generation, no training, and friendliness to subjects, so it has attracted the attention of many scholars. However, this interactive technology is not mature in the design of experimental paradigms and the choice of imagination materials, and there are many issues that need to be discussed urgently. Therefore, in response to these problems, this article first expounds the neural mechanism of speech imagery. Then, by reviewing the previous BCI research of speech imagery, the mainstream methods and core technologies of experimental paradigm, imagination materials, data processing and so on are systematically analyzed. Finally, the key problems and main challenges that restrict the development of this type of BCI are discussed. And the future development and application perspective of the speech imaginary BCI system are prospected.
Collapse
Affiliation(s)
- 艳鹏 刘
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 安民 龚
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 鹏 丁
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 磊 赵
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 谦 钱
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 建华 周
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 磊 苏
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - 云发 伏
- 昆明理工大学 信息工程与自动化学院(昆明 650500)School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 昆明理工大学 脑认知与脑机智能融合创新团队(昆明 650500)Brain Cognition and Brain-Computer Intelligence Integration Group, Kunming University of Science and Technology, Kunming 650500, P. R. China
- 武警工程大学 信息工程学院(西安 710000)College of Information Engineering, Engineering University of PAP, Xi’an 710000, P. R. China
- 昆明理工大学 理学院(昆明 650500)Faculty of Science, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
16
|
Yue Q, Martin RC. Phonological Working Memory Representations in the Left Inferior Parietal Lobe in the Face of Distraction and Neural Stimulation. Front Hum Neurosci 2022; 16:890483. [PMID: 35814962 PMCID: PMC9259857 DOI: 10.3389/fnhum.2022.890483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The neural basis of phonological working memory (WM) was investigated through an examination of the effects of irrelevant speech distractors and disruptive neural stimulation from transcranial magnetic stimulation (TMS). Embedded processes models argue that the same regions involved in speech perception are used to support phonological WM whereas buffer models assume that a region separate from speech perception regions is used to support WM. Thus, according to the embedded processes approach but not the buffer approach, irrelevant speech and TMS to the speech perception region should disrupt the decoding of phonological WM representations. According to the buffer account, decoding of WM items should be possible in the buffer region despite distraction and should be disrupted with TMS to this region. Experiment 1 used fMRI and representational similarity analyses (RSA) with a delayed recognition memory paradigm using nonword stimuli. Results showed that decoding of memory items in the speech perception regions (superior temporal gyrus, STG) was possible in the absence of distractors. However, the decoding evidence in the left STG was susceptible to interference from distractors presented during the delay period whereas decoding in the proposed buffer region (supramarginal gyrus, SMG) persisted. Experiment 2 examined the causal roles of the speech processing region and the buffer region in phonological WM performance using TMS. TMS to the SMG during the early delay period caused a disruption in recognition performance for the memory nonwords, whereas stimulations at the STG and an occipital control region did not affect WM performance. Taken together, results from the two experiments are consistent with predictions of a buffer model of phonological WM, pointing to a critical role of the left SMG in maintaining phonological representations.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| | - Randi C. Martin
- Department of Psychological Sciences, Rice University, Houston, TX, United States
- *Correspondence: Qiuhai Yue Randi C. Martin
| |
Collapse
|
17
|
Liang N, Liu S, Li X, Wen D, Li Q, Tong Y, Xu Y. A Decrease in Hemodynamic Response in the Right Postcentral Cortex Is Associated With Treatment-Resistant Auditory Verbal Hallucinations in Schizophrenia: An NIRS Study. Front Neurosci 2022; 16:865738. [PMID: 35692414 PMCID: PMC9177139 DOI: 10.3389/fnins.2022.865738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Background Treatment-resistant auditory verbal hallucinations (TRAVHs) might cause an increased risk of violence, suicide, and hospitalization in patients with schizophrenia (SCZ). Although neuroimaging studies have identified the neural correlation to the symptom of AVH, functional brain activity that correlates particularly in patients with TRAVH remains limited. Functional near-infrared spectroscopy (fNIRS) is a portable and suitable measurement, particularly in exploring brain activation during related tasks. Hence, our researchers aimed to explore the differences in the cerebral hemodynamic function in SCZ-TRAVH, patients with schizophrenia without AVH (SCZ-nAVH), and healthy controls (HCs), to examine neural abnormalities associated more specifically with TRAVH. Methods A 52-channel functional near-infrared spectroscopy system was used to monitor hemodynamic changes in patients with SCZ-TRAVH (n = 38), patients with SCZ-nAVH (n = 35), and HC (n = 30) during a verbal fluency task (VFT). VFT performance, clinical history, and symptom severity were also noted. The original fNIRS data were analyzed using MATLAB to obtain the β values (the brain cortical activity response during the VFT task period); these were used to calculate Δβ (VFT β minus baseline β), which represents the degree of change in oxygenated hemoglobin caused by VFT task. Result Our results showed that there were significant differences in Δβ values among the three groups at 26 channels (ch4, ch13-15, 18, 22, ch25–29, 32, ch35–39, ch43–51, F = 1.70 to 19.10, p < 0.043, FDR-corrected) distributed over the prefrontal–temporal cortical regions. The further pairwise comparisons showed that the Δβ values of 24 channels (ch13–15, 18, 22, 25, ch26–29, ch35–39, ch43–49, ch50–51) were significantly lower in the SCZ group (SCZ-TRAVH and/or SCZ-nAVH) than in the HC group (p < 0.026, FDR-corrected). Additionally, the abnormal activation in the ch22 of right postcentral gyrus was correlated, in turn, with severity of TRAVH. Conclusion Our findings indicate that specific regions of the prefrontal cortex may be associated with TRAVH, which may have implications for early intervention for psychosis.
Collapse
Affiliation(s)
- Nana Liang
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinrong Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Dan Wen
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Qiqi Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yujie Tong
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Mental Health, Shanxi Medical University, Taiyuan, China
- *Correspondence: Yong Xu
| |
Collapse
|
18
|
Moon J, Chau T, Orlandi S. A comparison and classification of oscillatory characteristics in speech perception and covert speech. Brain Res 2022; 1781:147778. [PMID: 35007548 DOI: 10.1016/j.brainres.2022.147778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 11/02/2022]
Abstract
Covert speech, the mental imagery of speaking, has been studied increasingly to understand and decode thoughts in the context of brain-computer interfaces. In studies of speech comprehension, neural oscillations are thought to play a key role in the temporal encoding of speech. However, little is known about the role of oscillations in covert speech. In this study, we investigated the oscillatory involvements in covert speech and speech perception. Data were collected from 10 participants with 64 channel EEG. Participants heard the words, 'blue' and 'orange', and subsequently mentally rehearsed them. First, continuous wavelet transform was performed on epoched signals and subsequently two-tailed t-tests between two classes were conducted to determine statistical differences in frequency and time (t-CWT). Features were also extracted using t-CWT and subsequently classified using a support vector machine. θ and γ phase amplitude coupling (PAC) was also assessed within and between tasks. All binary classifications produced accuracies significantly greater (80-90%) than chance level, supporting the use of t-CWT in determining relative oscillatory involvements. While the perception task dynamically invoked all frequencies with more prominent θ and α activity, the covert task favoured higher frequencies with significantly higher γ activity than perception. Moreover, the perception condition produced significant θ-γ PAC, corroborating a reported linkage between syllabic and phonemic sampling. Although this coupling was found to be suppressed in the covert condition, we found significant cross-task coupling between perception θ and covert speech γ. Covert speech processing appears to be largely associated with higher frequencies of EEG. Importantly, the significant cross-task coupling between speech perception and covert speech, in the absence of within-task covert speech PAC, supports the notion that the γ- and θ-bands subserve, respectively, shared and unique encoding processes across tasks.
Collapse
Affiliation(s)
- Jaewoong Moon
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Tom Chau
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Silvia Orlandi
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Lejko N, Tumati S, Opmeer EM, Marsman JBC, Reesink FE, De Deyn PP, Aleman A, Ćurčić-Blake B. Planning in amnestic mild cognitive impairment: an fMRI study. Exp Gerontol 2021; 159:111673. [PMID: 34958871 DOI: 10.1016/j.exger.2021.111673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/24/2021] [Accepted: 12/17/2021] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The memory impairment that is characteristic of amnestic mild cognitive impairment (aMCI) is often accompanied by difficulties in executive functioning, including planning. Though planning deficits in aMCI are well documented, their neural correlates are largely unknown, and have not yet been investigated with functional magnetic resonance imaging (fMRI). OBJECTIVES The aim of this study was to: (1) identify differences in brain activity and connectivity during planning in people with aMCI and cognitively healthy older adults, and (2) find whether planning-related activity and connectivity are associated with cognitive performance and symptoms of apathy. METHODS Twenty-five people with aMCI and 15 cognitively healthy older adults performed a visuospatial planning task (Tower of London; ToL) during fMRI. Task-related brain activation, spatial maps of task-related independent components, and seed-to-voxel functional connectivity were compared between the two groups and regressed against measures of executive functions (Trail Making Test difference score, TMT B-A; Digit Symbol Substitution Test, DSST), delayed recall (Rey Auditory Verbal Learning Test), and apathy (Apathy Evaluation Scale). RESULTS People with aMCI scored lower on task-switching (TMT B-A), working memory (DSST), and planning (ToL). During planning, people with aMCI had less activation in the bilateral anterior calcarine sulcus/cuneus, the bilateral temporal cortices, the left precentral gyrus, the thalamus, and the right cerebellum. Across all participants, higher planning-related activity in the supplementary motor area, the retrosplenial cortex and surrounding areas, and the right temporal cortex was related to better delayed recall. There were no between-group differences in functional connectivity, nor were there any associations between connectivity and cognition. We also did not find any associations between brain activity or connectivity and apathy. CONCLUSION Impaired planning in people with aMCI appears to be accompanied by lower activation in a diffuse cortico-thalamic network. Across all participants, higher planning-related activity in parieto-occipital, temporal, and frontal areas was related to better memory performance. The results point to the relevance of planning deficits for understanding aMCI and extend its clinical and neurobiological signature.
Collapse
Affiliation(s)
- Nena Lejko
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands.
| | - Shankar Tumati
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands; Neuropsychopharmacology Research Group, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Esther M Opmeer
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands; Windesheim University of Applied Sciences, Department of Health and Welfare, Zwolle, the Netherlands
| | - Jan-Bernard C Marsman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands
| | - Fransje E Reesink
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behavior, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands; Shenzhen Key Laboratory of Affective and Social Neuroscience, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China
| | - Branislava Ćurčić-Blake
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, Groningen, the Netherlands
| |
Collapse
|
20
|
Yao B, Taylor JR, Banks B, Kotz SA. Reading direct speech quotes increases theta phase-locking: Evidence for cortical tracking of inner speech? Neuroimage 2021; 239:118313. [PMID: 34175425 DOI: 10.1016/j.neuroimage.2021.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022] Open
Abstract
Growing evidence shows that theta-band (4-7 Hz) activity in the auditory cortex phase-locks to rhythms of overt speech. Does theta activity also encode the rhythmic dynamics of inner speech? Previous research established that silent reading of direct speech quotes (e.g., Mary said: "This dress is lovely!") elicits more vivid inner speech than indirect speech quotes (e.g., Mary said that the dress was lovely). As we cannot directly track the phase alignment between theta activity and inner speech over time, we used EEG to measure the brain's phase-locked responses to the onset of speech quote reading. We found that direct (vs. indirect) quote reading was associated with increased theta phase synchrony over trials at 250-500 ms post-reading onset, with sources of the evoked activity estimated in the speech processing network. An eye-tracking control experiment confirmed that increased theta phase synchrony in direct quote reading was not driven by eye movement patterns, and more likely reflects synchronous phase resetting at the onset of inner speech. These findings suggest a functional role of theta phase modulation in reading-induced inner speech.
Collapse
Affiliation(s)
- Bo Yao
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Briony Banks
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht 6211 LK, Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
21
|
Geraci A, D'Amico A, Pipitone A, Seidita V, Chella A. Automation Inner Speech as an Anthropomorphic Feature Affecting Human Trust: Current Issues and Future Directions. Front Robot AI 2021; 8:620026. [PMID: 33969001 PMCID: PMC8102901 DOI: 10.3389/frobt.2021.620026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
This paper aims to discuss the possible role of inner speech in influencing trust in human-automation interaction. Inner speech is an everyday covert inner monolog or dialog with oneself, which is essential for human psychological life and functioning as it is linked to self-regulation and self-awareness. Recently, in the field of machine consciousness, computational models using different forms of robot speech have been developed that make it possible to implement inner speech in robots. As is discussed, robot inner speech could be a new feature affecting human trust by increasing robot transparency and anthropomorphism.
Collapse
Affiliation(s)
- Alessandro Geraci
- Robotics Lab, Department of Engineering, University of Palermo, Palermo, Italy
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Antonella D'Amico
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Palermo, Italy
| | - Arianna Pipitone
- Robotics Lab, Department of Engineering, University of Palermo, Palermo, Italy
| | - Valeria Seidita
- Robotics Lab, Department of Engineering, University of Palermo, Palermo, Italy
| | - Antonio Chella
- Robotics Lab, Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
22
|
Yue Q, Martin RC. Maintaining verbal short-term memory representations in non-perceptual parietal regions. Cortex 2021; 138:72-89. [PMID: 33677329 DOI: 10.1016/j.cortex.2021.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 11/09/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
Buffer accounts of verbal short-term memory (STM) assume dedicated buffers for maintaining different types of information (e.g., phonological, visual) whereas embedded processes accounts argue against the existence of buffers and claim that STM consists of the activated portion of long-term memory (LTM). We addressed this debate by determining whether STM recruits the same neural substrate as LTM, or whether additional regions are involved in short-term storage. Using fMRI with representational similarity analysis (RSA), we examined the representational correspondence of multi-voxel neural activation patterns with the theoretical predictions for the maintenance of both phonological and semantic codes in STM. We found that during the delay period of a phonological STM task, phonological representations could be decoded in the left supramarginal gyrus (SMG) but not the superior temporal gyrus (STG), a speech processing region, for word stimuli. Whereas the pattern in the SMG was specific to phonology, a different region in the left angular gyrus showed RSA decoding evidence for the retention of either phonological or semantic codes, depending on the task context. Taken together, the results provide clear support for a dedicated buffer account of phonological STM, although evidence for a semantic buffer is equivocal.
Collapse
Affiliation(s)
- Qiuhai Yue
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA; Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Randi C Martin
- Department of Psychological Sciences, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
23
|
Abstract
As all human activities, verbal communication is fraught with errors. It is estimated that humans produce around 16,000 words per day, but the word that is selected for production is not always correct and neither is the articulation always flawless. However, to facilitate communication, it is important to limit the number of errors. This is accomplished via the verbal monitoring mechanism. A body of research over the last century has uncovered a number of properties of the mechanisms at work during verbal monitoring. Over a dozen routes for verbal monitoring have been postulated. However, to date a complete account of verbal monitoring does not exist. In the current paper we first outline the properties of verbal monitoring that have been empirically demonstrated. This is followed by a discussion of current verbal monitoring models: the perceptual loop theory, conflict monitoring, the hierarchical state feedback control model, and the forward model theory. Each of these models is evaluated given empirical findings and theoretical considerations. We then outline lacunae of current theories, which we address with a proposal for a new model of verbal monitoring for production and perception, based on conflict monitoring models. Additionally, this novel model suggests a mechanism of how a detected error leads to a correction. The error resolution mechanism proposed in our new model is then tested in a computational model. Finally, we outline the advances and predictions of the model.
Collapse
|
24
|
Alderson-Day B, Moffatt J, Bernini M, Mitrenga K, Yao B, Fernyhough C. Processing Speech and Thoughts during Silent Reading: Direct Reference Effects for Speech by Fictional Characters in Voice-Selective Auditory Cortex and a Theory-of-Mind Network. J Cogn Neurosci 2020; 32:1637-1653. [DOI: 10.1162/jocn_a_01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abstract
Stories transport readers into vivid imaginative worlds, but understanding how readers create such worlds—populating them with characters, objects, and events—presents serious challenges across disciplines. Auditory imagery is thought to play a prominent role in this process, especially when representing characters' voices. Previous research has shown that direct reference to speech in stories (e.g., He said, “I'm over here”) may prompt spontaneous activation of voice-selective auditory cortex more than indirect speech [Yao, B., Belin, P., & Scheepers, C. Silent reading of direct versus indirect speech activates voice-selective areas in the auditory cortex. Journal of Cognitive Neuroscience, 23, 3146–3152, 2011]. However, it is unclear whether this effect reflects differential processing of speech or differences in linguistic content, source memory, or grammar. One way to test this is to compare direct reference effects for characters speaking and thinking in a story. Here, we present a multidisciplinary fMRI study of 21 readers' responses to characters' speech and thoughts during silent reading of short fictional stories. Activations relating to direct and indirect references were compared for both speaking and thinking. Eye-tracking and independent localizer tasks (auditory cortex and theory of mind [ToM]) established ROIs in which responses to stories could be tracked for individuals. Evidence of elevated auditory cortex responses to direct speech over indirect speech was observed, replicating previously reported effects; no reference effect was observed for thoughts. Moreover, a direct reference effect specific to speech was also evident in regions previously associated with inferring intentions from communication. Implications are discussed for the spontaneous representation of fictional characters and the potential roles of inner speech and ToM in this process.
Collapse
|
25
|
The effect of time pressure and semantic relatedness in spoken word production: A topographic ERP study. Behav Brain Res 2020; 387:112587. [DOI: 10.1016/j.bbr.2020.112587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
|
26
|
Schmitt LM, Wang J, Pedapati EV, Thurman AJ, Abbeduto L, Erickson CA, Sweeney JA. A neurophysiological model of speech production deficits in fragile X syndrome. Brain Commun 2019; 2. [PMID: 32924010 PMCID: PMC7425415 DOI: 10.1093/braincomms/fcz042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fragile X syndrome is the most common inherited intellectual disability and monogenic cause of autism spectrum disorder. Expressive language deficits, especially in speech production, are nearly ubiquitous among individuals with fragile X, but understanding of the neurological bases for these deficits remains limited. Speech production depends on feedforward control and the synchronization of neural oscillations between speech-related areas of frontal cortex and auditory areas of temporal cortex. Interaction in this circuitry allows the corollary discharge of intended speech generated from an efference copy of speech commands to be compared against actual speech sounds, which is critical for making adaptive adjustments to optimize future speech. We aimed to determine whether alterations in coherence between frontal and temporal cortices prior to speech production are present in individuals with fragile X and whether they relate to expressive language dysfunction. Twenty-one participants with full-mutation fragile X syndrome (aged 7-55 years, eight females) and 20 healthy controls (matched on age and sex) completed a talk/listen paradigm during high-density EEG recordings. During the talk task, participants repeated pronounced short vocalizations of 'Ah' every 1-2 s for a total of 180 s. During the listen task, participants passively listened to their recordings from the talk task. We compared pre-speech event-related potential activity, N1 suppression to speech sounds, single trial gamma power and fronto-temporal coherence between groups during these tasks and examined their relation to performance during a naturalistic language task. Prior to speech production, fragile X participants showed reduced pre-speech negativity, reduced fronto-temporal connectivity and greater frontal gamma power compared to controls. N1 suppression during self-generated speech did not differ between groups. Reduced pre-speech activity and increased frontal gamma power prior to speech production were related to less intelligible speech as well as broader social communication deficits in fragile X syndrome. Our findings indicate that coordinated pre-speech activity between frontal and temporal cortices is disrupted in individuals with fragile X in a clinically relevant way and represents a mechanism contributing to prominent speech production problems in the disorder.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Developmental and Behavioral Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jun Wang
- Department of Psychology, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ernest V Pedapati
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Angela John Thurman
- Psychiatry and Behavioral Sciences, University of California, Davis, MIND Institute, Sacramento, CA, USA
| | - Leonard Abbeduto
- Psychiatry and Behavioral Sciences, University of California, Davis, MIND Institute, Sacramento, CA, USA
| | - Craig A Erickson
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - John A Sweeney
- Department of Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
27
|
Dimitrijevic A, Smith ML, Kadis DS, Moore DR. Neural indices of listening effort in noisy environments. Sci Rep 2019; 9:11278. [PMID: 31375712 PMCID: PMC6677804 DOI: 10.1038/s41598-019-47643-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/15/2019] [Indexed: 11/09/2022] Open
|
28
|
Poletti M, Tortorella A, Raballo A. Impaired Corollary Discharge in Psychosis and At-Risk States: Integrating Neurodevelopmental, Phenomenological, and Clinical Perspectives. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:832-841. [PMID: 31262709 DOI: 10.1016/j.bpsc.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 12/28/2022]
Abstract
The brain is increasingly viewed in contemporary neuroscience as a predictive machine; its products, such as movements and decisions, are indeed accompanied by predictions of outcomes at distinct levels of awareness. In this conceptual review, we focus on corollary discharge, a basic neurophysiological mechanism that is allegedly involved in sensory prediction and contributes to the distinction between self-generated and externally generated actions. Failures in corollary discharge have been hypothesized as potentially relevant for the progressive development of positive psychotic symptoms such as passivity delusions and auditory verbal hallucinations. We articulate this framework adopting three confocal lenses, namely, the neurodevelopmental, phenomenological, and clinical perspectives. Converging evidence from these research domains indicates a possible developmental cascade leading to increased lifetime risk of psychosis. That is, early childhood alterations of corollary discharge mechanisms, endophenotypically expressed in motor impairment, may concur with a progressive fading of the feeling of self-agency on one's own experiences. Combined with other age-dependent situational challenges occurring along development, this may progressively hamper the ontogenesis of the embodied self, thereby facilitating the emergence of anomalous subjective experiences such as self-disorders (a longitudinal index of schizophrenia spectrum vulnerability) and broadly conceived clinical high-risk states. Overall, this condition increases the risk of developing passivity symptoms, phenotypically expressed in a severity gradient ranging from intrusive thoughts to passivity delusions and auditory verbal hallucinations. Empirical and clinical implications of this framework, as well as future scenarios, are discussed.
Collapse
Affiliation(s)
- Michele Poletti
- Department of Mental Health, Azienda Unità Sanitaria Locale-IRCSS di Reggio Emilia, Reggio Emilia, Italy
| | - Alfonso Tortorella
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy
| | - Andrea Raballo
- Department of Medicine, Division of Psychiatry, Clinical Psychology and Rehabilitation, University of Perugia, Perugia, Italy; Center for Translational, Phenomenological and Developmental Psychopathology, Perugia University Hospital, Perugia, Italy.
| |
Collapse
|
29
|
Weber-Goericke F, Muehlhan M. A quantitative meta-analysis of fMRI studies investigating emotional processing in excessive worriers: Application of activation likelihood estimation analysis. J Affect Disord 2019; 243:348-359. [PMID: 30266026 DOI: 10.1016/j.jad.2018.09.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/27/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Excessive worry is a highly impairing cognitive activity which features a range of psychological disorders. Investigations of its disturbed underlying neural mechanisms have presented largely heterogeneous results. This quantitative neuroimaging meta-analysis aims to identify consistent functional disturbances in emotional processing associated with excessive worry across previously published studies. METHODS We used the activation likelihood estimation (ALE) method to test for significant convergence across findings of 16 neuroimaging experiments reporting functional aberrations during emotional processing between individuals experiencing high versus normal levels of worry. RESULTS Results demonstrated convergent aberrations in high compared to normal worriers mainly in a left-hemispheric cluster comprising parts of the middle frontal gyrus, inferior frontal gyrus and anterior insula. Behavioral characterization indicated the identified cluster to be associated with language processing and memory, while meta-analytic connectivity mapping yielded strong functional connections between the observed convergent regions and parts of the salience network as well as the default mode network. LIMITATIONS The ALE method cannot consider findings based on regions of interest analyses and studies without significant group differences. CONCLUSION Our results indicate that in response to emotional contexts worry prone individuals exhibit disturbed functioning in brain areas which are possibly associated with deviant inner speech processes experienced by these individuals. The observed clusters may further constitute key nodes within interacting neural networks that support internally and externally oriented cognition and control the dynamic interplay among these processes.
Collapse
Affiliation(s)
- Fanny Weber-Goericke
- Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, School of Science, Technische Universität Dresden, Dresden Germany
| | - Markus Muehlhan
- Department of Psychology, Faculty of Human Science, Medical School Hamburg, Hamburg, Germany; Institute of Clinical Psychology and Psychotherapy, Faculty of Psychology, School of Science, Technische Universität Dresden, Dresden Germany.
| |
Collapse
|
30
|
Cooney C, Folli R, Coyle D. Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface. iScience 2018; 8:103-125. [PMID: 30296666 PMCID: PMC6174918 DOI: 10.1016/j.isci.2018.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to imagined speech, then processes and decodes these signals to produce a linguistic output in the form of phonemes, words, or sentences. Recent research has shown the potential of neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of semantics and phonology in experimental procedures. As neurolinguistics research findings are beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough understanding of imagined speech, and its relationship with overt speech, must be considered an integral feature of research in this field. With a focus on imagined speech, we provide a review of the most important neurolinguistics research informing the field of DS-BCI and suggest how this research may be utilized to improve current experimental protocols and decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-BCI research, in which neurolinguistics concepts and methods are utilized to aid development of a naturalistic mode of communication.
Collapse
Affiliation(s)
- Ciaran Cooney
- Intelligent Systems Research Centre, Ulster University, Derry, UK.
| | - Raffaella Folli
- Institute for Research in Social Sciences, Ulster University, Jordanstown, UK
| | - Damien Coyle
- Intelligent Systems Research Centre, Ulster University, Derry, UK
| |
Collapse
|
31
|
Neural substrates of internally-based and externally-cued timing: An activation likelihood estimation (ALE) meta-analysis of fMRI studies. Neurosci Biobehav Rev 2018; 96:197-209. [PMID: 30316722 DOI: 10.1016/j.neubiorev.2018.10.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/19/2018] [Accepted: 10/09/2018] [Indexed: 11/22/2022]
Abstract
A dynamic interplay exists between Internally-Based (IBT) and Externally-Cued (ECT) time processing. While IBT processes support the self-generation of context-independent temporal representations, ECT mechanisms allow constructing temporal representations primarily derived from the structure of the sensory environment. We performed an activation likelihood estimation (ALE) meta-analysis on 177 fMRI experiments, from 79 articles, to identify brain areas involved in timing; two individual ALEs tested the hypothesis of a neural segregation between IBT and ECT. The general ALE highlighted a network involving supplementary motor area (SMA), intraparietal sulcus, inferior frontal gyrus (IFG), insula (INS) and basal ganglia. We found evidence of a partial dissociation between IBT and ECT. IBT relies on a subset of areas also involved in ECT, however ECT tasks activate SMA, right IFG, left precentral gyrus and INS in a significantly stronger way. Present results suggest that ECT involves the detection of environmental temporal regularities and their integration with the output of the IBT processing, to generate a representation of time which reflects the temporal metric of the environment.
Collapse
|
32
|
Trempler I, Binder E, El-Sourani N, Schiffler P, Tenberge JG, Schiffer AM, Fink GR, Schubotz RI. Association of grey matter changes with stability and flexibility of prediction in akinetic-rigid Parkinson's disease. Brain Struct Funct 2018; 223:2097-2111. [PMID: 29374792 DOI: 10.1007/s00429-018-1616-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Parkinson's disease (PD), which is caused by degeneration of dopaminergic neurons in the midbrain, results in a heterogeneous clinical picture including cognitive decline. Since the phasic signal of dopamine neurons is proposed to guide learning by signifying mismatches between subjects' expectations and external events, we here investigated whether akinetic-rigid PD patients without mild cognitive impairment exhibit difficulties in dealing with either relevant (requiring flexibility) or irrelevant (requiring stability) prediction errors. Following our previous study on flexibility and stability in prediction (Trempler et al. J Cogn Neurosci 29(2):298-309, 2017), we then assessed whether deficits would correspond with specific structural alterations in dopaminergic regions as well as in inferior frontal cortex, medial prefrontal cortex, and the hippocampus. Twenty-one healthy controls and twenty-one akinetic-rigid PD patients on and off medication performed a task which required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press, whereas sequence omissions had to be ignored. Independent of the disease, midbrain volume was related to a general response bias to unexpected events, whereas right putamen volume correlated with the ability to discriminate between relevant and irrelevant prediction errors. However, patients compared with healthy participants showed deficits in stabilisation against irrelevant prediction errors, associated with thickness of right inferior frontal gyrus and left medial prefrontal cortex. Flexible updating due to relevant prediction errors was also affected in patients compared with controls and associated with right hippocampus volume. Dopaminergic medication influenced behavioural performance across, but not within the patients. Our exploratory study warrants further research on deficient prediction error processing and its structural correlates as a core of cognitive symptoms occurring already in early stages of the disease.
Collapse
Affiliation(s)
- Ima Trempler
- Department of Psychology, Westfälische Wilhelms-Universität, 48149, Münster, Germany. .,Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany. .,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-Universität, Fliednerstr. 21, 48149, Münster, Germany.
| | - Ellen Binder
- Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany.,Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Nadiya El-Sourani
- Department of Psychology, Westfälische Wilhelms-Universität, 48149, Münster, Germany.,Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Patrick Schiffler
- Department of Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Jan-Gerd Tenberge
- Department of Neurology, University Hospital Münster, 48149, Münster, Germany
| | - Anne-Marike Schiffer
- Department of Life Sciences, Division of Psychology, Brunel University, UB8 3PH, Uxbridge, UK
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM3), Cognitive Neuroscience, Research Centre Jülich, 52425, Jülich, Germany.,Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| | - Ricarda I Schubotz
- Department of Psychology, Westfälische Wilhelms-Universität, 48149, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Westfälische Wilhelms-Universität, Fliednerstr. 21, 48149, Münster, Germany.,Department of Neurology, University Hospital Cologne, 50937, Cologne, Germany
| |
Collapse
|
33
|
Rampinini AC, Handjaras G, Leo A, Cecchetti L, Ricciardi E, Marotta G, Pietrini P. Functional and spatial segregation within the inferior frontal and superior temporal cortices during listening, articulation imagery, and production of vowels. Sci Rep 2017; 7:17029. [PMID: 29208951 PMCID: PMC5717247 DOI: 10.1038/s41598-017-17314-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/24/2017] [Indexed: 11/09/2022] Open
Abstract
Classical models of language localize speech perception in the left superior temporal and production in the inferior frontal cortex. Nonetheless, neuropsychological, structural and functional studies have questioned such subdivision, suggesting an interwoven organization of the speech function within these cortices. We tested whether sub-regions within frontal and temporal speech-related areas retain specific phonological representations during both perception and production. Using functional magnetic resonance imaging and multivoxel pattern analysis, we showed functional and spatial segregation across the left fronto-temporal cortex during listening, imagery and production of vowels. In accordance with classical models of language and evidence from functional studies, the inferior frontal and superior temporal cortices discriminated among perceived and produced vowels respectively, also engaging in the non-classical, alternative function - i.e. perception in the inferior frontal and production in the superior temporal cortex. Crucially, though, contiguous and non-overlapping sub-regions within these hubs performed either the classical or non-classical function, the latter also representing non-linguistic sounds (i.e., pure tones). Extending previous results and in line with integration theories, our findings not only demonstrate that sensitivity to speech listening exists in production-related regions and vice versa, but they also suggest that the nature of such interwoven organisation is built upon low-level perception.
Collapse
Affiliation(s)
| | | | - Andrea Leo
- IMT School for Advanced Studies, Lucca, 55100, Italy
| | | | | | - Giovanna Marotta
- Department of Philology, Literature and Linguistics, University of Pisa, Pisa, 56100, Italy
| | | |
Collapse
|
34
|
Pyke AA, Fincham JM, Anderson JR. When math operations have visuospatial meanings versus purely symbolic definitions: Which solving stages and brain regions are affected? Neuroimage 2017; 153:319-335. [DOI: 10.1016/j.neuroimage.2017.03.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/01/2017] [Accepted: 03/20/2017] [Indexed: 11/28/2022] Open
|
35
|
Correlates of Social Exclusion in Social Anxiety Disorder: An fMRI study. Sci Rep 2017; 7:260. [PMID: 28325901 PMCID: PMC5428215 DOI: 10.1038/s41598-017-00310-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/20/2017] [Indexed: 11/17/2022] Open
Abstract
Cognitive models posit that social anxiety disorder (SAD) is maintained by biased information-processing vis-à-vis threat of social exclusion. However, uncertainty still abounds regarding the very nature of this sensitivity to social exclusion in SAD. Especially, brain alterations related to social exclusion have not been explored in SAD. Our primary purpose was thus to determine both the self-report and neural correlates of social exclusion in this population. 23 patients with SAD and 23 matched nonanxious controls played a virtual game (“Cyberball”) during fMRI recording. Participants were first included by other players, then excluded, and finally re-included. At the behavioral level, patients with SAD exhibited significantly higher levels of social exclusion feelings than nonanxious controls. At the brain level, patients with SAD exhibited significantly higher activation within the left inferior frontal gyrus relative to nonanxious controls during the re-inclusion phase. Moreover, self-report of social exclusion correlates with the activity of this cluster among individuals qualifying for SAD diagnosis. Our pattern of findings lends strong support to the notion that SAD may be better portrayed by a poor ability to recover following social exclusion than during social exclusion per se. These findings value social neuroscience as an innovative procedure to gain new insight into the underlying mechanisms of SAD.
Collapse
|
36
|
On the origins of endogenous thoughts. Cogn Process 2017; 18:107-117. [DOI: 10.1007/s10339-016-0786-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/30/2016] [Indexed: 10/20/2022]
|
37
|
Skipper JI, Devlin JT, Lametti DR. The hearing ear is always found close to the speaking tongue: Review of the role of the motor system in speech perception. BRAIN AND LANGUAGE 2017; 164:77-105. [PMID: 27821280 DOI: 10.1016/j.bandl.2016.10.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Does "the motor system" play "a role" in speech perception? If so, where, how, and when? We conducted a systematic review that addresses these questions using both qualitative and quantitative methods. The qualitative review of behavioural, computational modelling, non-human animal, brain damage/disorder, electrical stimulation/recording, and neuroimaging research suggests that distributed brain regions involved in producing speech play specific, dynamic, and contextually determined roles in speech perception. The quantitative review employed region and network based neuroimaging meta-analyses and a novel text mining method to describe relative contributions of nodes in distributed brain networks. Supporting the qualitative review, results show a specific functional correspondence between regions involved in non-linguistic movement of the articulators, covertly and overtly producing speech, and the perception of both nonword and word sounds. This distributed set of cortical and subcortical speech production regions are ubiquitously active and form multiple networks whose topologies dynamically change with listening context. Results are inconsistent with motor and acoustic only models of speech perception and classical and contemporary dual-stream models of the organization of language and the brain. Instead, results are more consistent with complex network models in which multiple speech production related networks and subnetworks dynamically self-organize to constrain interpretation of indeterminant acoustic patterns as listening context requires.
Collapse
Affiliation(s)
- Jeremy I Skipper
- Experimental Psychology, University College London, United Kingdom.
| | - Joseph T Devlin
- Experimental Psychology, University College London, United Kingdom
| | - Daniel R Lametti
- Experimental Psychology, University College London, United Kingdom; Department of Experimental Psychology, University of Oxford, United Kingdom
| |
Collapse
|
38
|
Morawetz C, Bode S, Derntl B, Heekeren HR. The effect of strategies, goals and stimulus material on the neural mechanisms of emotion regulation: A meta-analysis of fMRI studies. Neurosci Biobehav Rev 2017; 72:111-128. [DOI: 10.1016/j.neubiorev.2016.11.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 12/18/2022]
|
39
|
Sorger B, Kamp T, Weiskopf N, Peters JC, Goebel R. When the Brain Takes 'BOLD' Steps: Real-Time fMRI Neurofeedback Can Further Enhance the Ability to Gradually Self-regulate Regional Brain Activation. Neuroscience 2016; 378:71-88. [PMID: 27659118 PMCID: PMC5953410 DOI: 10.1016/j.neuroscience.2016.09.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/07/2023]
Abstract
Humans are able to gradually self-regulate regional brain activation by applying cognitive strategies. Providing rtfMRI neurofeedback can enhance the gradual self-regulation ability. Findings are generalizable to various mental tasks and clinical MR field strengths. Novel parametric activation paradigm enriches spectrum of rtfMRI-neurofeedback and BCI methodology.
Brain-computer interfaces (BCIs) based on real-time functional magnetic resonance imaging (rtfMRI) are currently explored in the context of developing alternative (motor-independent) communication and control means for the severely disabled. In such BCI systems, the user encodes a particular intention (e.g., an answer to a question or an intended action) by evoking specific mental activity resulting in a distinct brain state that can be decoded from fMRI activation. One goal in this context is to increase the degrees of freedom in encoding different intentions, i.e., to allow the BCI user to choose from as many options as possible. Recently, the ability to voluntarily modulate spatial and/or temporal blood oxygenation level-dependent (BOLD)-signal features has been explored implementing different mental tasks and/or different encoding time intervals, respectively. Our two-session fMRI feasibility study systematically investigated for the first time the possibility of using magnitudinal BOLD-signal features for intention encoding. Particularly, in our novel paradigm, participants (n = 10) were asked to alternately self-regulate their regional brain-activation level to 30%, 60% or 90% of their maximal capacity by applying a selected activation strategy (i.e., performing a mental task, e.g., inner speech) and modulation strategies (e.g., using different speech rates) suggested by the experimenters. In a second step, we tested the hypothesis that the additional availability of feedback information on the current BOLD-signal level within a region of interest improves the gradual-self regulation performance. Therefore, participants were provided with neurofeedback in one of the two fMRI sessions. Our results show that the majority of the participants were able to gradually self-regulate regional brain activation to at least two different target levels even in the absence of neurofeedback. When provided with continuous feedback on their current BOLD-signal level, most participants further enhanced their gradual self-regulation ability. Our findings were observed across a wide variety of mental tasks and across clinical MR field strengths (i.e., at 1.5 T and 3 T), indicating that these findings are robust and can be generalized across mental tasks and scanner types. The suggested novel parametric activation paradigm enriches the spectrum of current rtfMRI-neurofeedback and BCI methodology and has considerable potential for fundamental and clinical neuroscience applications.
Collapse
Affiliation(s)
- Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands.
| | - Tabea Kamp
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Judith Caroline Peters
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Maastricht Brain Imaging Center (M-BIC), Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, An institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| |
Collapse
|
40
|
Trempler I, Schiffer AM, El-Sourani N, Ahlheim C, Fink GR, Schubotz RI. Frontostriatal Contribution to the Interplay of Flexibility and Stability in Serial Prediction. J Cogn Neurosci 2016; 29:298-309. [PMID: 27626228 DOI: 10.1162/jocn_a_01040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Surprising events may be relevant or irrelevant for behavior, requiring either flexible adjustment or stabilization of our model of the world and according response strategies. Cognitive flexibility and stability in response to environmental demands have been described as separable cognitive states, associated with activity of striatal and lateral prefrontal regions, respectively. It so far remains unclear, however, whether these two states act in an antagonistic fashion and which neural mechanisms mediate the selection of respective responses, on the one hand, and a transition between these states, on the other. In this study, we tested whether the functional dichotomy between striatal and prefrontal activity applies for the separate functions of updating (in response to changes in the environment, i.e., switches) and shielding (in response to chance occurrences of events violating expectations, i.e., drifts) of current predictions. We measured brain activity using fMRI while 20 healthy participants performed a task that required to serially predict upcoming items. Switches between predictable sequences had to be indicated via button press while sequence omissions (drifts) had to be ignored. We further varied the probability of switches and drifts to assess the neural network supporting the transition between flexible and stable cognitive states as a function of recent performance history in response to environmental demands. Flexible switching between models was associated with activation in medial pFC (BA 9 and BA 10), whereas stable maintenance of the internal model corresponded to activation in the lateral pFC (BA 6 and inferior frontal gyrus). Our findings extend previous studies on the interplay of flexibility and stability, suggesting that different prefrontal regions are activated by different types of prediction errors, dependent on their behavioral requirements. Furthermore, we found that striatal activation in response to switches and drifts was modulated by participants' successful behavior toward these events, suggesting the striatum to be responsible for response selections following unpredicted stimuli. Finally, we observed that the dopaminergic midbrain modulates the transition between different cognitive states, thresholded by participants' individual performance history in response to temporal environmental demands.
Collapse
Affiliation(s)
- Ima Trempler
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | | | - Nadiya El-Sourani
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne
| | - Christiane Ahlheim
- Westfälische Wilhelms-Universität, Münster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| | | | - Ricarda I Schubotz
- Westfälische Wilhelms-Universität, Münster, Germany.,University Hospital Cologne.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany
| |
Collapse
|
41
|
Hayward W, Snider SF, Luta G, Friedman RB, Turkeltaub PE. Objective support for subjective reports of successful inner speech in two people with aphasia. Cogn Neuropsychol 2016; 33:299-314. [PMID: 27469037 DOI: 10.1080/02643294.2016.1192998] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
People with aphasia frequently report being able to say a word correctly in their heads, even if they are unable to say that word aloud. It is difficult to know what is meant by these reports of "successful inner speech". We probe the experience of successful inner speech in two people with aphasia. We show that these reports are associated with correct overt speech and phonologically related nonword errors, that they relate to word characteristics associated with ease of lexical access but not ease of production, and that they predict whether or not individual words are relearned during anomia treatment. These findings suggest that reports of successful inner speech are meaningful and may be useful to study self-monitoring in aphasia, to better understand anomia, and to predict treatment outcomes. Ultimately, the study of inner speech in people with aphasia could provide critical insights that inform our understanding of normal language.
Collapse
Affiliation(s)
- William Hayward
- a Department of Neurology , Georgetown University , Washington , DC , USA
| | - Sarah F Snider
- a Department of Neurology , Georgetown University , Washington , DC , USA
| | - George Luta
- b Department of Biostatistics, Bioinformatics, and Biomathematics , Georgetown University , Washington , DC , USA
| | - Rhonda B Friedman
- a Department of Neurology , Georgetown University , Washington , DC , USA
| | - Peter E Turkeltaub
- a Department of Neurology , Georgetown University , Washington , DC , USA.,c Research Division , MedStar National Rehabilitation Hospital , Washington , DC , USA
| |
Collapse
|
42
|
Hurlburt RT, Alderson-Day B, Kühn S, Fernyhough C. Exploring the Ecological Validity of Thinking on Demand: Neural Correlates of Elicited vs. Spontaneously Occurring Inner Speech. PLoS One 2016; 11:e0147932. [PMID: 26845028 PMCID: PMC4741522 DOI: 10.1371/journal.pone.0147932] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/11/2016] [Indexed: 12/03/2022] Open
Abstract
Psychology and cognitive neuroscience often use standardized tasks to elicit particular experiences. We explore whether elicited experiences are similar to spontaneous experiences. In an MRI scanner, five participants performed tasks designed to elicit inner speech (covertly repeating experimenter-supplied words), inner seeing, inner hearing, feeling, and sensing. Then, in their natural environments, participants were trained in four days of random-beep-triggered Descriptive Experience Sampling (DES). They subsequently returned to the scanner for nine 25-min resting-state sessions; during each they received four DES beeps and described those moments (9 × 4 = 36 moments per participant) of spontaneously occurring experience. Enough of those moments included spontaneous inner speech to allow us to compare brain activation during spontaneous inner speech with what we had found in task-elicited inner speech. ROI analysis was used to compare activation in two relevant areas (Heschl’s gyrus and left inferior frontal gyrus). Task-elicited inner speech was associated with decreased activation in Heschl’s gyrus and increased activation in left inferior frontal gyrus. However, spontaneous inner speech had the opposite effect in Heschl’s gyrus and no significant effect in left inferior frontal gyrus. This study demonstrates how spontaneous phenomena can be investigated in MRI and calls into question the assumption that task-created phenomena are often neurophysiologically and psychologically similar to spontaneously occurring phenomena.
Collapse
Affiliation(s)
- Russell T. Hurlburt
- Psychology, University of Nevada Las Vegas, Las Vegas, Nevada, United States of America
- * E-mail:
| | | | - Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | |
Collapse
|
43
|
Alderson-Day B, Fernyhough C. Inner Speech: Development, Cognitive Functions, Phenomenology, and Neurobiology. Psychol Bull 2015; 141:931-65. [PMID: 26011789 PMCID: PMC4538954 DOI: 10.1037/bul0000021] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 03/19/2015] [Accepted: 04/04/2015] [Indexed: 12/17/2022]
Abstract
Inner speech-also known as covert speech or verbal thinking-has been implicated in theories of cognitive development, speech monitoring, executive function, and psychopathology. Despite a growing body of knowledge on its phenomenology, development, and function, approaches to the scientific study of inner speech have remained diffuse and largely unintegrated. This review examines prominent theoretical approaches to inner speech and methodological challenges in its study, before reviewing current evidence on inner speech in children and adults from both typical and atypical populations. We conclude by considering prospects for an integrated cognitive science of inner speech, and present a multicomponent model of the phenomenon informed by developmental, cognitive, and psycholinguistic considerations. Despite its variability among individuals and across the life span, inner speech appears to perform significant functions in human cognition, which in some cases reflect its developmental origins and its sharing of resources with other cognitive processes.
Collapse
|
44
|
Alderson-Day B, Weis S, McCarthy-Jones S, Moseley P, Smailes D, Fernyhough C. The brain's conversation with itself: neural substrates of dialogic inner speech. Soc Cogn Affect Neurosci 2015. [PMID: 26197805 PMCID: PMC4692319 DOI: 10.1093/scan/nsv094] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inner speech has been implicated in important aspects of normal and atypical cognition, including the development of auditory hallucinations. Studies to date have focused on covert speech elicited by simple word or sentence repetition, while ignoring richer and arguably more psychologically significant varieties of inner speech. This study compared neural activation for inner speech involving conversations (‘dialogic inner speech’) with single-speaker scenarios (‘monologic inner speech’). Inner speech-related activation differences were then compared with activations relating to Theory-of-Mind (ToM) reasoning and visual perspective-taking in a conjunction design. Generation of dialogic (compared with monologic) scenarios was associated with a widespread bilateral network including left and right superior temporal gyri, precuneus, posterior cingulate and left inferior and medial frontal gyri. Activation associated with dialogic scenarios and ToM reasoning overlapped in areas of right posterior temporal cortex previously linked to mental state representation. Implications for understanding verbal cognition in typical and atypical populations are discussed.
Collapse
Affiliation(s)
| | - Susanne Weis
- Department of Psychology, Durham University, Durham, UK
| | - Simon McCarthy-Jones
- Department of Cognitive Science, Macquarie University, Australia, Department of Psychiatry, Trinity College Dublin, Ireland, and
| | - Peter Moseley
- Department of Psychology, Durham University, Durham, UK, School of Psychology, University of Central Lancashire, Preston, UK
| | - David Smailes
- Department of Psychology, Durham University, Durham, UK
| | | |
Collapse
|
45
|
Payne H, Gutierrez-Sigut E, Subik J, Woll B, MacSweeney M. Stimulus rate increases lateralisation in linguistic and non-linguistic tasks measured by functional transcranial Doppler sonography. Neuropsychologia 2015; 72:59-69. [PMID: 25908491 PMCID: PMC4922413 DOI: 10.1016/j.neuropsychologia.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/30/2015] [Accepted: 04/17/2015] [Indexed: 01/12/2023]
Abstract
Studies to date that have used fTCD to examine language lateralisation have predominantly used word or sentence generation tasks. Here we sought to further assess the sensitivity of fTCD to language lateralisation by using a metalinguistic task which does not involve novel speech generation: rhyme judgement in response to written words. Line array judgement was included as a non-linguistic visuospatial task to examine the relative strength of left and right hemisphere lateralisation within the same individuals when output requirements of the tasks are matched. These externally paced tasks allowed us to manipulate the number of stimuli presented to participants and thus assess the influence of pace on the strength of lateralisation. In Experiment 1, 28 right-handed adults participated in rhyme and line array judgement tasks and showed reliable left and right lateralisation at the group level for each task, respectively. In Experiment 2 we increased the pace of the tasks, presenting more stimuli per trial. We measured laterality indices (LIs) from 18 participants who performed both linguistic and non-linguistic judgement tasks during the original 'slow' presentation rate (5 judgements per trial) and a fast presentation rate (10 judgements per trial). The increase in pace led to increased strength of lateralisation in both the rhyme and line conditions. Our results demonstrate for the first time that fTCD is sensitive to the left lateralised processes involved in metalinguistic judgements. Our data also suggest that changes in the strength of language lateralisation, as measured by fTCD, are not driven by articulatory demands alone. The current results suggest that at least one aspect of task difficulty, the pace of stimulus presentation, influences the strength of lateralisation during both linguistic and non-linguistic tasks.
Collapse
Affiliation(s)
- Heather Payne
- Deafness, Cognition & Language Research Centre, University College London, 49 Gordon Square, London WC1H 0PD, United Kingdom; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom
| | - Eva Gutierrez-Sigut
- Deafness, Cognition & Language Research Centre, University College London, 49 Gordon Square, London WC1H 0PD, United Kingdom
| | - Joanna Subik
- Deafness, Cognition & Language Research Centre, University College London, 49 Gordon Square, London WC1H 0PD, United Kingdom
| | - Bencie Woll
- Deafness, Cognition & Language Research Centre, University College London, 49 Gordon Square, London WC1H 0PD, United Kingdom
| | - Mairéad MacSweeney
- Deafness, Cognition & Language Research Centre, University College London, 49 Gordon Square, London WC1H 0PD, United Kingdom; Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom.
| |
Collapse
|
46
|
Abstract
Starting with the work of Cajal more than 100 years ago, neuroscience has sought to understand how the cells of the brain give rise to cognitive functions. How far has neuroscience progressed in this endeavor? This Perspective assesses progress in elucidating five basic brain processes: visual recognition, long-term memory, short-term memory, action selection, and motor control. Each of these processes entails several levels of analysis: the behavioral properties, the underlying computational algorithm, and the cellular/network mechanisms that implement that algorithm. At this juncture, while many questions remain unanswered, achievements in several areas of research have made it possible to relate specific properties of brain networks to cognitive functions. What has been learned reveals, at least in rough outline, how cognitive processes can be an emergent property of neurons and their connections.
Collapse
Affiliation(s)
- John Lisman
- Biology Department and Volen Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
47
|
Skipper JI. Echoes of the spoken past: how auditory cortex hears context during speech perception. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130297. [PMID: 25092665 PMCID: PMC4123676 DOI: 10.1098/rstb.2013.0297] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
What do we hear when someone speaks and what does auditory cortex (AC) do with that sound? Given how meaningful speech is, it might be hypothesized that AC is most active when other people talk so that their productions get decoded. Here, neuroimaging meta-analyses show the opposite: AC is least active and sometimes deactivated when participants listened to meaningful speech compared to less meaningful sounds. Results are explained by an active hypothesis-and-test mechanism where speech production (SP) regions are neurally re-used to predict auditory objects associated with available context. By this model, more AC activity for less meaningful sounds occurs because predictions are less successful from context, requiring further hypotheses be tested. This also explains the large overlap of AC co-activity for less meaningful sounds with meta-analyses of SP. An experiment showed a similar pattern of results for non-verbal context. Specifically, words produced less activity in AC and SP regions when preceded by co-speech gestures that visually described those words compared to those words without gestures. Results collectively suggest that what we ‘hear’ during real-world speech perception may come more from the brain than our ears and that the function of AC is to confirm or deny internal predictions about the identity of sounds.
Collapse
Affiliation(s)
- Jeremy I Skipper
- Department of Cognitive, Perceptual and Brain Sciences, Institute for Multimodal Communication, University College London, London, WC1H 0AP, UK
| |
Collapse
|
48
|
Fegen D, Buchsbaum BR, D'Esposito M. The effect of rehearsal rate and memory load on verbal working memory. Neuroimage 2015; 105:120-31. [PMID: 25467303 PMCID: PMC4267698 DOI: 10.1016/j.neuroimage.2014.10.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/17/2014] [Accepted: 10/14/2014] [Indexed: 12/22/2022] Open
Abstract
While many neuroimaging studies have investigated verbal working memory (WM) by manipulating memory load, the subvocal rehearsal rate at these various memory loads has generally been left uncontrolled. Therefore, the goal of this study was to investigate how mnemonic load and the rate of subvocal rehearsal modulate patterns of activity in the core neural circuits underlying verbal working memory. Using fMRI in healthy subjects, we orthogonally manipulated subvocal rehearsal rate and memory load in a verbal WM task with long 45-s delay periods. We found that middle frontal gyrus (MFG) and superior parietal lobule (SPL) exhibited memory load effects primarily early in the delay period and did not exhibit rehearsal rate effects. In contrast, we found that inferior frontal gyrus (IFG), premotor cortex (PM) and Sylvian-parietal-temporal region (area Spt) exhibited approximately linear memory load and rehearsal rate effects, with rehearsal rate effects lasting through the entire delay period. These results indicate that IFG, PM and area Spt comprise the core articulatory rehearsal areas involved in verbal WM, while MFG and SPL are recruited in a general supervisory role once a memory load threshold in the core rehearsal network has been exceeded.
Collapse
Affiliation(s)
- David Fegen
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Bradley R Buchsbaum
- Rotman Research Institute, Baycrest Hospital, Toronto, ON M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, ON M6A 2E1, Canada
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Psychology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Kühn S, Fernyhough C, Alderson-Day B, Hurlburt RT. Inner experience in the scanner: can high fidelity apprehensions of inner experience be integrated with fMRI? Front Psychol 2014; 5:1393. [PMID: 25538649 PMCID: PMC4260673 DOI: 10.3389/fpsyg.2014.01393] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/14/2014] [Indexed: 11/17/2022] Open
Abstract
To provide full accounts of human experience and behavior, research in cognitive neuroscience must be linked to inner experience, but introspective reports of inner experience have often been found to be unreliable. The present case study aimed at providing proof of principle that introspection using one method, descriptive experience sampling (DES), can be reliably integrated with fMRI. A participant was trained in the DES method, followed by nine sessions of sampling within an MRI scanner. During moments where the DES interview revealed ongoing inner speaking, fMRI data reliably showed activation in classic speech processing areas including left inferior frontal gyrus. Further, the fMRI data validated the participant’s DES observations of the experiential distinction between inner speaking and innerly hearing her own voice. These results highlight the precision and validity of the DES method as a technique of exploring inner experience and the utility of combining such methods with fMRI.
Collapse
Affiliation(s)
- Simone Kühn
- Center for Lifespan Psychology, Max Planck Institute for Human Development Berlin, Germany
| | | | | | - Russell T Hurlburt
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV, USA
| |
Collapse
|
50
|
Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proc Natl Acad Sci U S A 2014; 111:E4687-96. [PMID: 25267658 DOI: 10.1073/pnas.1323812111] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroimaging studies of language have typically focused on either production or comprehension of single speech utterances such as syllables, words, or sentences. In this study we used a new approach to functional MRI acquisition and analysis to characterize the neural responses during production and comprehension of complex real-life speech. First, using a time-warp based intrasubject correlation method, we identified all areas that are reliably activated in the brains of speakers telling a 15-min-long narrative. Next, we identified areas that are reliably activated in the brains of listeners as they comprehended that same narrative. This allowed us to identify networks of brain regions specific to production and comprehension, as well as those that are shared between the two processes. The results indicate that production of a real-life narrative is not localized to the left hemisphere but recruits an extensive bilateral network, which overlaps extensively with the comprehension system. Moreover, by directly comparing the neural activity time courses during production and comprehension of the same narrative we were able to identify not only the spatial overlap of activity but also areas in which the neural activity is coupled across the speaker's and listener's brains during production and comprehension of the same narrative. We demonstrate widespread bilateral coupling between production- and comprehension-related processing within both linguistic and nonlinguistic areas, exposing the surprising extent of shared processes across the two systems.
Collapse
|