1
|
Santisteban MM, Iadecola C. The pathobiology of neurovascular aging. Neuron 2025; 113:49-70. [PMID: 39788087 DOI: 10.1016/j.neuron.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
As global life expectancy increases, age-related brain diseases such as stroke and dementia have become leading causes of death and disability. The aging of the neurovasculature is a critical determinant of brain aging and disease risk. Neurovascular cells are particularly vulnerable to aging, which induces significant structural and functional changes in arterial, venous, and lymphatic vessels. Consequently, neurovascular aging impairs oxygen and glucose delivery to active brain regions, disrupts endothelial transport mechanisms essential for blood-brain exchange, compromises proteostasis by reducing the clearance of potentially toxic proteins, weakens immune surveillance and privilege, and deprives the brain of key growth factors required for repair and renewal. In this review, we examine the effects of neurovascular aging on brain function and its role in stroke, vascular cognitive impairment, and Alzheimer's disease. Finally, we discuss key unanswered questions that must be addressed to develop neurovascular strategies aimed at promoting healthy brain aging.
Collapse
Affiliation(s)
- Monica M Santisteban
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Fesharaki NJ, Taylor A, Mosby K, Li R, Kim JH, Ress D. Global Impact of Aging on the Hemodynamic Response Function in the Gray Matter of Human Cerebral Cortex. Hum Brain Mapp 2024; 45:e70100. [PMID: 39692126 PMCID: PMC11653092 DOI: 10.1002/hbm.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/20/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI cognitive aging studies. In this study, use was made of a multisensory task to evoke the HRF in ~87% of cerebral cortex in cognitively intact adults with ages ranging from 22 to 75 years. This widespread activation enabled us to investigate age trends in the spatial distributions of HRF characteristics within the majority of cortical gray matter, which we termed as global age trends. The task evoked both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. We found significant global age trends in the distributions of HRF parameters in terms of both amplitudes (e.g., peak amplitude and contrast-to-noise ratio) and temporal dynamics (e.g., full-width-at-half-maximum). Our findings offer insight into how age-dependent changes affect neurovascular coupling and show promise for use of HRF parameters as non-invasive indicators for age-related pathology.
Collapse
Affiliation(s)
- Nooshin J. Fesharaki
- Department of NeurosurgeryUniversity of Texas Health Science CenterHoustonTexasUSA
- Department of Neuroscience, High Resolution Brain Imaging LabBaylor College of MedicineHoustonTexasUSA
| | - Amanda Taylor
- Department of Neuroscience, High Resolution Brain Imaging LabBaylor College of MedicineHoustonTexasUSA
| | - Keisjon Mosby
- Department of Neuroscience, High Resolution Brain Imaging LabBaylor College of MedicineHoustonTexasUSA
| | - Ruosha Li
- Department of NeurosurgeryUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Jung Hwan Kim
- Department of NeurosurgeryUniversity of Texas Health Science CenterHoustonTexasUSA
| | - David Ress
- Department of Neuroscience, High Resolution Brain Imaging LabBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
3
|
Padawer-Curry JA, Krentzman OJ, Kuo CC, Wang X, Bice AR, Nicol GE, Snyder AZ, Siegel JS, McCall JG, Bauer AQ. Psychedelic 5-HT2A receptor agonism: neuronal signatures and altered neurovascular coupling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.23.559145. [PMID: 39605498 PMCID: PMC11601243 DOI: 10.1101/2023.09.23.559145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Psychedelics hold therapeutic promise for mood disorders due to rapid, sustained results. Human neuroimaging studies have reported dramatic serotonin-2A receptor-(5-HT2AR)-dependent changes in functional brain reorganization that presumably reflect neuromodulation. However, the potent vasoactive effects of serotonin have been overlooked. We found psilocybin-mediated alterations to fMRI-HRFs in humans, suggesting potentially altered NVC. To assess the neuronal, hemodynamic, and neurovascular coupling (NVC) effects of the psychedelic 5-HT2AR agonist, 2,5-Dimethoxy-4-iodoamphetamine (DOI), wide-field optical imaging (WFOI) was used in awake Thy1-jRGECO1a mice during stimulus-evoked and resting-state conditions. While DOI partially altered tasked-based NVC, more pronounced NVC alterations occurred under resting-state conditions and were strongest in association regions. Further, calcium and hemodynamic activity reported different accounts of RSFC changes under DOI. Co-administration of DOI and the 5-HT2AR antagonist, MDL100907, reversed many of these effects. Dissociation between neuronal and hemodynamic signals emphasizes a need to consider neurovascular effects of psychedelics when interpreting blood-oxygenation-dependent neuroimaging measures.
Collapse
|
4
|
Choudhary S, Kumar V, Sharma K, Gour A, Sahrawat A, Jotshi A, Manhas D, Nandi U, Bharate SB, Ahmed Z, Kumar A. Crocetin Delays Brain and Body Aging by Increasing Cellular Energy Levels in Aged C57BL/6J Mice. ACS Pharmacol Transl Sci 2024; 7:3017-3033. [PMID: 39416964 PMCID: PMC11475333 DOI: 10.1021/acsptsci.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 10/19/2024]
Abstract
Aging is usually accompanied by mitochondrial dysfunction, reduced energy levels, and cell death in the brain and other tissues. Mitochondria play a crucial role in maintaining cellular energy through oxidative phosphorylation (OXPHOS). However, OXPHOS is impaired as the mitochondrial oxygen supply decreases with age. We explored whether pharmacologically increased oxygen diffusion by crocetin can restore OXPHOS and help delay the aging of the brain and other vital organs. We found that aged mice treated with crocetin for four months displayed significantly improved memory behavior, neuromuscular coordination, and ATP and NAD+ levels in the brain and other vital organs, leading to an increased median life span. The transcriptomic analysis of hippocampi from crocetin-treated mice revealed that enhanced brain energy level was caused by the upregulation of genes linked to OXPHOS, and their expression was close to that in young mice. The chronic treatment of aged astrocytes also showed improved mitochondrial membrane potential and energy state of the cells. Moreover, chronic treatment with crocetin did not cause any oxidative stress. Our data suggest that restoring OXPHOS and the normal energy state of the cell can delay aging and enhance longevity. Therefore, molecules such as crocetin should be further explored to treat age-related diseases.
Collapse
Affiliation(s)
- Sushil Choudhary
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vishnu Kumar
- Institute
of Anatomy and Cell Biology, Justus Liebig
University of Giessen, Giessen 35390, Germany
| | - Kuhu Sharma
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ashish Sahrawat
- Molecular
Biophysics Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Anshika Jotshi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Diksha Manhas
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Bose
Institute, Unified Academic Campus, Kolkata 700091, India
| | - Sandip B. Bharate
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
- Natural Product
and Medicinal Chemistry Division, CSIR-Indian
Institute of Chemical Technology, Hyderabad 500007, India
| | - Zabeer Ahmed
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Ajay Kumar
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Jammu 180016, India
- Academy
of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
5
|
Tetereva A, Pat N. Brain age has limited utility as a biomarker for capturing fluid cognition in older individuals. eLife 2024; 12:RP87297. [PMID: 38869938 PMCID: PMC11175613 DOI: 10.7554/elife.87297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
One well-known biomarker candidate that supposedly helps capture fluid cognition is Brain Age, or a predicted value based on machine-learning models built to predict chronological age from brain MRI. To formally evaluate the utility of Brain Age for capturing fluid cognition, we built 26 age-prediction models for Brain Age based on different combinations of MRI modalities, using the Human Connectome Project in Aging (n=504, 36-100 years old). First, based on commonality analyses, we found a large overlap between Brain Age and chronological age: Brain Age could uniquely add only around 1.6% in explaining variation in fluid cognition over and above chronological age. Second, the age-prediction models that performed better at predicting chronological age did NOT necessarily create better Brain Age for capturing fluid cognition over and above chronological age. Instead, better-performing age-prediction models created Brain Age that overlapped larger with chronological age, up to around 29% out of 32%, in explaining fluid cognition. Third, Brain Age missed around 11% of the total variation in fluid cognition that could have been explained by the brain variation. That is, directly predicting fluid cognition from brain MRI data (instead of relying on Brain Age and chronological age) could lead to around a 1/3-time improvement of the total variation explained. Accordingly, we demonstrated the limited utility of Brain Age as a biomarker for fluid cognition and made some suggestions to ensure the utility of Brain Age in explaining fluid cognition and other phenotypes of interest.
Collapse
Affiliation(s)
- Alina Tetereva
- Department of Psychology, University of OtagoDunedinNew Zealand
| | - Narun Pat
- Department of Psychology, University of OtagoDunedinNew Zealand
| |
Collapse
|
6
|
Yu J. Age-related decrease in inter-subject similarity of cortical morphology and task and resting-state functional connectivity. GeroScience 2024; 46:697-711. [PMID: 38006514 PMCID: PMC10828367 DOI: 10.1007/s11357-023-01008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/02/2023] [Indexed: 11/27/2023] Open
Abstract
"All old people are the same" is an unfortunate characterization of the perceived homogeneity in the older age group. This study attempts to debunk this myth in the context of the structural and functional brain. Within older relative to younger age groups, individuals are hypothesized to be more dissimilar to their similar-aged peers-thus demonstrating an age-related divergence. This study analyzed functional connectivity (FC) during multiple fMRI paradigms (2 rest + 5 tasks) and cortical thickness (CT) data from two lifespan datasets (Ntotal = 1161). On average, between-subject FC/CT correlations became weaker in the older age groups. Further analyses ruled out the possibility that more rapid age-related changes in older brains have increased the dissimilarity in these older age groups. Brain-wide analyses revealed significant effects of age-related divergence across most of the brain. Finally, CT similarity between a dyad significantly predicted their FC similarity across multiple fMRI task paradigms-demonstrating a close relationship between brain structure and function even at the between-dyad level. Contrary to the myth that "all old people are the same," these findings suggest young people are more similar to each other. This study presents major implications in the study of neural fingerprinting and brain-behavior associations.
Collapse
Affiliation(s)
- Junhong Yu
- Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
7
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
8
|
Fesharaki NJ, Taylor A, Mosby K, Kim JH, Ress D. Global effects of aging on the hemodynamic response function in the human brain. RESEARCH SQUARE 2023:rs.3.rs-3299293. [PMID: 37720046 PMCID: PMC10503846 DOI: 10.21203/rs.3.rs-3299293/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
In functional magnetic resonance imaging, the hemodynamic response function (HRF) is a transient, stereotypical response to local changes in cerebral hemodynamics and oxygen metabolism due to briefly (< 4 s) evoked neural activity. Accordingly, the HRF is often used as an impulse response with the assumption of linearity in data analysis. In cognitive aging studies, it has been very common to interpret differences in brain activation as age-related changes in neural activity. Contrary to this assumption, however, evidence has accrued that normal aging may also significantly affect the vasculature, thereby affecting cerebral hemodynamics and metabolism, confounding interpretation of fMRI aging studies. In this study, use was made of a multisensory stimulus to evoke the HRF in ~ 87% of cerebral cortex in cognitively intact adults with ages ranging from 22-75 years. The stimulus evokes both positive and negative HRFs, which were characterized using model-free parameters in native-space coordinates. Results showed significant age trends in HRF parameter distributions in terms of both amplitudes (e.g., peak amplitude and CNR) and temporal dynamics (e.g., full-width-at-half-maximum). This work sets the stage for using HRF methods as a biomarker for age-related pathology.
Collapse
|
9
|
Biondetti E, Cho J, Lee H. Cerebral oxygen metabolism from MRI susceptibility. Neuroimage 2023; 276:120189. [PMID: 37230206 PMCID: PMC10335841 DOI: 10.1016/j.neuroimage.2023.120189] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/26/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
This article provides an overview of MRI methods exploiting magnetic susceptibility properties of blood to assess cerebral oxygen metabolism, including the tissue oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2). The first section is devoted to describing blood magnetic susceptibility and its effect on the MRI signal. Blood circulating in the vasculature can have diamagnetic (oxyhemoglobin) or paramagnetic properties (deoxyhemoglobin). The overall balance between oxygenated and deoxygenated hemoglobin determines the induced magnetic field which, in turn, modulates the transverse relaxation decay of the MRI signal via additional phase accumulation. The following sections of this review then illustrate the principles underpinning susceptibility-based techniques for quantifying OEF and CMRO2. Here, it is detailed whether these techniques provide global (OxFlow) or local (Quantitative Susceptibility Mapping - QSM, calibrated BOLD - cBOLD, quantitative BOLD - qBOLD, QSM+qBOLD) measurements of OEF or CMRO2, and what signal components (magnitude or phase) and tissue pools they consider (intravascular or extravascular). Validations studies and potential limitations of each method are also described. The latter include (but are not limited to) challenges in the experimental setup, the accuracy of signal modeling, and assumptions on the measured signal. The last section outlines the clinical uses of these techniques in healthy aging and neurodegenerative diseases and contextualizes these reports relative to results from gold-standard PET.
Collapse
Affiliation(s)
- Emma Biondetti
- Department of Neuroscience, Imaging and Clinical Sciences, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, "D'Annunzio University" of Chieti-Pescara, Chieti, Italy
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, New York, USA
| | - Hyunyeol Lee
- School of Electronic and Electrical Engineering, Kyungpook National University, Daegu, Republic of Korea; Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
van Dijk SE, Lak J, Drenth N, Hafkemeijer A, Rombouts SARB, van der Grond J, van Rooden S. Aging Effect, Reproducibility, and Test-Retest Reliability of a New Cerebral Amyloid Angiopathy MRI Severity Marker-Cerebrovascular Reactivity to Visual Stimulation. J Magn Reson Imaging 2023; 57:909-915. [PMID: 35876045 DOI: 10.1002/jmri.28362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Decreased cerebrovascular reactivity, measured as changes in blood-oxygen-level-dependent (BOLD) signal, is a potential new cerebral amyloid angiopathy (CAA) severity marker. Before clinical application, the effect of aging on BOLD parameters, and reproducibility and test-retest reliability of these parameters should be assessed. PURPOSE Assess the effect of healthy aging on cerebrovascular reactivity (BOLD amplitude, time to peak, and time to baseline). And determine reproducibility and test-retest reliability of these parameters. STUDY TYPE Prospective-observational. POPULATION Eighty-six healthy adults (mean age 56 years, 55% female), 10 presymptomatic D-CAA mutation carriers (mean age 34 years, 70% female), and 10 symptomatic D-CAA mutation carriers (mean age 54 years, 70% female). FIELD STRENGTH/SEQUENCE 3-T, three-dimensional (3D) T1-weighted MRI and gradient echo BOLD fMRI. ASSESSMENT To assess test-retest reliability of BOLD parameters, i.e. BOLD amplitude, time to peak, and time to baseline, BOLD fMRI scans were repeated three times immediately after each other, in both controls and mutation carriers. To assess reproducibility, BOLD fMRI scans were repeated with a 3-week interval for each subject. STATISTICAL TESTS Linear regression analyses and two-way mixed absolute agreement intra-class correlation approach. RESULTS Healthy aging was associated with decreased BOLD amplitude (β = -0.711) and prolonged time to baseline (β = 0.236) in the visual cortex after visual stimulation Reproducibility of BOLD amplitude was excellent (ICC 0.940) in the subgroup of healthy adults. Test-retest reliability for BOLD amplitude was excellent in healthy adults (ICC 0.856-0.910) and presymptomatic D-CAA mutation carriers (ICC 0.959-0.981). In symptomatic D-CAA mutation carriers, test-retest reliability was poor for all parameters (ICCs < 0.5). DATA CONCLUSION Healthy aging is associated with decreased cerebrovascular reactivity, measured by changes in BOLD response to visual stimulation. The BOLD amplitude appears to be a robust measurement in healthy adults and presymptomatic D-CAA mutation carriers, but not in symptomatic D-CAA mutation carriers.
Collapse
Affiliation(s)
- Suzanne E van Dijk
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessie Lak
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadieh Drenth
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anne Hafkemeijer
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Serge A R B Rombouts
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanneke van Rooden
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Kim JH, De Asis-Cruz J, Cook KM, Limperopoulos C. Gestational age-related changes in the fetal functional connectome: in utero evidence for the global signal. Cereb Cortex 2023; 33:2302-2314. [PMID: 35641159 PMCID: PMC9977380 DOI: 10.1093/cercor/bhac209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
The human brain begins to develop in the third gestational week and rapidly grows and matures over the course of pregnancy. Compared to fetal structural neurodevelopment, less is known about emerging functional connectivity in utero. Here, we investigated gestational age (GA)-associated in vivo changes in functional brain connectivity during the second and third trimesters in a large dataset of 110 resting-state functional magnetic resonance imaging scans from a cohort of 95 healthy fetuses. Using representational similarity analysis, a multivariate analytical technique that reveals pair-wise similarity in high-order space, we showed that intersubject similarity of fetal functional connectome patterns was strongly related to between-subject GA differences (r = 0.28, P < 0.01) and that GA sensitivity of functional connectome was lateralized, especially at the frontal area. Our analysis also revealed a subnetwork of connections that were critical for predicting age (mean absolute error = 2.72 weeks); functional connectome patterns of individual fetuses reliably predicted their GA (r = 0.51, P < 0.001). Lastly, we identified the primary principal brain network that tracked fetal brain maturity. The main network showed a global synchronization pattern resembling global signal in the adult brain.
Collapse
Affiliation(s)
- Jung-Hoon Kim
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Josepheen De Asis-Cruz
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Kevin M Cook
- Developing Brain Institue, Children’s National Hospital, 111 Michigan Avenue, N.W., Washington, DC, 20010, USA
| | - Catherine Limperopoulos
- Corresponding author: Developing Brain Institute, Children’s National, 111 Michigan Ave. N.W., Washington D.C. 20010.
| |
Collapse
|
12
|
Murrant CL, Fletcher NM. Capillary communication: the role of capillaries in sensing the tissue environment, coordinating the microvascular, and controlling blood flow. Am J Physiol Heart Circ Physiol 2022; 323:H1019-H1036. [PMID: 36149771 DOI: 10.1152/ajpheart.00088.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Historically, capillaries have been viewed as the microvascular site for flux of nutrients to cells and removal of waste products. Capillaries are the most numerous blood vessel segment within the tissue, whose vascular wall consists of only a single layer of endothelial cells and are situated within microns of each cell of the tissue, all of which optimizes capillaries for the exchange of nutrients between the blood compartment and the interstitial space of tissues. There is, however, a growing body of evidence to support that capillaries play an important role in sensing the tissue environment, coordinating microvascular network responses, and controlling blood flow. Much of our growing understanding of capillaries stems from work in skeletal muscle and more recent work in the brain, where capillaries can be stimulated by products released from cells of the tissue during increased activity and are able to communicate with upstream and downstream vascular segments, enabling capillaries to sense the activity levels of the tissue and send signals to the microvascular network to coordinate the blood flow response. This review will focus on the emerging role that capillaries play in communication between cells of the tissue and the vascular network required to direct blood flow to active cells in skeletal muscle and the brain. We will also highlight the emerging central role that disruptions in capillary communication may play in blood flow dysregulation, pathophysiology, and disease.
Collapse
Affiliation(s)
- Coral L Murrant
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicole M Fletcher
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
14
|
Leacy JK, Johnson EM, Lavoie LR, Macilwraith DN, Bambury M, Martin JA, Lucking EF, Linares AM, Saran G, Sheehan DP, Sharma N, Day TA, O'Halloran KD. Variation within the visually evoked neurovascular coupling response of the posterior cerebral artery is not influenced by age or sex. J Appl Physiol (1985) 2022; 133:335-348. [PMID: 35771218 PMCID: PMC9359642 DOI: 10.1152/japplphysiol.00292.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurovascular coupling (NVC) is the temporal and spatial coordination between local neuronal activity and regional cerebral blood flow. The literature is unsettled on whether age and/or sex affect NVC, which may relate to differences in methodology and the quantification of NVC in small sample-sized studies. The aim of this study was to 1) determine the relative and combined contribution of age and sex to the variation observed across several distinct NVC metrics (n = 125, 21–66 yr; 41 males) and 2) present an approach for the comprehensive systematic assessment of the NVC response using transcranial Doppler ultrasound. NVC was measured as the relative change from baseline (absolute and percent change) assessing peak, mean, and total area under the curve (tAUC) of cerebral blood velocity through the posterior cerebral artery (PCAv) during intermittent photic stimulation. In addition, the NVC waveform was compartmentalized into distinct regions, acute (0–9 s), mid (10–19 s), and late (20–30 s), following the onset of photic stimulation. Hierarchical multiple regression modeling was used to determine the extent of variation within each NVC metric attributable to demographic differences in age and sex. After controlling for differences in baseline PCAv, the R2 data suggest that 1.6%, 6.1%, 1.1%, 3.4%, 2.5%, and 4.2% of the variance observed within mean, peak, tAUC, acute, mid, and late response magnitude is attributable to the combination of age and sex. Our study reveals that variability in NVC response magnitude is independent of age and sex in healthy human participants, aged 21–66 yr. NEW & NOTEWORTHY We assessed the variability within the neurovascular coupling response attributable to age and sex (n = 125, 21–66 yr; 41 male). Based on the assessment of posterior cerebral artery responses to visual stimulation, 0%–6% of the variance observed within several metrics of NVC response magnitude are attributable to the combination of age and sex. Therefore, observed differences between age groups and/or sexes are likely a result of other physiological factors.
Collapse
Affiliation(s)
- Jack K Leacy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Emily M Johnson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Lauren R Lavoie
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Diane N Macilwraith
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Megan Bambury
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jason A Martin
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Andrea M Linares
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Gurkarn Saran
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Dwayne P Sheehan
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Nishan Sharma
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Trevor A Day
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland.,Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Yew B, Jang JY, Dutt S, Li Y, Sible IJ, Gaubert A, Ho JK, Blanken AE, Marshall A, Shao X, Wang DJJ, Nation DA. Cerebrovascular reactivity deficits in cognitively unimpaired older adults: vasodilatory versus vasoconstrictive responses. Neurobiol Aging 2022; 113:55-62. [PMID: 35325813 PMCID: PMC10958374 DOI: 10.1016/j.neurobiolaging.2022.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/27/2022] [Accepted: 02/16/2022] [Indexed: 01/16/2023]
Abstract
Cerebrovascular reactivity (CVR) deficits may index vulnerability to vascular brain injury and cognitive impairment, but findings on age-related changes in CVR have been mixed, and no studies to date have directly compared age-related changes in CVR to hypercapnia versus hypocapnia. The present study compared CVR in 31 cognitively unimpaired older adults (ages 55-87) and 30 healthy younger adults (ages 18-28). Breath control tasks induced CVR to hypocapnia (0.1 Hz paced breathing) and hypercapnia (15s breath holds) during pseudo-continuous arterial spin labeling MRI. Relative to younger adults, cognitively unimpaired older adults displayed lower levels of global CVR under both hypocapnia and hypercapnia. In region-of-interest analyses, older adults exhibited attenuated CVR to hypocapnia in select frontal and temporal regions, and lower CVR to hypercapnia in all cortical, limbic, and subcortical regions examined, relative to younger adults. Results indicate age-related deficits in CVR are detectible even in cognitively unimpaired older adults and are disproportionately related to vasodilatory (hypercapnia) responses relative to vasoconstrictive (hypocapnia) responses. Findings may offer means for early detection of cerebrovascular dysfunction.
Collapse
Affiliation(s)
- Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Jean K Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Xingfeng Shao
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA; Department of Psychological Science, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Schneider SC, Archila-Meléndez ME, Göttler J, Kaczmarz S, Zott B, Priller J, Kallmayer M, Zimmer C, Sorg C, Preibisch C. Resting-state BOLD functional connectivity depends on the heterogeneity of capillary transit times in the human brain A combined lesion and simulation study about the influence of blood flow response timing. Neuroimage 2022; 255:119208. [PMID: 35427773 DOI: 10.1016/j.neuroimage.2022.119208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 04/11/2022] [Indexed: 11/25/2022] Open
Abstract
Functional connectivity (FC) derived from blood oxygenation level dependent (BOLD) functional magnetic resonance imaging at rest (rs-fMRI), is commonly interpreted as indicator of neuronal connectivity. In a number of brain disorders, however, metabolic, vascular, and hemodynamic impairments can be expected to alter BOLD-FC independently from neuronal activity. By means of a neurovascular coupling (NVC) model of BOLD-FC, we recently demonstrated that aberrant timing of cerebral blood flow (CBF) responses may influence BOLD-FC. In the current work, we support and extend this finding by empirically linking BOLD-FC with capillary transit time heterogeneity (CTH), which we consider as an indicator of delayed and broadened CBF responses. We assessed 28 asymptomatic patients with unilateral high-grade internal carotid artery stenosis (ICAS) as a hemodynamic lesion model with largely preserved neurocognitive functioning and 27 age-matched healthy controls. For each participant, we obtained rs-fMRI, arterial spin labeling, and dynamic susceptibility contrast MRI to study the dependence of left-right homotopic BOLD-FC on local perfusion parameters. Additionally, we investigated the dependency of BOLD-FC on CBF response timing by detailed simulations. Homotopic BOLD-FC was negatively associated with increasing CTH differences between homotopic brain areas. This relation was more pronounced in asymptomatic ICAS patients even after controlling for baseline CBF and relative cerebral blood volume influences. These findings match simulation results that predict an influence of delayed and broadened CBF responses on BOLD-FC. Results demonstrate that increasing CTH differences between homotopic brain areas lead to BOLD-FC reductions. Simulations suggest that CTH increases correspond to broadened and delayed CBF responses to fluctuations in ongoing neuronal activity.
Collapse
Affiliation(s)
- Sebastian C Schneider
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Mario E Archila-Meléndez
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Jens Göttler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Stephan Kaczmarz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
| | - Benedikt Zott
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Josef Priller
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Psychiatry, Ismaningerstr. 22, 81675, Munich, Munich, Germany
| | - Michael Kallmayer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Vascular and Endovascular Surgery, Ismaningerstr. 22, 81675, Munich, Munich, Germany
| | - Claus Zimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany
| | - Christian Sorg
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany
| | - Christine Preibisch
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Neurology, Ismaningerstr. 22, 81675, Munich, Munich, Germany.
| |
Collapse
|
17
|
Turner MP, Zhao Y, Abdelkarim D, Liu P, Spence JS, Hutchison JL, Sivakolundu DK, Thomas BP, Hubbard NA, Xu C, Taneja K, Lu H, Rypma B. Altered linear coupling between stimulus-evoked blood flow and oxygen metabolism in the aging human brain. Cereb Cortex 2022; 33:135-151. [PMID: 35388407 PMCID: PMC9758587 DOI: 10.1093/cercor/bhac057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
Neural-vascular coupling (NVC) is the process by which oxygen and nutrients are delivered to metabolically active neurons by blood vessels. Murine models of NVC disruption have revealed its critical role in healthy neural function. We hypothesized that, in humans, aging exerts detrimental effects upon the integrity of the neural-glial-vascular system that underlies NVC. To test this hypothesis, calibrated functional magnetic resonance imaging (cfMRI) was used to characterize age-related changes in cerebral blood flow (CBF) and oxygen metabolism during visual cortex stimulation. Thirty-three younger and 27 older participants underwent cfMRI scanning during both an attention-controlled visual stimulation task and a hypercapnia paradigm used to calibrate the blood-oxygen-level-dependent signal. Measurement of stimulus-evoked blood flow and oxygen metabolism permitted calculation of the NVC ratio to assess the integrity of neural-vascular communication. Consistent with our hypothesis, we observed monotonic NVC ratio increases with increasing visual stimulation frequency in younger adults but not in older adults. Age-related changes in stimulus-evoked cerebrovascular and neurometabolic signal could not fully explain this disruption; increases in stimulus-evoked neurometabolic activity elicited corresponding increases in stimulus-evoked CBF in younger but not in older adults. These results implicate age-related, demand-dependent failures of the neural-glial-vascular structures that comprise the NVC system.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Peiying Liu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Center for BrainHealth, University of Texas at Dallas, Dallas, TX, 75235, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA,Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Binu P Thomas
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Nicholas A Hubbard
- Department of Psychology, Center for Brain, Biology, and Behavior, University of Nebraska, Lincoln, NE 68588, USA
| | - Cuimei Xu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Kamil Taneja
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Hanzhang Lu
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Bart Rypma
- Corresponding author: School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080, USA.
| |
Collapse
|
18
|
Mayhew SD, Coleman SC, Mullinger KJ, Can C. Across the adult lifespan the ipsilateral sensorimotor cortex negative BOLD response exhibits decreases in magnitude and spatial extent suggesting declining inhibitory control. Neuroimage 2022; 253:119081. [PMID: 35278710 PMCID: PMC9130740 DOI: 10.1016/j.neuroimage.2022.119081] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 11/27/2022] Open
Abstract
Ipsilateral sensorimotor (iSM1) cortex negative BOLD responses (NBR) are observed to unilateral tasks and are thought to reflect a functionally relevant component of sensorimotor inhibition. Evidence suggests that sensorimotor inhibitory mechanisms degrade with age, along with aspects of motor ability and dexterity. However, understanding of age-related changes to NBR is restricted by limited comparisons between young vs old adults groups with relatively small samples sizes. Here we analysed a BOLD fMRI dataset (obtained from the CamCAN repository) of 581 healthy subjects, gender-balanced, sampled from the whole adult lifespan performing a motor response task to an audio-visual stimulus. We aimed to investigate how sensorimotor and default-mode NBR characteristics of magnitude, spatial extent and response shape alter at every decade of the aging process. A linear decrease in iSM1 NBR magnitude was observed across the whole lifespan whereas the contralateral sensorimotor (cSM1) PBR magnitude was unchanged. An age-related decrease in the spatial extent of NBR and an increase in the ipsilateral positive BOLD response (PBR) was observed. This occurred alongside an increasing negative correlation between subject's iSM1 NBR and cSM1 PBR magnitude, reflecting a change in the balance between cortical excitation and inhibition. Conventional GLM analysis, using a canonical haemodynamic response (HR) function, showed disappearance of iSM1 NBR in subjects over 50 years of age. However, a deconvolution analysis showed that the shape of the iSM1 HR altered throughout the lifespan, with delayed time-to-peak and decreased magnitude. The most significant decreases in iSM1 HR magnitude occurred in older age (>60 years) but the first changes in shape and timing occurred as early as 30 years, suggesting possibility of separate mechanisms underlying these alterations. Reanalysis using data-driven HRs for each decade detected significant sensorimotor NBR into late older age, showing the importance of taking changes in HR morphology into account in fMRI aging studies. These results may reflect fMRI measures of the age-related decreases in transcollosal inhibition exerted upon ipsilateral sensorimotor cortex and alterations to the excitatory-inhibitory balance in the sensorimotor network.
Collapse
Affiliation(s)
- Stephen D Mayhew
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK.
| | - Sebastian C Coleman
- Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Karen J Mullinger
- Centre for Human Brain Health (CHBH), School of Psychology, University of Birmingham, Birmingham, UK; Sir Peter Mansfield Imaging Centre (SPMIC), School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Cam Can
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Champagne AA, Coverdale NS, Allen MD, Tremblay JC, MacPherson REK, Pyke KE, Olver TD, Cook DJ. The physiological basis underlying functional connectivity differences in older adults: A multi-modal analysis of resting-state fMRI. Brain Imaging Behav 2022; 16:1575-1591. [PMID: 35092574 DOI: 10.1007/s11682-021-00570-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 09/27/2021] [Indexed: 11/02/2022]
Abstract
The purpose of this study was to determine if differences in functional connectivity strength (FCS) with age were confounded by vascular parameters including resting cerebral blood flow (CBF0), cerebrovascular reactivity (CVR), and BOLD-CBF coupling. Neuroimaging data were collected from 13 younger adults (24 ± 2 years) and 14 older adults (71 ± 4 years). A dual-echo resting state pseudo-continuous arterial spin labeling sequence was performed, as well as a BOLD breath-hold protocol. A group independent component analysis was used to identify networks, which were amalgamated into a region of interest (ROI). Within the ROI, FC strength (FCS) was computed for all voxels and compared across the groups. CBF0, CVR and BOLD-CBF coupling were examined within voxels where FCS was different between young and older adults. FCS was greater in old compared to young (P = 0.001). When the effect of CBF0, CVR and BOLD-CBF coupling on FCS was examined, BOLD-CBF coupling had a significant effect (P = 0.003) and group differences in FCS were not present once all vascular parameters were considered in the statistical model (P = 0.07). These findings indicate that future studies of FCS should consider vascular physiological markers in order to improve our understanding of aging processes on brain connectivity.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada.,School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada.,Department of Physical Medicine and Rehabilitation, Providence Care Hospital, 752 King St., Ontario, West Kingston, Canada
| | - Joshua C Tremblay
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, 1812 Sir Isaac Brock Way, St Catharines, ON, L2S 3A1, Canada
| | - Kyra E Pyke
- School of Kinesiology and Health Studies, Cardiovascular Stress Response Laboratory, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinarian Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Room 260, Kingston, ON, K7L 3N6, Canada. .,Department of Surgery, Queen's University, Room 232, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
20
|
Tsalta-Mladenov M, Andonova S. Persisting consequences of ischemic stroke after three months, assessed with the Stroke Impact Scale Version 3.0. Neurol Res 2022; 44:503-510. [PMID: 34991437 DOI: 10.1080/01616412.2021.2024714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Acute ischemic stroke (AIS) has a significant impact on different aspects of the patient's life resulting in loss of independence and poor Health-related Quality of life (HR-QoL). AIMS This study aimed to evaluate the impact of AIS on HR-QoL during the first three months post-stroke in a defined Bulgarian population. METHODS A total of 150 patients with AIS - 50 with thrombolytic and 100 with non-thrombolytic therapy, were enrolled in a hospital-based study at a tertiary care referral center for neurological disorders in Bulgaria. The HR-QoL of stroke survivors was assessed with the Stroke Impact Scale 3.0 on discharge, in the first and the third-month post-stroke. RESULTS The overall HR-QoL remained significantly reduced during the observation period. The most affected domains in the third-month were Participation, Hand function, Mobility, Strenght, and Activities of daily living (ADL). Improvement in all HR-QoL domains was found, most pronounced up to the first-month post-stroke. The higher age, NIHSS and mRS scores were associated with worse SIS 3.0 scores. Left-hemispheric AIS was associated with worse Memory and Communication outcomes, while Right-hemispheric lesions had a higher impact on the Emotions. Large-artery occlusion determined diminished Strenght scores, whereas cardioembolism impacted Communication and ADL domains. Contrarily, lacunar stroke showed more favourable outcomes in all domains. CONCLUSION There is the utmost need to focus on the long-term effects of ischemic stroke, due to the rising number of patients who live with the consequences of stroke. Stroke treatment should not be directed exclusively to acute stroke care or prevention, but also to optimizing the post-stroke functioning and Quality of life.
Collapse
Affiliation(s)
- Mihael Tsalta-Mladenov
- Department of Neurology and Neuroscience, Faculty of Medicine, Medical University 'Prof. Paraskev Stoyanov', Varna, Bulgaria.,Second Clinic of Neurology with ICU and Stroke unit, University Hospital "St. Marina", Varna, Bulgaria
| | - Silva Andonova
- Department of Neurology and Neuroscience, Faculty of Medicine, Medical University 'Prof. Paraskev Stoyanov', Varna, Bulgaria.,Second Clinic of Neurology with ICU and Stroke unit, University Hospital "St. Marina", Varna, Bulgaria
| |
Collapse
|
21
|
Uchiyama Y, Sakai H, Ando T, Tachibana A, Sadato N. BOLD signal response in primary visual cortex to flickering checkerboard increases with stimulus temporal frequency in older adults. PLoS One 2021; 16:e0259243. [PMID: 34735509 PMCID: PMC8568270 DOI: 10.1371/journal.pone.0259243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Many older adults have difficulty seeing brief visual stimuli which younger adults can easily recognize. The primary visual cortex (V1) may induce this difficulty. However, in neuroimaging studies, the V1 response change to the increase of temporal frequency of visual stimulus in older adults was unclear. Here we investigated the association between the temporal frequency of flickering stimuli and the BOLD activity within V1 in older adults, using surface-based fMRI analysis. The fMRI data from 29 healthy older participants stimulated by contrast-reversing checkerboard at temporal flicker frequencies of 2, 4, and 8 Hz were obtained. The participants also performed a useful field of view (UFOV) test. The slope coefficient of BOLD activity regarding the temporal frequency of the visual stimulus averaged within V1 regions of interest was positive and significantly different from zero. Group analysis in the V1 showed significant clusters with positive slope and no significant clusters with a negative slope. The correlation coefficient between the slope coefficient and UFOV performance was not significant. The results indicated that V1 BOLD response to a flickering visual stimulus increases as the stimulus temporal frequency increases from 2 to 8 Hz in older adults.
Collapse
Affiliation(s)
- Yuji Uchiyama
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
- * E-mail:
| | - Hiroyuki Sakai
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Takafumi Ando
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Atsumichi Tachibana
- Human Science Research Domain, Strategic Research Division, Toyota Central R&D Labs., Inc., Nagakute, Aichi, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| |
Collapse
|
22
|
Keough JRG, Cates VC, Tymko MM, Boulet LM, Jamieson AN, Foster GE, Day TA. Regional differences in cerebrovascular reactivity in response to acute isocapnic hypoxia in healthy humans: Methodological considerations. Respir Physiol Neurobiol 2021; 294:103770. [PMID: 34343693 DOI: 10.1016/j.resp.2021.103770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
The cerebrovasculature responds to blood gas challenges. Regional differences (anterior vs. posterior) in cerebrovascular responses to increases in CO2 have been extensively studied. However, regional cerebrovascular reactivity (CVR) responses to low O2 (hypoxia) are equivocal, likely due to differences in analysis. We assessed the effects of acute isocapnic hypoxia on regional CVR comparing absolute and relative (%-change) responses in the middle cerebral artery (MCA) and posterior cerebral artery (PCA). We instrumented 14 healthy participants with a transcranial Doppler ultrasound (cerebral blood velocity), finometer (beat-by-beat blood pressure), dual gas analyzer (end-tidal CO2 and O2), and utilized a dynamic end-tidal forcing system to elicit a single 5-min bout of isocapnic hypoxia (∼45 Torr PETO2, ∼80 % SpO2). During exposure to acute hypoxia, absolute responses were larger in the anterior compared to posterior cerebral circulation (P < 0.001), but were not different when comparing relative responses (P = 0.45). Consistent reporting of CVR to hypoxia will aid understanding normative responses, particularly in assessing populations with impaired cerebrovascular function.
Collapse
Affiliation(s)
- Joanna R G Keough
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Valerie C Cates
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Michael M Tymko
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada; Faculty of Kinesiology, Sport and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lindsey M Boulet
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada; Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Alenna N Jamieson
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada
| | - Glen E Foster
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Multivariate semi-blind deconvolution of fMRI time series. Neuroimage 2021; 241:118418. [PMID: 34303793 DOI: 10.1016/j.neuroimage.2021.118418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Whole brain estimation of the haemodynamic response function (HRF) in functional magnetic resonance imaging (fMRI) is critical to get insight on the global status of the neurovascular coupling of an individual in healthy or pathological condition. Most of existing approaches in the literature works on task-fMRI data and relies on the experimental paradigm as a surrogate of neural activity, hence remaining inoperative on resting-stage fMRI (rs-fMRI) data. To cope with this issue, recent works have performed either a two-step analysis to detect large neural events and then characterize the HRF shape or a joint estimation of both the neural and haemodynamic components in an univariate fashion. In this work, we express the neural activity signals as a combination of piece-wise constant temporal atoms associated with sparse spatial maps and introduce an haemodynamic parcellation of the brain featuring a temporally dilated version of a given HRF model in each parcel with unknown dilation parameters. We formulate the joint estimation of the HRF shapes and spatio-temporal neural representations as a multivariate semi-blind deconvolution problem in a paradigm-free setting and introduce constraints inspired from the dictionary learning literature to ease its identifiability. A fast alternating minimization algorithm, along with its efficient implementation, is proposed and validated on both synthetic and real rs-fMRI data at the subject level. To demonstrate its significance at the population level, we apply this new framework to the UK Biobank data set, first for the discrimination of haemodynamic territories between balanced groups (n=24 individuals in each) patients with an history of stroke and healthy controls and second, for the analysis of normal aging on the neurovascular coupling. Overall, we statistically demonstrate that a pathology like stroke or a condition like normal brain aging induce longer haemodynamic delays in certain brain areas (e.g. Willis polygon, occipital, temporal and frontal cortices) and that this haemodynamic feature may be predictive with an accuracy of 74 % of the individual's age in a supervised classification task performed on n=459 subjects.
Collapse
|
24
|
Zhao Y, Liu P, Turner MP, Abdelkarim D, Lu H, Rypma B. The neural-vascular basis of age-related processing speed decline. Psychophysiology 2021; 58:e13845. [PMID: 34115388 DOI: 10.1111/psyp.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Most studies examining neurocognitive aging are based on the blood-oxygen level-dependent signal obtained during functional magnetic resonance imaging (fMRI). The physiological basis of this signal is neural-vascular coupling, the process by which neurons signal cerebrovasculature to dilate in response to an increase in active neural metabolism due to stimulation. These fMRI studies of aging rely on the hemodynamic equivalence assumption that this process is not disrupted by physiologic deterioration associated with aging. Studies of neural-vascular coupling challenge this assumption and show that neural-vascular coupling is closely related to cognition. In this review, we put forward a theory of processing speed decline in aging and how it is related to age-related neural-vascular coupling changes based on the results of studies elucidating the relationships between cognition, cerebrovascular dynamics, and aging.
Collapse
Affiliation(s)
- Yuguang Zhao
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Peiying Liu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Dema Abdelkarim
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| | - Hanzhang Lu
- School of Medicine, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, Center for Brain Health, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
25
|
Cohen AD, Jagra AS, Visser NJ, Yang B, Fernandez B, Banerjee S, Wang Y. Improving the Breath-Holding CVR Measurement Using the Multiband Multi-Echo EPI Sequence. Front Physiol 2021; 12:619714. [PMID: 33716769 PMCID: PMC7953053 DOI: 10.3389/fphys.2021.619714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/20/2021] [Indexed: 02/04/2023] Open
Abstract
Blood oxygen level-dependent (BOLD) functional MRI (fMRI) is commonly used to measure cerebrovascular reactivity (CVR), which can convey insightful information about neurovascular health. Breath-holding (BH) has been shown to be a practical vasodilatory stimulus for measuring CVR in clinical settings. The conventional BOLD fMRI approach has some limitations, however, such as susceptibility-induced signal dropout at air tissue interfaces and low BOLD sensitivity especially in areas of low T 2 * . These drawbacks can potentially be mitigated with multi-echo sequences, which acquire several images at different echo times in one shot. When combined with multiband techniques, high temporal resolution images can be acquired. This study compared an advanced multiband multi-echo (MBME) echo planar imaging (EPI) sequence with an existing multiband single-echo (MB) sequence to evaluate the repeatability and sensitivity of BH activation and CVR mapping. Images were acquired from 28 healthy volunteers, of which 18 returned for repeat imaging. Both MBME and MB data were pre-processed using both standard and advanced denoising techniques. The MBME data was further processed by combining echoes using a T 2 * -weighted approach and denoising using multi-echo independent component analysis. BH activation was calculated using a general linear model and the respiration response function. CVR was computed as the percent change related to the activation. To account for differences in CVR related to TE, relative CVR (rCVR) was computed and normalized to the mean gray matter CVR. Test-retest metrics were assessed with the Dice coefficient, rCVR difference, within subject coefficient of variation, and the intraclass correlation coefficient. Our findings demonstrate that rCVR for MBME scans were significantly higher than for MB scans across most of the gray matter. In areas of high susceptibility-induced signal dropout, however, MBME rCVR was significantly less than MB rCVR due to artifactually high rCVR for MB scans in these regions. MBME rCVR showed improved test-retest metrics compared with MB. Overall, the MBME sequence displayed superior BOLD sensitivity, improved specificity in areas of signal dropout on MBME scans, enhanced reliability, and reduced variability across subjects compared with MB acquisitions. Our results suggest that the MBME EPI sequence is a promising tool for imaging CVR.
Collapse
Affiliation(s)
- Alexander D. Cohen
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Nicholas J. Visser
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | - Yang Wang
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Yang Wang,
| |
Collapse
|
26
|
Hrybouski S, Cribben I, McGonigle J, Olsen F, Carter R, Seres P, Madan CR, Malykhin NV. Investigating the effects of healthy cognitive aging on brain functional connectivity using 4.7 T resting-state functional magnetic resonance imaging. Brain Struct Funct 2021; 226:1067-1098. [PMID: 33604746 DOI: 10.1007/s00429-021-02226-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 01/20/2021] [Indexed: 01/05/2023]
Abstract
Functional changes in the aging human brain have been previously reported using functional magnetic resonance imaging (fMRI). Earlier resting-state fMRI studies revealed an age-associated weakening of intra-system functional connectivity (FC) and age-associated strengthening of inter-system FC. However, the majority of such FC studies did not investigate the relationship between age and network amplitude, without which correlation-based measures of FC can be challenging to interpret. Consequently, the main aim of this study was to investigate how three primary measures of resting-state fMRI signal-network amplitude, network topography, and inter-network FC-are affected by healthy cognitive aging. We acquired resting-state fMRI data on a 4.7 T scanner for 105 healthy participants representing the entire adult lifespan (18-85 years of age). To study age differences in network structure, we combined ICA-based network decomposition with sparse graphical models. Older adults displayed lower blood-oxygen-level-dependent (BOLD) signal amplitude in all functional systems, with sensorimotor networks showing the largest age differences. Our age comparisons of network topography and inter-network FC demonstrated a substantial amount of age invariance in the brain's functional architecture. Despite architecture similarities, old adults displayed a loss of communication efficiency in our inter-network FC comparisons, driven primarily by the FC reduction in frontal and parietal association cortices. Together, our results provide a comprehensive overview of age effects on fMRI-based FC.
Collapse
Affiliation(s)
- Stanislau Hrybouski
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivor Cribben
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Department of Accounting and Business Analytics, Alberta School of Business, University of Alberta, Edmonton, AB, Canada
| | - John McGonigle
- Department of Brain Sciences, Imperial College London, London, UK
| | - Fraser Olsen
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Rawle Carter
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | | | - Nikolai V Malykhin
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada. .,Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2V2, Canada.
| |
Collapse
|
27
|
Hubbard NA, Turner MP, Sitek KR, West KL, Kaczmarzyk JR, Himes L, Thomas BP, Lu H, Rypma B. Resting cerebral oxygen metabolism exhibits archetypal network features. Hum Brain Mapp 2021; 42:1952-1968. [PMID: 33544446 PMCID: PMC8046048 DOI: 10.1002/hbm.25352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/04/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Standard magnetic resonance imaging approaches offer high‐resolution but indirect measures of neural activity, limiting understanding of the physiological processes associated with imaging findings. Here, we used calibrated functional magnetic resonance imaging during the resting state to recover low‐frequency fluctuations of the cerebral metabolic rate of oxygen (CMRO2). We tested whether functional connections derived from these fluctuations exhibited organization properties similar to those established by previous standard functional and anatomical connectivity studies. Seventeen participants underwent 20 min of resting imaging during dual‐echo, pseudocontinuous arterial spin labeling, and blood‐oxygen‐level dependent (BOLD) signal acquisition. Participants also underwent a 10 min normocapnic and hypercapnic procedure. Brain‐wide, CMRO2 low‐frequency fluctuations were subjected to graph‐based and voxel‐wise functional connectivity analyses. Results demonstrated that connections derived from resting CMRO2 fluctuations exhibited complex, small‐world topological properties (i.e., high integration and segregation, cost efficiency) consistent with those observed in previous studies using functional and anatomical connectivity approaches. Voxel‐wise CMRO2 connectivity also exhibited spatial patterns consistent with four targeted resting‐state subnetworks: two association (i.e., frontoparietal and default mode) and two perceptual (i.e., auditory and occipital‐visual). These are the first findings to support the use of calibration‐derived CMRO2 low‐frequency fluctuations for detecting brain‐wide organizational properties typical of healthy participants. We discuss interpretations, advantages, and challenges in using calibration‐derived oxygen metabolism signals for examining the intrinsic organization of the human brain.
Collapse
Affiliation(s)
- Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Kevin R Sitek
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn L West
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jakub R Kaczmarzyk
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lyndahl Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Binu P Thomas
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hanzhang Lu
- Department of Radiology, John's Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
28
|
Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav 2021; 14:436-450. [PMID: 31250268 DOI: 10.1007/s11682-019-00157-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging leads to cerebral perfusion and functional connectivity changes that have been assessed using various neuroimaging techniques. In addition, a link between these two parameters has been demonstrated in healthy young adults. In this work, we employed arterial spin labeling (ASL) fMRI to measure global and voxel-wise differences in cerebral blood flow (CBF) and intrinsic connectivity contrast (ICC) in the resting state in a group of cognitively normal elderly subjects and a group of cognitively normal young subjects, in order to assess the effects of aging on CBF-ICC coupling, which had not been previously evaluated. Our results showed age-related global and regional CBF decreases in prefrontal mesial areas, lateral frontal regions, insular cortex, lateral parietal areas, precuneus and occipital regions. Subcortically, perfusion was reduced in the medial thalamus and caudate nucleus. ICC was also found reduced with age in prefrontal cortical areas and insular cortex, affecting key nodes of the default mode and salience networks. Areas of ICC and CBF decrease partially overlapped, however, the CBF reduction was more extensive and encompassed more areas. This dissociation was accompanied by a decrease in CBF-ICC coupling. These results suggest that aging leads to a disruption in the relationship between CBF and intrinsic functional connectivity that could be due to neurovascular dysregulation.
Collapse
|
29
|
Tsvetanov KA, Henson RNA, Rowe JB. Separating vascular and neuronal effects of age on fMRI BOLD signals. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190631. [PMID: 33190597 PMCID: PMC7741031 DOI: 10.1098/rstb.2019.0631] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Accurate identification of brain function is necessary to understand the neurobiology of cognitive ageing, and thereby promote well-being across the lifespan. A common tool used to investigate neurocognitive ageing is functional magnetic resonance imaging (fMRI). However, although fMRI data are often interpreted in terms of neuronal activity, the blood oxygenation level-dependent (BOLD) signal measured by fMRI includes contributions of both vascular and neuronal factors, which change differentially with age. While some studies investigate vascular ageing factors, the results of these studies are not well known within the field of neurocognitive ageing and therefore vascular confounds in neurocognitive fMRI studies are common. Despite over 10 000 BOLD-fMRI papers on ageing, fewer than 20 have applied techniques to correct for vascular effects. However, neurovascular ageing is not only a confound in fMRI, but an important feature in its own right, to be assessed alongside measures of neuronal ageing. We review current approaches to dissociate neuronal and vascular components of BOLD-fMRI of regional activity and functional connectivity. We highlight emerging evidence that vascular mechanisms in the brain do not simply control blood flow to support the metabolic needs of neurons, but form complex neurovascular interactions that influence neuronal function in health and disease. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kamen A. Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
| | - Richard N. A. Henson
- Department of Psychiatry, University of Cambridge, Cambridge CB2 0SP, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | - James B. Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| |
Collapse
|
30
|
Stark SM, Frithsen A, Stark CE. Age-related alterations in functional connectivity along the longitudinal axis of the hippocampus and its subfields. Hippocampus 2021; 31:11-27. [PMID: 32918772 PMCID: PMC8354549 DOI: 10.1002/hipo.23259] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Abstract
Hippocampal circuit alterations that differentially affect hippocampal subfields are associated with age-related memory decline. Additionally, functional organization along the longitudinal axis of the hippocampus has revealed distinctions between anterior and posterior (A-P) connectivity. Here, we examined the functional connectivity (FC) differences between young and older adults at high-resolution within the medial temporal lobe network (entorhinal, perirhinal, and parahippocampal cortices), allowing us to explore how hippocampal subfield connectivity across the longitudinal axis of the hippocampus changes with age. Overall, we found reliably greater connectivity for younger adults than older adults between the hippocampus and parahippocampal cortex (PHC) and perirhinal cortex (PRC). This drop in functional connectivity was more pronounced in the anterior regions of the hippocampus than the posterior ones, consistent for each of the hippocampal subfields. Further, intra-hippocampal connectivity also reflected an age-related decrease in functional connectivity within the anterior hippocampus in older adults that was offset by an increase in posterior hippocampal functional connectivity. Interestingly, the anterior-posterior dysfunction in older adults between hippocampus and PHC was predictive of lure discrimination performance on the Mnemonic similarity task (MST), suggesting a role in memory performance. While age-related dysfunction within the hippocampal subfields has been well-documented, these results suggest that the age-related dysfunction in hippocampal connectivity across the longitudinal axis may also contribute significantly to memory decline in older adults.
Collapse
Affiliation(s)
- Shauna M. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| | - Amy Frithsen
- Department of Neurobiology and Behavior, University of California Irvine
| | - Craig E.L. Stark
- Department of Neurobiology and Behavior, University of California Irvine
| |
Collapse
|
31
|
Eisenstein T, Yogev-Seligmann G, Ash E, Giladi N, Sharon H, Shapira-Lichter I, Nachman S, Hendler T, Lerner Y. Maximal aerobic capacity is associated with hippocampal cognitive reserve in older adults with amnestic mild cognitive impairment. Hippocampus 2020; 31:305-320. [PMID: 33314497 DOI: 10.1002/hipo.23290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/03/2020] [Accepted: 11/28/2020] [Indexed: 01/03/2023]
Abstract
Maximal aerobic capacity (MAC) has been associated with preserved neural tissue or brain maintenance (BM) in healthy older adults, including the hippocampus. Amnestic mild cognitive impairment (aMCI) is considered a prodromal stage of Alzheimer's disease. While aMCI is characterized by hippocampal deterioration, the MAC-hippocampal relationship in these patients is not well understood. In contrast to healthy individuals, neurocognitive protective effects in neurodegenerative populations have been associated with mechanisms of cognitive reserve (CR) altering the neuropathology-cognition relationship. We investigated the MAC-hippocampal relationship in aMCI (n = 29) from the perspectives of BM and CR mechanistic models with structural MRI and a memory fMRI paradigm using both group-level (higher-fit patients vs. lower-fit patients) and individual level (continuous correlation) approaches. While MAC was associated with smaller hippocampal volume, contradicting the BM model, higher-fit patients demonstrated statistically significant lower correlation between hippocampal volume and memory performance compared with the lower-fit patients, supporting the model of CR. In addition, while there was no difference in brain activity between the groups during low cognitive demand (encoding of familiar stimuli), higher MAC level was associated with increased cortical and sub-cortical activation during increased cognitive demand (encoding of novel stimuli) and also with bilateral hippocampal activity even when controlling for hippocampal volume, suggesting for an independent effect of MAC. Our results suggest that MAC may be associated with hippocampal-related cognitive reserve in aMCI through altering the relationship between hippocampal-related structural deterioration and cognitive function. In addition, MAC was found to be associated with increased capacity to recruit neural resources during increased cognitive demands.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Galit Yogev-Seligmann
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Elissa Ash
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nir Giladi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Haggai Sharon
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Pain Management & Neuromodulation Centre, Guy's & St Thomas' NHS Foundation Trust, London, UK.,Institute of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Irit Shapira-Lichter
- Functional MRI Center, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Shikma Nachman
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Talma Hendler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.,School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Lerner
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Wilson DF, Matschinsky FM. Cerebrovascular Blood Flow Design and Regulation; Vulnerability in Aging Brain. Front Physiol 2020; 11:584891. [PMID: 33178048 PMCID: PMC7596697 DOI: 10.3389/fphys.2020.584891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Nutrient delivery to the brain presents a unique challenge because the tissue functions as a computer system with in the order of 200,000 neurons/mm3. Penetrating arterioles bud from surface arteries of the brain and penetrate downward through the cortex. Capillary networks spread from penetrating arterioles through the surrounding tissue. Each penetrating arteriole forms a vascular unit, with little sharing of flow among vascular units (collateral flow). Unlike cells in other tissues, neurons have to be operationally isolated, interacting with other neurons through specific electrical connections. Neuronal activation typically involves only a few of the cells within a vascular unit, but the local increase in nutrient consumption is substantial. The metabolic response to activation is transmitted to the feeding arteriole through the endothelium of neighboring capillaries and alters calcium permeability of smooth muscle in the wall resulting in modulation of flow through the entire vascular unit. Many age and trauma related brain pathologies can be traced to vascular malfunction. This includes: 1. Physical damage such as in traumatic injury with imposed shear stress as soft tissue moves relative to the skull. Lack of collateral flow among vascular units results in death of the cells in that vascular unit and loss of brain tissue. 2. Age dependent changes lead to progressive increase in vascular resistance and decrease in tissue levels of oxygen and glucose. Chronic hypoxia/hypoglycemia compromises tissue energy metabolism and related regulatory processes. This alters stem cell proliferation and differentiation, undermines vascular integrity, and suppresses critical repair mechanisms such as oligodendrocyte generation and maturation. Reduced structural integrity results in local regions of acute hypoxia and microbleeds, while failure of oligodendrocytes to fully mature leads to poor axonal myelination and defective neuronal function. Understanding and treating age related pathologies, particularly in brain, requires better knowledge of why and how vasculature changes with age. That knowledge will, hopefully, make possible drugs/methods for protecting vascular function, substantially alleviating the negative health and cognitive deficits associated with growing old.
Collapse
Affiliation(s)
- David F Wilson
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Franz M Matschinsky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
33
|
Increased cerebral blood flow is correlated with neurocognitive impairment in long-term hemodialysis patients: an arterial spin labeling MRI study. Brain Imaging Behav 2020; 15:1828-1839. [PMID: 32909105 DOI: 10.1007/s11682-020-00377-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to investigate cerebral blood flow (CBF) changes in hemodialysis patients with arterial spin labeling (ASL) and to correlate these changes with clinical risk factors and neurocognitive function. Thirty-two hemodialysis patients and 35 age-, sex-, and education-matched healthy controls (HCs) were recruited in this prospective study. The Mini-Mental State Examination (MMSE) was performed to evaluate neurocognitive function. Pulsed ASL was performed to measure CBF. Two independent sample t-test was used to explore the CBF difference between the patients and HCs. Multiple stepwise regression was used to investigate the risk factors for CBF in patients. Correlation analysis was used to explore the relationship between the MMSE scores and CBF changes with and without adjusting for anemia status. Compared to HCs, the hemodialysis patients showed significantly increased CBF in some neurocognition-related cerebral regions (all P < 0.001, Bonferroni corrected). Increased CBF in the right opercular and triangular part of the inferior frontal gyrus correlated with the poorer MMSE scores (r = -0.502, P = 0.004; r = -0.423, P = 0.018, FDR corrected) and these correlations still remained after adjusting for anemia status (r = -0.516, P = 0.005; r = -0.439, P = 0.019, FDR corrected). The increased dialysis duration, and decreased hemoglobin, hematocrit, and serum phosphorus were predictive risk factors for increased CBF (P < 0.05). In conclusion, long-term hemodialysis patients had increased CBF, which correlated with neurocognitive impairment, and after adjusting for the effect of anemia, the correlation still remained.
Collapse
|
34
|
Archila-Meléndez ME, Sorg C, Preibisch C. Modeling the impact of neurovascular coupling impairments on BOLD-based functional connectivity at rest. Neuroimage 2020; 218:116871. [DOI: 10.1016/j.neuroimage.2020.116871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
|
35
|
Kang S, Hayashi Y, Bruyns-Haylett M, Delivopoulos E, Zheng Y. Model-Predicted Balance Between Neural Excitation and Inhibition Was Maintained Despite of Age-Related Decline in Sensory Evoked Local Field Potential in Rat Barrel Cortex. Front Syst Neurosci 2020; 14:24. [PMID: 32528256 PMCID: PMC7247833 DOI: 10.3389/fnsys.2020.00024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/08/2020] [Indexed: 11/25/2022] Open
Abstract
The balance between neural excitation and inhibition has been shown to be crucial for normal brain function. However, it is unclear whether this balance is maintained through healthy aging. This study investigated the effect of aging on the temporal dynamics of the somatosensory evoked local field potential (LFP) in rats and tested the hypothesis that excitatory and inhibitory post-synaptic activities remain balanced during the aging process. The LFP signal was obtained from the barrel cortex of three different age groups of anesthetized rats (pre-adolescence: 4–6 weeks, young adult: 2–3 months, middle-aged adult: 10–20 months) under whisker pad stimulation. To confirm our previous finding that the initial segment of the evoked LFP was solely associated with excitatory post-synaptic activity, we micro-injected gabazine into the barrel cortex to block inhibition while LFP was collected continuously under the same stimulus condition. As expected, the initial slope of the evoked LFP in the granular layer was unaffected by gabazine injection. We subsequently estimated the excitatory and inhibitory post-synaptic activities through a balanced model of the LFP with delayed inhibition as an explicit constraint, and calculated the amplitude ratio of inhibition to excitation. We found an age-dependent slowing of the temporal dynamics in the somatosensory-evoked post-synaptic activity, as well as a significant age-related decrease in the amplitude of the excitatory component and a decreasing trend in the amplitude of the inhibitory component. Furthermore, the delay of inhibition with respect to excitation was significantly increased with age, but the amplitude ratio was maintained. Our findings suggest that aging reduces the amplitude of neural responses, but the balance between sensory evoked excitatory and inhibitory post-synaptic activities is maintained to support normal brain function during healthy aging. Further whole cell patch clamp experiments will be needed to confirm or refute these findings by measuring sensory evoked synaptic excitatory and inhibitory activities in vivo during the normal aging process.
Collapse
Affiliation(s)
- Sungmin Kang
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Yurie Hayashi
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Michael Bruyns-Haylett
- Department of Bioengineering, Imperial College, South Kensington Campus, London, United Kingdom
| | - Evangelos Delivopoulos
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| | - Ying Zheng
- Biomedical Engineering, School of Biological Sciences, University of Reading, Reading, United Kingdom.,Centre for Integrative Neuroscience and Neurodynamics (CINN), University of Reading, Reading, United Kingdom
| |
Collapse
|
36
|
Anderson AE, Diaz-Santos M, Frei S, Dang BH, Kaur P, Lyden P, Buxton R, Douglas PK, Bilder RM, Esfandiari M, Friston KJ, Nookala U, Bookheimer SY. Hemodynamic latency is associated with reduced intelligence across the lifespan: an fMRI DCM study of aging, cerebrovascular integrity, and cognitive ability. Brain Struct Funct 2020; 225:1705-1717. [PMID: 32474754 DOI: 10.1007/s00429-020-02083-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022]
Abstract
Changes in neurovascular coupling are associated with both Alzheimer's disease and vascular dementia in later life, but this may be confounded by cerebrovascular risk. We hypothesized that hemodynamic latency would be associated with reduced cognitive functioning across the lifespan, holding constant demographic and cerebrovascular risk. In 387 adults aged 18-85 (mean = 48.82), dynamic causal modeling was used to estimate the hemodynamic response function in the left and right V1 and V3-ventral regions of the visual cortex in response to a simple checkerboard block design stimulus with minimal cognitive demands. The hemodynamic latency (transit time) in the visual cortex was used to predict general cognitive ability (Full-Scale IQ), controlling for demographic variables (age, race, education, socioeconomic status) and cerebrovascular risk factors (hypertension, alcohol use, smoking, high cholesterol, BMI, type 2 diabetes, cardiac disorders). Increased hemodynamic latency in the visual cortex predicted reduced cognitive function (p < 0.05), holding constant demographic and cerebrovascular risk. Increased alcohol use was associated with reduced overall cognitive function (Full Scale IQ 2.8 pts, p < 0.05), while cardiac disorders (Full Scale IQ 3.3 IQ pts; p < 0.05), high cholesterol (Full Scale IQ 3.9 pts; p < 0.05), and years of education (2 IQ pts/year; p < 0.001) were associated with higher general cognitive ability. Increased hemodynamic latency was associated with reduced executive functioning (p < 0.05) as well as reductions in verbal concept formation (p < 0.05) and the ability to synthesize and analyze abstract visual information (p < 0.01). Hemodynamic latency is associated with reduced cognitive ability across the lifespan, independently of other demographic and cerebrovascular risk factors. Vascular health may predict cognitive ability long before the onset of dementias.
Collapse
Affiliation(s)
- Ariana E Anderson
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA. .,Department of Statistics, University of California, Los Angeles, USA.
| | - Mirella Diaz-Santos
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA
| | - Spencer Frei
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA.,Department of Statistics, University of California, Los Angeles, USA
| | - Bianca H Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA
| | - Pashmeen Kaur
- Department of Statistics, University of California, Los Angeles, USA.,Department of Statistics, Ohio State University, Columbus, USA
| | - Patrick Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Buxton
- Department of Radiology, University of California, San Diego, USA
| | - Pamela K Douglas
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA.,Institute for Simulation and Training, University of Central Florida, Orlando, USA
| | - Robert M Bilder
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA
| | | | - Karl J Friston
- Institute of Neurology, University College London, London, UK
| | - Usha Nookala
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA
| | - Susan Y Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, 760 Westwood Plaza, Suite 28-224, Los Angeles, 90095, USA
| |
Collapse
|
37
|
Crofts A, Trotman-Lucas M, Janus J, Kelly M, Gibson CL. A longitudinal, multi-parametric functional MRI study to determine age-related changes in the rodent brain. Neuroimage 2020; 218:116976. [PMID: 32464290 PMCID: PMC7422839 DOI: 10.1016/j.neuroimage.2020.116976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
As the population ages, the incidence of age-related neurological diseases and cognitive decline increases. To further understand disease-related changes in brain function it is advantageous to examine brain activity changes in healthy aging rodent models to permit mechanistic investigation. Here, we examine the suitability, in rodents, of using a novel, minimally invasive anaesthesia protocol in combination with a functional MRI protocol to assess alterations in neuronal activity due to physiological aging. 11 Wistar Han female rats were studied at 7, 9, 12, 15 and 18 months of age. Under an intravenous infusion of propofol, animals underwent functional magnetic resonance imaging (fMRI) and functional magnetic resonance spectroscopy (fMRS) with forepaw stimulation to quantify neurotransmitter activity, and resting cerebral blood flow (CBF) quantification using arterial spin labelling (ASL) to study changes in neurovascular coupling over time. Animals showed a significant decrease in size of the active region with age (P < 0.05). fMRS results showed a significant decrease in glutamate change with stimulation (ΔGlu) with age (P < 0.05), and ΔGlu became negative from 12 months onwards. Global CBF remained constant for the duration of the study. This study shows age related changes in the blood oxygen level dependent (BOLD) response in rodents that correlate with those seen in humans. The results also suggest that a reduction in synaptic glutamate turnover with age may underlie the reduction in the BOLD response, while CBF is preserved. Describe a novel anaesthetic protocol to examine age-related alterations in neuronal activity in rodents. Size of the BOLD signal in the somatosensory cortex decreased with age. Reduction in glutamate turnover with age. No change in resting CBF with age.
Collapse
Affiliation(s)
- Andrew Crofts
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Melissa Trotman-Lucas
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; School of Psychology, University of Nottingham, Nottingham, UK
| | - Justyna Janus
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Michael Kelly
- Preclinical Imaging Facility, Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Claire L Gibson
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, Leicester, UK; School of Psychology, University of Nottingham, Nottingham, UK.
| |
Collapse
|
38
|
Li B, Ohtomo R, Thunemann M, Adams SR, Yang J, Fu B, Yaseen MA, Ran C, Polimeni JR, Boas DA, Devor A, Lo EH, Arai K, Sakadžić S. Two-photon microscopic imaging of capillary red blood cell flux in mouse brain reveals vulnerability of cerebral white matter to hypoperfusion. J Cereb Blood Flow Metab 2020; 40:501-512. [PMID: 30829101 PMCID: PMC7026840 DOI: 10.1177/0271678x19831016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023]
Abstract
Despite the importance of understanding the regulation of microvascular blood flow in white matter, no data on subcortical capillary blood flow parameters are available, largely due to the lack of appropriate imaging methods. To address this knowledge gap, we employed two-photon microscopy using a far-red fluorophore Alexa680 and photon-counting detection to measure capillary red blood cell (RBC) flux in both cerebral gray and white matter, in isoflurane-anesthetized mice. We have found that in control animals, baseline capillary RBC flux in the white matter was significantly higher than in the adjacent cerebral gray matter. In response to mild hypercapnia, RBC flux in the white matter exhibited significantly smaller fractional increase than in the gray matter. Finally, during global cerebral hypoperfusion, RBC flux in the white matter was reduced significantly in comparison to the controls, while RBC flux in the gray matter was preserved. Our results suggest that blood flow in the white matter may be less efficiently regulated when challenged by physiological perturbations as compared to the gray matter. Importantly, the blood flow in the white matter may be more susceptible to hypoperfusion than in the gray matter, potentially exacerbating the white matter deterioration in brain conditions involving global cerebral hypoperfusion.
Collapse
Affiliation(s)
- Baoqiang Li
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ryo Ohtomo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Martin Thunemann
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Stephen R Adams
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Buyin Fu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad A Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David A Boas
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Anna Devor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ken Arai
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
39
|
Hussein A, Matthews JL, Syme C, Macgowan C, MacIntosh BJ, Shirzadi Z, Pausova Z, Paus T, Chen JJ. The association between resting-state functional magnetic resonance imaging and aortic pulse-wave velocity in healthy adults. Hum Brain Mapp 2020; 41:2121-2135. [PMID: 32034832 PMCID: PMC7268071 DOI: 10.1002/hbm.24934] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Resting‐state functional magnetic resonance imaging (rs‐fMRI) is frequently used to study brain function; but, it is unclear whether BOLD‐signal fluctuation amplitude and functional connectivity are associated with vascular factors, and how vascular‐health factors are reflected in rs‐fMRI metrics in the healthy population. As arterial stiffening is a known age‐related cardiovascular risk factor, we investigated the associations between aortic stiffening (as measured using pulse‐wave velocity [PWV]) and rs‐fMRI metrics. We used cardiac MRI to measure aortic PWV (an established indicator of whole‐body vascular stiffness), as well as dual‐echo pseudo‐continuous arterial‐spin labeling to measure BOLD and CBF dynamics simultaneously in a group of generally healthy adults. We found that: (1) higher aortic PWV is associated with lower variance in the resting‐state BOLD signal; (2) higher PWV is also associated with lower BOLD‐based resting‐state functional connectivity; (3) regions showing lower connectivity do not fully overlap with those showing lower BOLD variance with higher PWV; (4) CBF signal variance is a significant mediator of the above findings, only when averaged across regions‐of‐interest. Furthermore, we found no significant association between BOLD signal variance and systolic blood pressure, which is also a known predictor of vascular stiffness. Age‐related vascular stiffness, as measured by PWV, provides a unique scenario to demonstrate the extent of vascular bias in rs‐fMRI signal fluctuations and functional connectivity. These findings suggest that a substantial portion of age‐related rs‐fMRI differences may be driven by vascular effects rather than directly by brain function.
Collapse
Affiliation(s)
- Ahmad Hussein
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Jacob L Matthews
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada
| | - Catriona Syme
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Christopher Macgowan
- SickKids Hospital, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Bradley J MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zahra Shirzadi
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Zdenka Pausova
- SickKids Hospital, Toronto, Canada.,Department of Physiology, University of Toronto, Toronto, Canada
| | - Tomáš Paus
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
41
|
Kumral D, Şansal F, Cesnaite E, Mahjoory K, Al E, Gaebler M, Nikulin VV, Villringer A. BOLD and EEG signal variability at rest differently relate to aging in the human brain. Neuroimage 2019; 207:116373. [PMID: 31759114 DOI: 10.1016/j.neuroimage.2019.116373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 11/17/2019] [Indexed: 01/22/2023] Open
Abstract
Variability of neural activity is regarded as a crucial feature of healthy brain function, and several neuroimaging approaches have been employed to assess it noninvasively. Studies on the variability of both evoked brain response and spontaneous brain signals have shown remarkable changes with aging but it is unclear if the different measures of brain signal variability - identified with either hemodynamic or electrophysiological methods - reflect the same underlying physiology. In this study, we aimed to explore age differences of spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in healthy younger (25 ± 3 years, N = 135) and older (67 ± 4 years, N = 54) adults. Consistent with the previous studies, we found lower blood oxygenation level dependent (BOLD) variability in the older subjects as well as less signal variability in the amplitude of low-frequency oscillations (1-12 Hz), measured in source space. These age-related reductions were mostly observed in the areas that overlap with the default mode network. Moreover, age-related increases of variability in the amplitude of beta-band frequency EEG oscillations (15-25 Hz) were seen predominantly in temporal brain regions. There were significant sex differences in EEG signal variability in various brain regions while no significant sex differences were observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed no significant associations between EEG- and fMRI-based variability measures. In summary, we show that both BOLD and EEG signal variability reflect aging-related processes but are likely to be dominated by different physiological origins, which relate differentially to age and sex.
Collapse
Affiliation(s)
- D Kumral
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - F Şansal
- International Graduate Program Medical Neurosciences, Charité-Universitätsmedizin, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - E Cesnaite
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K Mahjoory
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
| | - E Al
- MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - M Gaebler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - V V Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité Universitätsmedizin Berlin, Berlin, Germany; Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - A Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; MindBrainBody Institute at the Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Rasmussen PM, Aamand R, Weitzberg E, Christiansen M, Østergaard L, Lund TE. APOE gene-dependent BOLD responses to a breath-hold across the adult lifespan. NEUROIMAGE-CLINICAL 2019; 24:101955. [PMID: 31408838 PMCID: PMC6699560 DOI: 10.1016/j.nicl.2019.101955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 11/03/2022]
Abstract
Age and apolipoprotein E (APOE) e4 genotype are two of the strongest known risk factors for sporadic Alzheimer's disease (AD). Neuroimaging has shown hemodynamic response changes with age, in asymptomatic carriers of the APOE e4 allele, and in AD. In this study, we aimed to characterize and differentiate age- and APOE gene-specific hemodynamic changes to breath-hold and visual stimulation. A further aim was to study whether these responses were modulated by 3-day intake of nitrate, a nitric oxide (NO) source. The study was designed as a randomized, double-blinded, placebo-controlled crossover study, and the study cohort comprised 41 APOE e4 carriers (e3/e4 or e4/e4 genotype) and 40 non-carriers (e3/e3 genotype) aged 30-70 years at enrollment. The participants underwent two scanning sessions, each preceded by ingestion of sodium nitrate or sodium chloride (control). During functional magnetic resonance imaging (fMRI) sessions, participants performed two concurrent tasks; a breath-hold task to probe cerebrovascular reactivity and a visual stimulation task to evoke functional hyperemia, respectively. We found that the blood oxygenation level dependent (BOLD) hemodynamic response to breath-hold was altered in APOE e4 carriers relative to non-carriers. Mid-aged (50-60 years of age) e4 carriers exhibited a significantly increased peak time relative to mid-aged e3 carriers, and peak time for younger (30-40 years of age) e4 carriers was significantly shorter than that of mid-aged e4 carriers. The response width was significantly increased for e4 carriers. The response peak magnitude significantly decreased with age. For the visual stimulation task, we found age-related changes, with reduced response magnitude with age but no significant effect of APOE allele type. We found no effect of nitrate ingestion on BOLD responses evoked by the breath-hold and visual stimulation tasks. The APOE gene-dependent response to breath-hold may reflect NO-independent differences in vascular function.
Collapse
Affiliation(s)
- Peter M Rasmussen
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Rasmus Aamand
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Torben E Lund
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
43
|
Optical measures of cerebral arterial stiffness are associated with white matter signal abnormalities and cognitive performance in normal aging. Neurobiol Aging 2019; 84:200-207. [PMID: 31500910 DOI: 10.1016/j.neurobiolaging.2019.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 05/29/2019] [Accepted: 08/05/2019] [Indexed: 12/25/2022]
Abstract
Decline in fluid abilities in normal aging is associated with increased white matter lesions, measured on T1-weighted images as white matter signal abnormalities (WMSAs). WMSAs are particularly evident in hypertensive older adults, suggesting vascular involvement. However, because hypertension is assessed systemically, the specific role of cerebral arterial stiffening in WMSAs has yet to be demonstrated. In 93 cognitively normal adults (aged 18-87 years), we used a novel method to measure cerebral arterial elasticity (pulse relaxation function [PReFx]) with diffuse optical tomography (pulse-DOT) and investigated its association with WMSAs, age, and cognition. PReFx was associated with WMSAs, with older adults with low PReFx showing the greatest WMSA burden. PReFx in brain regions perfused by the middle cerebral artery showed the largest associations with WMSAs and partially mediated the relationship between age and WMSAs. Finally, WMSAs partially mediated the relationship between PReFx and fluid but not crystallized abilities scores. Taken together, these findings suggest that loss of cerebral arterial elasticity is associated with cerebral white matter lesions and age-related cognitive decline.
Collapse
|
44
|
Non-BOLD contrast for laminar fMRI in humans: CBF, CBV, and CMRO2. Neuroimage 2019; 197:742-760. [DOI: 10.1016/j.neuroimage.2017.07.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
|
45
|
Pinçon A, De Montgolfier O, Akkoyunlu N, Daneault C, Pouliot P, Villeneuve L, Lesage F, Levy BI, Thorin-Trescases N, Thorin É, Ruiz M. Non-Alcoholic Fatty Liver Disease, and the Underlying Altered Fatty Acid Metabolism, Reveals Brain Hypoperfusion and Contributes to the Cognitive Decline in APP/PS1 Mice. Metabolites 2019; 9:metabo9050104. [PMID: 31130652 PMCID: PMC6572466 DOI: 10.3390/metabo9050104] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/22/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfα, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma β40- and β42-amyloid levels and altered hepatic but not brain expression of genes involved in β-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- Anthony Pinçon
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Olivia De Montgolfier
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Nilay Akkoyunlu
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Caroline Daneault
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Philippe Pouliot
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Louis Villeneuve
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
| | - Frédéric Lesage
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Electrical Engineering, Ecole Polytechnique de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Bernard I Levy
- Institut des Vaisseaux et du Sang, Hôpital Lariboisière, 75010 Paris, France.
| | | | - Éric Thorin
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Surgery, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| | - Matthieu Ruiz
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, QC H1T 1C8, Canada.
- Department of Medecine, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada.
| |
Collapse
|
46
|
Adolescent sex differences in cortico-subcortical functional connectivity during response inhibition. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 20:1-18. [PMID: 31111341 DOI: 10.3758/s13415-019-00718-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Numerous lines of evidence have shown that cognitive processes engaged during response inhibition tasks are associated with structure and functional integration of regions within fronto-parietal networks. However, while prior studies have started to characterize how intrinsic connectivity during resting state differs between boys and girls, comparatively less is known about how functional connectivity differs between males and females when brain function is exogenously driven by the processing demands of typical Go/No-Go tasks that assess both response inhibition and error processing. The purpose of this study was to characterize adolescent sex differences and possible changes in sexually dimorphic regional functional connectivity across adolescent development in both cortical and subcortical brain connectivity elicited during a visual Go/No-Go task. A total of 130 healthy adolescents (ages 12-25 years) performed a Go/No-Go task during functional magnetic resonance imaging. High model-order group independent component analysis was used to characterize whole-brain network functional connectivity during response inhibition and then a univariate technique used to evaluate differences related to sex and age. As predicted and similar to previously described findings from non-task-driven resting state connectivity studies, functional connectivity sex differences were observed in several subcortical regions, including the amygdala, caudate, thalamus, and cortical regions, including inferior frontal gyrus engaged most strongly during successful response inhibition and/or error processing. Importantly, adolescent boys and girls exhibited different normative profiles of age-related changes in several default mode networks of regions and anterior cingulate cortex. These results suggest that cortical-subcortical functional networks supporting response inhibition operate differently between sexes during adolescence.
Collapse
|
47
|
Deng ID, Chung L, Talwar N, Tam F, Churchill NW, Schweizer TA, Graham SJ. Functional MRI of Letter Cancellation Task Performance in Older Adults. Front Hum Neurosci 2019; 13:97. [PMID: 31057377 PMCID: PMC6477506 DOI: 10.3389/fnhum.2019.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
The Letter Cancellation Task (LCT) is a widely used pen-and-paper probe of attention in clinical and research settings. Despite its popularity, the neural correlates of the task are not well understood. The present study uses functional magnetic resonance imaging (fMRI) and specialized tablet technology to identify the neural correlates of the LCT in 32 healthy older adults between 50-85 years of age, and further investigates the effect of healthy aging on performance. Subjects performed the LCT in its standard pen-and-paper administration and with the tablet during fMRI. Performance on the tablet was significantly slower than on pen-and-paper, with both response modes showing slower performance as a function of age. Across all ages, bilateral brain activation was observed in the cerebellum, superior temporal lobe, precentral gyrus, frontal gyrus, and occipital and parietal areas. Increasing age correlated with reduced brain activity in the supplementary motor area, middle occipital gyrus, medial and inferior frontal gyrus, cerebellum and putamen. Better LCT performance was correlated with increased activity in the middle frontal gyrus, and reduced activity in the cerebellum. The brain regions activated are associated with visuospatial attention and motor control, and are consistent with the neural correlates of LCT performance previously identified in lesion studies.
Collapse
Affiliation(s)
- Ivy D Deng
- Physical Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Luke Chung
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Natasha Talwar
- Neuroscience Research Program, Keenan Research Centre for Biomedical Science, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Nathan W Churchill
- Neuroscience Research Program, Keenan Research Centre for Biomedical Science, Toronto, ON, Canada
| | - Tom A Schweizer
- Neuroscience Research Program, Keenan Research Centre for Biomedical Science, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Simon J Graham
- Physical Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Turner MP, Hubbard NA, Sivakolundu DK, Himes LM, Hutchison JL, Hart J, Spence JS, Frohman EM, Frohman TC, Okuda DT, Rypma B. Preserved canonicality of the BOLD hemodynamic response reflects healthy cognition: Insights into the healthy brain through the window of Multiple Sclerosis. Neuroimage 2019; 190:46-55. [PMID: 29454932 DOI: 10.1016/j.neuroimage.2017.12.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/18/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022] Open
Abstract
The hemodynamic response function (HRF), a model of brain blood-flow changes in response to neural activity, reflects communication between neurons and the vasculature that supplies these neurons in part by means of glial cell intermediaries (e.g., astrocytes). Intact neural-vascular communication might play a central role in optimal cognitive performance. This hypothesis can be tested by comparing healthy individuals to those with known white-matter damage and impaired performance, as seen in Multiple Sclerosis (MS). Glial cell intermediaries facilitate the ability of neurons to adequately convey metabolic needs to cerebral vasculature for sufficient oxygen and nutrient perfusion. In this study, we isolated measurements of the HRF that could quantify the extent to which white-matter affects neural-vascular coupling and cognitive performance. HRFs were modeled from multiple brain regions during multiple cognitive tasks using piecewise cubic spline functions, an approach that minimized assumptions regarding HRF shape that may not be valid for diseased populations, and were characterized using two shape metrics (peak amplitude and time-to-peak). Peak amplitude was reduced, and time-to-peak was longer, in MS patients relative to healthy controls. Faster time-to-peak was predicted by faster reaction time, suggesting an important role for vasodilatory speed in the physiology underlying processing speed. These results support the hypothesis that intact neural-glial-vascular communication underlies optimal neural and cognitive functioning.
Collapse
Affiliation(s)
- Monroe P Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nicholas A Hubbard
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dinesh K Sivakolundu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Lyndahl M Himes
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Joanna L Hutchison
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - John Hart
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey S Spence
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Elliot M Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa C Frohman
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Darin T Okuda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
49
|
BOLD signal physiology: Models and applications. Neuroimage 2019; 187:116-127. [DOI: 10.1016/j.neuroimage.2018.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
|
50
|
West KL, Zuppichini MD, Turner MP, Sivakolundu DK, Zhao Y, Abdelkarim D, Spence JS, Rypma B. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 2018; 188:198-207. [PMID: 30529628 DOI: 10.1016/j.neuroimage.2018.12.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) has been used to infer age-differences in neural activity from the hemodynamic response function (HRF) that characterizes the blood-oxygen-level-dependent (BOLD) signal over time. BOLD literature in healthy aging lacks consensus in age-related HRF changes, the nature of those changes, and their implications for measurement of age differences in brain function. Between-study discrepancies could be due to small sample sizes, analysis techniques, and/or physiologic mechanisms. We hypothesize that, with large sample sizes and minimal analysis assumptions, age-related changes in HRF parameters could reflect alterations in one or more components of the neural-vascular coupling system. To assess HRF changes in healthy aging, we analyzed the large population-derived dataset from the Cambridge Center for Aging and Neuroscience (CamCAN) study (Shafto et al., 2014). During scanning, 74 younger (18-30 years of age) and 173 older participants (54-74 years of age) viewed two checkerboards to the left and right of a central fixation point, simultaneously heard a binaural tone, and responded via right index finger button-press. To assess differences in the shape of the HRF between younger and older groups, HRFs were estimated using FMRIB's Linear Optimal Basis Sets (FLOBS) to minimize a priori shape assumptions. Group mean HRFs were different between younger and older groups in auditory, visual, and motor cortices. Specifically, we observed increased time-to-peak and decreased peak amplitude in older compared to younger adults in auditory, visual, and motor cortices. Changes in the shape and timing of the HRF in healthy aging, in the absence of performance differences, support our hypothesis of age-related changes in the neural-vascular coupling system beyond neural activity alone. More precise interpretations of HRF age-differences can be formulated once these physiologic factors are disentangled and measured separately.
Collapse
Affiliation(s)
- Kathryn L West
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA.
| | - Mark D Zuppichini
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| | - Monroe P Turner
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| | | | - Yuguang Zhao
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| | - Dema Abdelkarim
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| | - Jeffrey S Spence
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| | - Bart Rypma
- University of Texas at Dallas, School of Behavioral and Brain Sciences, USA
| |
Collapse
|