1
|
Fan L, Su C, Li Y, Guo J, Huang Z, Zhang W, Liu T, Wang J. The alterations of repetitive transcranial magnetic stimulation on the energy landscape of resting-state networks differ across the human cortex. Hum Brain Mapp 2024; 45:e70029. [PMID: 39465912 PMCID: PMC11514123 DOI: 10.1002/hbm.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 10/29/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a promising intervention tool for the noninvasive modulation of brain activity and behavior in neuroscience research and clinical settings. However, the resting-state dynamic evolution of large-scale functional brain networks following rTMS has rarely been investigated. Here, using resting-state fMRI images collected from 23 healthy individuals before (baseline) and after 1 Hz rTMS of the left frontal (FRO) and occipital (OCC) lobes, we examined the different effects of rTMS on brain dynamics across the human cortex. By fitting a pairwise maximum entropy model (pMEM), we constructed an energy landscape for the baseline and poststimulus conditions by fitting a pMEM. We defined dominant brain states (local minima) in the energy landscape with synergistic activation and deactivation patterns of large-scale functional networks. We calculated state dynamics including appearance probability, transitions and duration. The results showed that 1 Hz rTMS induced increased and decreased state probability, transitions and duration when delivered to the FRO and OCC targets, respectively. Most importantly, the shortest path and minimum cost between dominant brain states were altered after stimulation. The absolute sum of the costs from the source states to the destinations was lower after OCC stimulation than after FRO stimulation. In conclusion, our study characterized the dynamic trajectory of state transitions in the energy landscape and suggested that local rTMS can induce significant dynamic perturbation involving stimulated and distant functional networks, which aligns with the modern view of the dynamic and complex brain. Our results suggest low-dimensional mapping of rTMS-induced brain adaption, which will contribute to a broader and more effective application of rTMS in clinical settings.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Chunwang Su
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jinjia Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Zi‐Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationInstitute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'anShaanxiP. R. China
- National Engineering Research Center of Health Care and Medical DevicesGuangzhouGuangdongP. R. China
- The Key Laboratory of Neuro‐informatics & Rehabilitation Engineering of Ministry of Civil AffairsXi'anShaanxiP. R. China
| |
Collapse
|
2
|
Sütçübaşı B, Bayram A, Metin B, Demiralp T. Neural correlates of approach-avoidance behavior in healthy subjects: Effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex. Int J Psychophysiol 2024; 203:112392. [PMID: 39002638 DOI: 10.1016/j.ijpsycho.2024.112392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The dorsolateral prefrontal cortex (dlPFC) is implicated in top-down regulation of emotion, but the detailed network mechanisms require further elucidation. To investigate network-level functions of the dlPFC in emotion regulation, this study measured changes in task-based activation, resting-state and task-based functional connectivity (FC) patterns following suppression of dlPFC excitability by 1-Hz repetitive transcranial magnetic stimulation (rTMS). In a sham-controlled within-subject design, 1-Hz active or sham rTMS was applied to the right dlPFC of 19 healthy volunteers during two separate counterbalanced sessions. Following active and sham rTMS, functional magnetic resonance imaging (fMRI) was conducted in the resting state (rs-fMRI) and during approach-avoidance task responses to pictures with positive and negative emotional content (task-based fMRI). Activation and generalized psychophysiological interaction analyses were performed on task-based fMRI, and seed-based FC analysis was applied to rs-fMRI data. Task-based fMRI revealed greater and more lateralized activation in the right hemisphere during negative picture responses compared to positive picture responses. After active rTMS, greater activation was observed in the left middle prefrontal cortex compared to sham rTMS. Further, rTMS reduced response times and error rates in approach to positive pictures compared to negative pictures. Significant FC changes due to rTMS were observed predominantly in the frontoparietal network (FPN) and visual network (VN) during the task, and in the default mode network (DMN) and VN at rest. Suppression of right dlPFC activity by 1-Hz rTMS alters large-scale neural networks and modulates emotion, supporting potential applications for the treatment of mood disorders.
Collapse
Affiliation(s)
- Bernis Sütçübaşı
- Acibadem University, Faculty of Humanities and Social Sciences, Department of Psychology, Istanbul, Turkey
| | - Ali Bayram
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, Istanbul, Turkey.
| | - Barış Metin
- Uskudar University, Faculty of Medicine, Department of Neurology, Istanbul, Turkey.
| | - Tamer Demiralp
- Istanbul University, Istanbul Faculty of Medicine, Department of Physiology, Istanbul, Turkey.
| |
Collapse
|
3
|
Li Y, Yang B, Ma J, Gao S, Zeng H, Wang W. Assessment of rTMS treatment effects for methamphetamine use disorder based on EEG microstates. Behav Brain Res 2024; 465:114959. [PMID: 38494128 DOI: 10.1016/j.bbr.2024.114959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/10/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Microstates have been proposed as topographical maps representing large-scale resting-state networks and have recently been suggested as markers for methamphetamine use disorder (MUD). However, it is unknown whether and how they change after repetitive transcranial magnetic stimulation (rTMS) intervention. This study included a comprehensive subject population to investigate the effect of rTMS on MUD microstates. 34 patients with MUD underwent a 4-week randomized, double-blind rTMS intervention (active=17, sham=17). Two resting-state EEG recordings and VAS evaluations were conducted before and after the intervention period. Additionally, 17 healthy individuals were included as baseline controls. The modified k-means clustering method was used to calculate four microstates (MS-A∼MS-D) of EEG, and the FC network was also analyzed. The differences in microstate indicators between groups and within groups were compared. The durations of MS-A and MS-B microstates in patients with MUD were significantly lower than that in HC but showed significant improvements after rTMS intervention. Changes in microstate indicators were found to be significantly correlated with changes in craving level. Furthermore, selective modulation of the resting-state network by rTMS was observed in the FC network. The findings indicate that changes in microstates in patients with MUD are associated with craving level improvement following rTMS, suggesting they may serve as valuable evaluation markers.
Collapse
Affiliation(s)
- Yongcong Li
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Jun Ma
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Shouwei Gao
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Hui Zeng
- School of Medicine, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Shaanxi 710038, China.
| |
Collapse
|
4
|
Fan L, Li Y, Zhao X, Huang ZG, Liu T, Wang J. Dynamic nonreversibility view of intrinsic brain organization and brain dynamic analysis of repetitive transcranial magnitude stimulation. Cereb Cortex 2024; 34:bhae098. [PMID: 38494890 DOI: 10.1093/cercor/bhae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Intrinsic neural activities are characterized as endless spontaneous fluctuation over multiple time scales. However, how the intrinsic brain organization changes over time under local perturbation remains an open question. By means of statistical physics, we proposed an approach to capture whole-brain dynamics based on estimating time-varying nonreversibility and k-means clustering of dynamic varying nonreversibility patterns. We first used synthetic fMRI to investigate the effects of window parameters on the temporal variability of varying nonreversibility. Second, using real test-retest fMRI data, we examined the reproducibility, reliability, biological, and physiological correlation of the varying nonreversibility substates. Finally, using repetitive transcranial magnetic stimulation-fMRI data, we investigated the modulation effects of repetitive transcranial magnetic stimulation on varying nonreversibility substate dynamics. The results show that: (i) as window length increased, the varying nonreversibility variance decreased, while the sliding step almost did not alter it; (ii) the global high varying nonreversibility states and low varying nonreversibility states were reproducible across multiple datasets and different window lengths; and (iii) there were increased low varying nonreversibility states and decreased high varying nonreversibility states when the left frontal lobe was stimulated, but not the occipital lobe. Taken together, these results provide a thermodynamic equilibrium perspective of intrinsic brain organization and reorganization under local perturbation.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xingjian Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
5
|
Alashram AR. Effects of robotic therapy associated with noninvasive brain stimulation on motor function in individuals with incomplete spinal cord injury: A systematic review of randomized controlled trials. J Spinal Cord Med 2024:1-16. [PMID: 38265422 DOI: 10.1080/10790268.2024.2304921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
CONTEXT Motor deficits are among the most common consequences of incomplete spinal cord injury (SCI). These impairments can affect patients' levels of functioning and quality of life. Combined robotic therapy and non-invasive brain stimulation (NIBS) have been used to improve motor impairments in patients with corticospinal tract lesions. OBJECTIVES To examine the effects of combined robotic therapy and NIBS on motor function post incomplete SCI. METHODS PubMed, SCOPUS, MEDLINE, PEDro, Web of Science, REHABDATA, CINAHL, and EMBASE were searched from inception until July 2023. The Physiotherapy Evidence Database (PEDro) scale was employed to evaluate the selected studies quality. RESULTS Of 557 studies, five randomized trials (n = 122), with 25% of participants being females, were included in this review. The PEDro scores ranged from eight to nine, with a median score of nine. There were variations in treatment protocols and outcome measures, resulting in heterogeneous findings. The findings showed revealed evidence for the impacts of combined robotic therapy and NIBS on motor function in individuals with incomplete SCI. CONCLUSIONS Combined robotic training and NIBS may be safe for individuals with incomplete SCI. The existing evidence concerning its effects on motor outcomes in individuals with SCI is limited. Further experimental studies are needed to understand the effects of combined robotic training and NIBS on motor impairments in SCI populations.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Amman, Jordan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| |
Collapse
|
6
|
Hotta J, Saari J, Harno H, Kalso E, Forss N, Hari R. Somatotopic disruption of the functional connectivity of the primary sensorimotor cortex in complex regional pain syndrome type 1. Hum Brain Mapp 2023; 44:6258-6274. [PMID: 37837646 PMCID: PMC10619416 DOI: 10.1002/hbm.26513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/16/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023] Open
Abstract
In complex regional pain syndrome (CRPS), the representation area of the affected limb in the primary sensorimotor cortex (SM1) reacts abnormally during sensory stimulation and motor actions. We recorded 3T functional magnetic resonance imaging resting-state data from 17 upper-limb CRPS type 1 patients and 19 healthy control subjects to identify alterations of patients' SM1 function during spontaneous pain and to find out how the spatial distribution of these alterations were related to peripheral symptoms. Seed-based correlations and independent component analyses indicated that patients' upper-limb SM1 representation areas display (i) reduced interhemispheric connectivity, associated with the combined effect of intensity and spatial extent of limb pain, (ii) increased connectivity with the right anterior insula that positively correlated with the duration of CRPS, (iii) increased connectivity with periaqueductal gray matter, and (iv) disengagement from the other parts of the SM1 network. These findings, now reported for the first time in CRPS, parallel the alterations found in patients suffering from other chronic pain conditions or from limb denervation; they also agree with findings in healthy persons who are exposed to experimental pain or have used their limbs asymmetrically. Our results suggest that CRPS is associated with a sustained and somatotopically specific alteration of SM1 function, that has correspondence to the spatial distribution of the peripheral manifestations and to the duration of the syndrome.
Collapse
Affiliation(s)
- Jaakko Hotta
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Jukka Saari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Aalto NeuroImagingAalto UniversityEspooFinland
- Department of Applied PhysicsUniversity of Eastern FinlandKuopioFinland
| | - Hanna Harno
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Nina Forss
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of NeurologyHelsinki University Hospital and Clinical Neurosciences, Neurology, University of HelsinkiHelsinkiFinland
| | - Riitta Hari
- Department of Neuroscience and Biomedical EngineeringAalto University School of ScienceEspooFinland
- Department of Art and MediaAalto University School of Arts, Design and ArchitectureHelsinkiFinland
| |
Collapse
|
7
|
Lee H, Lee JH, Hwang MH, Kang N. Repetitive transcranial magnetic stimulation improves cardiovascular autonomic nervous system control: A meta-analysis. J Affect Disord 2023; 339:443-453. [PMID: 37459970 DOI: 10.1016/j.jad.2023.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/15/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Cardiovascular autonomic system (ANS) may be affected by altered neural activations in the brain. This systematic review and meta-analysis investigated potential effects of repetitive transcranial magnetic stimulation (rTMS) protocols on cardiovascular ANS control. METHODS Through 19 qualified studies, we acquired 70 comparisons for data synthesis. Individual effect sizes were estimated by comparing changes in following cardiovascular ANS control variables between active and sham stimulation conditions: (a) blood pressure (BP), (b) heart rate (HR), and (c) heart rate variability (HRV). Moreover, two moderator variable analyses determined whether changes in cardiovascular ANS control were different based on (a) rTMS protocols (excitatory rTMS versus inhibitory rTMS) and (b) specific targeted cortical regions, respectively. RESULTS The random-effects model meta-analysis revealed significant improvements in cardiovascular ANS control after the rTMS protocols. Specifically, applying excitatory and inhibitory rTMS protocols significantly decreased values of BP and HR variables. For HRV variables, excitatory rTMS protocols showed significant positive effects. These improvements in cardiovascular ANS control were observed while applying either excitatory rTMS protocols to the left dorsolateral prefrontal cortex or inhibitory rTMS protocols to the right dorsolateral prefrontal cortex. LIMITATIONS Relatively small number of studies for inhibitory rTMS on the right dorsolateral prefrontal cortex were included in this meta-analysis. CONCLUSION These findings suggest that applying excitatory and inhibitory rTMS protocols on prefrontal cortical regions may be effective to improve cardiovascular ANS control.
Collapse
Affiliation(s)
- Hanall Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| | - Moon-Hyon Hwang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Health & Kinesiology, Incheon National University, Incheon, South Korea.
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea; Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, South Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea.
| |
Collapse
|
8
|
Fan L, Li Y, Huang ZG, Zhang W, Wu X, Liu T, Wang J. Low-frequency repetitive transcranial magnetic stimulation alters the individual functional dynamical landscape. Cereb Cortex 2023; 33:9583-9598. [PMID: 37376783 DOI: 10.1093/cercor/bhad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive approach to modulate brain activity and behavior in humans. Still, how individual resting-state brain dynamics after rTMS evolves across different functional configurations is rarely studied. Here, using resting state fMRI data from healthy subjects, we aimed to examine the effects of rTMS to individual large-scale brain dynamics. Using Topological Data Analysis based Mapper approach, we construct the precise dynamic mapping (PDM) for each participant. To reveal the relationship between PDM and canonical functional representation of the resting brain, we annotated the graph using relative activation proportion of a set of large-scale resting-state networks (RSNs) and assigned the single brain volume to corresponding RSN-dominant or a hub state (not any RSN was dominant). Our results show that (i) low-frequency rTMS could induce changed temporal evolution of brain states; (ii) rTMS didn't alter the hub-periphery configurations underlined resting-state brain dynamics; and (iii) the rTMS effects on brain dynamics differ across the left frontal and occipital lobe. In conclusion, low-frequency rTMS significantly alters the individual temporo-spatial dynamics, and our finding further suggested a potential target-dependent alteration of brain dynamics. This work provides a new perspective to comprehend the heterogeneous effect of rTMS.
Collapse
Affiliation(s)
- Liming Fan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Youjun Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Zi-Gang Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Wenlong Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Xiaofeng Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Tian Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
| | - Jue Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
- National Engineering Research Center of Health Care and Medical Devices, Guangzhou, Guangdong 510500, China
- The Key Laboratory of Neuro-Informatics & Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi 710049, China
| |
Collapse
|
9
|
Belov V, Kozyrev V, Singh A, Sacchet MD, Goya-Maldonado R. Subject-specific whole-brain parcellations of nodes and boundaries are modulated differently under 10 Hz rTMS. Sci Rep 2023; 13:12615. [PMID: 37537227 PMCID: PMC10400653 DOI: 10.1038/s41598-023-38946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has gained considerable importance in the treatment of neuropsychiatric disorders, including major depression. However, it is not yet understood how rTMS alters brain's functional connectivity. Here we report changes in functional connectivity captured by resting state functional magnetic resonance imaging (rsfMRI) within the first hour after 10 Hz rTMS. We apply subject-specific parcellation schemes to detect changes (1) in network nodes, where the strongest functional connectivity of regions is observed, and (2) in network boundaries, where functional transitions between regions occur. We use support vector machine (SVM), a widely used machine learning algorithm that is robust and effective, for the classification and characterization of time intervals of changes in node and boundary maps. Our results reveal that changes in connectivity at the boundaries are slower and more complex than in those observed in the nodes, but of similar magnitude according to accuracy confidence intervals. These results were strongest in the posterior cingulate cortex and precuneus. As network boundaries are indeed under-investigated in comparison to nodes in connectomics research, our results highlight their contribution to functional adjustments to rTMS.
Collapse
Affiliation(s)
- Vladimir Belov
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Vladislav Kozyrev
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
- Functional Imaging Laboratory, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Aditya Singh
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Roberto Goya-Maldonado
- Laboratory of Systems Neuroscience and Imaging in Psychiatry (SNIP-Lab), Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Von-Siebold Str. 5, 37075, Göttingen, Germany.
| |
Collapse
|
10
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Farrens AJ, Vahdat S, Sergi F. Changes in Resting State Functional Connectivity Associated with Dynamic Adaptation of Wrist Movements. J Neurosci 2023; 43:3520-3537. [PMID: 36977577 PMCID: PMC10184736 DOI: 10.1523/jneurosci.1916-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC). For dynamic adaptation, rsFC has not been quantified on this timescale, nor has its relationship to adaptative behavior been established. We used a functional magnetic resonance imaging (fMRI)-compatible robot, the MR-SoftWrist (Erwin et al., 2017), to quantify rsFC specific to dynamic adaptation of wrist movements and subsequent memory formation in a mixed-sex cohort of human participants. We acquired fMRI during a motor execution and a dynamic adaptation task to localize brain networks of interest, and quantified rsFC within these networks in three 10-min windows occurring immediately before and after each task. The next day, we assessed behavioral retention. We used a mixed model of rsFC measured in each time window to identify changes in rsFC with task performance, and linear regression to identify the relationship between rsFC and behavior. Following the dynamic adaptation task, rsFC increased within the cortico-cerebellar network and decreased interhemispherically within the cortical sensorimotor network. Increases within the cortico-cerebellar network were specific to dynamic adaptation, as they were associated with behavioral measures of adaptation and retention, indicating that this network has a functional role in consolidation. Instead, decreases in rsFC within the cortical sensorimotor network were associated with motor control processes independent from adaptation and retention.SIGNIFICANCE STATEMENT Motor memory consolidation processes have been studied via functional magnetic resonance imaging (fMRI) by analyzing changes in resting state functional connectivity (rsFC) occurring more than 30 min after adaptation. However, it is unknown whether consolidation processes are detectable immediately (<15 min) following dynamic adaptation. We used an fMRI-compatible wrist robot to localize brain regions involved in dynamic adaptation in the cortico-thalamic-cerebellar (CTC) and cortical sensorimotor networks and quantified changes in rsFC within each network immediately after adaptation. Different patterns of change in rsFC were observed compared with studies conducted at longer latencies. Increases in rsFC in the cortico-cerebellar network were specific to adaptation and retention, while interhemispheric decreases in the cortical sensorimotor network were associated with alternate motor control processes but not with memory formation.
Collapse
Affiliation(s)
- Andria J Farrens
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| | - Shahabeddin Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| |
Collapse
|
12
|
Eldaief MC, McMains S, Izquierdo-Garcia D, Daneshzand M, Nummenmaa A, Braga RM. Network-specific metabolic and haemodynamic effects elicited by non-invasive brain stimulation. NATURE MENTAL HEALTH 2023; 1:346-360. [PMID: 37982031 PMCID: PMC10655825 DOI: 10.1038/s44220-023-00046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/06/2023] [Indexed: 11/21/2023]
Abstract
Repetitive transcranial magnetic stimulation (TMS), when applied to the dorsolateral prefrontal cortex (dlPFC), treats depression. Therapeutic effects are hypothesized to arise from propagation of local dlPFC stimulation effects across distributed networks; however, the mechanisms of this remain unresolved. dlPFC contains representations of different networks. As such, dlPFC TMS may exert different effects depending on the network being stimulated. Here, to test this, we applied high-frequency TMS to two nearby dlPFC targets functionally embedded in distinct anti-correlated networks-the default and salience networks- in the same individuals in separate sessions. Local and distributed TMS effects were measured with combined 18fluorodeoxyglucose positron emission tomography and functional magnetic resonance imaging. Identical TMS patterns caused opposing effects on local glucose metabolism: metabolism increased at the salience target following salience TMS but decreased at the default target following default TMS. At the distributed level, both conditions increased functional connectivity between the default and salience networks, with this effect being dramatically larger following default TMS. Metabolic and haemodynamic effects were also linked: across subjects, the magnitude of local metabolic changes correlated with the degree of functional connectivity changes. These results suggest that TMS effects upon dlPFC are network specific. They also invoke putative antidepressant mechanisms of TMS: network de-coupling.
Collapse
Affiliation(s)
- Mark C. Eldaief
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Brain Science, Neuroimaging Facility, Harvard University, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammad Daneshzand
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
13
|
Acute TMS/fMRI response explains offline TMS network effects - An interleaved TMS-fMRI study. Neuroimage 2023; 267:119833. [PMID: 36572133 DOI: 10.1016/j.neuroimage.2022.119833] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/22/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is an FDA-approved therapeutic option for treatment resistant depression. However, exact mechanisms-of-action are not fully understood and individual responses are variable. Moreover, although previously suggested, the exact network effects underlying TMS' efficacy are poorly understood as of today. Although, it is supposed that DLPFC stimulation indirectly modulates the sgACC, recent evidence is sparse. METHODS Here, we used concurrent interleaved TMS/fMRI and state-of-the-science purpose-designed MRI head coils to delineate networks and downstream regions activated by DLPFC-TMS. RESULTS We show that regions of increased acute BOLD signal activation during TMS resemble a resting-state brain network previously shown to be modulated by offline TMS. There was a topographical overlap in wide spread cortical and sub-cortical areas within this specific RSN#17 derived from the 1000 functional connectomes project. CONCLUSION These data imply a causal relation between DLPFC-TMS and activation of the ACC and a broader network that has been implicated in MDD. In the broader context of our recent work, these data imply a direct relation between initial changes in BOLD activity mediated by connectivity to the DLPFC target site, and later consolidation of connectivity between these regions. These insights advance our understanding of the mechanistic targets of DLPFC-TMS and may provide novel opportunities to characterize and optimize TMS therapy in other neurological and psychiatric disorders.
Collapse
|
14
|
Terpstra AR, Vila-Rodriguez F, LeMoult J, Chakrabarty T, Nair M, Humaira A, Gregory EC, Todd RM. Cognitive-affective processes and suicidality in response to repetitive transcranial magnetic stimulation for treatment resistant depression. J Affect Disord 2023; 321:182-190. [PMID: 36341803 DOI: 10.1016/j.jad.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) can elicit 45-55 % response rates and may alleviate suicidality symptoms in treatment resistant depression (TRD). Blunted anticipatory reward sensitivity and negatively biased self-referential processing may predict trajectories of depressive and suicidality symptoms in rTMS for TRD and be modulated during treatment. METHODS Fifty-five individuals with TRD received four weeks of low-frequency rTMS applied to the right dorsolateral prefrontal cortex (LFR-rTMS) and were followed until 17 weeks post-baseline. Participants completed behavioral measures of anticipatory reward sensitivity and self-referential processing at baseline and five weeks post-baseline (approximately one-week post-treatment). We examined whether baseline anticipatory reward sensitivity and self-referential processing predicted trajectories of depressive and suicidality symptoms from baseline to follow-up and whether these cognitive-affective variables showed change from baseline to week five. RESULTS Anticipatory reward sensitivity and negative self-referential encoding at baseline were associated with higher overall depressive symptoms and suicidality from baseline to 17 weeks post-baseline. At week five, participants self-attributed a higher number of positive traits and a lower number of negative traits and had a lesser tendency to remember negative relative to positive traits they had self-attributed, compared to baseline. LIMITATIONS The specificity of these results to LFR-rTMS is unknown in the absence of a comparison group, and our relatively small sample size precluded the interpretation of null results. CONCLUSIONS Baseline blunted anticipatory reward sensitivity and negative biases in self-referential processing may be risk factors for higher depressive symptoms and suicidality during and after LFR-rTMS, and LFR-rTMS may modulate self-referential processing.
Collapse
Affiliation(s)
- Alex R Terpstra
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada.
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Joelle LeMoult
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Trisha Chakrabarty
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Medha Nair
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada
| | - Afifa Humaira
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Elizabeth C Gregory
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Rebecca M Todd
- Department of Psychology, The University of British Columbia, Vancouver, BC, Canada; Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Zhu L, Dang G, Wu W, Zhou J, Shi X, Su X, Ren H, Pei Z, Lan X, Lian C, Xie P, Guo Y. Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment. Front Neurosci 2023; 17:1135995. [PMID: 37139515 PMCID: PMC10149758 DOI: 10.3389/fnins.2023.1135995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used as a treatment modality for chronic insomnia disorder (CID). However, our understanding of the mechanisms underlying the efficacy of rTMS is limited. Objective This study aimed to investigate rTMS-induced alterations in resting-state functional connectivity and to find potential connectivity biomarkers for predicting and tracking clinical outcomes after rTMS. Methods Thirty-seven patients with CID received a 10-session low frequency rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and after treatment, the patients underwent resting-state electroencephalography recordings and a sleep quality assessment using the Pittsburgh Sleep Quality Index (PSQI). Results After treatment, rTMS significantly increased the connectivity of 34 connectomes in the lower alpha frequency band (8-10 Hz). Additionally, alterations in functional connectivity between the left insula and the left inferior eye junction, as well as between the left insula and medial prefrontal cortex, were associated with a decrease in PSQI score. Further, the correlation between the functional connectivity and PSQI persisted 1 month after the completion of rTMS as evidenced by subsequent electroencephalography (EEG) recordings and the PSQI assessment. Conclusion Based on these results, we established a link between alterations in functional connectivity and clinical outcomes of rTMS, which suggested that EEG-derived functional connectivity changes were associated with clinical improvement of rTMS in treating CID. These findings provide preliminary evidence that rTMS may improve insomnia symptoms by modifying functional connectivity, which can be used to inform prospective clinical trials and potentially for treatment optimization.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Junhong Zhou
- Hebrew Seniorlife, Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Xue Shi
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaolin Su
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | | | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- *Correspondence: Yi Guo,
| |
Collapse
|
16
|
Wu B, Feng B, Han X, Chen L, Luo W. Intrinsic excitability of human right parietal cortex shapes the experienced visual size illusions. Cereb Cortex 2022; 33:6345-6353. [PMID: 36562991 DOI: 10.1093/cercor/bhac508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Converging evidence has found that the perceived visual size illusions are heritable, raising the possibility that visual size illusions might be predicted by intrinsic brain activity without external stimuli. Here we measured resting-state brain activity and 2 classic visual size illusions (i.e. the Ebbinghaus and the Ponzo illusions) in succession, and conducted spectral dynamic causal modeling analysis among relevant cortical regions. Results revealed that forward connection from right V1 to superior parietal lobule (SPL) was predictive of the Ebbinghaus illusion, and self-connection in the right SPL predicted the Ponzo illusion. Moreover, disruption of intrinsic activity in the right SPL by repetitive transcranial magnetic stimulation (TMS) temporally increased the Ebbinghaus rather than the Ponzo illusion. These findings provide a better mechanistic understanding of visual size illusions by showing the causal and distinct contributions of right parietal cortex to them, and suggest that spontaneous fluctuations in intrinsic brain activity are relevant to individual difference in behavior.
Collapse
Affiliation(s)
- Baoyu Wu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, P. R. China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, P. R. China.,Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Bengang Feng
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, P. R. China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, P. R. China
| | - Xue Han
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, P. R. China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, P. R. China
| | - Lihong Chen
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, P. R. China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, P. R. China
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian 116029, P. R. China.,Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian 116029, P. R. China
| |
Collapse
|
17
|
Jan N, Li Z, Xiyu L, Farhan Basheer M, Tongkachok K. Pre- and post-COVID-19: The impact of the pandemic and stock market psychology on the growth and sustainability of consumer goods industries. Front Psychol 2022; 13:796287. [PMID: 36507039 PMCID: PMC9731482 DOI: 10.3389/fpsyg.2022.796287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
The objective of this study is to investigate the impact of the COVID-19 pandemic and stock market psychology on investor investment decisions in different business units operating in the Shandong stock market. The sample size of the study consists of 5,000 individuals from six different business units. The study used the event study statistical technique to analyze the market reaction to newly released information from the stock market perspective to assess whether the number of COVID-19 positive cases impacted it. With a Z score value of 40.345 and a P-value of 0.000, the Wilcoxon test indicated that stock prices before and after the pandemic were quite different. The test showed a positive relationship between the pandemic and the stock market. Further, the results indicated that COVID-19 and stock market psychology had a significant positive impact on investor investment decisions in cosmetic and beauty, consumer household, textiles and apparel, and consumer electronics industries; however, in the sporting and consumer appliance industries, it had an insignificant negative impact. This study serves to guide investors to make suitable changes in their stock market trading practices to counter these challenges to increase their required rate of return from their specific stock market investment. The findings have important insights for various stakeholders including governments, regulatory bodies, practitioners, academia, industry, and researchers.
Collapse
Affiliation(s)
- Naveed Jan
- Department of Management science and Engineering, Business School, Shandong Normal University, Jinan, China,*Correspondence: Naveed Jan
| | - Zeyun Li
- School of Humanity, Universiti Sains Malaysia, George Town, Malaysia
| | - Liu Xiyu
- Department of Management science and Engineering, Business School, Shandong Normal University, Jinan, China,Liu Xiyu
| | | | - Korakod Tongkachok
- Department of Law, School of Law, Thaksin University, Songkhla, Thailand
| |
Collapse
|
18
|
Nakajima K, Osada T, Ogawa A, Tanaka M, Oka S, Kamagata K, Aoki S, Oshima Y, Tanaka S, Konishi S. A causal role of anterior prefrontal-putamen circuit for response inhibition revealed by transcranial ultrasound stimulation in humans. Cell Rep 2022; 40:111197. [PMID: 35977493 DOI: 10.1016/j.celrep.2022.111197] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Stopping an inappropriate response requires the involvement of the prefrontal-subthalamic hyperdirect pathway. However, how the prefrontal-striatal indirect pathway contributes to stopping is poorly understood. In this study, transcranial ultrasound stimulation is used to perform interventions in a task-related region in the striatum. Functional magnetic resonance imaging (MRI) reveals activation in the right anterior part of the putamen during response inhibition, and ultrasound stimulation to the anterior putamen, as well as the subthalamic nucleus, results in significant impairments in stopping performance. Diffusion imaging further reveals prominent structural connections between the anterior putamen and the right anterior part of the inferior frontal cortex (IFC), and ultrasound stimulation to the anterior IFC also shows significant impaired stopping performance. These results demonstrate that the right anterior putamen and right anterior IFC causally contribute to stopping and suggest that the anterior IFC-anterior putamen circuit in the indirect pathway serves as an essential route for stopping.
Collapse
Affiliation(s)
- Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Research Institute for Diseases of Old Age, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Sportology Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Science, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| |
Collapse
|
19
|
Interhemispheric Facilitatory Effect of High-Frequency rTMS: Perspective from Intracortical Facilitation and Inhibition. Brain Sci 2022; 12:brainsci12080970. [PMID: 35892411 PMCID: PMC9332419 DOI: 10.3390/brainsci12080970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
The activity of excitatory and inhibitory neural circuits in the motor cortex can be probed and modified by transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS), noninvasively. At present, not only has a consensus regarding the interhemispheric effect of high frequency rTMS not been reached, but the attributes of these TMS-related circuits are also poorly understood. To address this question comprehensively, we integrated a single- and paired-pulse TMS evaluation with excitatory 20-Hz rTMS intervention in order to probe the interhemispheric effect on the intracortical circuits by high-frequency rTMS. In the rest state, after 20-Hz rTMS, a significant increase of single-pulse MEP and paired-pulse intracortical facilitation (ICF) in the non-stimulated hemisphere was observed with good test–retest reliability. Intracortical inhibition (measured by the cortical silent period) in the unstimulated hemisphere also increased after rTMS. No significant time–course change was observed in the sham-rTMS group. The results provide the evidence that 20-Hz rTMS induced a reliable interhemispheric facilitatory effect. Findings from the present study suggest that the glutamatergic facilitatory system and the GABAergic inhibitory system may vary synchronously.
Collapse
|
20
|
Ge R, Humaira A, Gregory E, Alamian G, MacMillan EL, Barlow L, Todd R, Nestor S, Frangou S, Vila-Rodriguez F. Predictive Value of Acute Neuroplastic Response to rTMS in Treatment Outcome in Depression: A Concurrent TMS-fMRI Trial. Am J Psychiatry 2022; 179:500-508. [PMID: 35582784 DOI: 10.1176/appi.ajp.21050541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The study objective was to investigate the predictive value of functional connectivity changes induced by acute repetitive transcranial magnetic stimulation (rTMS) for clinical response in treatment-resistant depression. METHODS Cross-sectional changes in functional connectivity induced by a single concurrent rTMS-fMRI session were assessed in 38 outpatients with treatment-resistant depression (26 of them female; mean age, 41.87 years) who subsequently underwent a 4-week course of rTMS. rTMS was delivered at 1 Hz over the right dorsolateral prefrontal cortex. Acute rTMS-induced functional connectivity changes were computed and subjected to connectome-based predictive modeling to test their association with changes in score on the Montgomery-Åsberg Depression Rating Scale (MADRS) after rTMS treatment. RESULTS TMS-fMRI induced widespread, acute, and transient alterations in functional connectivity. The rTMS-induced connectivity changes predicted about 30% of the variance of improvement in the MADRS score. The most robust predictive associations involved connections between prefrontal regions and motor, parietal, and insular cortices and between bilateral regions of the thalamus. CONCLUSIONS Acute rTMS-induced connectivity changes in patients with treatment-resistant depression may index macro-level neuroplasticity, relevant to interindividual variability in rTMS treatment response. Large-scale network phenomena occurring during rTMS might be used to inform prospective clinical trials.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Afifa Humaira
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Elizabeth Gregory
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Golnoush Alamian
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Erin L MacMillan
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Laura Barlow
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Rebecca Todd
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Sean Nestor
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Sophia Frangou
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory, Department of Psychiatry, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Vila-Rodriguez); Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver (Ge, Humaira, Gregory, Alamian, Todd, Frangou, Vila-Rodriguez); UBC MRI Research Centre, Department of Radiology, University of British Columbia, Vancouver (Barlow, MacMillan); SFU ImageTech Lab, Simon Fraser University, Vancouver (MacMillan); Philips Canada, Mississauga, Ont. (MacMillan); Department of Psychiatry, University of Toronto, Toronto (Nestor); Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York (Frangou)
| |
Collapse
|
21
|
Chen Q, Shen W, Sun H, Zhang H, Liu C, Chen Z, Yu L, Cai X, Ke J, Li L, Zhang L, Fang Q. The effect of coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation on shaping early reorganization of the motor network after stroke. Brain Res 2022; 1790:147959. [PMID: 35654120 DOI: 10.1016/j.brainres.2022.147959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 11/29/2022]
Abstract
Neural plasticity is a major factor driving cortical reorganization after stroke. This study aimed to evaluate functional connectivity (FC) changes in the cortical motor network after coupled inhibitory-facilitatory repetitive transcranial magnetic stimulation (rTMS) treatment and to assess the correlation between FC changes and functional recovery, further characterizing the neural mechanisms underlying the beneficial effects of rTMS. We randomly divided 63 patients with acute stroke into four groups: (1) Group A received coupled inhibitory-facilitatory rTMS [1 Hz over the contralesional primary motor cortex (M1) and 10 Hz over ipsilesional M1]; (2) Group B received a contralesional sham stimulation and ipsilesional 10 Hz stimulation; (3) Group C received a contralesional 1 Hz rTMS and ipsilesional sham stimulation; and (4) Group D received bilateral sham stimulation only. Standardized rehabilitation therapy was performed immediately after rTMS, and each group was treated with their respective treatment modalities for 4 weeks. Twenty-four hours before and after the intervention, participants underwent resting-state functional magnetic resonance imaging. Additional functional assessments were conducted at baseline, after treatment, and at the 3 month follow-up. The rTMS treatment significantly changed the FCs of intra- and inter-hemispheric cortical motor networks in the rTMS groups (A and B) compared with the sham group (Group D). This effect was more pronounced in Group A, which displayed a changed FC between the contralesional postcentral gyrus and contralesional superior parietal gyrus, between the contralesional precentral gyrus and contralesional postcentral gyrus, and between the ipsilesional postcentral gyrus and contralesional superior parietal gyrus, when compared with Groups B and C. Importantly, FC changes were significantly correlated with improvement of motor function. In the early stages of ischemic stroke, coupled rTMS was more conducive to motor recovery by modulating the FCs of intra-hemispheric and inter-hemispheric motor networks. Our results suggested that FC changes were related to motor function recovery for early-stage cerebral stroke patients treated with coupled rTMS. These findings could help to understand the mechanism of coupled rTMS and further the use of this therapy as an adjunct rehabilitation technique in motor recovery.
Collapse
Affiliation(s)
- Qingmei Chen
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China; Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Wenjun Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haiwei Sun
- Department of Emergency Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Hanjun Zhang
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Chuandao Liu
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Zhiguo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Xiuying Cai
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Jun Ke
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China
| | - Li Li
- Department of Physical Medicine &Rehabilitation, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| | - Lichi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
22
|
Xie Y, He Y, Guan M, Zhou G, Wang Z, Ma Z, Wang H, Yin H. Impact of low-frequency rTMS on functional connectivity of the dentate nucleus subdomains in schizophrenia patients with auditory verbal hallucination. J Psychiatr Res 2022; 149:87-96. [PMID: 35259665 DOI: 10.1016/j.jpsychires.2022.02.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 01/10/2023]
Abstract
Despite low-frequency repetitive transcranial magnetic stimulation (rTMS) is effective in treating schizophrenia patients with auditory verbal hallucinations (AVH), the underlying neural mechanisms of the effect still need to be clarified. Using the cerebellar dentate nucleus (DN) subdomain (dorsal and versal DN) as seeds, the present study investigated resting state functional connectivity (FC) alternations of the seeds with the whole brain and their associations with clinical responses in schizophrenia patients with AVH receiving 1 Hz rTMS treatment. The results showed that the rTMS treatment improved the psychiatric symptoms (e.g., AVH and positive symptoms) and certain neurocognitive functions (e.g., visual learning and verbal learning) in the patients. In addition, the patients at baseline showed increased FC between the DN subdomains and temporal lobes (e.g., right superior temporal gyrus and right middle temporal gyrus) and decreased FC between the DN subdomains and the left superior frontal gyrus, right postcentral gyrus, left supramarginal gyrus and regional cerebellum (e.g., lobule 4-5) compared to controls. Furthermore, these abnormal DN subdomain connectivity patterns did not persist and decreased FC of DN subdomains with cerebellum lobule 4-5 were reversed in patients after rTMS treatment. Linear regression analysis showed that the FC difference values of DN subdomains with the temporal lobes, supramarginal gyrus and cerebellum 4-5 between the patients at baseline and posttreatment were associated with clinical improvements (e.g., AVH and verbal learning) after rTMS treatment. The results suggested that rTMS treatment may modulate the neural circuits of the DN subdomains and hint to underlying neural mechanisms for low-frequency rTMS treating schizophrenia with AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- School of Education, Xinyang College, Xinyang, China; Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Ying He
- Department of Psychiatry, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Muzhen Guan
- Department of Mental Health, Xi'an Medical University, Xi'an, China
| | | | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhujing Ma
- Department of Military Psychology, School of Psychology, Fourth Military Medical University, Xi'an, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
23
|
Rocchi F, Canella C, Noei S, Gutierrez-Barragan D, Coletta L, Galbusera A, Stuefer A, Vassanelli S, Pasqualetti M, Iurilli G, Panzeri S, Gozzi A. Increased fMRI connectivity upon chemogenetic inhibition of the mouse prefrontal cortex. Nat Commun 2022; 13:1056. [PMID: 35217677 PMCID: PMC8881459 DOI: 10.1038/s41467-022-28591-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/27/2022] [Indexed: 12/25/2022] Open
Abstract
While shaped and constrained by axonal connections, fMRI-based functional connectivity reorganizes in response to varying interareal input or pathological perturbations. However, the causal contribution of regional brain activity to whole-brain fMRI network organization remains unclear. Here we combine neural manipulations, resting-state fMRI and in vivo electrophysiology to probe how inactivation of a cortical node causally affects brain-wide fMRI coupling in the mouse. We find that chronic inhibition of the medial prefrontal cortex (PFC) via overexpression of a potassium channel increases fMRI connectivity between the inhibited area and its direct thalamo-cortical targets. Acute chemogenetic inhibition of the PFC produces analogous patterns of fMRI overconnectivity. Using in vivo electrophysiology, we find that chemogenetic inhibition of the PFC enhances low frequency (0.1–4 Hz) oscillatory power via suppression of neural firing not phase-locked to slow rhythms, resulting in increased slow and δ band coherence between areas that exhibit fMRI overconnectivity. These results provide causal evidence that cortical inactivation can counterintuitively increase fMRI connectivity via enhanced, less-localized slow oscillatory processes. Pathological perturbation affects whole brain network activity. Here the authors show in mice that cortical inactivation unexpectedly results in increased fMRI connectivity between the manipulated regions and its direct axonal targets.
Collapse
Affiliation(s)
- Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Carola Canella
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Shahryar Noei
- Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy.,Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alexia Stuefer
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Stefano Vassanelli
- Dept. of Biomedical Sciences and Padua Neuroscience Center, University of Padova, Padova, Italy
| | - Massimo Pasqualetti
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.,Biology Department, University of Pisa, Pisa, Italy
| | - Giuliano Iurilli
- Systems Neurobiology Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Stefano Panzeri
- Neural Computational Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy. .,Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
24
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Balloff C, Penner IK, Ma M, Georgiades I, Scala L, Troullinakis N, Graf J, Kremer D, Aktas O, Hartung HP, Meuth SG, Schnitzler A, Groiss SJ, Albrecht P. The degree of cortical plasticity correlates with cognitive performance in patients with Multiple Sclerosis. Brain Stimul 2022; 15:403-413. [PMID: 35182811 DOI: 10.1016/j.brs.2022.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cortical reorganization and plasticity may compensate for structural damage in Multiple Sclerosis (MS). It is important to establish sensitive methods to measure these compensatory mechanisms, as they may be of prognostic value. OBJECTIVE To investigate the association between the degree of cortical plasticity and cognitive performance and to compare plasticity between MS patients and healthy controls (HCs). METHODS The amplitudes of the motor evoked potential (MEP) pre and post quadripulse stimulation (QPS) applied over the contralateral motor cortex served as measure of the degree of cortical plasticity in 63 patients with relapsing-remitting MS (RRMS) and 55 matched HCs. The main outcomes were the correlation coefficients between the difference of MEP amplitudes post and pre QPS and the Symbol Digit Modalities Test (SDMT) and Brief Visuospatial Memory Test-Revised (BVMT-R), and the QPSxgroup interaction in a mixed model predicting the MEP amplitude. RESULTS SDMT and BVMT-R correlated significantly with QPS-induced cortical plasticity in RRMS patients. Plasticity was significantly reduced in patients with cognitive impairment compared to patients with preserved cognitive function and the degree of plasticity differentiated between both patient groups. Interestingly, the overall RRMS patient cohort did not show reduced plasticity compared to HCs. CONCLUSIONS We provide first evidence that QPS-induced plasticity may inform about the global synaptic plasticity in RRMS which correlates with cognitive performance as well as clinical disability. Larger longitudinal studies on patients with MS are needed to investigate the relevance and prognostic value of this measure for disease progression and recovery.
Collapse
Affiliation(s)
- Carolin Balloff
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Iris-Katharina Penner
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany; Cogito Center for Applied Neurocognition and Neuropsychological Research, 40225, Düsseldorf, Germany; Department of Neurology, Inselspital, University Hospital Bern, 3010, Bern, Switzerland
| | - Meng Ma
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Iason Georgiades
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Lina Scala
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Nina Troullinakis
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Jonas Graf
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - David Kremer
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany; Brain and Mind Center, University of Sydney, NSW, 2006, Australia; Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Sven Günther Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Alfons Schnitzler
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| | - Stefan Jun Groiss
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany; Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany.
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich-Heine University, 40225, Duesseldorf, Germany
| |
Collapse
|
26
|
Rafique SA, Steeves JKE. Modulating intrinsic functional connectivity with visual cortex using low-frequency repetitive transcranial magnetic stimulation. Brain Behav 2022; 12:e2491. [PMID: 35049143 PMCID: PMC8865167 DOI: 10.1002/brb3.2491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Intrinsic network connectivity becomes altered in pathophysiology. Noninvasive brain stimulation can modulate pathological functional networks in an attempt to restore the inherent response. To determine its usefulness for visual-related disorders, we developed procedures investigating repetitive transcranial magnetic stimulation (rTMS) protocols targeting the visual cortex on modulating connectivity associated with the visual network and default mode network (DMN). METHODS We compared two low-frequency (1 Hz) rTMS protocols to the visual cortex (V1)-a single 20 min session and five successive 20 min sessions (accelerated/within-session rTMS)-using multi-echo resting-state functional magnetic resonance whole-brain imaging and resting-state functional connectivity (rsFC). We also explored the relationship between rsFC and rTMS-induced changes in key inhibitory and excitatory neurotransmitters, γ-aminobutyric acid (GABA) and glutamate. GABA (GABA+) and glutamate (Glx) concentrations were measured in vivo using magnetic resonance spectroscopy. RESULTS Acute disruption with a single rTMS session caused widespread connectivity reconfiguration with nodes of interest. Changes were not evident immediately post-rTMS but were observed at 1 h post-rTMS. Accelerated sessions resulted in weak alterations in connectivity, producing a relatively homeostatic response. Changes in GABA+ and Glx concentrations with network connectivity were dependent on the rTMS protocol. CONCLUSIONS This proof-of-concept study offers new perspectives to assess stimulation-induced neural processes involved in intrinsic functional connectivity and the potential for rTMS to modulate nodes interconnected with the visual cortex. The differential effects of single-session and accelerated rTMS on physiological markers are crucial for furthering the advancement of treatment modalities in visual cortex related disorders.
Collapse
Affiliation(s)
- Sara A Rafique
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| | - Jennifer K E Steeves
- Department of Psychology and Centre for Vision Research, York University, Toronto, Canada
| |
Collapse
|
27
|
Watanabe T. Causal roles of prefrontal cortex during spontaneous perceptual switching are determined by brain state dynamics. eLife 2021; 10:69079. [PMID: 34713803 PMCID: PMC8631941 DOI: 10.7554/elife.69079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
The prefrontal cortex (PFC) is thought to orchestrate cognitive dynamics. However, in tests of bistable visual perception, no direct evidence supporting such presumable causal roles of the PFC has been reported except for a recent work. Here, using a novel brain-state-dependent neural stimulation system, we identified causal effects on percept dynamics in three PFC activities—right frontal eye fields, dorsolateral PFC (DLPFC), and inferior frontal cortex (IFC). The causality is behaviourally detectable only when we track brain state dynamics and modulate the PFC activity in brain-state-/state-history-dependent manners. The behavioural effects are underpinned by transient neural changes in the brain state dynamics, and such neural effects are quantitatively explainable by structural transformations of the hypothetical energy landscapes. Moreover, these findings indicate distinct functions of the three PFC areas: in particular, the DLPFC enhances the integration of two PFC-active brain states, whereas IFC promotes the functional segregation between them. This work resolves the controversy over the PFC roles in spontaneous perceptual switching and underlines brain state dynamics in fine investigations of brain-behaviour causality. A cube that seems to shift its spatial arrangement as you keep looking; the elegant silhouette of a pirouetting dancer, which starts to spin in the opposite direction the more you stare at it; an illustration that shows two profiles – or is it a vase? These optical illusions are examples of bistable visual perception. Beyond their entertaining aspect, they provide a way for scientists to explore the dynamics of human consciousness, and the neural regions involved in this process. Some studies show that bistable visual perception is associated with the activation of the prefrontal cortex, a brain area involved in complex cognitive processes. However, it is unclear whether this region is required for the illusions to emerge. Some research has showed that even if sections of the prefrontal cortex are temporally deactivated, participants can still experience the illusions. Instead, Takamitsu Watanabe proposes that bistable visual perception is a process tied to dynamic brain states – that is, that distinct regions of the prefontal cortex are required for this fluctuating visual awareness, depending on the state of the whole brain. Such causal link cannot be observed if brain activity is not tracked closely. To investigate this, the brain states of 65 participants were recorded as individuals were experiencing the optical illusions; the activity of their various brain regions could therefore be mapped, and then areas of the prefrontal cortex could precisely be inhibited at the right time using transcranial magnetic stimulation. This revealed that, indeed, prefrontal cortex regions were necessary for bistable visual perception, but not in a simple way. Instead, which ones were required and when depended on activity dynamics taking place in the whole brain. Overall, these results indicate that monitoring brain states is necessary to better understand – and ultimately, control – the neural pathways underlying perception and behaviour.
Collapse
Affiliation(s)
- Takamitsu Watanabe
- International Research Centre for Neurointelligence, The University of Tokyo Institutes for Advanced Study, Tokyo, Japan.,RIKEN Centre for Brain Science, Saitama, Japan
| |
Collapse
|
28
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
29
|
Fomenko A, Chen KHS, Nankoo JF, Saravanamuttu J, Wang Y, El-Baba M, Xia X, Seerala SS, Hynynen K, Lozano AM, Chen R. Systematic examination of low-intensity ultrasound parameters on human motor cortex excitability and behavior. eLife 2020; 9:e54497. [PMID: 33236981 PMCID: PMC7728443 DOI: 10.7554/elife.54497] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 11/24/2020] [Indexed: 12/23/2022] Open
Abstract
Low-intensity transcranial ultrasound (TUS) can non-invasively modulate human neural activity. We investigated how different fundamental sonication parameters influence the effects of TUS on the motor cortex (M1) of 16 healthy subjects by probing cortico-cortical excitability and behavior. A low-intensity 500 kHz TUS transducer was coupled to a transcranial magnetic stimulation (TMS) coil. TMS was delivered 10 ms before the end of TUS to the left M1 hotspot of the first dorsal interosseous muscle. Varying acoustic parameters (pulse repetition frequency, duty cycle, and sonication duration) on motor-evoked potential amplitude were examined. Paired-pulse measures of cortical inhibition and facilitation, and performance on a visuomotor task was also assessed. TUS safely suppressed TMS-elicited motor cortical activity, with longer sonication durations and shorter duty cycles when delivered in a blocked paradigm. TUS increased GABAA-mediated short-interval intracortical inhibition and decreased reaction time on visuomotor task but not when controlled with TUS at near-somatosensory threshold intensity.
Collapse
Affiliation(s)
- Anton Fomenko
- Krembil Research Institute, University Health NetworkTorontoCanada
| | - Kai-Hsiang Stanley Chen
- Krembil Research Institute, University Health NetworkTorontoCanada
- Department of Neurology, National Taiwan University Hospital Hsin-Chu BranchHsin-ChuTaiwan
| | | | | | - Yanqiu Wang
- Krembil Research Institute, University Health NetworkTorontoCanada
| | - Mazen El-Baba
- Krembil Research Institute, University Health NetworkTorontoCanada
| | - Xue Xia
- Division of Neurology, Department of Medicine, University of TorontoTorontoCanada
| | | | | | - Andres M Lozano
- Krembil Research Institute, University Health NetworkTorontoCanada
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of TorontoTorontoCanada
| | - Robert Chen
- Krembil Research Institute, University Health NetworkTorontoCanada
- Division of Neurology, Department of Medicine, University of TorontoTorontoCanada
| |
Collapse
|
30
|
Hartwigsen G, Volz LJ. Probing rapid network reorganization of motor and language functions via neuromodulation and neuroimaging. Neuroimage 2020; 224:117449. [PMID: 33059054 DOI: 10.1016/j.neuroimage.2020.117449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/22/2022] Open
Abstract
Motor and cognitive functions are organized in large-scale networks in the human brain that interact to enable flexible adaptation of information exchange to ever-changing environmental conditions. In this review, we discuss the unique potential of the consecutive combination of repetitive transcranial magnetic stimulation (rTMS) and functional neuroimaging to probe network organization and reorganization in the healthy and lesioned brain. First, we summarize findings highlighting the flexible (re-)distribution and short-term reorganization in motor and cognitive networks in the healthy brain. Plastic after-effects of rTMS result in large-scale changes on the network level affecting both local and remote activity within the stimulated network as well as interactions between the stimulated and distinct functional networks. While the number of combined rTMS-fMRI studies in patients with brain lesions remains scarce, preliminary evidence suggests that the lesioned brain flexibly (re-)distributes its computational capacities to functionally reorganize impaired brain functions, using a similar set of mechanisms to achieve adaptive network plasticity compared to short-term reorganization observed in the healthy brain after rTMS. In general, both short-term reorganization in the healthy brain and stroke-induced reorganization seem to rely on three general mechanisms of adaptive network plasticity that allow to maintain and recover function: i) interhemispheric changes, including increased contribution of homologous regions in the contralateral hemisphere and increased interhemispheric connectivity, ii) increased interactions between differentially specialized networks and iii) increased contributions of domain-general networks after disruption of more specific functions. These mechanisms may allow for computational flexibility of large-scale neural networks underlying motor and cognitive functions. Future studies should use complementary approaches to address the functional relevance of adaptive network plasticity and further delineate how these general mechanisms interact to enable network flexibility. Besides furthering our neurophysiological insights into brain network interactions, identifying approaches to support and enhance adaptive network plasticity may result in clinically relevant diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Lise Meitner Research Group "Cognition and Plasticity", Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstrasse 1a, D-04103 Leipzig, Germany.
| | - Lukas J Volz
- Department of Neurology, University of Cologne, Kerpener Str. 62, D-50937 Cologne, Germany.
| |
Collapse
|
31
|
Romanella SM, Roe D, Paciorek R, Cappon D, Ruffini G, Menardi A, Rossi A, Rossi S, Santarnecchi E. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev 2020; 61:101067. [PMID: 32380212 PMCID: PMC8363192 DOI: 10.1016/j.arr.2020.101067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023]
Abstract
As we age, sleep patterns undergo severe modifications of their micro and macrostructure, with an overall lighter and more fragmented sleep structure. In general, interventions targeting sleep represent an excellent opportunity not only to maintain life quality in the healthy aging population, but also to enhance cognitive performance and, when pathology arises, to potentially prevent/slow down conversion from e.g. Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). Sleep abnormalities are, in fact, one of the earliest recognizable biomarkers of dementia, being also partially responsible for a cascade of cortical events that worsen dementia pathophysiology, including impaired clearance systems leading to build-up of extracellular amyloid-β (Aβ) peptide and intracellular hyperphosphorylated tau proteins. In this context, Noninvasive Brain Stimulation (NiBS) techniques, such as transcranial electrical stimulation (tES) and transcranial magnetic stimulation (TMS), may help investigate the neural substrates of sleep, identify sleep-related pathology biomarkers, and ultimately help patients and healthy elderly individuals to restore sleep quality and cognitive performance. However, brain stimulation applications during sleep have so far not been fully investigated in healthy elderly cohorts, nor tested in AD patients or other related dementias. The manuscript discusses the role of sleep in normal and pathological aging, reviewing available evidence of NiBS applications during both wakefulness and sleep in healthy elderly individuals as well as in MCI/AD patients. Rationale and details for potential future brain stimulation studies targeting sleep alterations in the aging brain are discussed, including enhancement of cognitive performance, overall quality of life as well as protein clearance.
Collapse
Affiliation(s)
- Sara M Romanella
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy
| | - Daniel Roe
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rachel Paciorek
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Davide Cappon
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Arianna Menardi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Padova Neuroscience Center, Department of Neuroscience, University of Padova, Padova, Italy
| | - Alessandro Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Simone Rossi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Human Physiology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; Siena Robotics and Systems Lab (SIRS-Lab), Engineering and Mathematics Department, University of Siena, Siena, Italy
| | - Emiliano Santarnecchi
- Siena Brain Investigation and Neuromodulation Lab (Si-BIN Lab), Department of Medicine, Surgery and Neuroscience, Neurology and Clinical Neurophysiology Section, University of Siena, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Intranetwork and Internetwork Effects of Navigated Transcranial Magnetic Stimulation Using Low- and High-Frequency Pulse Application to the Dorsolateral Prefrontal Cortex: A Combined rTMS-fMRI Approach. J Clin Neurophysiol 2020; 37:131-139. [PMID: 30335664 DOI: 10.1097/wnp.0000000000000528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Although transcranial magnetic stimulation (TMS) is routinely applied in neuroscience and clinical settings, not much is known about its effects on brain networks. Therefore, this pilot study was set up using repetitive navigated transcranial magnetic stimulation (rTMS) combined with resting-state functional MRI (rs-fMRI) to explore frequency-dependent stimulation effects on an intranetwork and internetwork level. METHODS Six healthy subjects (median age: 23.5 years) underwent two rTMS sessions (1 and 10 Hz), 7 days apart, and prestimulation and poststimulation rs-fMRI. Repetitive navigated transcranial magnetic stimulation was delivered to the left dorsolateral prefrontal cortex, with the exact stimulation target being determined by independent component analysis. Alterations of functional connectivity strength were evaluated using seed-based correlation analyses within and between the salience network, central executive network, and posterior and anterior default mode network. RESULTS Low-frequency rTMS resulted in significant intranetwork alterations only for the anterior default mode network and primarily within the left hemisphere. In contrast, high-frequency rTMS led to changes within all four networks of interest. Moreover, the posterior and anterior default mode network largely showed opposite effects to rTMS, and the anterior default mode network was rather isolated from the other networks, which was especially true for low-frequency rTMS. Changes in functional connectivity strength because of low-frequency rTMS were even detectable 7 days after stimulation. CONCLUSIONS This is one of the first studies using neuronavigated TMS with independent component analysis-based target selection to explore frequency-dependent stimulation effects in a combined rTMS-fMRI approach. Future studies including higher subject numbers may define the underlying mechanisms for the different responses to low- and high-frequency rTMS.
Collapse
|
33
|
Individual differences in local functional brain connectivity affect TMS effects on behavior. Sci Rep 2020; 10:10422. [PMID: 32591568 PMCID: PMC7320140 DOI: 10.1038/s41598-020-67162-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 05/18/2020] [Indexed: 11/25/2022] Open
Abstract
Behavioral effects of transcranial magnetic stimulation (TMS) often show substantial differences between subjects. One factor that might contribute to these inter-individual differences is the interaction of current brain states with the effects of local brain network perturbation. The aim of the current study was to identify brain regions whose connectivity before and following right parietal perturbation affects individual behavioral effects during a visuospatial target detection task. 20 subjects participated in an fMRI experiment where their brain hemodynamic response was measured during resting state, and then during a visuospatial target detection task following 1 Hz rTMS and sham stimulation. To select a parsimonious set of associated brain regions, an elastic net analysis was used in combination with a whole-brain voxel-wise functional connectivity analysis. TMS-induced changes in accuracy were significantly correlated with the pattern of functional connectivity during the task state following TMS. The functional connectivity of the left superior temporal, angular, and precentral gyri was identified as key explanatory variable for the individual behavioral TMS effects. Our results suggest that the brain must reach an appropriate state in which right parietal TMS can induce improvements in visual target detection. The ability to reach this state appears to vary between individuals.
Collapse
|
34
|
Wang J, Deng XP, Wu YY, Li XL, Feng ZJ, Wang HX, Jing Y, Zhao N, Zang YF, Zhang J. High-Frequency rTMS of the Motor Cortex Modulates Cerebellar and Widespread Activity as Revealed by SVM. Front Neurosci 2020; 14:186. [PMID: 32265624 PMCID: PMC7096733 DOI: 10.3389/fnins.2020.00186] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/20/2020] [Indexed: 11/15/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have shown that the effect of repetitive transcranial magnetic stimulation (rTMS) can induce changes in remote brain regions. In the stimulated regions, low-frequency (≤1 Hz) rTMS induces inhibitory effects, while high-frequency (≥5 Hz) stimulation induces excitatory effects. However, these stereotypical effects arising from low- and high-frequency stimulation are based on measurements of motor evoked potentials (MEPs) induced by pulsed stimulation. To test the effects of rTMS on remote brain regions, the current study recruited 31 young healthy adults who participated in three rTMS sessions (10 Hz high frequency, 1 Hz low frequency, and sham) on three separate days. The stimulation target was based on individual fMRI activation in the motor cortex evoked by a finger movement task. Pre- and post-rTMS resting-state fMRI (RS-fMRI) were acquired. Regional homogeneity (ReHo) and degree centrality (DC) were calculated to measure the local and global connectivity, respectively. Compared with the sham session, high-frequency (10 Hz) rTMS significantly increased ReHo and DC in the right cerebellum, while low-frequency (1 Hz) stimulation did not significantly alter ReHo or DC. Then, using a newly developed PAIR support vector machine (SVM) method, we achieved accuracy of 93.18–97.24% by split-half validation for pairwise comparisons between conditions for ReHo or DC. While the univariate analyses suggest that high-frequency rTMS of the left motor cortex could affect distant brain activity in the right cerebellum, the multivariate SVM results suggest that both high- and low-frequency rTMS significantly modulated widespread brain activity. The current findings are useful for increasing the understanding of the mechanisms of rTMS, as well as guiding precise individualized rTMS treatment of movement disorders.
Collapse
Affiliation(s)
- Jue Wang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Xin-Ping Deng
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yun-Ying Wu
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xiao-Long Li
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zi-Jian Feng
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hong-Xiao Wang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Jing
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Na Zhao
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yu-Feng Zang
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China.,Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
35
|
|
36
|
Beynel L, Powers JP, Appelbaum LG. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review. Neuroimage 2020; 211:116596. [PMID: 32014552 PMCID: PMC7571509 DOI: 10.1016/j.neuroimage.2020.116596] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/17/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
The brain is organized into networks that reorganize dynamically in response to cognitive demands and exogenous stimuli. In recent years, repetitive transcranial magnetic stimulation (rTMS) has gained increasing use as a noninvasive means to modulate cortical physiology, with effects both proximal to the stimulation site and in distal areas that are intrinsically connected to the proximal target. In light of these network-level neuromodulatory effects, there has been a rapid growth in studies attempting to leverage information about network connectivity to improve neuromodulatory control and intervention outcomes. However, the mechanisms-of-action of rTMS on network-level effects remain poorly understood and is based primarily on heuristics from proximal stimulation findings. To help bridge this gap, the current paper presents a systematic review of 33 rTMS studies with baseline and post-rTMS measures of fMRI resting-state functional connectivity (RSFC). Literature synthesis revealed variability across studies in stimulation parameters, studied populations, and connectivity analysis methodology. Despite this variability, it is observed that active rTMS induces significant changes on RSFC, but the prevalent low-frequency-inhibition/high-frequency-facilitation heuristic endorsed for proximal rTMS effects does not fully describe distal connectivity findings. This review also points towards other important considerations, including that the majority of rTMS-induced changes were found outside the stimulated functional network, suggesting that rTMS effects tend to spread across networks. Future studies may therefore wish to adopt conventions and systematic frameworks, such as the Yeo functional connectivity parcellation atlas adopted here, to better characterize network-level effect that contribute to the efficacy of these rapidly developing noninvasive interventions.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States.
| | - John Paul Powers
- Department of Psychology and Neuroscience, Duke University, United States
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States; Center for Cognitive Neuroscience, Duke University, United States
| |
Collapse
|
37
|
Castrillon G, Sollmann N, Kurcyus K, Razi A, Krieg SM, Riedl V. The physiological effects of noninvasive brain stimulation fundamentally differ across the human cortex. SCIENCE ADVANCES 2020; 6:eaay2739. [PMID: 32064344 PMCID: PMC6994208 DOI: 10.1126/sciadv.aay2739] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/22/2019] [Indexed: 05/21/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive method to modulate brain activity and behavior in humans. Still, stimulation effects substantially vary across studies and individuals, thereby restricting the large-scale application of TMS in research or clinical settings. We revealed that low-frequency stimulation had opposite impact on the functional connectivity of sensory and cognitive brain regions. Biophysical modeling then identified a neuronal mechanism underlying these region-specific effects. Stimulation of the frontal cortex decreased local inhibition and disrupted feedforward and feedback connections. Conversely, identical stimulation increased local inhibition and enhanced forward signaling in the occipital cortex. Last, we identified functional integration as a macroscale network parameter to predict the region-specific effect of stimulation in individual subjects. In summary, we revealed how TMS modulation critically depends on the connectivity profile of target regions and propose an imaging marker to improve sensitivity of noninvasive brain stimulation for research and clinical applications.
Collapse
Affiliation(s)
- Gabriel Castrillon
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, 81675 Munich, Germany
- Department of Neuroradiology, Technische Universitaet Muenchen, 81675 Munich, Germany
- Instituto de Alta Tecnología Médica, 050026 Medellin, Colombia
| | - Nico Sollmann
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, 81675 Munich, Germany
- Department of Neuroradiology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | - Katarzyna Kurcyus
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, 81675 Munich, Germany
- Department of Neuroradiology, Technische Universitaet Muenchen, 81675 Munich, Germany
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168 VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, 3168 VIC, Australia
- Wellcome Centre for Human Neuroimaging, University College London, WC1N 3AR London, UK
- Department of Electronic Engineering, NED University of Engineering and Technology, 75270 Karachi, Pakistan
| | - Sandro M. Krieg
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, 81675 Munich, Germany
- Department of Neurosurgery, Technische Universitaet Muenchen, 81675 Munich, Germany
| | - Valentin Riedl
- TUM-Neuroimaging Center, Technische Universitaet Muenchen, 81675 Munich, Germany
- Department of Neuroradiology, Technische Universitaet Muenchen, 81675 Munich, Germany
- Corresponding author.
| |
Collapse
|
38
|
Gröhn H, Gillick BT, Tkáč I, Bednařík P, Mascali D, Deelchand DK, Michaeli S, Meekins GD, Leffler-McCabe MJ, MacKinnon CD, Eberly LE, Mangia S. Influence of Repetitive Transcranial Magnetic Stimulation on Human Neurochemistry and Functional Connectivity: A Pilot MRI/MRS Study at 7 T. Front Neurosci 2019; 13:1260. [PMID: 31827419 PMCID: PMC6890551 DOI: 10.3389/fnins.2019.01260] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation method commonly used in the disciplines of neuroscience, neurology, and neuropsychiatry to examine or modulate brain function. Low frequency rTMS (e.g., 1 Hz) is associated with a net suppression of cortical excitability, whereas higher frequencies (e.g., 5 Hz) purportedly increase excitability. Magnetic resonance spectroscopy (MRS) and resting-state functional MRI (rsfMRI) allow investigation of neurochemistry and functional connectivity, respectively, and can assess the influence of rTMS in these domains. This pilot study investigated the effects of rTMS on the primary motor cortex using pre and post MRS and rsfMRI assessments at 7 T. Seven right-handed males (age 27 ± 7 y.o.) underwent single-voxel MRS and rsfMRI before and about 30-min after rTMS was administered outside the scanner for 20-min over the primary motor cortex of the left (dominant) hemisphere. All participants received 1-Hz rTMS; one participant additionally received 5-Hz rTMS in a separate session. Concentrations of 17 neurochemicals were quantified in left and right motor cortices. Connectivity metrics included fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) of both motor cortices, strength of related brain networks, and inter-hemispheric connectivity. The group-analysis revealed few trends (i.e., uncorrected for multiple comparisons), including a mean increase in the concentration of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) after the inhibitory rTMS protocol as compared to baseline in the stimulated (left) motor cortex (+8%, p = 0.043), along with a slight increase of total creatine (+2%, p = 0.018), and decrease of aspartate (-18%, p = 0.016). Additionally, GABA tended to decrease in the contralateral hemisphere (-6%, p = 0.033). No other changes of metabolite concentrations were found. Whereas functional connectivity outcomes did not exhibit trends of significant changes induced by rTMS, the percent changes of few connectivity metrics in both hemispheres were negatively correlated with GABA changes in the contralateral hemisphere. While studies in larger cohorts are needed to confirm these preliminary findings, our results indicate the safety and feasibility of detecting changes in key metabolites associated with neurotransmission after a single 1-Hz rTMS session, establishing the construct for future exploration of the neurochemical, and connectivity mechanisms of cortical responses to neuromodulation.
Collapse
Affiliation(s)
- Heidi Gröhn
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Bernadette T Gillick
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ivan Tkáč
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Petr Bednařík
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.,Department of Biomedical Imaging and Image-guided Therapy, High Field MR Centre, Medical University of Vienna, Vienna, Austria
| | - Daniele Mascali
- Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy
| | - Dinesh K Deelchand
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Shalom Michaeli
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Gregg D Meekins
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | | | - Colum D MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, United States
| | - Silvia Mangia
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
39
|
Wang J, Meng HJ, Ji GJ, Jing Y, Wang HX, Deng XP, Feng ZJ, Zhao N, Zang YF, Zhang J. Finger Tapping Task Activation vs. TMS Hotspot: Different Locations and Networks. Brain Topogr 2019; 33:123-134. [PMID: 31691912 PMCID: PMC6943404 DOI: 10.1007/s10548-019-00741-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/22/2019] [Indexed: 12/15/2022]
Abstract
Both functional magnetic resonance imaging (fMRI) and transcranial magnetic stimulation (TMS) have been used to non-invasively localize the human motor functional area. These locations can be clinically used as stimulation target of TMS treatment. However, it has been reported that the finger tapping fMRI activation and TMS hotspot were not well-overlapped. The aim of the current study was to measure the distance between the finger tapping fMRI activation and the TMS hotspot, and more importantly, to compare the network difference by using resting-state fMRI. Thirty healthy participants underwent resting-state fMRI, task fMRI, and then TMS hotspot localization. We found significant difference of locations between finger tapping fMRI activation and TMS hotspot. Specifically, the finger tapping fMRI activation was more lateral than the TMS hotspot in the premotor area. The fMRI activation peak and TMS hotspot were taken as seeds for resting-state functional connectivity analyses. Compared with TMS hotspot, finger tapping fMRI activation peak showed more intensive functional connectivity with, e.g., the bilateral premotor, insula, putamen, and right globus pallidus. The findings more intensive networks of finger tapping activation than TMS hotspot suggest that TMS treatment targeting on the fMRI activation area might result in more remote effects and would be more helpful for TMS treatment on movement disorders.
Collapse
Affiliation(s)
- Jue Wang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Hai-Jiang Meng
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China
| | - Gong-Jun Ji
- Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230032, Anhui, China
| | - Ying Jing
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Hong-Xiao Wang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Xin-Ping Deng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Zi-Jian Feng
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Na Zhao
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China
| | - Yu-Feng Zang
- Institutes of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, China. .,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China. .,Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, 310015, China.
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
40
|
Tamura K, Osada T, Ogawa A, Tanaka M, Suda A, Shimo Y, Hattori N, Kamagata K, Hori M, Aoki S, Shimizu T, Enomoto H, Hanajima R, Ugawa Y, Konishi S. MRI-based visualization of rTMS-induced cortical plasticity in the primary motor cortex. PLoS One 2019; 14:e0224175. [PMID: 31648225 PMCID: PMC6812785 DOI: 10.1371/journal.pone.0224175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability for minutes to hours after the end of intervention. However, it has not been precisely determined to what extent cortical plasticity prevails spatially in the cortex. Recent studies have shown that rTMS induces changes in “interhemispheric” functional connectivity, the resting-state functional connectivity between the stimulated region and the symmetrically corresponding region in the contralateral hemisphere. In the present study, quadripulse stimulation (QPS) was applied to the index finger representation in the left primary motor cortex (M1), while the position of the stimulation coil was constantly monitored by an online navigator. After QPS application, resting-state functional magnetic resonance imaging was performed, and the interhemispheric functional connectivity was compared with that before QPS. A cluster of connectivity changes was observed in the stimulated region in the central sulcus. The cluster was spatially extended approximately 10 mm from the center [half width at half maximum (HWHM): approximately 3 mm] and was extended approximately 20 mm long in depth (HWHM: approximately 7 mm). A localizer scan of the index finger motion confirmed that the cluster of interhemispheric connectivity changes overlapped spatially with the activation related to the index finger motion. These results indicate that cortical plasticity in M1 induced by rTMS was relatively restricted in space and suggest that rTMS can reveal functional dissociation associated with adjacent small areas by inducing neural plasticity in restricted cortical regions.
Collapse
Affiliation(s)
- Kaori Tamura
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Shimizu
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Hiroyuki Enomoto
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Ritsuko Hanajima
- Department of Neurology, Tottori University School of Medicine, Tottori, Japan
| | - Yoshikazu Ugawa
- Department of Neuro-Regeneration, Fukushima Medical University, Fukushima, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
41
|
Riedel P, Heil M, Bender S, Dippel G, Korb FM, Smolka MN, Marxen M. Modulating functional connectivity between medial frontopolar cortex and amygdala by inhibitory and excitatory transcranial magnetic stimulation. Hum Brain Mapp 2019; 40:4301-4315. [PMID: 31268615 DOI: 10.1002/hbm.24703] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/24/2022] Open
Abstract
The prefrontal-limbic network in the human brain plays a major role in social cognition, especially cognitive control of emotion. The medial frontopolar cortex (mFP; Brodmann Area 10) and the amygdala are part of this network and display correlated neuronal activity in time, as measured by functional magnetic resonance imaging (fMRI). This functional connectivity is dynamic, sensitive to training, and affected in mental disorders. However, the effects of neurostimulation on functional connectivity within this network have not yet been systematically investigated. Here, we investigate the effects of both low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) to the right mFP on functional connectivity between mFP and amygdala, as measured with resting state fMRI (rsfMRI). Three groups of healthy participants received either low-frequency rTMS (1 Hz; N = 18), sham TMS (1 Hz, subthreshold; N = 18) or high-frequency rTMS (20 Hz; N = 19). rsfMRI was acquired before and after (separate days). We hypothesized a modulation of functional connectivity in opposite directions compared to sham TMS through adjustment of the stimulation frequency. Groups differed in functional connectivity between mFP and amygdala after stimulation compared to before stimulation (low-frequency: decrease, high-frequency: increase). Motion or induced changes in neuronal activity were excluded as confounders. Results show that rTMS is effective for increasing and decreasing functional coherence between prefrontal and limbic regions. This finding is relevant for social and affective neuroscience as well as novel treatment approaches in psychiatry.
Collapse
Affiliation(s)
- Philipp Riedel
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Matthias Heil
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Stephan Bender
- Medical Faculty, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University of Cologne, Cologne, Germany
| | - Gabriel Dippel
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Franziska M Korb
- Department of General Psychology, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Marxen
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
42
|
Han S, Ogawa A, Osada T, Suda A, Tanaka M, Nanjo H, Shimo Y, Hattori N, Konishi S. More subjects are required for ventrolateral than dorsolateral prefrontal TMS because of intolerability and potential drop-out. PLoS One 2019; 14:e0217826. [PMID: 31158248 PMCID: PMC6546272 DOI: 10.1371/journal.pone.0217826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/21/2019] [Indexed: 11/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) of the human lateral prefrontal cortex, particularly the ventral region, often causes considerable discomfort to subjects. To date, in contrast to abundant literature on stimulations to the dorsolateral prefrontal cortex, the ventrolateral prefrontal cortex has been less frequently stimulated, partly because some subjects are intolerable of stimulation to the ventrolateral prefrontal cortex. To predict the additional number of subjects required for the stimulation of the dorsolateral and ventrolateral prefrontal cortices, 20 young healthy subjects reported two evaluation scores: the discomfort caused by TMS and the resulting intolerability to complete the TMS experiments. Single-pulse stimulation (SPS) or theta-burst stimulation (TBS) was administered to the lateral prefrontal cortex. The high-resolution extended 10–20 system was used to provide accurate estimation of the voxelwise scores. The discomfort ratings with the SPS and TBS were relatively higher in the ventrolateral prefrontal cortex than those in the dorsolateral prefrontal cortex. Both the SPS and TBS elicited maximal discomfort at the stimulation position F8. The SPS and TBS to F8 under the standard TMS protocols were intolerable for approximately one half (11 and 10, respectively) of the subjects. The intolerability was further calculated for all voxels in the lateral prefrontal cortex, which enabled us to estimate the additional number of subjects required for specific target areas. These results suggest that prior knowledge of subjects’ discomfort during stimulation of the lateral prefrontal cortex can be of practical use in the experimental planning of the appropriate number of recruited subjects and provide the database for the probability of intolerability that can be used to predict the additional number of subjects.
Collapse
Affiliation(s)
- Shuyan Han
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Akimitsu Suda
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hitoshi Nanjo
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yasushi Shimo
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
43
|
The Effect of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Hereditary Spastic Paraplegia. Neural Plast 2019; 2019:7638675. [PMID: 31214256 PMCID: PMC6535885 DOI: 10.1155/2019/7638675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background Hereditary spastic paraplegia (HSP) is a heterogeneous group of inherited disorders affecting predominantly the motor cortex and pyramidal tract, which results in slowly progressing gait disorders, as well as spasticity and weakness of lower extremities. Repetitive transcranial magnetic stimulation (rTMS) has been previously investigated as a therapeutic tool for similar motor deficits in a number of neurologic conditions. The aim of this randomized, controlled trial was to investigate the therapeutic potential of rTMS in various forms of HSP, including pure and complicated forms, as well as adrenomyeloneuropathy. Methods We recruited 15 patients (five women and 10 men; mean age 43.7 ± 10.6 years) with the mentioned forms of HSP. The intervention included five sessions of bilateral 10 Hz rTMS over primary motor areas of the muscles of lower extremities and five sessions of similar sham stimulation. Results One patient dropped out due to seizure, and 14 patients completed the study protocol. After real stimulation, the strength of the proximal and distal muscles of lower extremities increased, and the spasticity of the proximal muscles decreased. Change in spasticity was still present during follow-up assessment. No effect was observed regarding gait velocity. No changes were seen after sham stimulation. A post hoc analysis revealed an inverse relation between motor threshold and the change of the strength after active rTMS. Conclusions rTMS may have potential in improving weakness and spasticity of lower extremities in HSP, especially of proximal muscles whose motor areas are located more superficially. This trial is registered with Clinicaltrials.gov NCT03627416.
Collapse
|
44
|
Addicott MA, Luber B, Nguyen D, Palmer H, Lisanby SH, Appelbaum LG. Low- and High-Frequency Repetitive Transcranial Magnetic Stimulation Effects on Resting-State Functional Connectivity Between the Postcentral Gyrus and the Insula. Brain Connect 2019; 9:322-328. [PMID: 30773890 DOI: 10.1089/brain.2018.0652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The insular cortex supports the conscious awareness of physical and emotional sensations, and the ability to modulate the insula could have important clinical applications in psychiatry. Repetitive transcranial magnetic stimulation (rTMS) uses transient magnetic fields to induce electrical currents in the superficial cortex. Given its deep location in the brain, the insula may not be directly stimulated by rTMS; however, rTMS may modulate the insula via its functional connections with superficial cortical regions. Furthermore, low- versus high-frequency rTMS is thought to have opposing effects on cortical excitability, and the present study investigated these effects on brain activity and functional connectivity with the insula. Separate groups of healthy participants (n = 14 per group) received low (1 Hz)- or high (10 Hz)-frequency rTMS in five daily sessions to the right postcentral gyrus, a superficial region known to be functionally connected to the insula. Resting-state functional connectivity (RSFC) was measured pre- and post-rTMS. Both 1 and 10 Hz rTMS increased RSFC between the right postcentral gyrus and the left insula. These results suggest that low- and high-frequency rTMS has similar long-term effects on brain activity and RSFC. However, given the lack of difference, we cannot exclude the possibility that these effects are simply due to a nonspecific effect. Given this limitation, these unexpected results underscore the need for acoustic- and stimulation-matched sham control conditions in rTMS research.
Collapse
Affiliation(s)
- Merideth A Addicott
- 1 Department of Psychiatry, Psychiatric Research Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Bruce Luber
- 2 National Institute of Mental Health, Bethesda, Maryland
| | - Duy Nguyen
- 3 Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, North Carolina
| | - Hannah Palmer
- 3 Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, North Carolina
| | | | - Lawrence Gregory Appelbaum
- 3 Department of Psychiatry and Behavioral Science, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
45
|
Resting-state functional connectivity: An emerging method for the study of language networks in post-stroke aphasia. Brain Cogn 2019; 131:22-33. [DOI: 10.1016/j.bandc.2017.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/15/2022]
|
46
|
Li R, Potter T, Wang J, Shi Z, Wang C, Yang L, Chan R, Zhang Y. Cortical Hemodynamic Response and Connectivity Modulated by Sub-threshold High-Frequency Repetitive Transcranial Magnetic Stimulation. Front Hum Neurosci 2019; 13:90. [PMID: 30941025 PMCID: PMC6434517 DOI: 10.3389/fnhum.2019.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) at sub-threshold intensity is a viable clinical strategy to enhance the sensory and motor functions of extremities by increasing or decreasing motor cortical excitability. Despite this, it remains unclear how sub-threshold rTMS modulates brain cortical excitability and connectivity. In this study, we applied functional near-infrared spectroscopy (fNIRS) to investigate the alterations in hemodynamic responses and cortical connectivity patterns that are induced by high-frequency rTMS at a sub-threshold intensity. Forty high-frequency (10 Hz) trains of rTMS at 90% resting motor threshold (RMT) were delivered through a TMS coil placed over 1–2 cm lateral from the vertex. fNIRS signals were acquired from the frontal and bilateral motor areas in healthy volunteers (n = 20) during rTMS administration and at rest. A significant reduction in oxygenated hemoglobin (HbO) concentration was observed in most defined regions of interest (ROIs) during the stimulation period (p < 0.05). Decreased functional connectivity within prefrontal areas as well as between symmetrical ROI-pairs was also observed in most participants during the stimulation (p < 0.05). Results suggest that fNIRS imaging is able to provide a reliable measure of regional cortical brain activation that advances our understanding of the manner in which sub-threshold rTMS affects cortical excitability and brain connectivity.
Collapse
Affiliation(s)
- Rihui Li
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Thomas Potter
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Jun Wang
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Zhixi Shi
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Chushan Wang
- Guangdong Provincial Work Injury Rehabilitation Hospital, Guangzhou, China
| | - Lingling Yang
- Department of Computer Science, Sun Yat-sen University, Guangzhou, China
| | - Rosa Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
47
|
Viganò A, Toscano M, Puledda F, Di Piero V. Treating Chronic Migraine With Neuromodulation: The Role of Neurophysiological Abnormalities and Maladaptive Plasticity. Front Pharmacol 2019; 10:32. [PMID: 30804782 PMCID: PMC6370938 DOI: 10.3389/fphar.2019.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic migraine (CM) is the most disabling form of migraine, because pharmacological treatments have low efficacy and cumbersome side effects. New evidence has shown that migraine is primarily a disorder of brain plasticity and migraine chronification depends on a maladaptive process favoring the development of a brain state of hyperexcitability. Due to the ability to induce plastic changes in the brain, researchers started to look at Non-Invasive Brain Stimulation (NIBS) as a possible therapeutic option in migraine field. On one side, NIBS techniques induce changes of neural plasticity that outlast the period of the stimulation (a fundamental prerequisite of a prophylactic migraine treatment, concurrently they allow targeting neurophysiological abnormalities that contribute to the transition from episodic to CM. The action may thus influence not only the cortex but also brainstem and diencephalic structures. Plus, NIBS is not burdened by serious medication side effects and drug–drug interactions. Although the majority of the studies reported somewhat beneficial effects in migraine patients, no standard intervention has been defined. This may be due to methodological differences regarding the used techniques (e.g., transcranial magnetic stimulation, transcranial direct current stimulation), the brain regions chosen as targets, and the stimulation types (e.g., the use of inhibitory and excitatory stimulations on the basis of opposite rationales), and an intrinsic variability of stimulation effect. Hence, it is difficult to draw a conclusion on the real effect of neuromodulation in migraine. In this article, we first will review the definition and mechanisms of brain plasticity, some neurophysiological hallmarks of migraine, and migraine chronification-related (dys)plasticity. Secondly, we will review available results from therapeutic and physiological studies using neuromodulation in CM. Lastly we will discuss the results obtained in these preventive trials in the light of a possible effect on brain plasticity.
Collapse
Affiliation(s)
- Alessandro Viganò
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Molecular and Cellular Networks Lab, Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Sapienza University of Rome, Rome, Italy
| | - Massimiliano Toscano
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,Department of Neurology, Fatebenefratelli Hospital, Rome, Italy
| | - Francesca Puledda
- Headache Group, Department of Basic and Clinical Neuroscience, King's College Hospital, King's College London, London, United Kingdom
| | - Vittorio Di Piero
- Headache Research Centre and Neurocritical Care Unit, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy.,University Consortium for Adaptive Disorders and Head Pain - UCADH, Pavia, Italy
| |
Collapse
|
48
|
Hippmann B, Kuhlemann I, Bäumer T, Bahlmann J, Münte TF, Jessen S. Boosting the effect of reward on cognitive control using TMS over the left IFJ. Neuropsychologia 2019; 125:109-115. [PMID: 30721740 DOI: 10.1016/j.neuropsychologia.2019.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 11/24/2022]
Abstract
Although an enhancing effect of reward on cognitive performance has been observed consistently, its neural underpinnings remain elusive. Recent evidence suggests that the inferior frontal junction (IFJ) may be a key player underlying such an enhancement by integrating motivational processes and cognitive control. However, its exact role and in particular a potential causality of IFJ activation is still unclear. In the present study, we therefore investigated the causal contributions of the left IFJ in motivated task switching by temporarily disrupting its activity using continuous theta burst stimulation (cTBS, Exp.1) or 1 Hz repetitive transcranial magnetic stimulation (rTMS, Exp.2). After TMS application over the left IFJ or a control site (vertex), participants performed a switch task in which numbers had to be judged by magnitude or parity. Different amounts of monetary rewards (high vs low) were used to manipulate the participants' motivational states. We measured reaction times and error rates. Irrespective of TMS stimulation, participants exhibited slower responses following task switches compared to task repeats. This effect was reduced in high reward trials. Importantly, we found that disrupting the IFJ improved participants' behavioral performance in the high reward condition. For high reward trials exclusively, error rates decreased when the IFJ was modulated with cTBS or 1 Hz rTMS but not after vertex stimulation. Our results suggest that the left IFJ is causally related to the increase in cognitive performance through reward.
Collapse
Affiliation(s)
| | - Ivo Kuhlemann
- Institute for Robotics and Cognitive Systems, University of Lübeck, D-23538 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Neurogenetics, University of Lübeck, D-23538 Lübeck, Germany
| | - Jörg Bahlmann
- Department of Neurology, University of Lübeck, D-23538 Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, D-23538 Lübeck, Germany
| | - Sarah Jessen
- Department of Neurology, University of Lübeck, D-23538 Lübeck, Germany
| |
Collapse
|
49
|
Pini L, Manenti R, Cotelli M, Pizzini FB, Frisoni GB, Pievani M. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story. NEURODEGENER DIS 2019; 18:281-301. [PMID: 30695786 DOI: 10.1159/000495945] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) is emerging as a promising rehabilitation tool for a number of neurodegenerative diseases. However, the therapeutic mechanisms of NIBS are not completely understood. In this review, we will summarize NIBS results in the context of brain imaging studies of functional connectivity and metabolites to gain insight into the possible mechanisms underlying recovery. We will briefly discuss how the clinical manifestations of common neurodegenerative disorders may be related with aberrant connectivity within large-scale neural networks. We will then focus on recent studies combining resting-state functional magnetic resonance imaging with NIBS to delineate how stimulation of different brain regions induce complex network modifications, both at the local and distal level. Moreover, we will review studies combining magnetic resonance spectroscopy and NIBS to investigate how microscale changes are related to modifications of large-scale networks. Finally, we will re-examine previous NIBS studies in dementia in light of this network perspective. A better understanding of NIBS impact on the functionality of large-scale brain networks may be useful to design beneficial treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Pini
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,
| |
Collapse
|
50
|
An Essential Role of the Intraparietal Sulcus in Response Inhibition Predicted by Parcellation-Based Network. J Neurosci 2019; 39:2509-2521. [PMID: 30692225 DOI: 10.1523/jneurosci.2244-18.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 01/04/2023] Open
Abstract
The posterior parietal cortex (PPC) features close anatomical and functional relationships with the prefrontal cortex. However, the necessity of the PPC in executive functions has been questioned. The present study used the stop-signal task to examine response inhibition, an executive function that inhibits prepotent response tendency. The brain activity and resting-state functional connectivity were measured to analyze a parcellation-based network that was aimed at identifying a candidate PPC region essential for response inhibition in humans. The intraparietal sulcus (IPS) was activated during response inhibition and connected with the inferior frontal cortex and the presupplementary motor area, the two frontal regions known to be necessary for response inhibition. Next, transcranial magnetic stimulation (TMS) was used to test the essential role of the IPS region for response inhibition. TMS over the IPS region prolonged the stop-signal reaction time (SSRT), the standard behavioral index used to evaluate stopping performance, when stimulation was applied 30-0 ms before stopping. On the contrary, stimulation over the temporoparietal junction region, an area activated during response inhibition but lacking connectivity with the two frontal regions, did not show changes in SSRT. These results indicate that the IPS identified using the parcellation-based network plays an essential role in executive functions.SIGNIFICANCE STATEMENT Based on the previous neuropsychological studies reporting no impairment in executive functions after lesions in the posterior parietal cortex (PPC), the necessity of PPC in executive functions has been questioned. Here, contrary to the long-lasting view, by using recently developed analysis in functional MRI ("parcellation-based network analysis"), we identified the intraparietal sulcus (IPS) region in the PPC as essential for response inhibition: one executive function to stop actions that are inaccurate in a given context. The necessity of IPS for response inhibition was further tested by an interventional technique of transcranial magnetic stimulation. Stimulation to the IPS disrupted the performance of stopping. Our findings suggest that the IPS plays essential roles in executive functions.
Collapse
|