1
|
Raghavan V, Sobczyk O, Sayin ES, Poublanc J, Skanda A, Duffin J, Venkatraghavan L, Fisher JA, Mikulis DJ. Assessment of Cerebrovascular Reactivity Using CO 2-BOLD MRI: A 15-Year, Single Center Experience. J Magn Reson Imaging 2024; 60:954-961. [PMID: 38135486 DOI: 10.1002/jmri.29176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity (CVR) is a measure of the change in cerebral blood flow (CBF) in response to a vasoactive challenge. It is a useful indicator of the brain's vascular health. PURPOSE To evaluate the factors that influence successful and unsuccessful CVR examinations using precise arterial and end-tidal partial pressure of CO2 control during blood oxygen level-dependent (BOLD) MRI. STUDY TYPE Retrospective. SUBJECTS Patients that underwent a CVR between October 2005 and May 2021 were studied (total of 1162 CVR examinations). The mean (±SD) age was 46.1 (±18.8) years, and 352 patients (43%) were female. FIELD STRENGTH/SEQUENCE 3 T; T1-weighted images, T2*-weighed two-dimensional gradient-echo sequence with standard echo-planar readout. ASSESSMENT Measurements were obtained following precise hypercapnic stimuli using BOLD MRI as a surrogate of CBF. Successful CVR examinations were defined as those where: 1) patients were able to complete CVR testing, and 2) a clinically useful CVR map was generated. Unsuccessful examinations were defined as those where patients were not able to complete the CVR examination or the CVR maps were judged to be unreliable due to, for example, excessive head motion, and poor PETCO2 targeting. STATISTICAL ANALYSIS Successful and unsuccessful CVR examinations between hypercapnic stimuli, and between different patterns of stimulus were compared with Chi-Square tests. Interobserver variability was determined by using the intraclass correlation coefficient (P < 0.05 is significant). RESULTS In total 1115 CVR tests in 662 patients were included in the final analysis. The success rate of generating CVR maps was 90.8% (1012 of 1115). Among the different hypercapnic stimuli, those containing a step plus a ramp protocol was the most successful (95.18%). Among the unsuccessful examinations (9.23%), most were patient related (89.3%), the most common of which was difficulty breathing. DATA CONCLUSION CO2-BOLD MRI CVR studies are well tolerated with a high success rate. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Vishvak Raghavan
- School of Computer Science, McGill University, Montreal, Quebec, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - Ece Su Sayin
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - Abby Skanda
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Lashmi Venkatraghavan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Caldwell HG, Hoiland RL, Bain AR, Howe CA, Carr JMJR, Gibbons TD, Durrer CG, Tymko MM, Stacey BS, Bailey DM, Sekhon MS, MacLeod DB, Ainslie PN. Evidence for direct CO 2 -mediated alterations in cerebral oxidative metabolism in humans. Acta Physiol (Oxf) 2024; 240:e14197. [PMID: 38958262 DOI: 10.1111/apha.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
AIM How the cerebral metabolic rates of oxygen and glucose utilization (CMRO2 and CMRGlc, respectively) are affected by alterations in arterial PCO2 (PaCO2) is equivocal and therefore was the primary question of this study. METHODS This retrospective analysis involved pooled data from four separate studies, involving 41 healthy adults (35 males/6 females). Participants completed stepwise steady-state alterations in PaCO2 ranging between 30 and 60 mmHg. The CMRO2 and CMRGlc were assessed via the Fick approach (CBF × arterial-internal jugular venous difference of oxygen or glucose content, respectively) utilizing duplex ultrasound of the internal carotid artery and vertebral artery to calculate cerebral blood flow (CBF). RESULTS The CMRO2 was altered by 0.5 mL × min-1 (95% CI: -0.6 to -0.3) per mmHg change in PaCO2 (p < 0.001) which corresponded to a 9.8% (95% CI: -13.2 to -6.5) change in CMRO2 with a 9 mmHg change in PaCO2 (inclusive of hypo- and hypercapnia). The CMRGlc was reduced by 7.7% (95% CI: -15.4 to -0.08, p = 0.045; i.e., reduction in net glucose uptake) and the oxidative glucose index (ratio of oxygen to glucose uptake) was reduced by 5.6% (95% CI: -11.2 to 0.06, p = 0.049) with a + 9 mmHg increase in PaCO2. CONCLUSION Collectively, the CMRO2 is altered by approximately 1% per mmHg change in PaCO2. Further, glucose is incompletely oxidized during hypercapnia, indicating reductions in CMRO2 are either met by compensatory increases in nonoxidative glucose metabolism or explained by a reduction in total energy production.
Collapse
Affiliation(s)
- Hannah G Caldwell
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Ryan L Hoiland
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony R Bain
- Department of Kinesiology, Faculty of Human Kinetics, University of Windsor, Windsor, Ontario, Canada
| | - Connor A Howe
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Jay M J R Carr
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Travis D Gibbons
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Cody G Durrer
- Centre for Physical Activity Research, Rigshospitalet, Copenhagen, Denmark
| | - Michael M Tymko
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Human Cerebrovascular Physiology Laboratory, Department of Human Health and Nutritional Sciences, College of Biological Science, University of Guelph, Guelph, Ontario, Canada
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Mypinder S Sekhon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Collaborative Entity for REsearching Brain Ischemia (CEREBRI), University of British Columbia, Vancouver, British Columbia, Canada
- Division of Critical Care Medicine, Department of Medicine, Faculty of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - David B MacLeod
- Human Pharmacology and Physiology Lab, Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| |
Collapse
|
3
|
Mikulis DJ. Cerebrovascular Reserve Imaging: Problems and Solutions. Magn Reson Imaging Clin N Am 2024; 32:93-109. [PMID: 38007286 DOI: 10.1016/j.mric.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The current standard of practice for assessing patients with cerebrovascular steno-occlusive disease is based on measuring resting blood flow metrics using MR imaging and CT perfusion imaging. However, the reliability of these methods decreases as the degree and number of stenoses increase. The reason for this is that measures of adequate baseline blood flow in highly collateralized circulations do not account for possible shortfalls in recruitable blood flow or increased metabolic demand. The following offers a clinically tested solution for this purpose using cerebrovascular reactivity methodology that applies a quantifiable vasodilatory stimulus improving reproducibility and repeatability essential for optimizing patient management.
Collapse
Affiliation(s)
- David J Mikulis
- The Krembil Brain Institute, Institute of Medcial Science, Department of Medical Imaging, The University of Toronto, The University Health Network, The Toronto Western Hospital, 399 Bathurst Street, Room 3MC-431, Toronto, ON M5T 2S8, Canada.
| |
Collapse
|
4
|
Sayin ES, Duffin J, Poublanc J, Venkatraghavan L, Mikulis DJ, Fisher JA, Sobczyk O. Determining the effects of elevated partial pressure of oxygen on hypercapnia-induced cerebrovascular reactivity. J Cereb Blood Flow Metab 2023; 43:2085-2095. [PMID: 37632334 PMCID: PMC10925865 DOI: 10.1177/0271678x231197000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/28/2023]
Abstract
Evaluation of cerebrovascular reactivity (CVR) to hypo- and hypercapnia is a valuable test for the assessment of vasodilatory reserve. While hypercapnia-induced CVR testing is usually performed at normoxia, mild hyperoxia may increase tolerability of hypercapnia by reducing the ventilatory distress. However, the effects of mild hyperoxia on CVR was unknown. We therefore recruited 21 patients with a range of steno-occlusive diseases and 12 healthy participants who underwent a standardized 13-minute step plus ramp CVR test with a carbon dioxide gas challenge at the subject's resting end-tidal partial pressure of oxygen or at mild hyperoxia (PetO2 = 150 mmHg) depending on to which group they were assigned. In 11 patients, the second CVR test was at normoxia to examine test-retest differences. CVR was defined as % Δ Signal/ΔPetCO2. We found that there was no significant difference between CVR test results conducted at normoxia and at mild hyperoxia for participants in Groups 1 and 2 for the step and ramp portion. We also found no difference between test and retest CVR at normoxia for patients with cerebrovascular pathology (Group 3) for step and ramp portion. We concluded normoxic CVR is repeatable, and that mild hyperoxia does not affect CVR.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Lashmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David John Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Joseph Arnold Fisher
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
5
|
Marchena-Romero KJ, Ji X, Sommer R, Centen A, Ramirez J, Poulin JM, Mikulis D, Thrippleton M, Wardlaw J, Lim A, Black SE, MacIntosh BJ. Examining temporal features of BOLD-based cerebrovascular reactivity in clinical populations. Front Neurol 2023; 14:1199805. [PMID: 37396759 PMCID: PMC10310960 DOI: 10.3389/fneur.2023.1199805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Background Conventional cerebrovascular reactivity (CVR) estimation has demonstrated that many brain diseases and/or conditions are associated with altered CVR. Despite the clinical potential of CVR, characterization of temporal features of a CVR challenge remains uncommon. This work is motivated by the need to develop CVR parameters that characterize individual temporal features of a CVR challenge. Methods Data were collected from 54 adults and recruited based on these criteria: (1) Alzheimer's disease diagnosis or subcortical Vascular Cognitive Impairment, (2) sleep apnea, and (3) subjective cognitive impairment concerns. We investigated signal changes in blood oxygenation level dependent (BOLD) contrast images with respect to hypercapnic and normocapnic CVR transition periods during a gas manipulation paradigm. We developed a model-free, non-parametric CVR metric after considering a range of responses through simulations to characterize BOLD signal changes that occur when transitioning from normocapnia to hypercapnia. The non-parametric CVR measure was used to examine regional differences across the insula, hippocampus, thalamus, and centrum semiovale. We also examined the BOLD signal transition from hypercapnia back to normocapnia. Results We found a linear association between isolated temporal features of successive CO2 challenges. Our study concluded that the transition rate from hypercapnia to normocapnia was significantly associated with the second CVR response across all regions of interest (p < 0.001), and this association was highest in the hippocampus (R2 = 0.57, p < 0.0125). Conclusion This study demonstrates that it is feasible to examine individual responses associated with normocapnic and hypercapnic transition periods of a BOLD-based CVR experiment. Studying these features can provide insight on between-subject differences in CVR.
Collapse
Affiliation(s)
- Kayley-Jasmin Marchena-Romero
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Xiang Ji
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Rosa Sommer
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Andrew Centen
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Joshua M. Poulin
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - David Mikulis
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Division of Neuroradiology, Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Michael Thrippleton
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Wardlaw
- Brain Research Imaging Centre, Centre for Clinical Brain Sciences, UK Dementia Research Institute Centre, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew Lim
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sandra E. Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| | - Bradley J. MacIntosh
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
| |
Collapse
|
6
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
7
|
Ding W, Gu Y, Wu H, Wang H, Zhang X, Wang H, Huang L, Zhang R, He Q, Zhong W, Lv J, Xia B, Zhang G, Mei S. Mediastinal shift angle (MSA) measurement with MRI: a simple and effective tool for prenatal risk stratification in fetuses with congenital diaphragmatic hernia. Eur Radiol 2023; 33:1668-1676. [PMID: 36180644 DOI: 10.1007/s00330-022-09142-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate the predictive value of mediastinal shift angle (MSA) in congenital diaphragmatic hernia (CDH). METHODS A retrospective analysis was performed on 87 fetuses with prenatally diagnosed left-sided CDH (LCDH) and 88 controls. MSA was measured on magnetic resonance imaging (MRI). Lung area to head circumference ratio (LHR), ratio of the observed/expected LHR (O/E LHR), total fetal lung volume (TFLV), and observed/expected total fetal lung volume (O/E TFLV) were also measured. Correlation of MSA with pulmonary hypertension (PH), extracorporeal membrane oxygenation (ECMO) use, duration of hospitalization and survival in neonates with CDH was analyzed. Performance of MSA in prediction of postnatal outcomes was compared with LHR, O/E LHR, TFLV, and O/E TFLV. RESULTS There were significant differences in MSA values not only between the CDH group and the control group but also in CDH patients with different survival outcomes. MSA was inversely correlated with O/E LHR, O/E TFLV, and TFLV. MSA, LHR, O/E LHR, TFLV, and O/E TFLV could all be used to predict survival of CDH patients. In addition, the receiver operating characteristic (ROC) curve showed that the test performance of MSA was similar to that of TFLV, O/E TFLV, and O/E LHR, but superior to that of LHR. MSA was also correlated with PH, need for ECMO support, and duration of hospitalization. CONCLUSION MRI measurement of MSA can provide various prognostic information for prenatally diagnosed LCDH, in addition to postnatal survival. The test performance of MSA is similar to TFLV, O/E TFLV, and O/E LHR. KEY POINTS • Mediastinal shift angle (MSA) can be measured quickly and reproducibly on MRI images. • MSA could provide more prognostic information other than postnatal survival for LCDH with good test performance. • MSA should be incorporated into prenatal risk stratification for LCDH to improve planning of postnatal management.
Collapse
Affiliation(s)
- Wen Ding
- Guangzhou Medical University, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yuanyuan Gu
- Department of Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| | - Huiying Wu
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Haiyu Wang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Xiaochun Zhang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Hongying Wang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Li Huang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Rui Zhang
- Department of Medical Imaging, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Qiuming He
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Wei Zhong
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Junjian Lv
- Surgical Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Bo Xia
- Surgical Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Guanglan Zhang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Shanshan Mei
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
8
|
Forté S, Sobczyk O, Poublanc J, Duffin J, Hare GMT, Fisher JA, Mikulis D, Kuo KHM. Sickle cell cerebrovascular reactivity to a CO2 stimulus: Too little, too slow. Front Physiol 2022; 13:886807. [PMID: 36060689 PMCID: PMC9437621 DOI: 10.3389/fphys.2022.886807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Despite increased cerebral blood flow (CBF), cerebral infarcts occur in patients with sickle cell disease (SCD). This suggests increased CBF does not meet metabolic demand possibly due to compromised cerebral vasodilatory response. Hypothesis: In adult SCD patients, cerebrovascular reactivity (CVR) and speed of vasodilatory response (tau) to a standardized vasodilatory stimulus, are reduced compared to normal subjects. Methods: Functional brain imaging performed as part of routine care in adult SCD patients without known large vessel cerebral vasculopathy was reviewed retrospectively. CVR was calculated as the change in CBF measured as the blood-oxygenation-level-dependent (BOLD)-magnetic resonance imaging signal, in response to a standard vasoactive stimulus of carbon dioxide (CO2). The tau corresponding to the best fit between the convolved end-tidal partial pressures of CO2 and BOLD signal was defined as the speed of vascular response. CVR and tau were normalized using a previously generated atlas of 42 healthy controls. Results: Fifteen patients were included. CVR was reduced in grey and white matter (mean Z-score for CVR −0.5 [−1.8 to 0.3] and −0.6 [−2.3 to 0.7], respectively). Tau Z-scores were lengthened in grey and white matter (+0.9 [−0.5 to 3.3] and +0.8 [−0.7 to 2.7], respectively). Hematocrit was the only significant independent predictor of CVR on multivariable regression. Conclusion: Both measures of cerebrovascular health (CVR and tau) in SCD patients were attenuated compared to normal controls. These findings show that CVR represents a promising tool to assess disease state, stroke risk, and therapeutic efficacy of treatments in SCD and merits further investigation.
Collapse
Affiliation(s)
- Stéphanie Forté
- Division of Medical Oncology and Hematology, Departement of Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - James Duffin
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Gregory M. T. Hare
- The Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anesthesia, St. Michael’s Hospital, Toronto, ON, Canada
| | - Joseph Arnold Fisher
- Department of Anaesthesia and Pain Medicine, University Health Network, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David Mikulis
- Joint Department of Medical Imaging, University Health Network, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Medical Oncology and Hematology, Department of Medicine, University Health Network, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- *Correspondence: Kevin H. M. Kuo,
| |
Collapse
|
9
|
Bhogal AA, Sayin ES, Poublanc J, Duffin J, Fisher JA, Sobcyzk O, Mikulis DJ. Quantifying cerebral blood arrival times using hypoxia-mediated arterial BOLD contrast. Neuroimage 2022; 261:119523. [PMID: 35907499 DOI: 10.1016/j.neuroimage.2022.119523] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Cerebral blood arrival and tissue transit times are sensitive measures of the efficiency of tissue perfusion and can provide clinically meaningful information on collateral blood flow status. We exploit the arterial blood oxygen level dependent (BOLD) signal contrast established by precisely decreasing, and then increasing, arterial hemoglobin saturation using respiratory re-oxygenation challenges to quantify arterial blood arrival times throughout the brain. We term this approach the Step Hemoglobin re-Oxygenation Contrast Stimulus (SHOCS). Carpet plot analysis yielded measures of signal onset (blood arrival), global transit time (gTT) and calculations of relative total blood volume. Onset times averaged across 12 healthy subjects were 1.1 ± 0.4 and 1.9 ± 0.6 for cortical gray and deep white matter, respectively. The average whole brain gTT was 4.5 ± 0.9 seconds. The SHOCS response was 1.7 fold higher in grey versus white matter; in line with known differences in tissue-specific blood volume fraction. SHOCS was also applied in a patient with unilateral carotid artery occlusion revealing ipsilateral prolonged signal onset with normal perfusion in the unaffected hemisphere. We anticipate that SHOCS will further inform on the extent of collateral blood flow in patients with upstream steno-occlusive vascular disease, including those already known to manifest reductions in vasodilatory reserve capacity or vascular steal.
Collapse
Affiliation(s)
- Alex A Bhogal
- Center of Imaging Sciences, High Field Department, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, CX 3584, the Netherlands.
| | - Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, Toronto, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - Olivia Sobcyzk
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada; Department of Anesthesiology and Pain Medicine, University Health Network and University of Toronto, Toronto, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| |
Collapse
|
10
|
Sayin ES, Sobczyk O, Poublanc J, Mikulis DJ, Fisher JA, Kuo KHM, Duffin J. Assessing Cerebrovascular Resistance in Patients With Sickle Cell Disease. Front Physiol 2022; 13:847969. [PMID: 35422710 PMCID: PMC9002264 DOI: 10.3389/fphys.2022.847969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
In patients with sickle cell disease (SCD) the delivery of oxygen to the brain is compromised by anemia, abnormal rheology, and steno-occlusive vascular disease. Meeting demands for oxygen delivery requires compensatory features of brain perfusion. The cerebral vasculature’s regulatory function and reserves can be assessed by observing the flow response to a vasoactive stimulus. In a traditional approach we measured voxel-wise change in Blood Oxygen-Level Dependent (BOLD) MRI signal as a surrogate of cerebral blood flow (CBF) in response to a linear progressive ramping of end-tidal partial pressure of carbon dioxide (PETCO2). Cerebrovascular reactivity (CVR) was defined as ΔBOLD/ΔPETCO2. We used a computer model to fit a virtual sigmoid resistance curve to the progressive CBF response to the stimulus, enabling the calculation of resistance parameters: amplitude, midpoint, range response, resistance sensitivity and vasodilatory reserve. The quality of the resistance sigmoid fit was expressed as the r2 of the fit. We tested 35 patients with SCD, as well as 24 healthy subjects to provide an indication of the normal ranges of the resistance parameters. We found that gray matter CVR and resistance amplitude, range, reserve, and sensitivity are reduced in patients with SCD compared to healthy controls, while resistance midpoint was increased. This study is the first to document resistance measures in adult patients with SCD. It is also the first to score these vascular resistance measures in comparison to the normal range. We anticipate these data will complement the current understanding of the cerebral vascular pathophysiology of SCD, identify paths for therapeutic interventions, and provide biomarkers for monitoring the progress of the disease.
Collapse
Affiliation(s)
- Ece Su Sayin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
| | - Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Kevin H. M. Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, Toronto, ON, Canada
- *Correspondence: James Duffin,
| |
Collapse
|
11
|
Ren D, Li J, Zhou B, Guo S, Guo B. Modelling of the Dynamics of Vascular Embolization by Using Porous Media for the Design of Injection Robots of Embolic Agents. Med Eng Phys 2022; 101:103774. [DOI: 10.1016/j.medengphy.2022.103774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 11/21/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
|
12
|
Wang R, Poublanc J, Crawley AP, Sobczyk O, Kneepkens S, Mcketton L, Tator C, Wu R, Mikulis DJ. Cerebrovascular reactivity changes in acute concussion: a controlled cohort study. Quant Imaging Med Surg 2021; 11:4530-4542. [PMID: 34737921 DOI: 10.21037/qims-20-1296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
Background Evidence suggests that cerebrovascular reactivity (CVR) increases within the first week after the incidence of concussion, indicating a disruption of normal autoregulation. We sought to extend these findings by investigating the effects of acute concussion on the speed of CVR response and by visualizing global and regional impairments in individual patients with acute concussion. Methods Twelve patients aged 18-40 years who experienced concussion less than a week before this prospective study were included. Twelve age and sex-matched healthy subjects constituted the control group. In all subjects, CVR was assessed using blood oxygenation level-dependent (BOLD) echo-planar imaging with a 3.0T MRI scanner, in combination with changes in end-tidal partial pressure of CO2 (PETCO2). In each subject, we calculated the CVR amplitude and CVR response time in the gray and white matter using a step and ramp PETCO2 challenge. In addition, a separate group of 39 healthy controls who underwent the same evaluation was used to create atlases with voxel-wise mean and standard deviation of CVR amplitude and CVR response time. This allowed us to convert each metric of the 12 patients with concussion and the 12 healthy controls into z-score maps. These maps were then used to generate and compare z-scores for each of the two groups. Group differences were calculated using an unpaired t-test. Results All studies were well tolerated without any serious adverse events. Anatomical MRI was normal in all study subjects. No differences in CO2 stimulus and O2 targeting were observed between the two participant groups during BOLD MRI. With regard to the gray matter, the CVR magnitude step (P=0.117) and ramp + 10 (P=0.085) were not significantly different between patients with concussion and healthy controls. However, the tau value was significantly lower in patients with concussion than in the healthy controls (P=0.04). With regard to the white matter, the CVR magnitude step (P=0.003) and ramp + 10 (P=0.031) were significantly higher and the tau value (P=0.024) was significantly shorter in patients with concussion than in healthy controls. After z-score transformation, the z tau value was significantly lower in patients with concussion than in healthy controls (Grey matter P=0.021, White matter P=0.003). Comparison of the three parameters, z ramp + 10, z step, and z tau, between the two groups showed that z step (Grey matter P=0.035, White matter P=0.005) was the most sensitive parameter and that z ramp + 10 (Grey matter P=0.073, White matter P=0.126) was the least sensitive parameter. Conclusions Concussion is associated with patient-specific abnormalities in BOLD cerebrovascular responsiveness that occur in the setting of normal global CVR. This study demonstrates that the measurement of CVR using BOLD MRI and precise CO2 control is a safe, reliable, reproducible, and clinically useful method for evaluating the state of patients with concussion. It has the potential to be an important tool for assessing the severity and duration of symptoms after concussion.
Collapse
Affiliation(s)
- Runrun Wang
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada.,Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.,Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Sander Kneepkens
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Larissa Mcketton
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Charles Tator
- Department of Surgery, Division of Neurosurgery, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| | - Renhua Wu
- Department of Medical Imaging, the Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network, The Toronto Western Hospital, The University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Sobczyk O, Fierstra J, Venkatraghavan L, Poublanc J, Duffin J, Fisher JA, Mikulis DJ. Measuring Cerebrovascular Reactivity: Sixteen Avoidable Pitfalls. Front Physiol 2021; 12:665049. [PMID: 34305634 PMCID: PMC8294324 DOI: 10.3389/fphys.2021.665049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 06/07/2021] [Indexed: 12/04/2022] Open
Abstract
An increase in arterial PCO2 is the most common stressor used to increase cerebral blood flow for assessing cerebral vascular reactivity (CVR). That CO2 is readily obtained, inexpensive, easy to administer, and safe to inhale belies the difficulties in extracting scientifically and clinically relevant information from the resulting flow responses. Over the past two decades, we have studied more than 2,000 individuals, most with cervical and cerebral vascular pathology using CO2 as the vasoactive agent and blood oxygen-level-dependent magnetic resonance imaging signal as the flow surrogate. The ability to deliver different forms of precise hypercapnic stimuli enabled systematic exploration of the blood flow-related signal changes. We learned the effect on CVR of particular aspects of the stimulus such as the arterial partial pressure of oxygen, the baseline PCO2, and the magnitude, rate, and pattern of its change. Similarly, we learned to interpret aspects of the flow response such as its magnitude, and the speed and direction of change. Finally, we were able to test whether the response falls into a normal range. Here, we present a review of our accumulated insight as 16 “lessons learned.” We hope many of these insights are sufficiently general to apply to a range of types of CO2-based vasoactive stimuli and perfusion metrics used for CVR.
Collapse
Affiliation(s)
- Olivia Sobczyk
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - Jorn Fierstra
- Department of Neurosurgery, University Hospital Zurich, Zürich, Switzerland
| | - Lakshmikumar Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada
| | - James Duffin
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Burley CV, Francis ST, Thomas KN, Whittaker AC, Lucas SJE, Mullinger KJ. Contrasting Measures of Cerebrovascular Reactivity Between MRI and Doppler: A Cross-Sectional Study of Younger and Older Healthy Individuals. Front Physiol 2021; 12:656746. [PMID: 33912073 PMCID: PMC8072486 DOI: 10.3389/fphys.2021.656746] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Cerebrovascular reactivity (CVR) is used as an outcome measure of brain health. Traditionally, lower CVR is associated with ageing, poor fitness and brain-related conditions (e.g. stroke, dementia). Indeed, CVR is suggested as a biomarker for disease risk. However, recent findings report conflicting associations between ageing or fitness and CVR measures. Inconsistent findings may relate to different neuroimaging modalities used, which include transcranial Doppler (TCD) and blood-oxygen-level-dependant (BOLD) contrast magnetic resonance imaging (MRI). We assessed the relationship between CVR metrics derived from two common imaging modalities, TCD and BOLD MRI, within the same individuals and with expected significant differences (i.e., younger vs. older) to maximise the expected spread in measures. We conducted two serial studies using TCD- and MRI-derived measures of CVR (via inspired 5% CO2 in air). Study 1 compared 20 younger (24 ± 7 years) with 15 older (66 ± 7 years) participants, Study 2 compared 10 younger (22 ± 2 years) with 10 older (72 ± 4 years) participants. Combining the main measures across studies, no significant correlation (r = 0.15, p = 0.36) was observed between individual participant TCD- and BOLD-CVR measures. Further, these measures showed differential effects between age groups; with TCD-CVR higher in the older compared to younger group (4 ± 1 vs. 3 ± 1 %MCAv/mmHg P ET CO2; p < 0.05, Hedges' g = 0.75), whereas BOLD-CVR showed no difference (p = 0.104, Hedges' g = 0.38). In Study 2 additional measures were obtained to understand the origin of the discrepancy: phase contrast angiography (PCA) MRI of the middle cerebral artery, showed a significantly lower blood flow (but not velocity) CVR response in older compared with younger participants (p > 0.05, Hedges' g = 1.08). The PCA CVR metrics did not significantly correlate with the BOLD- or TCD-CVR measures. The differing CVR observations between imaging modalities were despite expected, correlated (r = 0.62-0.82), age-related differences in resting CBF measures across modalities. Taken together, findings across both studies show no clear relationship between TCD- and BOLD-CVR measures. We hypothesize that CVR differences between imaging modalities are in part due to the aspects of the vascular tree that are assessed (TCD:arteries; BOLD:venules/veins). Further work is needed to understand the between-modality CVR response differences, but caution is needed when comparing CVR metrics derived from different imaging modalities.
Collapse
Affiliation(s)
- Claire V. Burley
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Dementia Centre for Research Collaboration, School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - Susan T. Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Kate N. Thomas
- Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Anna C. Whittaker
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health Sciences and Sport, University of Stirling, Stirling, United Kingdom
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| | - Karen J. Mullinger
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Fisher JA, Mikulis DJ. Cerebrovascular Reactivity: Purpose, Optimizing Methods, and Limitations to Interpretation - A Personal 20-Year Odyssey of (Re)searching. Front Physiol 2021; 12:629651. [PMID: 33868001 PMCID: PMC8047146 DOI: 10.3389/fphys.2021.629651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/10/2021] [Indexed: 11/18/2022] Open
Abstract
The brain is a neurovascular organ. A stimulus-response approach is effective in interrogating the physiology of its vasculature. Ideally, the stimulus is standardized across patients, and in a single patient over time. We developed a standard stimulus and attempted to measure, classify, and interpret the many forms of responses. Over the past 20 years, our work has delivered nuanced insights into normal cerebral vascular physiology, as well as adaptive physiological responses in the presence of disease. The trajectory of our understanding did not follow a logical linear progression; rather, it emerged as a coalescence of new, old, and previously dismissed, ideas that had accumulated over time. In this essay, we review what we believe were our most valuable - and sometimes controversial insights during our two decades-long journey.
Collapse
Affiliation(s)
- Joseph A. Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
- The Joint Department of Medical Imaging, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
- Techna Institute & Koerner Scientist in MR Imaging, University Health Network, Toronto, ON, Canada
| |
Collapse
|
16
|
Chen JJ, Gauthier CJ. The Role of Cerebrovascular-Reactivity Mapping in Functional MRI: Calibrated fMRI and Resting-State fMRI. Front Physiol 2021; 12:657362. [PMID: 33841190 PMCID: PMC8027080 DOI: 10.3389/fphys.2021.657362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/02/2021] [Indexed: 12/14/2022] Open
Abstract
Task and resting-state functional MRI (fMRI) is primarily based on the same blood-oxygenation level-dependent (BOLD) phenomenon that MRI-based cerebrovascular reactivity (CVR) mapping has most commonly relied upon. This technique is finding an ever-increasing role in neuroscience and clinical research as well as treatment planning. The estimation of CVR has unique applications in and associations with fMRI. In particular, CVR estimation is part of a family of techniques called calibrated BOLD fMRI, the purpose of which is to allow the mapping of cerebral oxidative metabolism (CMRO2) using a combination of BOLD and cerebral-blood flow (CBF) measurements. Moreover, CVR has recently been shown to be a major source of vascular bias in computing resting-state functional connectivity, in much the same way that it is used to neutralize the vascular contribution in calibrated fMRI. Furthermore, due to the obvious challenges in estimating CVR using gas challenges, a rapidly growing field of study is the estimation of CVR without any form of challenge, including the use of resting-state fMRI for that purpose. This review addresses all of these aspects in which CVR interacts with fMRI and the role of CVR in calibrated fMRI, provides an overview of the physiological biases and assumptions underlying hypercapnia-based CVR and calibrated fMRI, and provides a view into the future of non-invasive CVR measurement.
Collapse
Affiliation(s)
- J Jean Chen
- Baycrest Centre for Geriatric Care, Rotman Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Claudine J Gauthier
- Department of Physics, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| |
Collapse
|
17
|
Sleight E, Stringer MS, Marshall I, Wardlaw JM, Thrippleton MJ. Cerebrovascular Reactivity Measurement Using Magnetic Resonance Imaging: A Systematic Review. Front Physiol 2021; 12:643468. [PMID: 33716793 PMCID: PMC7947694 DOI: 10.3389/fphys.2021.643468] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/01/2021] [Indexed: 12/27/2022] Open
Abstract
Cerebrovascular reactivity (CVR) magnetic resonance imaging (MRI) probes cerebral haemodynamic changes in response to a vasodilatory stimulus. CVR closely relates to the health of the vasculature and is therefore a key parameter for studying cerebrovascular diseases such as stroke, small vessel disease and dementias. MRI allows in vivo measurement of CVR but several different methods have been presented in the literature, differing in pulse sequence, hardware requirements, stimulus and image processing technique. We systematically reviewed publications measuring CVR using MRI up to June 2020, identifying 235 relevant papers. We summarised the acquisition methods, experimental parameters, hardware and CVR quantification approaches used, clinical populations investigated, and corresponding summary CVR measures. CVR was investigated in many pathologies such as steno-occlusive diseases, dementia and small vessel disease and is generally lower in patients than in healthy controls. Blood oxygen level dependent (BOLD) acquisitions with fixed inspired CO2 gas or end-tidal CO2 forcing stimulus are the most commonly used methods. General linear modelling of the MRI signal with end-tidal CO2 as the regressor is the most frequently used method to compute CVR. Our survey of CVR measurement approaches and applications will help researchers to identify good practice and provide objective information to inform the development of future consensus recommendations.
Collapse
Affiliation(s)
- Emilie Sleight
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom,*Correspondence: Michael S. Stringer
| | - Ian Marshall
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom,UK Dementia Research Institute, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Yang HCS, Liang Z, Vike NL, Lee T, Rispoli JV, Nauman EA, Talavage TM, Tong Y. Characterizing near-infrared spectroscopy signal under hypercapnia. JOURNAL OF BIOPHOTONICS 2020; 13:e202000173. [PMID: 32706517 DOI: 10.1002/jbio.202000173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Vasoactive stress tests (i.e. hypercapnia, elevated partial pressure of arterial CO2 [PaCO2 ]) are commonly used in functional MRI (fMRI), to induce cerebral blood flow changes and expose hidden perfusion deficits in the brain. Compared with fMRI, near-infrared spectroscopy (NIRS) is an alternative low-cost, real-time, and non-invasive tool, which can be applied in out-of-hospital settings. To develop and optimize vasoactive stress tests for NIRS, several hypercapnia-induced tasks were tested using concurrent-NIRS/fMRI on healthy subjects. The results indicated that the cerebral and extracerebral reactivity to elevated PaCO2 depended on the rate of the CO2 increase. A steep increase resulted in different cerebral and extracerebral reactivities, leading to unpredictable NIRS measurements compared with fMRI. However, a ramped increase, induced by ramped-CO2 inhalation or breath-holding tasks, induced synchronized cerebral, and extracerebral reactivities, resulting in consistent NIRS and fMRI measurements. These results demonstrate that only tasks that increase PaCO2 gradually can produce reliable NIRS results.
Collapse
Affiliation(s)
- Ho-Ching Shawn Yang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Zhenhu Liang
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Nicole L Vike
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Taylor Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Joseph V Rispoli
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas M Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Yunjie Tong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
19
|
Evanoff NG, Mueller BA, Marlatt KL, Geijer JR, Lim KO, Dengel DR. Reproducibility of a ramping protocol to measure cerebral vascular reactivity using functional magnetic resonance imaging. Clin Physiol Funct Imaging 2020; 40:183-189. [PMID: 31984617 DOI: 10.1111/cpf.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 12/14/2019] [Accepted: 01/21/2020] [Indexed: 11/29/2022]
Abstract
Though individual differences in arterial carbon dioxide and oxygen levels inherently exist, the degree of their influence on cerebral vascular reactivity (CVR) is less clear. We examined the reproducibility of BOLD signal changes to an iso-oxic ramping Pet CO2 protocol. CVR changes were induced by altering Pet CO2 while holding Pet O2 constant using a computer-controlled sequential gas delivery (SGD) device. Two MRI scans, each including a linear change in Pet CO2 , were performed using a 3-Tesla (3T) scanner. This ramp sequence consisted of 1 min at 30 mmHg followed by 4 min period during where Pet CO2 was linearly increased from 30 to 50 mmHg, 1 min at 51 mmHg, and concluded with 4 min at baseline. The protocol was repeated at a separate visit with 3 days between visits (minimum). Intraclass correlation coefficients (ICC) and coefficients of variation (CV) were used to verify reproducibility. Eleven subjects (6 females; mean age 26.5 ± 5.7 years) completed the full testing protocol. Good reproducibility was observed for the within-visit ramp sequence (Visit 1: ICC = 0.82, CV = 6.5%; Visit 2: ICC = 0.74, CV = 6.4%). Similarly, ramp sequence were reproducible between visits (Scan 1: ICC = 0.74, CV = 6.5%; Scan 2: ICC = 0.66, CV = 6.1%). Establishing reproducible methodologies for measuring BOLD signal changes in response to Pet CO2 alterations using a ramp protocol will allow researchers to study CVR functionality. Finally, adding a ramping protocol to CVR studies could provide information about changes in CVR over a broad range of Pet CO2 .
Collapse
Affiliation(s)
| | - Bryon A Mueller
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Kara L Marlatt
- Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Justin R Geijer
- Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, Minnesota
| | - Kelvin O Lim
- Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Donald R Dengel
- School of Kinesiology, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
20
|
Hoiland RL, Fisher JA, Ainslie PN. Regulation of the Cerebral Circulation by Arterial Carbon Dioxide. Compr Physiol 2019; 9:1101-1154. [DOI: 10.1002/cphy.c180021] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
McKetton L, Cohn M, Tang-Wai DF, Sobczyk O, Duffin J, Holmes KR, Poublanc J, Sam K, Crawley AP, Venkatraghavan L, Fisher JA, Mikulis DJ. Cerebrovascular Resistance in Healthy Aging and Mild Cognitive Impairment. Front Aging Neurosci 2019; 11:79. [PMID: 31031616 PMCID: PMC6474328 DOI: 10.3389/fnagi.2019.00079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/19/2019] [Indexed: 12/04/2022] Open
Abstract
Measures of cerebrovascular reactivity (CVR) are used to judge the health of the brain vasculature. In this study, we report the use of several different analyses of blood oxygen dependent (BOLD) fMRI responses to CO2 to provide a number of metrics of CVR based on the sigmoidal resistance response to CO2. To assess possible differences in these metrics with age, we compiled atlases reflecting voxel-wise means and standard deviations for four different age ranges and for a group of patients with mild cognitive impairment (MCI) and compared them. Sixty-seven subjects were recruited for this study and scanned at 3T field strength. Of those, 51 healthy control volunteers between the ages of 18–83 were recruited, and 16 (MCI) subjects between the ages of 61–83 were recruited. Testing was carried out using an automated computer-controlled gas blender to induce hypercapnia in a step and ramp paradigm while monitoring end-tidal partial pressures of CO2. Surprisingly, some resistance sigmoid parameters in the oldest control group were increased compared to the youngest control group. Resistance amplitude maps showed increases in clusters within the temporal cortex, thalamus, corpus callosum and brainstem, and resistance reserve maps showed increases in clusters within the cingulate cortex, frontal gyrus, and corpus callosum. These findings suggest that some aspects of vascular reactivity in parts of the brain are initially maintained with age but then may increase in later years. We found significant reductions in all resistance sigmoid parameters (amplitude, reserve, sensitivity, midpoint, and range) when comparing MCI patients to controls. Additionally, in controls and in MCI patients, amplitude, range, reserve, and sensitivity in white matter (WM) was significantly reduced compared to gray matter (GM). WM midpoints were significantly above those of GM. Our general conclusion is that vascular regulation in terms of cerebral blood flow (CBF) responsiveness to CO2 is not significantly affected by age, but is reduced in MCI. These changes in cerebrovascular regulation demonstrate the value of resistance metrics for mapping areas of dysregulated blood flow in individuals with MCI. They may also be of value in the investigation of patients with vascular risk factors at risk for developing vascular dementia.
Collapse
Affiliation(s)
- Larissa McKetton
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Melanie Cohn
- Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - David F Tang-Wai
- Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Medicine, Division of Neurology, University of Toronto and the University Health Network Memory Clinic, Toronto, ON, Canada
| | - Olivia Sobczyk
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Kenneth R Holmes
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Kevin Sam
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Adrian P Crawley
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network (UHN), Toronto, ON, Canada
| | - Joseph A Fisher
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network (UHN), Toronto, ON, Canada
| | - David J Mikulis
- Joint Department of Medical Imaging, University Health Network (UHN), Toronto, ON, Canada.,Krembil Brain Institute, University Health Network (UHN), Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Thiel S, Lettau F, Rejmer P, Rossi C, Haile S, Schwarz EI, Stöberl AS, Sievi NA, Boss A, Becker AS, Winklhofer S, Stradling JR, Kohler M. Effects of short-term continuous positive airway pressure withdrawal on cerebral vascular reactivity measured by blood oxygen level-dependent magnetic resonance imaging in obstructive sleep apnoea: a randomised controlled trial. Eur Respir J 2019; 53:13993003.01854-2018. [DOI: 10.1183/13993003.01854-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Impaired cerebral vascular reactivity (CVR) increases long-term stroke risk. Obstructive sleep apnoea (OSA) is associated with peripheral vascular dysfunction and vascular events. The aim of this trial was to evaluate the effect of continuous positive airway pressure (CPAP) withdrawal on CVR.41 OSA patients (88% male, mean age 57±10 years) were randomised to either subtherapeutic or continuation of therapeutic CPAP. At baseline and after 2 weeks, patients underwent a sleep study and magnetic resonance imaging (MRI). CVR was estimated by quantifying the blood oxygen level-dependent (BOLD) MRI response to breathing stimuli.OSA did recur in the subtherapeutic CPAP group (mean treatment effect apnoea–hypopnoea index +38.0 events·h−1, 95% CI 24.2–52.0; p<0.001) but remained controlled in the therapeutic group. Although there was a significant increase in blood pressure upon CPAP withdrawal (mean treatment effect +9.37 mmHg, 95% CI 1.36–17.39; p=0.023), there was no significant effect of CPAP withdrawal on CVR assessedviaBOLD MRI under either hyperoxic or hypercapnic conditions.Short-term CPAP withdrawal did not result in statistically significant changes in CVR as assessed by functional MRI, despite the recurrence of OSA. We thus conclude that, unlike peripheral endothelial function, CVR is not affected by short-term CPAP withdrawal.
Collapse
|
23
|
Fisher JA, Venkatraghavan L, Mikulis DJ. Magnetic Resonance Imaging–Based Cerebrovascular Reactivity and Hemodynamic Reserve. Stroke 2018; 49:2011-2018. [DOI: 10.1161/strokeaha.118.021012] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joseph A. Fisher
- From the Department of Anesthesia and Pain Management and the Toronto General Hospital Research Institute (J.A.F., L.V.)
- Department of Anesthesiology (J.A.F., L.V.)
- Institute of Medical Sciences (J.A.F., D.J.M.)
- Department of Physiology (J.A.F.), University of Toronto, Canada
| | - Lashmi Venkatraghavan
- From the Department of Anesthesia and Pain Management and the Toronto General Hospital Research Institute (J.A.F., L.V.)
- Department of Anesthesiology (J.A.F., L.V.)
| | - David J. Mikulis
- Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory (D.J.M.), University Health Network, Toronto, Canada
- Institute of Medical Sciences (J.A.F., D.J.M.)
| |
Collapse
|
24
|
Minhas JS, Panerai RB, Robinson TG. Modelling the cerebral haemodynamic response in the physiological range of PaCO2. Physiol Meas 2018; 39:065001. [DOI: 10.1088/1361-6579/aac76b] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Duffin J, Sobczyk O, McKetton L, Crawley A, Poublanc J, Venkatraghavan L, Sam K, Mutch WA, Mikulis D, Fisher JA. Cerebrovascular Resistance: The Basis of Cerebrovascular Reactivity. Front Neurosci 2018; 12:409. [PMID: 29973862 PMCID: PMC6020782 DOI: 10.3389/fnins.2018.00409] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
The cerebral vascular network regulates blood flow distribution by adjusting vessel diameters, and consequently resistance to flow, in response to metabolic demands (neurovascular coupling) and changes in perfusion pressure (autoregulation). Deliberate changes in carbon dioxide (CO2) partial pressure may be used to challenge this regulation and assess its performance since CO2 also acts to change vessel diameter. Cerebrovascular reactivity (CVR), the ratio of cerebral blood flow (CBF) response to CO2 stimulus is currently used as a performance metric. However, the ability of CVR to reflect the responsiveness of a particular vascular region is confounded by that region’s inclusion in the cerebral vascular network, where all regions respond to the global CO2 stimulus. Consequently, local CBF responses reflect not only changes in the local vascular resistance but also the effect of changes in local perfusion pressure resulting from redistribution of flow within the network. As a result, the CBF responses to CO2 take on various non-linear patterns that are not well-described by straight lines. We propose a method using a simple model to convert these CBF response patterns to the pattern of resistance responses that underlie them. The model, which has been used previously to explain the steal phenomenon, consists of two vascular branches in parallel fed by a major artery with a fixed resistance unchanging with CO2. One branch has a reference resistance with a sigmoidal response to CO2, representative of a voxel with a robust response. The other branch has a CBF equal to the measured CBF response to CO2 of any voxel under examination. Using the model to calculate resistance response patterns of the examined branch showed sigmoidal patterns of resistance response, regardless of the measured CBF response patterns. The sigmoid parameters of the resistance response pattern of examined voxels may be mapped to their anatomical location. We show an example for a healthy subject and for a patient with steno-occlusive disease to illustrate. We suggest that these maps provide physiological insight into the regulation of CBF distribution.
Collapse
Affiliation(s)
- James Duffin
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Olivia Sobczyk
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Larissa McKetton
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Adrian Crawley
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Julien Poublanc
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Lashmi Venkatraghavan
- Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Kevin Sam
- Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - W Alan Mutch
- Department of Anesthesia and Perioperative Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - David Mikulis
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging and the Functional Neuroimaging Lab, University Health Network, Toronto, ON, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anaesthesia and Pain Management, University Health Network, University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Monti L, Morbidelli L, Rossi A. Impaired Cerebral Perfusion in Multiple Sclerosis: Relevance of Endothelial Factors. Biomark Insights 2018; 13:1177271918774800. [PMID: 29795976 PMCID: PMC5960845 DOI: 10.1177/1177271918774800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 04/07/2018] [Indexed: 12/21/2022] Open
Abstract
Magnetic resonance imaging techniques measuring in vivo brain perfusion and integrity of the blood-brain barrier have developed rapidly in the past decade, resulting in a wide range of available methods. This review first discusses their principles, possible pitfalls, and potential for quantification and outlines clinical application in neurological disorders. Then, we focus on the endothelial cells of the blood-brain barrier, pointing out their contribution in regulating vascular tone by production of vasoactive substances. Finally, the role of these substances in brain hypoperfusion in multiple sclerosis is discussed.
Collapse
Affiliation(s)
- Lucia Monti
- Unit of Neuroimaging and Neurointervention, Department of Neurological and Neurosensory Sciences, "Santa Maria alle Scotte" General Hospital, University Hospital of Siena, Siena, Italy
| | | | - Alessandro Rossi
- Unit of Neurology and Clinical Neurophysiology, Department of Neurological and Neurosensory Sciences, University Hospital of Siena, Siena, Italy
| |
Collapse
|