1
|
Wang J, Liang X, Lu J, Zhang W, Chen Q, Li X, Chen J, Zhang X, Zhang B. Cortical and subcortical gray matter abnormalities in mild cognitive impairment. Neuroscience 2024; 557:81-88. [PMID: 39067683 DOI: 10.1016/j.neuroscience.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Gray matter changes are thought to be closely related to cognitive decline in mild cognitive impairment (MCI) patients. The study aimed to explore cortical and subcortical structural alterations in MCI and their association with cognitive assessment. 24 MCI patients and 22 normal controls (NCs) were included. Voxel-based morphometry (VBM), vertex-based shape analysis and surface-based morphometry (SBM) analysis were applied to explore subcortical nuclei volume, shape and cortical morphology. Correlations between structural changes and cognition were explored using spearman correlation analysis. Support vector machine (SVM) classification evaluated MCI identification accuracy. MCI patients showed significant atrophy in the left thalamus, left hippocampus, left amygdala, right pallidum, right hippocampus, along with inward deformation in the left amygdala. SBM analysis revealed that MCI group exhibited shallower sulci depth in the left hemisphere and increased cortical gyrification index (GI) in the right frontal gyrus. Correlation analysis showed the positive correlation between right hippocampus volume and episodic memory, while negative correlation between the altered GI and memory performance in MCI group. SVM analysis demonstrated superior performance of sulci depth and GI derived from SBM in MCI identification. When combined with cortical and subcortical metrics, SVM achieved a peak accuracy of 89 % in distinguishing MCI from NC. The study reveals significant gray matter structural changes in MCI, suggesting their potential role in underlying functional differences and neural mechanisms behind memory impairment in MCI.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xue Liang
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiaming Lu
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Wen Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Qian Chen
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xin Li
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiu Chen
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Xin Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Bing Zhang
- Department of Radiology, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Di Chiano M, Sallustio F, Fiocco D, Rocchetti MT, Spano G, Pontrelli P, Moschetta A, Gesualdo L, Gadaleta RM, Gallone A. Psychobiotic Properties of Lactiplantibacillus plantarum in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:9489. [PMID: 39273435 PMCID: PMC11394828 DOI: 10.3390/ijms25179489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Neurodegenerative disorders are the main cause of cognitive and physical disabilities, affect millions of people worldwide, and their incidence is on the rise. Emerging evidence pinpoints a disturbance of the communication of the gut-brain axis, and in particular to gut microbial dysbiosis, as one of the contributors to the pathogenesis of these diseases. In fact, dysbiosis has been associated with neuro-inflammatory processes, hyperactivation of the neuronal immune system, impaired cognitive functions, aging, depression, sleeping disorders, and anxiety. With the rapid advance in metagenomics, metabolomics, and big data analysis, together with a multidisciplinary approach, a new horizon has just emerged in the fields of translational neurodegenerative disease. In fact, recent studies focusing on taxonomic profiling and leaky gut in the pathogenesis of neurodegenerative disorders are not only shedding light on an overlooked field but are also creating opportunities for biomarker discovery and development of new therapeutic and adjuvant strategies to treat these disorders. Lactiplantibacillus plantarum (LBP) strains are emerging as promising psychobiotics for the treatment of these diseases. In fact, LBP strains are able to promote eubiosis, increase the enrichment of bacteria producing beneficial metabolites such as short-chain fatty acids, boost the production of neurotransmitters, and support the homeostasis of the gut-brain axis. In this review, we summarize the current knowledge on the role of the gut microbiota in the pathogenesis of neurodegenerative disorders with a particular focus on the benefits of LBP strains in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, autism, anxiety, and depression.
Collapse
Affiliation(s)
- Mariagiovanna Di Chiano
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, 71122 Foggia, Italy
| | - Paola Pontrelli
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Raffaella Maria Gadaleta
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
- National Institute for Biostructure and Biosystems (INBB), Viale delle Medaglie d'Oro n. 305, 00136 Roma, Italy
| | - Anna Gallone
- Department of Translational Biomedicine and Neuroscience, University of Bari Aldo Moro, Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Vickery S, Patil KR, Dahnke R, Hopkins WD, Sherwood CC, Caspers S, Eickhoff SB, Hoffstaedter F. The uniqueness of human vulnerability to brain aging in great ape evolution. SCIENCE ADVANCES 2024; 10:eado2733. [PMID: 39196942 PMCID: PMC11352902 DOI: 10.1126/sciadv.ado2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Aging is associated with progressive gray matter loss in the brain. This spatially specific, morphological change over the life span in humans is also found in chimpanzees, and the comparison between these great ape species provides a unique evolutionary perspective on human brain aging. Here, we present a data-driven, comparative framework to explore the relationship between gray matter atrophy with age and recent cerebral expansion in the phylogeny of chimpanzees and humans. In humans, we show a positive relationship between cerebral aging and cortical expansion, whereas no such relationship was found in chimpanzees. This human-specific association between strong aging effects and large relative cortical expansion is particularly present in higher-order cognitive regions of the ventral prefrontal cortex and supports the "last-in-first-out" hypothesis for brain maturation in recent evolutionary development of human faculties.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| |
Collapse
|
5
|
Lee H, Lee HH, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024:e14267. [PMID: 39118344 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Hong-Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Eva A Krijnen
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam Neuroscience, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Rubbert C, Wolf L, Vach M, Ivan VL, Hedderich DM, Gaser C, Dahnke R, Caspers J. Normal cohorts in automated brain atrophy estimation: how many healthy subjects to include? Eur Radiol 2024; 34:5276-5286. [PMID: 38189981 PMCID: PMC11255074 DOI: 10.1007/s00330-023-10522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES This study investigates the influence of normal cohort (NC) size and the impact of different NCs on automated MRI-based brain atrophy estimation. METHODS A pooled NC of 3945 subjects (NCpool) was retrospectively created from five publicly available cohorts. Voxel-wise gray matter volume atrophy maps were calculated for 48 Alzheimer's disease (AD) patients (55-82 years) using veganbagel and dynamic normal templates with an increasing number of healthy subjects randomly drawn from NCpool (initially three, and finally 100 subjects). Over 100 repeats of the process, the mean over a voxel-wise standard deviation of gray matter z-scores was established and plotted against the number of subjects in the templates. The knee point of these curves was defined as the minimum number of subjects required for consistent brain atrophy estimation. Atrophy maps were calculated using each NC for AD patients and matched healthy controls (HC). Two readers rated the extent of mesiotemporal atrophy to discriminate AD/HC. RESULTS The maximum knee point was at 15 subjects. For 21 AD/21 HC, a sufficient number of subjects were available in each NC for validation. Readers agreed on the AD diagnosis in all cases (Kappa for the extent of atrophy, 0.98). No differences in diagnoses between NCs were observed (intraclass correlation coefficient, 0.91; Cochran's Q, p = 0.19). CONCLUSION At least 15 subjects should be included in age- and sex-specific normal templates for consistent brain atrophy estimation. In the study's context, qualitative interpretation of regional atrophy allows reliable AD diagnosis with a high inter-reader agreement, irrespective of the NC used. CLINICAL RELEVANCE STATEMENT The influence of normal cohorts (NCs) on automated brain atrophy estimation, typically comparing individual scans to NCs, remains largely unexplored. Our study establishes the minimum number of NC-subjects needed and demonstrates minimal impact of different NCs on regional atrophy estimation. KEY POINTS • Software-based brain atrophy estimation often relies on normal cohorts for comparisons. • At least 15 subjects must be included in an age- and sex-specific normal cohort. • Using different normal cohorts does not influence regional atrophy estimation.
Collapse
Affiliation(s)
- Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.
| | - Luisa Wolf
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marius Vach
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vivien L Ivan
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis M Hedderich
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Christian Gaser
- Department of Psychiatry and Psychotherapy, Jena University Hospital, D-07745, Jena, Germany
- Department of Neurology, Jena University Hospital, D-07745, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Robert Dahnke
- Department of Psychiatry and Psychotherapy, Jena University Hospital, D-07745, Jena, Germany
- Department of Neurology, Jena University Hospital, D-07745, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
- Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
7
|
Klugah-Brown B, Bore MC, Liu X, Gan X, Biswal BB, Kendrick KM, Chang DHF, Zhou B, Becker B. The neurostructural consequences of glaucoma and their overlap with disorders exhibiting emotional dysregulations: A voxel-based meta-analysis and tripartite system model. J Affect Disord 2024; 358:487-499. [PMID: 38705527 DOI: 10.1016/j.jad.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disorder leading to irreversible blindness, is associated with heightened rates of generalized anxiety and depression. This study aims to comprehensively investigate brain morphological changes in glaucoma patients, extending beyond visual processing areas, and explores overlaps with morphological alterations observed in anxiety and depression. METHODS A comparative meta-analysis was conducted, using case-control studies of brain structural integrity in glaucoma patients. We aimed to identify regions with gray matter volume (GMV) changes, examine their role within distinct large-scale networks, and assess overlap with alterations in generalized anxiety disorder (GAD) and major depressive disorder (MDD). RESULTS Glaucoma patients exhibited significant GMV reductions in visual processing regions (lingual gyrus, thalamus). Notably, volumetric reductions extended beyond visual systems, encompassing the left putamen and insula. Behavioral and functional network decoding revealed distinct large-scale networks, implicating visual, motivational, and affective domains. The insular region, linked to pain and affective processes, displayed reductions overlapping with alterations observed in GAD. LIMITATIONS While the study identified significant morphological alterations, the number of studies from both the glaucoma and GAD cohorts remains limited due to the lack of independent studies meeting our inclusion criteria. CONCLUSION The study proposes a tripartite brain model for glaucoma, with visual processing changes related to the lingual gyrus and additional alterations in the putamen and insular regions tied to emotional or motivational functions. These neuroanatomical changes extend beyond the visual system, implying broader implications for brain structure and potential pathological developments, providing insights into the overall neurological consequences of glaucoma.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mercy C Bore
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiqin Liu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bharat B Biswal
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, USA
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dorita H F Chang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China; Department of Psychology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
8
|
Ghafari T, Mazzetti C, Garner K, Gutteling T, Jensen O. Modulation of alpha oscillations by attention is predicted by hemispheric asymmetry of subcortical regions. eLife 2024; 12:RP91650. [PMID: 39017666 PMCID: PMC11254381 DOI: 10.7554/elife.91650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Evidence suggests that subcortical structures play a role in high-level cognitive functions such as the allocation of spatial attention. While there is abundant evidence in humans for posterior alpha band oscillations being modulated by spatial attention, little is known about how subcortical regions contribute to these oscillatory modulations, particularly under varying conditions of cognitive challenge. In this study, we combined MEG and structural MRI data to investigate the role of subcortical structures in controlling the allocation of attentional resources by employing a cued spatial attention paradigm with varying levels of perceptual load. We asked whether hemispheric lateralization of volumetric measures of the thalamus and basal ganglia predicted the hemispheric modulation of alpha-band power. Lateral asymmetry of the globus pallidus, caudate nucleus, and thalamus predicted attention-related modulations of posterior alpha oscillations. When the perceptual load was applied to the target and the distractor was salient caudate nucleus asymmetry predicted alpha-band modulations. Globus pallidus was predictive of alpha-band modulations when either the target had a high load, or the distractor was salient, but not both. Finally, the asymmetry of the thalamus predicted alpha band modulation when neither component of the task was perceptually demanding. In addition to delivering new insight into the subcortical circuity controlling alpha oscillations with spatial attention, our finding might also have clinical applications. We provide a framework that could be followed for detecting how structural changes in subcortical regions that are associated with neurological disorders can be reflected in the modulation of oscillatory brain activity.
Collapse
Affiliation(s)
- Tara Ghafari
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Cecilia Mazzetti
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Kelly Garner
- School of Psychology, University of New South WalesKensingtonAustralia
| | - Tjerk Gutteling
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- CERMEP-Imagerie du Vivant, MEG DepartmentLyonFrance
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| |
Collapse
|
9
|
Ocklenburg S, Mundorf A, Gerrits R, Karlsson EM, Papadatou-Pastou M, Vingerhoets G. Clinical implications of brain asymmetries. Nat Rev Neurol 2024; 20:383-394. [PMID: 38783057 DOI: 10.1038/s41582-024-00974-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
No two human brains are alike, and with the rise of precision medicine in neurology, we are seeing an increased emphasis on understanding the individual variability in brain structure and function that renders every brain unique. Functional and structural brain asymmetries are a fundamental principle of brain organization, and recent research suggests substantial individual variability in these asymmetries that needs to be considered in clinical practice. In this Review, we provide an overview of brain asymmetries, variations in such asymmetries and their relevance in the clinical context. We review recent findings on brain asymmetries in neuropsychiatric and neurodevelopmental disorders, as well as in specific learning disabilities, with an emphasis on large-scale database studies and meta-analyses. We also highlight the relevance of asymmetries for disease symptom onset in neurodegenerative diseases and their implications for lateralized treatments, including brain stimulation. We conclude that alterations in brain asymmetry are not sufficiently specific to act as diagnostic biomarkers but can serve as meaningful symptom or treatment response biomarkers in certain contexts. On the basis of these insights, we provide several recommendations for neurological clinical practice.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany.
- ICAN Institute for Cognitive and Affective Neuroscience, MSH Medical School Hamburg, Hamburg, Germany.
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany.
| | - Annakarina Mundorf
- ISM Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
- Division of Cognitive Neuroscience, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robin Gerrits
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Emma M Karlsson
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Marietta Papadatou-Pastou
- National and Kapodistrian University of Athens, Athens, Greece
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Guy Vingerhoets
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
- Ghent Institute for Functional and Metabolic Imaging (GIfMI), Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Weiss J, Beydoun MA, Beydoun HA, Georgescu MF, Hu YH, Noren Hooten N, Banerjee S, Launer LJ, Evans MK, Zonderman AB. Pathways explaining racial/ethnic and socio-economic disparities in brain white matter integrity outcomes in the UK Biobank study. SSM Popul Health 2024; 26:101655. [PMID: 38562403 PMCID: PMC10982559 DOI: 10.1016/j.ssmph.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Pathways explaining racial/ethnic and socio-economic status (SES) disparities in white matter integrity (WMI) reflecting brain health, remain underexplored, particularly in the UK population. We examined racial/ethnic and SES disparities in diffusion tensor brain magnetic resonance imaging (dMRI) markers, namely global and tract-specific mean fractional anisotropy (FA), and tested total, direct and indirect effects through lifestyle, health-related and cognition factors using a structural equations modeling approach among 36,184 UK Biobank participants aged 40-70 y at baseline assessment (47% men). Multiple linear regression models were conducted, testing independent associations of race/ethnicity, socio-economic and other downstream factors in relation to global mean FA, while stratifying by Alzheimer's Disease polygenic Risk Score (AD PRS) tertiles. Race (Non-White vs. White) and lower SES predicted poorer WMI (i.e. lower global mean FA) at follow-up, with racial/ethnic disparities in FAmean involving multiple pathways and SES playing a central role in those pathways. Mediational patterns differed across tract-specific FA outcomes, with SES-FAmean total effect being partially mediated (41% of total effect = indirect effect). Furthermore, the association of poor cognition with FAmean was markedly stronger in the two uppermost AD PRS tertiles compared to the lower tertile (T2 and T3: β±SE: -0.0009 ± 0.0001 vs. T1: β±SE: -0.0005 ± 0.0001, P < 0.001), independently of potentially confounding factors. Race and lower SES were generally important determinants of adverse WMI outcomes, with partial mediation of socio-economic disparities in global mean FA through lifestyle, health-related and cognition factors. The association of poor cognition with lower global mean FA was stronger at higher AD polygenic risk.
Collapse
Affiliation(s)
- Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, USA
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Hind A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Sri Banerjee
- Public Health Doctoral Programs, Walden University, Minneapolis, MN, USA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| |
Collapse
|
11
|
Wu Y, Gao M, Lv L, Yan Y, Gao L, Geng Z, Zhou S, Zhu W, Yu Y, Tian Y, Ji G, Hu P, Wu X, Wang K. Brain functional specialization and cooperation in Alzheimer's disease. Brain Behav 2024; 14:e3550. [PMID: 38841739 PMCID: PMC11154812 DOI: 10.1002/brb3.3550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Cerebral specialization and interhemispheric cooperation are two vital features of the human brain. Their dysfunction may be associated with disease progression in patients with Alzheimer's disease (AD), which is featured as progressive cognitive degeneration and asymmetric neuropathology. OBJECTIVE This study aimed to examine and define two inherent properties of hemispheric function in patients with AD by utilizing resting-state functional magnetic resonance imaging (rs-fMRI). METHODS Sixty-four clinically diagnosed AD patients and 52 age- and sex-matched cognitively normal subjects were recruited and underwent MRI and clinical evaluation. We calculated and compared brain specialization (autonomy index, AI) and interhemispheric cooperation (connectivity between functionally homotopic voxels, CFH). RESULTS In comparison to healthy controls, patients with AD exhibited enhanced AI in the left middle occipital gyrus. This increase in specialization can be attributed to reduced functional connectivity in the contralateral region, such as the right temporal lobe. The CFH of the bilateral precuneus and prefrontal areas was significantly decreased in AD patients compared to controls. Imaging-cognitive correlation analysis indicated that the CFH of the right prefrontal cortex was marginally positively related to the Montreal Cognitive Assessment score in patients and the Auditory Verbal Learning Test score. Moreover, taking abnormal AI and CFH values as features, support vector machine-based classification achieved good accuracy, sensitivity, specificity, and area under the curve by leave-one-out cross-validation. CONCLUSION This study suggests that individuals with AD have abnormal cerebral specialization and interhemispheric cooperation. This provides new insights for further elucidation of the pathological mechanisms of AD.
Collapse
Affiliation(s)
- Yue Wu
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Department of Psychology and Sleep Medicinethe Second Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Manman Gao
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Lingling Lv
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Yibing Yan
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Liying Gao
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Zhi Geng
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Shanshan Zhou
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiAnhui ProvinceChina
| | - Wanqiu Zhu
- Department of Radiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Yongqiang Yu
- Department of Radiologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
| | - Yanghua Tian
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiAnhui ProvinceChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiAnhui ProvinceChina
- The School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Gong‐Jun Ji
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiAnhui ProvinceChina
- The School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
| | - Panpan Hu
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiAnhui ProvinceChina
| | - Xingqi Wu
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
| | - Kai Wang
- Department of Neurologythe First Affiliated Hospital of Anhui Medical UniversityHefeiAnhui ProvinceChina
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric DisordersHefeiAnhui ProvinceChina
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental HealthHefeiAnhui ProvinceChina
- Institute of Artificial IntelligenceHefei Comprehensive National Science CenterHefeiAnhui ProvinceChina
- The School of Mental Health and Psychological SciencesAnhui Medical UniversityHefeiAnhui ProvinceChina
| |
Collapse
|
12
|
Yang L, Wang S, Chen Y, Liang Y, Chen T, Wang Y, Fu X, Wang S. Effects of Age on the Auditory Cortex During Speech Perception in Noise: Evidence From Functional Near-Infrared Spectroscopy. Ear Hear 2024; 45:742-752. [PMID: 38268081 PMCID: PMC11008455 DOI: 10.1097/aud.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Wang Y, Yang Y, Xu W, Yao X, Xie X, Zhang L, Sun J, Wang L, Hua Q, He K, Tian Y, Wang K, Ji GJ. Heterogeneous Brain Abnormalities in Schizophrenia Converge on a Common Network Associated With Symptom Remission. Schizophr Bull 2024; 50:545-556. [PMID: 38253437 PMCID: PMC11059819 DOI: 10.1093/schbul/sbae003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND AND HYPOTHESIS There is a huge heterogeneity of magnetic resonance imaging findings in schizophrenia studies. Here, we hypothesized that brain regions identified by structural and functional imaging studies of schizophrenia could be reconciled in a common network. STUDY DESIGN We systematically reviewed the case-control studies that estimated the brain morphology or resting-state local function for schizophrenia patients in the literature. Using the healthy human connectome (n = 652) and a validated technique "coordinate network mapping" to identify a common brain network affected in schizophrenia. Then, the specificity of this schizophrenia network was examined by independent data collected from 13 meta-analyses. The clinical relevance of this schizophrenia network was tested on independent data of medication, neuromodulation, and brain lesions. STUDY RESULTS We identified 83 morphological and 60 functional studies comprising 7389 patients with schizophrenia and 7408 control subjects. The "coordinate network mapping" showed that the atrophy and dysfunction coordinates were functionally connected to a common network although they were spatially distant from each other. Taking all 143 studies together, we identified the schizophrenia network with hub regions in the bilateral anterior cingulate cortex, insula, temporal lobe, and subcortical structures. Based on independent data from 13 meta-analyses, we showed that these hub regions were specifically connected with regions of cortical thickness changes in schizophrenia. More importantly, this schizophrenia network was remarkably aligned with regions involving psychotic symptom remission. CONCLUSIONS Neuroimaging abnormalities in cross-sectional schizophrenia studies converged into a common brain network that provided testable targets for developing precise therapies.
Collapse
Affiliation(s)
- Yingru Wang
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yinian Yang
- Department of Clinical Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenqiang Xu
- Department of Clinical Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaoqing Yao
- Department of Clinical Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Xiaohui Xie
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Long Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Qiang Hua
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Kongliang He
- Department of Psychiatry, Fourth People’s Hospital of Hefei, Anhui Mental Health Center, Hefei, China
| | - Yanghua Tian
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders,Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| | - Gong-Jun Ji
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- Department of Clinical Psychiatry, School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders,Hefei, China
- Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China
- Anhui Institute of Translational Medicine, Hefei, China
| |
Collapse
|
14
|
Robinson B, Bhamidi S, Dayan E. The spatial distribution of coupling between tau and neurodegeneration in amyloid-β positive mild cognitive impairment. Neurobiol Aging 2024; 136:70-77. [PMID: 38330641 PMCID: PMC10940182 DOI: 10.1016/j.neurobiolaging.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Synergies between amyloid-β (Aβ), tau, and neurodegeneration persist along the Alzheimer's disease (AD) continuum. This study aimed to evaluate the extent of spatial coupling between tau and neurodegeneration (atrophy) and its relation to Aβ positivity in mild cognitive impairment (MCI). Data from 409 participants were included (95 cognitively normal controls, 158 Aβ positive (Aβ+) MCI, and 156 Aβ negative (Aβ-) MCI). Florbetapir PET, Flortaucipir PET, and structural MRI were used as biomarkers for Aβ, tau and atrophy, respectively. Individual correlation matrices for tau load and atrophy were used to layer a multilayer network, with separate layers for tau and atrophy. A measure of coupling between corresponding regions of interest (ROIs) in the tau and atrophy layers was computed, as a function of Aβ positivity. Fewer than 25% of the ROIs across the brain showed heightened coupling between tau and atrophy in Aβ+ , relative to Aβ- MCI. Coupling strengths in the right rostral middle frontal and right paracentral gyri, in particular, mediated the association between Aβ burden and cognition in this sample.
Collapse
Affiliation(s)
- Belfin Robinson
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Shankar Bhamidi
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Eran Dayan
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA; Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Tang X, Guo Z, Chen G, Sun S, Xiao S, Chen P, Tang G, Huang L, Wang Y. A Multimodal Meta-Analytical Evidence of Functional and Structural Brain Abnormalities Across Alzheimer's Disease Spectrum. Ageing Res Rev 2024; 95:102240. [PMID: 38395200 DOI: 10.1016/j.arr.2024.102240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Numerous neuroimaging studies have reported that Alzheimer's disease (AD) spectrum have been linked to alterations in intrinsic functional activity and cortical thickness (CT) of some brain areas. However, the findings have been inconsistent and the correlation with the transcriptional profile and neurotransmitter systems remain largely unknown. METHODS We conducted a meta-analysis to identify multimodal differences in the amplitude of low-frequency fluctuation (ALFF)/fractional ALFF (fALFF) and CT in patients with AD and preclinical AD compared to healthy controls (HCs), using the Seed-based d Mapping with Permutation of Subject Images software. Transcriptional data were retrieved from the Allen Human Brain Atlas. The atlas-based nuclear imaging-derived neurotransmitter maps were investigated by JuSpace toolbox. RESULTS We included 26 ALFF/fALFF studies comprising 884 patients with AD and 1,020 controls, along with 52 studies comprising 2,046 patients with preclinical AD and 2,336 controls. For CT, we included 11 studies comprising 353 patients with AD and 330 controls. Overall, compared to HCs, patients with AD showed decreased ALFF/fALFF in the bilateral posterior cingulate gyrus (PCC)/precuneus and right angular gyrus, as well as increased ALFF/fALFF in the bilateral parahippocampal gyrus (PHG). Patients with peclinical AD showed decreased ALFF/fALFF in the left precuneus. Additionally, patients with AD displayed decreased CT in the bilateral PHG, left PCC, bilateral orbitofrontal cortex, sensorimotor areas and temporal lobe. Furthermore, gene sets related to brain structural and functional changes in AD and preclincal AD were enriched for G protein-coupled receptor signaling pathway, ion gated channel activity, and components of biological membrane. Functional and structural alterations in AD and preclinical AD were spatially associated with dopaminergic, serotonergic, and GABAergic neurotransmitter systems. CONCLUSIONS The multimodal meta-analysis demonstrated that patients with AD exhibited convergent functional and structural alterations in the PCC/precuneus and PHG, as well as cortical thinning in the primary sensory and motor areas. Furthermore, patients with preclinical AD showed reduced functional activity in the precuneus. AD and preclinical AD showed genetic modulations/neurotransmitter deficits of brain functional and structural impairments. These findings may provide new insights into the pathophysiology of the AD spectrum.
Collapse
Affiliation(s)
- Xinyue Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zixuan Guo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shilin Sun
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China.
| |
Collapse
|
16
|
Lv Y, Yan S, Deng K, Chen Z, Yang Z, Li F, Luo Q. Unlocking the Molecular Variations of a Micron-Scale Amyloid Plaque in an Early Stage Alzheimer's Disease by a Cellular-Resolution Mass Spectrometry Imaging Platform. ACS Chem Neurosci 2024; 15:337-345. [PMID: 38166448 DOI: 10.1021/acschemneuro.3c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024] Open
Abstract
Uncovering the molecular changes at the site where Aβ is deposited plays a critical role in advancing the diagnosis and treatment of Alzheimer's disease. However, there is currently a lack of a suitable label-free imaging method with a high spatial resolution for brain tissue analysis. In this study, we propose a modified desorption electrospray ionization (DESI) mass spectrometry imaging (MSI) method, called segmented temperature-controlled DESI (STC-DESI), to achieve high-resolution and high-sensitivity spatial metabolomics observation by precisely controlling desorption and ionization temperatures. By concentrating the spray plume and accelerating solvent evaporation at different temperatures, we achieved an impressive spatial resolution of 20 μm that enables direct observation of the heterogeneity around a single cell or an individual Aβ plaque and an exciting sensitivity that allows a variety of low-abundance metabolites and less ionizable neutral lipids to be detected. We applied this STC-DESI method to analyze the brains of transgenic AD mice and identified molecular changes associated with individual Aβ aggregates. More importantly, our study provides the first evidence that carnosine is significantly depleted and 5-caffeoylquinic acid (5-CQA) levels rise sharply around Aβ deposits. These observations highlight the potential of carnosine as a sensitive molecular probe for clinical magnetic resonance imaging diagnosis and the potential of 5-CQA as an efficient therapeutic strategy for Aβ clearance in the early AD stage. Overall, our findings demonstrate the effectiveness of our STC-DESI method and shed light on the potential roles of these molecules in AD pathology, specifically in cellular endocytosis, gray matter network disruption, and paravascular Aβ clearance.
Collapse
Affiliation(s)
- Yueguang Lv
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Shuxiong Yan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ka Deng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyu Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyi Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Fang Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Qian Luo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| |
Collapse
|
17
|
Liang L, Wang LL, Jiang XD, Chen DJ, Huang TA, Ding WB. Hippocampal volume and resting-state functional connectivity on magnetic resonance imaging in patients with Parkinson and depression. Quant Imaging Med Surg 2024; 14:824-836. [PMID: 38223081 PMCID: PMC10784022 DOI: 10.21037/qims-23-919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/07/2023] [Indexed: 01/16/2024]
Abstract
Background Recent structural and functional imaging studies of depression in Parkinson disease (DPD) have failed to reveal the relevant mechanism, and relatively few studies have been conducted on limbic systems such as the hippocampus. This study thus aimed to gain new insights into the pathogenesis of DPD by detecting the changes in the hippocampal structure and the resting-state functional connectivity (FC) of patients with DPD. Methods This study included 30 patients with DPD (DPD group), 30 patients with nondepressed Parkinson disease (NDPD; NDPD group), and 30 normal controls (NCs; NC group) with no significant age or gender differences with the DPD group. The Hamilton Depression Rating Scale (HAMD) and three-dimensional T1-weighted imaging and blood oxygen level-dependent imaging data of all patients were collected. The hippocampal volumes were measured using MATLAB software (MathWorks). The correlation between hippocampal volume and the HAMD score in the DPD group was analyzed with Pearson correlation coefficient. The bilateral hippocampi were used as the regions of interest and as the seed points for FC. FC analysis was performed between the preprocessed functional data of the whole brain and the two seed points with Data Processing Assistant for Resting-State and Statistical Parametric Mapping 8 software, respectively. The correlation between FC and HAMD scores in the patients with DPD was determined using partial correlation analysis. Results Compared with those in the NC group and the NDPD group, the bilateral hippocampal volumes in the DPD group were significantly decreased (P<0.05). There was a negative correlation between the bilateral hippocampal volume and the HAMD score in the DPD group (P<0.05). Compared with that of the NDPD group, the FC of the right hippocampus with the right occipital lobe and left precuneus was reduced in the DPD group. In the DPD group, the FC values of the right hippocampus, right occipital lobe, and left anterior cuneiform lobe were negatively correlated with HAMD scores. Conclusions The volume of bilateral hippocampi in patients with DPD is significantly decreased and negatively correlated with the severity of depressive disorder. The weakened FC of the right hippocampus to the right occipital lobe and the left precuneus may play an important role in the neurological basis of DPD.
Collapse
Affiliation(s)
- Li Liang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Ling-Ling Wang
- Clinical Laboratory, Nantong First People’s Hospital, Nantong, China
- Department of Medical Immunology, Nantong University, Nantong, China
| | - Xiao-Dong Jiang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Dong-Jian Chen
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Tian-An Huang
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| | - Wen-Bin Ding
- Department of Intervention, Nantong First People’s Hospital, Nantong, China
| |
Collapse
|
18
|
Angenstein N. Asymmetries and hemispheric interaction in the auditory system of elderly people. FRONTIERS IN NEUROIMAGING 2024; 2:1320989. [PMID: 38235106 PMCID: PMC10791916 DOI: 10.3389/fnimg.2023.1320989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024]
Abstract
Age-related changes of asymmetries in the auditory system and decreasing efficiency of hemispheric interaction have been discussed for some time. This mini-review discusses recent neuroimaging studies on alterations in lateralization of cortical processing and structural changes concerning the division of labor and interaction between hemispheres during auditory processing in elderly people with the focus on people without severe hearing loss. Several changes of asymmetries in anatomy, function and neurotransmitter concentration were observed in auditory cortical areas of older compared to younger adults. It was shown that connections between left and right auditory cortex are reduced during aging. Functionally, aging seems to lead to a reduction in asymmetry of auditory processing. However, the results do not always point into the same direction. Furthermore, correlations between function, anatomy and behavior in the left and right hemisphere appear to differ between younger and older adults. The changes in auditory cortex asymmetries with aging might be due to compensation of declining processing capacities, but at the same time these mechanisms could impair the balanced division of labor between the two hemispheres that is required for the processing of complex auditory stimuli such as speech. Neuroimaging studies are essential to follow the slow changes with aging as in the beginning no behavioral effects might be visible due to compensation. Future studies should control well for peripheral hearing loss and cognitive decline. Furthermore, for the interpretability of results it is necessary to use specific tasks with well-controlled task difficulty.
Collapse
Affiliation(s)
- Nicole Angenstein
- Combinatorial NeuroImaging Core Facility, Leibniz Institute for Neurobiology, Magdeburg, Germany
| |
Collapse
|
19
|
Tian Y, Oh JH, Rhee HY, Park S, Ryu CW, Cho AR, Jahng GH. Gray-white matter boundary Z-score and volume as imaging biomarkers of Alzheimer's disease. Front Aging Neurosci 2023; 15:1291376. [PMID: 38161586 PMCID: PMC10755914 DOI: 10.3389/fnagi.2023.1291376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Alzheimer's disease (AD) presents typically gray matter atrophy and white matter abnormalities in neuroimaging, suggesting that the gray-white matter boundary could be altered in individuals with AD. The purpose of this study was to explore differences of gray-white matter boundary Z-score (gwBZ) and its tissue volume (gwBTV) between patients with AD, amnestic mild cognitive impairment (MCI), and cognitively normal (CN) elderly participants. Methods Three-dimensional T1-weight images of a total of 227 participants were prospectively obtained from our institute from 2006 to 2022 to map gwBZ and gwBTV on images. Statistical analyses of gwBZ and gwBTV were performed to compare the three groups (AD, MCI, CN), to assess their correlations with age and Korean version of the Mini-Mental State Examination (K-MMSE), and to evaluate their effects on AD classification in the hippocampus. Results This study included 62 CN participants (71.8 ± 4.8 years, 20 males, 42 females), 72 MCI participants (72.6 ± 5.1 years, 23 males, 49 females), and 93 AD participants (73.6 ± 7.7 years, 22 males, 71 females). The AD group had lower gwBZ and gwBTV than CN and MCI groups. K-MMSE showed positive correlations with gwBZ and gwBTV whereas age showed negative correlations with gwBZ and gwBTV. The combination of gwBZ or gwBTV with K-MMSE had a high accuracy in classifying AD from CN in the hippocampus with an area under curve (AUC) value of 0.972 for both. Conclusion gwBZ and gwBTV were reduced in AD. They were correlated with cognitive function and age. Moreover, gwBZ or gwBTV combined with K-MMSE had a high accuracy in differentiating AD from CN in the hippocampus. These findings suggest that evaluating gwBZ and gwBTV in AD brain could be a useful tool for monitoring AD progression and diagnosis.
Collapse
Affiliation(s)
- Yunan Tian
- Department of Medicine, Graduate School, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Jang-Hoon Oh
- Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Hak Young Rhee
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Soonchan Park
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Chang-Woo Ryu
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Ah Rang Cho
- Department of Psychiatry, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| | - Geon-Ho Jahng
- Department of Radiology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
20
|
Gaudio S, Rukh G, Di Ciommo V, Berkins S, Wiemerslage L, Schiöth HB. Higher fresh fruit intake relates to larger grey matter volumes in areas involved in dementia and depression: A UK Biobank study. Neuroimage 2023; 283:120438. [PMID: 37918179 DOI: 10.1016/j.neuroimage.2023.120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The benefits of consuming fruits and vegetables are widely accepted. While previous studies suggest a protective role of fruits and vegetables against a variety of diseases such as dementia and depression, the biological mechanisms/effects remain unclear. Here we investigated the effect of fruit and vegetable consumption on brain structure. Particularly on grey matter (GM) and white matter (WM) volumes, regional GM volumes and subcortical volumes. Cross-sectional imaging data from UK Biobank cohort was used. A total of 9925 participants (Mean age 62.4 ± 7.5 years, 51.1 % men) were included in the present analysis. Measures included fruit and vegetable intake, other dietary patterns and a number of selected lifestyle factors and clinical data. Brain volumes were derived from structural brain magnetic resonance imaging. General linear model was used to study the associations between brain volumes and fruit/vegetable intakes. After adjusting for selected confounding factors, salad/raw vegetable intake showed a positive association with total white matter volume, fresh fruit intake showed a negative association with total grey matter (GM) volume. Regional GM analyses showed that higher fresh fruit intake was associated with larger GM volume in the left hippocampus, right temporal occipital fusiform cortex, left postcentral gyrus, right precentral gyrus, and right juxtapositional lobule cortex. We conclude that fruit and vegetable consumption seems to specifically modulate brain volumes. In particular, fresh fruit intake may have a protective role in specific cortical areas such as the hippocampus, areas robustly involved in the pathophysiology of dementia and depression.
Collapse
Affiliation(s)
- Santino Gaudio
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden.
| | - Gull Rukh
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Vincenzo Di Ciommo
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Samuel Berkins
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Lyle Wiemerslage
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Neuroscience, Functional Pharmacology, Uppsala University, BMC, Box 593, 751 24, Uppsala, Sweden; Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
21
|
Zhang X, Tremblay P. Aging of Amateur Singers and Non-singers: From Behavior to Resting-state Connectivity. J Cogn Neurosci 2023; 35:2049-2066. [PMID: 37788320 DOI: 10.1162/jocn_a_02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Healthy aging is associated with extensive changes in brain structure and physiology, with impacts on cognition and communication. The "mental exercise hypothesis" proposes that certain lifestyle factors such as singing-perhaps the most universal and accessible music-making activity-can affect cognitive functioning and reduce cognitive decline in aging, but the neuroplastic mechanisms involved remain unclear. To address this question, we examined the association between age and resting-state functional connectivity (RSFC) in 84 healthy singers and nonsingers in five networks (auditory, speech, language, default mode, and dorsal attention) and its relationship to auditory cognitive aging. Participants underwent cognitive testing and fMRI. Our results show that RSFC is not systematically lower with aging and that connectivity patterns vary between singers and nonsingers. Furthermore, our results show that RSFC of the precuneus in the default mode network was associated with auditory cognition. In these regions, lower RSFC was associated with better auditory cognitive performance for both singers and nonsingers. Our results show, for the first time, that basic brain physiology differs in singers and nonsingers and that some of these differences are associated with cognitive performance.
Collapse
Affiliation(s)
- Xiyue Zhang
- Université Laval, Québec City, Canada
- CERVO Brain Research Center, Quebec City, Canada
| | - Pascale Tremblay
- Université Laval, Québec City, Canada
- CERVO Brain Research Center, Quebec City, Canada
| |
Collapse
|
22
|
Belasso CJ, Cai Z, Bezgin G, Pascoal T, Stevenson J, Rahmouni N, Tissot C, Lussier F, Rosa-Neto P, Soucy JP, Rivaz H, Benali H. Bayesian workflow for the investigation of hierarchical classification models from tau-PET and structural MRI data across the Alzheimer's disease spectrum. Front Aging Neurosci 2023; 15:1225816. [PMID: 37920382 PMCID: PMC10619155 DOI: 10.3389/fnagi.2023.1225816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
Background Alzheimer's disease (AD) diagnosis in its early stages remains difficult with current diagnostic approaches. Though tau neurofibrillary tangles (NFTs) generally follow the stereotypical pattern described by the Braak staging scheme, the network degeneration hypothesis (NDH) has suggested that NFTs spread selectively along functional networks of the brain. To evaluate this, we implemented a Bayesian workflow to develop hierarchical multinomial logistic regression models with increasing levels of complexity of the brain from tau-PET and structural MRI data to investigate whether it is beneficial to incorporate network-level information into an ROI-based predictive model for the presence/absence of AD. Methods This study included data from the Translational Biomarkers in Aging and Dementia (TRIAD) longitudinal cohort from McGill University's Research Centre for Studies in Aging (MCSA). Baseline and 1 year follow-up structural MRI and [18F]MK-6240 tau-PET scans were acquired for 72 cognitive normal (CN), 23 mild cognitive impairment (MCI), and 18 Alzheimer's disease dementia subjects. We constructed the four following hierarchical Bayesian models in order of increasing complexity: (Model 1) a complete-pooling model with observations, (Model 2) a partial-pooling model with observations clustered within ROIs, (Model 3) a partial-pooling model with observations clustered within functional networks, and (Model 4) a partial-pooling model with observations clustered within ROIs that are also clustered within functional brain networks. We then investigated which of the models had better predictive performance given tau-PET or structural MRI data as an input, in the form of a relative annualized rate of change. Results The Bayesian leave-one-out cross-validation (LOO-CV) estimate of the expected log pointwise predictive density (ELPD) results indicated that models 3 and 4 were substantially better than other models for both tau-PET and structural MRI inputs. For tau-PET data, model 3 was slightly better than 4 with an absolute difference in ELPD of 3.10 ± 1.30. For structural MRI data, model 4 was considerably better than other models with an absolute difference in ELPD of 29.83 ± 7.55 relative to model 3, the second-best model. Conclusion Our results suggest that representing the data generating process in terms of a hierarchical model that encompasses both ROI-level and network-level heterogeneity leads to better predictive ability for both tau-PET and structural MRI inputs over all other model iterations.
Collapse
Affiliation(s)
- Clyde J. Belasso
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montréal, QC, Canada
| | - Zhengchen Cai
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Gleb Bezgin
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Tharick Pascoal
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Jenna Stevenson
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Nesrine Rahmouni
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Cécile Tissot
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Firoza Lussier
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, and Departments of Neurology, Neurosurgery, Psychiatry, Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Jean-Paul Soucy
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, QC, Canada
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montréal, QC, Canada
| | - Habib Benali
- Department of Electrical and Computer Engineering, Concordia University, Montréal, QC, Canada
- PERFORM Centre, Concordia University, Montréal, QC, Canada
| |
Collapse
|
23
|
Yamaguchi S, Murakami T, Satoh M, Komiyama T, Ohi T, Miyoshi Y, Endo K, Hiratsuka T, Hara A, Tatsumi Y, Totsune T, Asayama K, Kikuya M, Nomura K, Hozawa A, Metoki H, Imai Y, Watanabe M, Ohkubo T, Hattori Y. Associations of Dental Health With the Progression of Hippocampal Atrophy in Community-Dwelling Individuals: The Ohasama Study. Neurology 2023; 101:e1056-e1068. [PMID: 37407259 PMCID: PMC10491442 DOI: 10.1212/wnl.0000000000207579] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/10/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Although tooth loss and periodontitis have been considered risk factors of Alzheimer disease, recent longitudinal researches have not found a significant association with hippocampal atrophy. Therefore, this study aimed to clarify a longitudinal association between the number of teeth present (NTP) and hippocampal atrophy dependent on the severity of periodontitis in a late middle-aged and older adult population. METHODS This study included community-dwelling individuals aged 55 years or older who had no cognitive decline and had undergone brain MRI and oral and systemic data collection twice at 4-year intervals. Hippocampal volumes were obtained from MRIs by automated region-of-interest analysis. The mean periodontal probing depth (PD) was used as a measure of periodontitis. Multiple regression analysis was performed with the annual symmetric percentage change (SPC) of the hippocampal volume as the dependent variable and including an interaction term between NTP and mean PD as the independent variable. The interaction details were examined using the Johnson-Neyman technique and simple slope analysis. The 3-way interaction of NTP, mean PD, and time on hippocampal volume was analyzed using a linear mixed-effects model, and the interaction of NTP and time was examined in subgroups divided by the median mean PD. In all models, dropout bias was adjusted by inverse probability weighting. RESULTS Data of 172 participants were analyzed. The qualitative interaction between NTP and the mean PD was significant for the annual SPC in the left hippocampus. The regression coefficient of the NTP on the annual SPC in the left hippocampus was positive (B = 0.038, p = 0.026) at the low-level mean PD (mean -1 SD) and negative (B = -0.054, p = 0.001) at the high-level mean PD (mean +1 SD). Similar results were obtained in the linear mixed-effects model; the interaction of NTP and time was significant in the higher mean PD group. DISCUSSION In a late middle-aged and older cohort, fewer teeth were associated with a faster rate of left hippocampal atrophy in patients with mild periodontitis, whereas having more teeth was associated with a faster rate of atrophy in those with severe periodontitis. The importance of keeping teeth healthy is suggested.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan.
| | - Takahisa Murakami
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Michihiro Satoh
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Takamasa Komiyama
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Takashi Ohi
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Yoshitada Miyoshi
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Kosei Endo
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Takako Hiratsuka
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Azusa Hara
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Yukako Tatsumi
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Tomoko Totsune
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Kei Asayama
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Masahiro Kikuya
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Kyoko Nomura
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Atsushi Hozawa
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Hirohito Metoki
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Yutaka Imai
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Makoto Watanabe
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Takayoshi Ohkubo
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| | - Yoshinori Hattori
- From the Division of Aging and Geriatric Dentistry (S.Y., T.M., T.K., T. Ohi, Y.M., K.E., T.H., Y.H.), Department of Rehabilitation Dentistry, Tohoku University Graduate School of Dentistry; Division of Public Health, Hygiene and Epidemiology (T.M., M.S., H.M.), Faculty of Medicine, Tohoku Medical and Pharmaceutical University; Department of Preventive Medicine and Epidemiology (T.M., M.S., M.K., A. Hozawa, H.M.), Tohoku Medical Megabank Organization, Tohoku University, Sendai; Japanese Red Cross Ishinomaki Hospital (T. Ohi); Division of Drug Development and Regulatory Science (A. Hara), Faculty of Pharmacy, Keio University; Department of Hygiene and Public Health (Y.T., K.A., M.K., T. Ohkubo), Teikyo University School of Medicine, Tokyo; Department of Neurology (T.T.), National Hospital Organization Sendai Nishitaga Hospital; Department of Aging Research and Geriatric Medicine (T.T.), Institute of Development, Aging and Cancer, Tohoku University; Tohoku Institute for Management of Blood Pressure (K.A., H.M., Y.I., T. Ohkubo), Sendai, Miyagi; Department of Environmental Health Science and Public Health (K.N.), Akita University Graduate School of Medicine; and Research Institute of Living and Environmental Sciences (M.W.), Miyagi Gakuin Women's University, Sendai, Japan
| |
Collapse
|
24
|
Moisseinen N, Särkämö T, Kauramäki J, Kleber B, Sihvonen AJ, Martínez-Molina N. Differential effects of ageing on the neural processing of speech and singing production. Front Aging Neurosci 2023; 15:1236971. [PMID: 37731954 PMCID: PMC10507273 DOI: 10.3389/fnagi.2023.1236971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Background Understanding healthy brain ageing has become vital as populations are ageing rapidly and age-related brain diseases are becoming more common. In normal brain ageing, speech processing undergoes functional reorganisation involving reductions of hemispheric asymmetry and overactivation in the prefrontal regions. However, little is known about how these changes generalise to other vocal production, such as singing, and how they are affected by associated cognitive demands. Methods The present cross-sectional fMRI study systematically maps the neural correlates of vocal production across adulthood (N=100, age 21-88 years) using a balanced 2x3 design where tasks varied in modality (speech: proverbs / singing: song phrases) and cognitive demand (repetition / completion from memory / improvisation). Results In speech production, ageing was associated with decreased left pre- and postcentral activation across tasks and increased bilateral angular and right inferior temporal and fusiform activation in the improvisation task. In singing production, ageing was associated with increased activation in medial and bilateral prefrontal and parietal regions in the completion task, whereas other tasks showed no ageing effects. Direct comparisons between the modalities showed larger age-related activation changes in speech than singing across tasks, including a larger left-to-right shift in lateral prefrontal regions in the improvisation task. Conclusion The present results suggest that the brains' singing network undergoes differential functional reorganisation in normal ageing compared to the speech network, particularly during a task with high executive demand. These findings are relevant for understanding the effects of ageing on vocal production as well as how singing can support communication in healthy ageing and neurological rehabilitation.
Collapse
Affiliation(s)
- Nella Moisseinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Jaakko Kauramäki
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
| | - Boris Kleber
- Centre for Music in the Brain, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Aleksi J. Sihvonen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- School of Health and Rehabilitation Sciences, Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Noelia Martínez-Molina
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, Centre of Excellence in Music, Mind, Body and the Brain, University of Helsinki, Helsinki, Finland
- Department of Information and Communication Technologies, Centre for Brain and Cognition, University Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
25
|
Demirci N, Hoffman ME, Holland MA. Systematic cortical thickness and curvature patterns in primates. Neuroimage 2023; 278:120283. [PMID: 37516374 PMCID: PMC10443624 DOI: 10.1016/j.neuroimage.2023.120283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023] Open
Abstract
Humans are known to have significant and consistent differences in thickness throughout the cortex, with thick outer gyral folds and thin inner sulcal folds. Our previous work has suggested a mechanical basis for this thickness pattern, with the forces generated during cortical folding leading to thick gyri and thin sulci, and shown that cortical thickness varies along a gyral-sulcal spectrum in humans. While other primate species are expected to exhibit similar patterns of cortical thickness, it is currently unknown how these patterns scale across different sizes, forms, and foldedness. Among primates, brains vary enormously from roughly the size of a grape to the size of a grapefruit, and from nearly smooth to dramatically folded; of these, human brains are the largest and most folded. These variations in size and form make comparative neuroanatomy a rich resource for investigating common trends that transcend differences between species. In this study, we examine 12 primate species in order to cover a wide range of sizes and forms, and investigate the scaling of their cortical thickness relative to the surface geometry. The 12 species were selected due to the public availability of either reconstructed surfaces and/or population templates. After obtaining or reconstructing 3D surfaces from publicly available neuroimaging data, we used our surface-based computational pipeline (https://github.com/mholla/curveball) to analyze patterns of cortical thickness and folding with respect to size (total surface area), geometry (i.e. curvature, shape, and sulcal depth), and foldedness (gyrification). In all 12 species, we found consistent cortical thickness variations along a gyral-sulcal spectrum, with convex shapes thicker than concave shapes and saddle shapes in between. Furthermore, we saw an increasing thickness difference between gyri and sulci as brain size increases. Our results suggest a systematic folding mechanism relating local cortical thickness to geometry. Finally, all of our reconstructed surfaces and morphometry data are available for future research in comparative neuroanatomy.
Collapse
Affiliation(s)
- Nagehan Demirci
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mia E Hoffman
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maria A Holland
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
26
|
Karaca O, Tepe N, Ozcan E. Evaluation of volumetric asymmetry of the dorsolateral prefrontal cortex and medial temporal lobe in Alzheimer's disease using the atlas-based method. Neuroreport 2023; 34:592-597. [PMID: 37384935 DOI: 10.1097/wnr.0000000000001930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Brain areas affected during neurodegenerative disease progression are considered anatomically connected to the first affected areas. The dorsolateral prefrontal cortex (DLPFC) has connections with the medial temporal lobe (MTL), which includes regions that become atrophic in Alzheimer's disease. In this study, we aimed to investigate the degree of volumetric asymmetry of DLPFC and MTL structures. This is a cross-sectional volumetric study involving 25 Alzheimer's disease patients and 25 healthy adults who underwent MRI with a 3D turbo spin echo sequence at 1.5 Tesla. The atlas-based method incorporated MRIStudio software to automatically measure the volume of brain structures. We compared the asymmetry index and volumetric changes across study groups and correlated them with Mini-Mental State Examination scores. We observed significant volumetric rightward lateralization in the DLPFC and superior frontal gyrus in Alzheimer's disease patients compared to the healthy controls. There was a significant volume loss in the MTL structures of Alzheimer's disease patients. Atrophy of MTL structures was positively correlated with right DLPFC volume changes in Alzheimer's disease patients. Volumetric asymmetry of the DLPFC may be a characteristic for determining disease progression in Alzheimer's disease patients. Future studies are recommended to evaluate whether these volumetric asymmetrical changes are specific to Alzheimer's disease and whether asymmetry measurements can serve as diagnostic markers.
Collapse
Affiliation(s)
| | - Nermin Tepe
- Department of Neurology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | | |
Collapse
|
27
|
Kiely M, Triebswetter C, Gong Z, Laporte JP, Faulkner ME, Akhonda MABS, Alsameen MH, Spencer RG, Bouhrara M. Evidence of An Association Between Cerebral Blood Flow and Microstructural Integrity in Normative Aging Using a Holistic MRI Approach. J Magn Reson Imaging 2023; 58:284-293. [PMID: 36326302 PMCID: PMC10154435 DOI: 10.1002/jmri.28508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cerebral tissue integrity decline and cerebral blood flow (CBF) alteration are major aspects of motor and cognitive dysfunctions and neurodegeneration. However, little is known about the association between blood flow and brain microstructural integrity, especially in normal aging. PURPOSE To assess the association between CBF and cerebral microstructural integrity. STUDY TYPE Cross sectional. POPULATION A total of 94 cognitively unimpaired adults (mean age 50.7 years, age range between 22 and 88 years, 56 Men). FIELD STRENGTH/SEQUENCE A 3 T; pseudo-continuous arterial spin labeling (pCASL), diffusion tensor imaging (DTI), Bayesian Monte Carlo analysis of multicomponent driven equilibrium steady-state observation of T1 and T2 (BMC-mcDESPOT). ASSESSMENT Lobar associations between CBF derived from pCASL, and longitudinal relaxation rate (R1 ), transverse relaxation rate (R2 ) and myelin water fraction (MWF) derived from BMC-mcDESPOT, or radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD) and fractional anisotropy (FA) derived from DTI were assessed. STATISTICAL TESTS Multiple linear regression models were used using the mean region of interest (ROI) values for MWF, R1 , R2 , FA, MD, RD, or AxD as the dependent variable and CBF, age, age2 , and sex as the independent variables. A two-sided P value of <0.05 defined statistical significance. RESULTS R1 , R2 , MWF, FA, MD, RD, and AxD parameters were associated with CBF in most of the cerebral regions evaluated. Specifically, higher CBF values were significantly associated with higher FA, MWF, R1 and R2 , or lower MD, RD and AxD values. DATA CONCLUSION These findings suggest that cerebral tissue microstructure may be impacted by global brain perfusion, adding further evidence to the intimate relationship between cerebral blood supply and cerebral tissue integrity. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - John P. Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mary E. Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | - Maryam H. Alsameen
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Gutteridge DS, Segal A, McNeil JJ, Beilin L, Brodtmann A, Chowdhury EK, Egan GF, Ernst ME, Hussain SM, Reid CM, Robb CE, Ryan J, Woods RL, Keage HA, Jamadar S. The relationship between long-term blood pressure variability and cortical thickness in older adults. Neurobiol Aging 2023; 129:157-167. [PMID: 37331246 DOI: 10.1016/j.neurobiolaging.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/02/2023] [Accepted: 05/17/2023] [Indexed: 06/20/2023]
Abstract
High blood pressure variability (BPV) is a risk factor for cognitive decline and dementia, but its association with cortical thickness is not well understood. Here we use a topographical approach, to assess links between long-term BPV and cortical thickness in 478 (54% men at baseline) community dwelling older adults (70-88 years) from the ASPirin in Reducing Events in the Elderly NEURO sub-study. BPV was measured as average real variability, based on annual visits across three years. Higher diastolic BPV was significantly associated with reduced cortical thickness in multiple areas, including temporal (banks of the superior temporal sulcus), parietal (supramarginal gyrus, post-central gyrus), and posterior frontal areas (pre-central gyrus, caudal middle frontal gyrus), while controlling for mean BP. Higher diastolic BPV was associated with faster progression of cortical thinning across the three years. Diastolic BPV is an important predictor of cortical thickness, and trajectory of cortical thickness, independent of mean blood pressure. This finding suggests an important biological link in the relationship between BPV and cognitive decline in older age.
Collapse
Affiliation(s)
- D S Gutteridge
- Cognitive Ageing and Impairment Neuroscience Laboratory (CAIN), University of South Australia, Adelaide, South Australia, Australia.
| | - A Segal
- Turner Institute for Brain & Mental Health, Monash University, Melbourne, Victoria, Australia
| | - J J McNeil
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - L Beilin
- School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia
| | - A Brodtmann
- Cognitive Health Initiative, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - E K Chowdhury
- School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - G F Egan
- Turner Institute for Brain & Mental Health, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - M E Ernst
- Department of Family Medicine, Carver College of Medicine. The University of Iowa, Iowa City, IA, USA; Department of Pharmacy Practice and Science, College of Pharmacy, Carver College of Medicine. The University of Iowa, Iowa City, IA, USA
| | - S M Hussain
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia; Department of Medical Education, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - C M Reid
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia; School of Population Health, Curtin University, Perth, Western Australia, Australia
| | - C E Robb
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - J Ryan
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - R L Woods
- School of Public Health & Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - H A Keage
- Cognitive Ageing and Impairment Neuroscience Laboratory (CAIN), University of South Australia, Adelaide, South Australia, Australia
| | - S Jamadar
- Turner Institute for Brain & Mental Health, Monash University, Melbourne, Victoria, Australia; Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Pieruccini-Faria F, Hassan Haddad SM, Bray NW, Sarquis-Adamson Y, Bartha R, Montero-Odasso M. Brain Structural Correlates of Obstacle Negotiation in Mild Cognitive Impairment: Results from the Gait and Brain Study. Gerontology 2023; 69:1115-1127. [PMID: 37166343 DOI: 10.1159/000530796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
INTRODUCTION Mild cognitive impairment (MCI) affects obstacle negotiation capabilities, potentially increasing the risk of falls in older adults. However, it is unclear whether smaller brain volumes typically observed in older individuals with MCI are related to the observed hazardous obstacle negotiation in this population. METHODS A total of 93 participants (71.9 ± 5.36 years of age; MCI = 53/control = 40) from the Gait and Brain Study were analyzed. Gray matter (GM) volumes from the frontal, temporal, and parietal lobes were entered in the analysis. Gait performance was recorded using a 6-m electronic walkway during two cognitive load conditions while approaching and stepping over an obstacle: (1) single-task and (2) while counting backwards by 1s from 100 (dual-task). Anticipatory adjustments in gait performance to cross an "ad hoc" obstacle were electronically measured during pre-crossing phases: early (3 steps before the late phase) and late (3 steps before obstacle). Association between the percentage of change in average gait speed and step length from early to late (i.e., anticipatory adjustments) and GM volumes was investigated using multivariate models adjusted for potential confounders. RESULTS Anticipatory adjustments in gait speed (Wilks' lambda: 0.35; Eta2: 0.64; p = 0.01) and step length (Wilks' lambda: 0.33; Eta2: 0.66; p = 0.01) during dual-task conditions were globally associated with GM volumes in MCI. Individuals with MCI with smaller GM volumes in the left inferior frontal gyrus, left hippocampus, right hippocampus, and right entorhinal cortex made significantly fewer anticipatory gait adjustments prior to crossing the obstacle. CONCLUSION Frontotemporal atrophy may affect obstacle negotiation capabilities potentially increasing the risk of falls in MCI.
Collapse
Affiliation(s)
- Frederico Pieruccini-Faria
- Division of Geriatric Medicine, Department of Medicine, Western University, London, Ontario, Canada
- Gait and Brain Lab, Parkwood Institute and Lawson Health Research Institute, London, Ontario, Canada
| | | | - Nickolas W Bray
- Gait and Brain Lab, Parkwood Institute and Lawson Health Research Institute, London, Ontario, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yanina Sarquis-Adamson
- Gait and Brain Lab, Parkwood Institute and Lawson Health Research Institute, London, Ontario, Canada
| | - Robert Bartha
- Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Manuel Montero-Odasso
- Division of Geriatric Medicine, Department of Medicine, Western University, London, Ontario, Canada
- Gait and Brain Lab, Parkwood Institute and Lawson Health Research Institute, London, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
31
|
Wang D, Honnorat N, Fox PT, Ritter K, Eickhoff SB, Seshadri S, Habes M. Deep neural network heatmaps capture Alzheimer's disease patterns reported in a large meta-analysis of neuroimaging studies. Neuroimage 2023; 269:119929. [PMID: 36740029 PMCID: PMC11155416 DOI: 10.1016/j.neuroimage.2023.119929] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Deep neural networks currently provide the most advanced and accurate machine learning models to distinguish between structural MRI scans of subjects with Alzheimer's disease and healthy controls. Unfortunately, the subtle brain alterations captured by these models are difficult to interpret because of the complexity of these multi-layer and non-linear models. Several heatmap methods have been proposed to address this issue and analyze the imaging patterns extracted from the deep neural networks, but no quantitative comparison between these methods has been carried out so far. In this work, we explore these questions by deriving heatmaps from Convolutional Neural Networks (CNN) trained using T1 MRI scans of the ADNI data set and by comparing these heatmaps with brain maps corresponding to Support Vector Machine (SVM) activation patterns. Three prominent heatmap methods are studied: Layer-wise Relevance Propagation (LRP), Integrated Gradients (IG), and Guided Grad-CAM (GGC). Contrary to prior studies where the quality of heatmaps was visually or qualitatively assessed, we obtained precise quantitative measures by computing overlap with a ground-truth map from a large meta-analysis that combined 77 voxel-based morphometry (VBM) studies independently from ADNI. Our results indicate that all three heatmap methods were able to capture brain regions covering the meta-analysis map and achieved better results than SVM activation patterns. Among them, IG produced the heatmaps with the best overlap with the independent meta-analysis.
Collapse
Affiliation(s)
- Di Wang
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nicolas Honnorat
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter T Fox
- Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Kerstin Ritter
- Department of Psychiatry and Neurosciences, Charite - University of Medicine Berlin and Humboldt-University Berlin, Berlin, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Heinrich-Heine University Düsseldorf, Germany
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; Biomedical Image Analytics Division, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
32
|
Zhou Z, Li H, Srinivasan D, Abdulkadir A, Nasrallah IM, Wen J, Doshi J, Erus G, Mamourian E, Bryan NR, Wolk DA, Beason-Held L, Resnick SM, Satterthwaite TD, Davatzikos C, Shou H, Fan Y. Multiscale functional connectivity patterns of the aging brain learned from harmonized rsfMRI data of the multi-cohort iSTAGING study. Neuroimage 2023; 269:119911. [PMID: 36731813 PMCID: PMC9992322 DOI: 10.1016/j.neuroimage.2023.119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
To learn multiscale functional connectivity patterns of the aging brain, we built a brain age prediction model of functional connectivity measures at seven scales on a large fMRI dataset, consisting of resting-state fMRI scans of 4186 individuals with a wide age range (22 to 97 years, with an average of 63) from five cohorts. We computed multiscale functional connectivity measures of individual subjects using a personalized functional network computational method, harmonized the functional connectivity measures of subjects from multiple datasets in order to build a functional brain age model, and finally evaluated how functional brain age gap correlated with cognitive measures of individual subjects. Our study has revealed that functional connectivity measures at multiple scales were more informative than those at any single scale for the brain age prediction, the data harmonization significantly improved the brain age prediction performance, and the data harmonization in the functional connectivity measures' tangent space worked better than in their original space. Moreover, brain age gap scores of individual subjects derived from the brain age prediction model were significantly correlated with clinical and cognitive measures. Overall, these results demonstrated that multiscale functional connectivity patterns learned from a large-scale multi-site rsfMRI dataset were informative for characterizing the aging brain and the derived brain age gap was associated with cognitive and clinical measures.
Collapse
Affiliation(s)
- Zhen Zhou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dhivya Srinivasan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahmed Abdulkadir
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Junhao Wen
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jimit Doshi
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Elizabeth Mamourian
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nick R Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Diagnostic Medicine, University of Texas at Austin, Austin, TX, 78705, USA
| | - David A Wolk
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Neurology and Penn Memory Center, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, 20892, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Brain Behavior Laboratory and Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Statistic in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
33
|
Richter A, Soch J, Kizilirmak JM, Fischer L, Schütze H, Assmann A, Behnisch G, Feldhoff H, Knopf L, Raschick M, Schult A, Seidenbecher CI, Yakupov R, Düzel E, Schott BH. Single‐value scores of memory‐related brain activity reflect dissociable neuropsychological and anatomical signatures of neurocognitive aging. Hum Brain Mapp 2023; 44:3283-3301. [PMID: 36972323 PMCID: PMC10171506 DOI: 10.1002/hbm.26281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/29/2023] Open
Abstract
Memory-related functional magnetic resonance imaging (fMRI) activations show age-related differences across multiple brain regions that can be captured in summary statistics like single-value scores. Recently, we described two single-value scores reflecting deviations from prototypical whole-brain fMRI activity of young adults during novelty processing and successful encoding. Here, we investigate the brain-behavior associations of these scores with age-related neurocognitive changes in 153 healthy middle-aged and older adults. All scores were associated with episodic recall performance. The memory network scores, but not the novelty network scores, additionally correlated with medial temporal gray matter and other neuropsychological measures including flexibility. Our results thus suggest that novelty-network-based fMRI scores show high brain-behavior associations with episodic memory and that encoding-network-based fMRI scores additionally capture individual differences in other aging-related functions. More generally, our results suggest that single-value scores of memory-related fMRI provide a comprehensive measure of individual differences in network dysfunction that may contribute to age-related cognitive decline.
Collapse
|
34
|
Wang H, Xu J, Yu M, Zhou G, Ren J, Wang Y, Zheng H, Sun Y, Wu J, Liu W. Functional and structural alterations as diagnostic imaging markers for depression in de novo Parkinson's disease. Front Neurosci 2023; 17:1101623. [PMID: 36908791 PMCID: PMC9992430 DOI: 10.3389/fnins.2023.1101623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Background Depression in Parkinson's disease (PD) is identified and diagnosed with behavioral observations and neuropsychological measurements. Due to the large overlaps of depression and PD symptoms in clinical manifestations, it is challenging for neurologists to distinguish and diagnose depression in PD (DPD) in the early clinical stage of PD. The advancement in magnetic resonance imaging (MRI) technology provides potential clinical utility in the diagnosis of DPD. This study aimed to explore the alterations of functional and structural MRI in DPD to produce neuroimaging markers in discriminating DPD from non-depressed PD (NDPD) and healthy controls (HC). Methods We recruited 20 DPD, 37 NDPD, and 41 HC matched in age, gender, and education years. The patients' diagnosis with PD was de novo. The differences in regional homogeneity (ReHo), voxel-wise degree centrality (DC), cortical thickness, cortical gray matter (GM) volumes, and subcortical GM volumes among these groups were detected, and the relationship between altered indicators and depression was analyzed. Moreover, the receiver operating characteristic (ROC) analysis was performed to assess the diagnostic efficacy of altered indicators for DPD. Results Compared to NDPD and HC, DPD showed significantly increased ReHo in left dorsolateral superior frontal gyrus (DSFG) and DC in left inferior temporal gyrus (ITG), and decreased GM volumes in left temporal lobe and right Amygdala. Among these altered indicators, ReHo value in left DSFG and DC values in left ITG and left DSFG were significantly correlated with the severity of depression in PD patients. Comparing DPD and NDPD, the ROC analysis revealed a better area under the curve value for the combination of ReHo value in left DSFG and DC value in left ITG, followed by each independent indicator. However, the difference is not statistically significant. Conclusion This study demonstrates that both functional and structural impairments are present in DPD. Among them, ReHo value of left DSFG and DC value of left ITG are equally well suited for the diagnosis and differential diagnosis of DPD, with a combination of them being slightly preferable. The multimodal MRI technique represents a promising approach for the classification of subjects with PD.
Collapse
Affiliation(s)
- Hui Wang
- Department of Neurology, Lianyungang Hospital of Traditional Chinese Medicine, Lianyungang Affiliated Hospital of Nanjing University of Chinese Medicine, Lianyungang, China
| | - Jianxia Xu
- Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Miao Yu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gaiyan Zhou
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingru Ren
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yajie Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Huifen Zheng
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- International Laboratory of Children Medical Imaging Research, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jun Wu
- Department of Clinical Laboratory, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Weiguo Liu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Wan K, Yin W, Tang Y, Zhu W, Wang Z, Zhou X, Zhang W, Zhang C, Yu X, Zhao W, Li C, Zhu X, Sun Z. Brain Gray Matter Volume Mediated the Correlation Between Plasma P-Tau and Cognitive Function of Early Alzheimer's Disease in China: A Cross-Sectional Observational Study. J Alzheimers Dis 2023; 92:81-93. [PMID: 36710682 DOI: 10.3233/jad-221100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND The primary manifestations of Alzheimer's disease (AD) include cognitive decline and brain gray matter volume (GMV) atrophy. Recent studies have found that plasma phosphorylated-tau (p-tau) concentrations perform better in diagnosing, differentiating, and monitoring the progression of AD. However, the correlation between plasma p-tau, GMV, and cognition remains unclear. OBJECTIVE To investigate whether GMV plays a mediating role in the association between plasma p-tau concentrations and cognition. METHODS In total, 99 participants (47 patients with AD and 52 cognitively unimpaired [CU] individuals) were included. All participants underwent neuropsychological assessments, laboratory examinations, and magnetic resonance imaging scans. Plasma p-tau217 and p-tau181 concentrations were measured using an enzyme-linked immunosorbent assay kit. Voxel-based morphometry was performed to assess participants' brain GMV. Partial correlation and mediation analyses were conducted in AD group. RESULTS Plasma p-tau concentrations were significantly higher in the AD group than in the CU group. Patients with AD had significant brain GMV atrophy in the right hippocampus, bilateral middle temporal gyrus, and right inferior temporal gyrus. In the AD group, there were significant correlations between plasma p-tau217 concentrations, GMV, and Mini-Mental State Examination (MMSE) scores. Brain GMV of the right hippocampus mediated the association between plasma p-tau217 concentrations and MMSE scores. A significant correlation between plasma p-tau181 and MMSE scores was not identified. CONCLUSION The findings indicate that p-tau217 is a promising biomarker for central processes affecting brain GMV and cognitive function. This may provide potential targets for future intervention and treatment of tau-targeting therapies in the early stages of AD.
Collapse
Affiliation(s)
- Ke Wan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenwen Yin
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yating Tang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wenhao Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhiqiang Wang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, Tasmania, Australia
| | - Xia Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Wei Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xianfeng Yu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Xiaoqun Zhu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Zhongwu Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
36
|
Longitudinal changes in grey matter and cognitive performance over four years of healthy aging. NEUROIMAGE: REPORTS 2022. [DOI: 10.1016/j.ynirp.2022.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Soch J, Richter A, Kizilirmak JM, Schütze H, Feldhoff H, Fischer L, Knopf L, Raschick M, Schult A, Düzel E, Schott BH. Structural and Functional MRI Data Differentially Predict Chronological Age and Behavioral Memory Performance. eNeuro 2022; 9:ENEURO.0212-22.2022. [PMID: 36376083 PMCID: PMC9665883 DOI: 10.1523/eneuro.0212-22.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Human cognitive abilities decline with increasing chronological age, with decreased explicit memory performance being most strongly affected. However, some older adults show "successful aging," that is, relatively preserved cognitive ability in old age. One explanation for this could be higher brain-structural integrity in these individuals. Alternatively, the brain might recruit existing resources more efficiently or employ compensatory cognitive strategies. Here, we approached this question by testing multiple candidate variables from structural and functional neuroimaging for their ability to predict chronological age and memory performance, respectively. Prediction was performed using support vector machine (SVM) classification and regression across and within two samples of young (N = 106) and older (N = 153) adults. The candidate variables were (1) behavioral response frequencies in an episodic memory test; (2) recently described functional magnetic resonance imaging (fMRI) scores reflecting preservation of functional memory networks; (3) whole-brain fMRI contrasts for novelty processing and subsequent memory; (4) resting-state fMRI maps quantifying voxel-wise signal fluctuation; and (5) gray matter volume estimated from structural MRIs. While age group could be reliably decoded from all variables, chronological age within young and older subjects was best predicted from gray matter volume. In contrast, memory performance was best predicted from task-based fMRI contrasts and particularly single-value fMRI scores, whereas gray matter volume has no predictive power with respect to memory performance in healthy adults. Our results suggest that superior memory performance in healthy older adults is better explained by efficient recruitment of memory networks rather than by preserved brain structure.
Collapse
Affiliation(s)
- Joram Soch
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Bernstein Center for Computational Neuroscience (BCCN), 10115 Berlin, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
| | - Jasmin M Kizilirmak
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Hartmut Schütze
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Hannah Feldhoff
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Larissa Fischer
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Lea Knopf
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Matthias Raschick
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Annika Schult
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Björn H Schott
- German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center, 37075 Göttingen, Germany
| |
Collapse
|
38
|
Xiao D, Wang K, Theriault L, Charbel E. White matter integrity and key structures affected in Alzheimer's disease characterized by diffusion tensor imaging. Eur J Neurosci 2022; 56:5319-5331. [PMID: 36048971 DOI: 10.1111/ejn.15815] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 08/13/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
White matter (WM) degeneration is suggested to predict the early signs of Alzheimer's disease (AD). The exact structural regions of brain circuitry involved are not known. This study aims to examine the associations between WM tract integrity, represented by the diffusion tensor imaging (DTI) measures, and AD diagnosis and to denote the key substrates in predicting AD. It included DTI measures of mean diffusivity (MD), fractional anisotropy, radial diffusivity and axial diffusivity of 18 main WM tracts in 84 non-Hispanic white participants from the Alzheimer's Disease Neuroimaging Initiative dataset. The multivariable general linear model was used to examine the association of AD diagnosis with each DTI measure adjusting for age, gender and education. The corpus callosum, fornix, cingulum hippocampus, uncinate fasciculus, sagittal striatum, left posterior thalamic radiation and fornix-stria terminalis showed significant increases in MD, radial and axial diffusivity, whereas the splenium of corpus callosum and the fornix showed significant decreases in fractional anisotropy among AD patients. Variable cluster analysis identified that hippocampus volume, mini-mental state examination (MMSE), cingulate gyrus/hippocampus, inferior fronto-occipital fasciculus and uncinate fasciculus are highly correlated in one cluster with MD measures. In conclusion, there were significant differences in DTI measures between the brain WM of AD patients and controls. Age is the risk factor associated with AD, not gender or education. Right cingulum gyrus and right uncinate fasciculus are particularly affected, correlating well with a cognitive test MMSE and MD measures for dementia in AD patients and could be a region of focus for AD staging.
Collapse
Affiliation(s)
- Danqing Xiao
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA.,Neuroimaging Center, McLean Hospital, Belmont, Massachusetts, USA
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | - Luke Theriault
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA.,School of Medicine, St. George's University, Saint George's, Grenada
| | - Elhelou Charbel
- Department of STEM, School of Arts and Sciences, Regis College, Weston, Massachusetts, USA
| | | |
Collapse
|
39
|
Zhao X, Liang W, Wang W, Liu H, Zhang X, Liu C, Zhu C, Cui B, Tang Y, Liu S. Changes in and asymmetry of the proteome in the human fetal frontal lobe during early development. Commun Biol 2022; 5:1031. [PMID: 36175510 PMCID: PMC9522861 DOI: 10.1038/s42003-022-04003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022] Open
Abstract
Inherent hemispheric asymmetry is important for cognition, language and other functions. Describing normal brain and asymmetry development during early development will improve our understanding of how different hemispheres prioritize specific functions, which is currently unknown. Here, we analysed developmental changes in and asymmetry of the proteome in the bilateral frontal lobes of three foetal specimens in the late first trimester of pregnancy. We found that during this period, the difference in expression between gestational weeks (GWs) increased, and the difference in asymmetric expression decreased. Changes in the patterns of protein expression differed in the bilateral frontal lobes. Our results show that brain asymmetry can be observed in early development. These findings can guide researchers in further investigations of the mechanisms of brain asymmetry. We propose that both sides of the brain should be analysed separately in future multiomics and human brain mapping studies.
Collapse
Affiliation(s)
- Xiaotian Zhao
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Hailan Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xiaolei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Chengxin Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Caiting Zhu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
40
|
Wu J, Shahid SS, Lin Q, Hone-Blanchet A, Smith JL, Risk BB, Bisht AS, Loring DW, Goldstein FC, Levey AI, Lah JJ, Qiu D. Multimodal magnetic resonance imaging reveals distinct sensitivity of hippocampal subfields in asymptomatic stage of Alzheimer’s disease. Front Aging Neurosci 2022; 14:901140. [PMID: 36034141 PMCID: PMC9413400 DOI: 10.3389/fnagi.2022.901140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
While hippocampal atrophy and its regional susceptibility to Alzheimer’s disease (AD) are well reported at late stages of AD, studies of the asymptomatic stage of AD are limited but could elucidate early stage pathophysiology as well as provide predictive biomarkers. In this study, we performed multi-modal magnetic resonance imaging (MRI) to estimate morphometry, functional connectivity, and tissue microstructure of hippocampal subfields in cognitively normal adults including those with asymptomatic AD. High-resolution resting-state functional, diffusion and structural MRI, cerebral spinal fluid (CSF), and neuropsychological evaluations were performed in healthy young adults (HY: n = 40) and healthy older adults with negative (HO−: n = 47) and positive (HO+ : n = 25) CSF biomarkers of AD. Morphometry, functional connectivity, and tissue microstructure were estimated from the structural, functional, and diffusion MRI images, respectively. Our results indicated that normal aging affected morphometry, connectivity, and microstructure in all hippocampal subfields, while the subiculum and CA1-3 demonstrated the greatest sensitivity to asymptomatic AD pathology. Tau, rather than amyloid-β, was closely associated with imaging-derived synaptic and microstructural measures. Microstructural metrics were significantly associated with neuropsychological assessments. These findings suggest that the subiculum and CA1-3 are the most vulnerable in asymptomatic AD and tau level is driving these early changes.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Junjie Wu, ,
| | - Syed S. Shahid
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qixiang Lin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Antoine Hone-Blanchet
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeremy L. Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Aditya S. Bisht
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - David W. Loring
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Felicia C. Goldstein
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- James J. Lah,
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
- Deqiang Qiu,
| |
Collapse
|
41
|
Canario E, Chen D, Han Y, Niu H, Biswal B. Global Network Analysis of Alzheimer’s Disease with Minimum Spanning Trees. J Alzheimers Dis 2022; 89:571-581. [DOI: 10.3233/jad-215573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: A minimum spanning tree (MST) is a unique efficient network comprising the necessary connections needed to connect all regions in a network while retaining the lowest possible cost of connection weight. Objective: This study aimed to utilize functional near-infrared spectroscopy (fNIRS) to analyze brain activity in different regions and then construct MST-based regions to characterize the brain topologies of participants with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal controls (NC). Methods: A 46 channel fNIRS setup was used on all participants, with correlation being calculated for each channel pair. An MST was constructed from the resulting correlation matrix, from which graph theory measures were calculated. The average number of connections within a lobe in the left versus right hemisphere was calculated to identify which lobes displayed and abnormal amount of connectivity. Results: Compared to those in the MCI group, the AD group showed a less integrated network structure, with a higher characteristic path length, but lower leaf fraction, maximum degree, and degree divergence. The AD group also showed a higher number of connections in the frontal lobe within the left hemisphere and a lower number between hemispheric frontal lobes as compared to MCI. Conclusion: These results indicate a deviation in network structure and connectivity within patient groups that is consistent with the theory of dysconnectivity for AD. Additionally, the AD group showed strong correlations between the Hamilton depression rating scale and different graph metrics, suggesting a link between network organization and the recurrence of depression in AD.
Collapse
Affiliation(s)
- Edgar Canario
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Donna Chen
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ying Han
- Hainan University, Haikou, China
| | | | - Bharat Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
42
|
Cortical and Subcortical Alterations and Clinical Correlates after Traumatic Brain Injury. J Clin Med 2022; 11:jcm11154421. [PMID: 35956036 PMCID: PMC9369032 DOI: 10.3390/jcm11154421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Traumatic brain injury (TBI) often results in persistent cognitive impairment and psychiatric symptoms, while lesion location and severity are not consistent with its clinical complaints. Previous studies found cognitive deficits and psychiatric disorders following TBI are considered to be associated with prefrontal and medial temporal lobe lesions, however, the location and extent of contusions often cannot fully explain the patient′s impairments. Thus, we try to find the structural changes of gray matter (GM) and white matter (WM), clarify their correlation with psychiatric symptoms and memory following TBI, and determine the brain regions that primary correlate with clinical measurements. Methods: Overall, 32 TBI individuals and 23 healthy controls were recruited in the study. Cognitive impairment and psychiatric symptoms were examined by Mini-Mental State Examination (MMSE), Hospital Anxiety and Depression Scale (HADS), and Wechsler Memory Scale-Chinese Revision (WMS-CR). All MRI data were scanned using a Siemens Prisma 3.0 Tesla MRI system. T1 MRI data and diffusion tensor imaging (DTI) data were processed to analyze GM volume and WM microstructure separately. Results: In the present study, TBI patients underwent widespread decrease of GM volume in both cortical and subcortical regions. Among these regions, four brain areas including the left inferior temporal gyrus and medial temporal lobe, supplementary motor area, thalamus, and anterior cingulate cortex (ACC) were highly implicated in the post-traumatic cognitive impairment and psychiatric complaints. TBI patients also underwent changes of WM microstructure, involving decreased fractional anisotropy (FA) value in widespread WM tracts and increased mean diffusivity (MD) value in the forceps minor. The changes of WM microstructure were significantly correlated with the decrease of GM volume. Conclusions: TBI causes widespread cortical and subcortical alterations including a reduction in GM volume and change in WM microstructure related to clinical manifestation. Lesions in temporal lobe may lead to more serious cognitive and emotional dysfunction, which should attract our high clinical attention.
Collapse
|
43
|
Kannappan B, Gunasekaran TI, te Nijenhuis J, Gopal M, Velusami D, Kothandan G, Lee KH. Polygenic score for Alzheimer’s disease identifies differential atrophy in hippocampal subfield volumes. PLoS One 2022; 17:e0270795. [PMID: 35830443 PMCID: PMC9278752 DOI: 10.1371/journal.pone.0270795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Hippocampal subfield atrophy is a prime structural change in the brain, associated with cognitive aging and neurodegenerative diseases such as Alzheimer’s disease. Recent developments in genome-wide association studies (GWAS) have identified genetic loci that characterize the risk of hippocampal volume loss based on the processes of normal and abnormal aging. Polygenic risk scores are the genetic proxies mimicking the genetic role of the pre-existing vulnerabilities of the underlying mechanisms influencing these changes. Discriminating the genetic predispositions of hippocampal subfield atrophy between cognitive aging and neurodegenerative diseases will be helpful in understanding the disease etiology. In this study, we evaluated the polygenic risk of Alzheimer’s disease (AD PGRS) for hippocampal subfield atrophy in 1,086 individuals (319 cognitively normal (CN), 591 mild cognitively impaired (MCI), and 176 Alzheimer’s disease dementia (ADD)). Our results showed a stronger association of AD PGRS effect on the left hemisphere than on the right hemisphere for all the hippocampal subfield volumes in a mixed clinical population (CN+MCI+ADD). The subfields CA1, CA4, hippocampal tail, subiculum, presubiculum, molecular layer, GC-ML-DG, and HATA showed stronger AD PGRS associations with the MCI+ADD group than with the CN group. The subfields CA3, parasubiculum, and fimbria showed moderately higher AD PGRS associations with the MCI+ADD group than with the CN group. Our findings suggest that the eight subfield regions, which were strongly associated with AD PGRS are likely involved in the early stage ADD and a specific focus on the left hemisphere could enhance the early prediction of ADD.
Collapse
Affiliation(s)
- Balaji Kannappan
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Tamil Iniyan Gunasekaran
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
| | - Jan te Nijenhuis
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- * E-mail: (JN); (KHL)
| | - Muthu Gopal
- Health Systems Research & MRHRU, ICMR-National Institute of Epidemiology, Tirunelveli, Tamil Nadu, India
| | - Deepika Velusami
- Department of Physiology, Sri Manakula Vinayagar Medical College and Hospital, Puducherry, Tamil Nadu, India
| | - Gugan Kothandan
- Biopolymer Modeling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu, India
| | - Kun Ho Lee
- Gwangju Alzheimer’s & Related Dementia Cohort Research Center, Chosun University, Gwangju, Republic of Korea
- Department of Biomedical Science, Chosun University, Gwangju, Republic of Korea
- Korea Brain Research Institute, Daegu, Republic of Korea
- * E-mail: (JN); (KHL)
| | | |
Collapse
|
44
|
Chen A, Deng Y, Zuo X, Zhong S. Alteration in Asymmetry of White Matter Network of Parkinson's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8493729. [PMID: 35873665 PMCID: PMC9273463 DOI: 10.1155/2022/8493729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is manifest clinically by an asymmetrical presentation of motor dysfunction. A large number of previous neuroimaging research studies have stated the alteration in the hemispheric asymmetry of morphological features in PD disease. Diffusion Magnetic Resonance Imaging (MRI), which is noninvasive, has been widely used to quantify the white matter network in the human brain of both healthy subjects and patients. Besides, graph theory analysis is widely used to quantify the topological architecture of the human brain network. Lately, researchers have discovered that the topological architecture of the white matter network significantly differs in PD compared with healthy controls (HC). Nevertheless, the asymmetry of the topological architecture of the white matter network for PD patients remains unclear. To clarify this, the diffusion-weighted images and tractography technique were used to reconstruct the hemispherical white matter networks for 22 bilateral PD patients and 18 HC subjects. Network-based statistical analysis and graph theory analysis approaches were employed to estimate the asymmetry at both the connectivity level and the hemispheric topological level for PD patients. We found that the PD group showed atypically right-higher-than-left asymmetry in hemispheric brain global and local efficiencies. The detected right-higher-than-left asymmetry was driven by the atypically topological changes in the left hemispheric brain in the PD group. Findings from these studies might provide new insights into the asymmetric features of hemispheric disconnectivity and emphasize that the topological asymmetry of the hemispheric brain could be used as a biomarker to identify PD individuals.
Collapse
Affiliation(s)
- Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Yue Deng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430051, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| |
Collapse
|
45
|
Du Y, Yan F, Zhao L, Fang Y, Qiu Q, Wei W, Wang J, Tang Y, Lin X, Li X. Depression symptoms moderate the relationship between gray matter volumes and cognitive function in patients with mild cognitive impairment. J Psychiatr Res 2022; 151:516-522. [PMID: 35636026 DOI: 10.1016/j.jpsychires.2022.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/22/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
Previous studies have demonstrated that decreased gray matter volume (GMV) correlates with cognitive function in elderly patients with mild cognitive impairment (MCI). However, it is unclear whether those correlations are present in MCI patients with depressive symptoms (MCID). This study investigated the association among depressive symptoms, GMV and cognitive function. We included 210 participants, namely, 70 elderly MCID patients, 70 MCI patients without depressive symptoms (MCIND) and 70 healthy controls (HCs). Voxel-based morphometry (VBM) was used to investigate the structural disruptions among the patients in the three groups, and correlation analysis was performed between the GMV of regions showing group differences and cognitive function. Moderation analyses were conducted to verify the conditional effect of depressive symptoms on the relationship between structural changes and cognitive function. We found decreased GMV in the bilateral fusiform gyrus, inferior temporal gyrus, parahippocampal gyrus, and hippocampus in the MCIND group compared to the HC group. Moreover, we identified decreased GMV in the bilateral fusiform gyrus in the elderly MCID patients compared with the elderly MCIND patients, which provides further insights into the neural mechanisms of depressive symptoms in patients with MCID. Most importantly, the severity of depressive symptoms moderated the positive correlation between the GMV of abnormal brain regions and cognitive function. Furthermore, this study is the first report of the moderating effect of depressive symptoms on the GMV of abnormal brain areas and cognitive function in patients with MCID, indicating the significance of clinical intervention in elderly MCI patients with depressive symptoms.
Collapse
Affiliation(s)
- Yang Du
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Yan
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lu Zhao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Qiu
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjing Wei
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Jinghua Wang
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Xia Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
46
|
Gazzina S, Grassi M, Premi E, Alberici A, Benussi A, Archetti S, Gasparotti R, Bocchetta M, Cash DM, Todd EG, Peakman G, Convery RS, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Moreno F, Laforce R, Graff C, Synofzik M, Galimberti D, Rowe JB, Masellis M, Tartaglia MC, Finger E, Vandenberghe R, de Mendonça A, Tagliavini F, Butler CR, Santana I, Gerhard A, Ber IL, Pasquier F, Ducharme S, Levin J, Danek A, Sorbi S, Otto M, Rohrer JD, Borroni B. Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiol Aging 2022; 114:94-104. [PMID: 35339292 DOI: 10.1016/j.neurobiolaging.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
Abstract
Frontotemporal dementia associated with granulin (GRN) mutations presents asymmetric brain atrophy. We applied a Minimum Spanning Tree plus an Efficiency Cost Optimization approach to cortical thickness data in order to test whether graph theory measures could identify global or local impairment of connectivity in the presymptomatic phase of pathology, where other techniques failed in demonstrating changes. We included 52 symptomatic GRN mutation carriers (SC), 161 presymptomatic GRN mutation carriers (PSC) and 341 non-carriers relatives from the Genetic Frontotemporal dementia research Initiative cohort. Group differences of global, nodal and edge connectivity in (Minimum Spanning Tree plus an Efficiency Cost Optimization) graph were tested via Structural Equation Models. Global graph perturbation was selectively impaired in SC compared to non-carriers, with no changes in PSC. At the local level, only SC exhibited perturbation of frontotemporal nodes, but edge connectivity revealed a characteristic pattern of interhemispheric disconnection, involving homologous parietal regions, in PSC. Our results suggest that GRN-related frontotemporal dementia resembles a disconnection syndrome, with interhemispheric disconnection between parietal regions in presymptomatic phases that progresses to frontotemporal areas as symptoms emerge.
Collapse
Affiliation(s)
- Stefano Gazzina
- Neurophysiology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioral Science, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Enrico Premi
- Stroke Unit, Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy
| | | | - Alberto Benussi
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy; Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Silvana Archetti
- Biotechnology Laboratory, Department of Diagnostics, Spedali Civili Hospital, Brescia, Italy
| | | | - Martina Bocchetta
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - David M Cash
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Emily G Todd
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Georgia Peakman
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - Rhian S Convery
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, London, UK
| | | | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Facultéde Médecine, Université Laval, Quebec City, Québec, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Solna, Sweden
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tubingen, Tubingen, Germany
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, Milan, Italy; University of Milan, Centro Dino Ferrari, Milan, Italy
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium; Neurology Service, University Hospitals Leuven, Leuven, Belgium; Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Chris R Butler
- Nueld Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience & Experimental Psychology, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK; Departments of Geriatric Medicine and Nuclear Medicine, Essen University Hospital, Essen, Germany
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Centre de référence des démences rares ou précoces, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France; Reference Network for Rare Neurological Diseases (ERN-RND), Paris, France
| | | | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Adrian Danek
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Jonathan D Rohrer
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Barbara Borroni
- Neurology Unit, ASST Spedali Civili Hospital, Brescia, Italy.
| | | |
Collapse
|
47
|
Mai W, Zhang A, Liu Q, Tang L, Wei Y, Su J, Duan G, Teng J, Nong X, Yu B, Li C, Shao L, Deng D, Chen S, Zhao L. Effects of Moxa Cone Moxibustion Therapy on Cognitive Function and Brain Metabolic Changes in MCI Patients: A Pilot 1H-MRS Study. Front Aging Neurosci 2022; 14:773687. [PMID: 35721029 PMCID: PMC9204283 DOI: 10.3389/fnagi.2022.773687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To explore the effect of moxa cone moxibustion on N-acetyl aspartate/total creatinine (NAA/tCr) and choline/total creatinine (Cho/tCr) in the bilateral hippocampus (HIP) and bilateral posterior cingulate gyrus (PCG) in patients with mild cognitive impairment (MCI) using hydrogen proton magnetic resonance spectroscopy (1H-MRS) and to provide imaging basis for moxa cone moxibustion treatment for MCI. Methods One hundred eight patients with MCI were served as the MCI group, and 67 age-matched subjects were enrolled as the normal control group. The MCI group was randomized and allocated into acupoint group, drug group, and sham acupoint group, with 36 cases in each group. Some patients in each group withdrew. Finally, 25 cases were included in the acupoint group, 24 cases in the drug group, and 20 cases in the sham acupoint group. The drug group was treated with oral donepezil hydrochloride. The acupoint group and sham acupoint group received moxa cone moxibustion treatment. Mini-mental state exam (MMSE) and Montreal cognitive assessment (MoCA) scores were recorded before intervention, at the end of the first and the second months of intervention, and in the 5th month of follow-up. The NAA/tCr and Cho/tCr ratios in the HIP and PCG were bilaterally measured by 1H-MRS before and after intervention. Results Before intervention, compared with the normal control group, the MMSE and MoCA scores, the Cho/tCr ratio in the right HIP, the NAA/tCr ratio in the bilateral HIP, and the NAA/tCr ratio in the left PCG in the three treatment groups decreased significantly (both p < 0.01), and the NAA/tCr ratio in the right PCG significantly reduced in the acupoint and drug groups (p < 0.05). After two months of treatment, compared with the normal control group, there were no differences in the MoCA scores, the NAA/tCr, and Cho/tCr ratios in the bilateral PCG and bilateral HIP in the three treatment groups (p > 0.05). However, the MMSE scores in the drug group decreased when compared with the acupoint group and normal control group (p < 0.05, p < 0.01). The scores of MMSE and MoCA in the acupoint group and sham acupoint group at all time points were better than those in the drug group, which were similar to those in the normal control group. Conclusion Our findings suggest that moxibustion could improve the cognitive function of patients with MCI. The mechanism may be related to the improvement of abnormal brain metabolism in HIP and PCG.
Collapse
Affiliation(s)
- Wei Mai
- Guangxi University of Chinese Medicine, Nanning, China
- Department of Traditional Chinese Medicine, Guangxi Tumour Hospital, Nanning, China
| | | | - Qiang Liu
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liying Tang
- Xinghu Outpatient Department, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yichen Wei
- Department of Radiology, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiahui Su
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinlong Teng
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiucheng Nong
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Bihan Yu
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Chong Li
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Lijuan Shao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Demao Deng,
| | - Shangjie Chen
- Department of Rehabilitation, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- Shangjie Chen,
| | - Lihua Zhao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
- *Correspondence: Lihua Zhao,
| |
Collapse
|
48
|
Lai Z, Zhang Q, Liang L, Wei Y, Duan G, Mai W, Zhao L, Liu P, Deng D. Efficacy and Mechanism of Moxibustion Treatment on Mild Cognitive Impairment Patients: An fMRI Study Using ALFF. Front Mol Neurosci 2022; 15:852882. [PMID: 35620445 PMCID: PMC9127659 DOI: 10.3389/fnmol.2022.852882] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Mild Cognitive Impairment (MCI), as a high risk of Alzheimer’s disease (AD), represents a state of cognitive function between normal aging and dementia. Moxibustion may effectively delay the progression of AD, while there is a lack of studies on the treatments in MCI. This study aimed to evaluate the effect of moxibustion treatment revealed by the amplitude of low-frequency fluctuation (ALFF) in MCI. Method We enrolled 30 MCI patients and 30 matched healthy controls (HCs) in this study. We used ALFF to compare the difference between MCI and HCs at baseline and the regulation of spontaneous neural activity in MCI patients by moxibustion. The Mini-Mental State Examination and Montreal Cognitive Assessment scores were used to evaluate cognitive function. Results Compared with HCs, the ALFF values significantly decreased in the right temporal poles: middle temporal gyrus (TPOmid), right inferior temporal gyrus, left middle cingulate gyrus, and increased in the left hippocampus, left middle temporal gyrus, right lingual gyrus, and right middle occipital gyrus in MCI patients. After moxibustion treatment, the ALFF values notably increased in the left precuneus, left thalamus, right temporal poles: middle temporal gyrus, right middle frontal gyrus, right inferior temporal gyrus, right putamen, right hippocampus, and right fusiform gyrus, while decreased in the bilateral lingual gyrus in MCI patients. The Mini-Mental State Examination and Montreal Cognitive Assessment scores increased after moxibustion treatment, and the increase in Mini-Mental State Examination score was positively correlated with the increase of ALFF value in the right TPOmid, the right insula, and the left superior temporal gyrus. Conclusion Moxibustion treatment might improve the cognitive function of MCI patients by modulating the brain activities within the default mode network, visual network, and subcortical network with a trend of increased ALFF values and functional asymmetry of the hippocampus. These results indicate that moxibustion holds great potential in the treatment of MCI.
Collapse
Affiliation(s)
- Ziyan Lai
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Qingping Zhang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Lingyan Liang
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Yichen Wei
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Gaoxiong Duan
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
| | - Wei Mai
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Lihua Zhao
- Department of Acupuncture, The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi’an, China
| | - Demao Deng
- Department of Radiology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Guangxi Academy of Medical Sciences, Nanning, China
- *Correspondence: Demao Deng
| |
Collapse
|
49
|
Gao L, Xue Q, Gong S, Li G, Tong W, Fan M, Chen X, Yin J, Song Y, Chen S, Huang J, Wang C, Dong Y. Structural and Functional Alterations of Substantia Nigra and Associations With Anxiety and Depressive Symptoms Following Traumatic Brain Injury. Front Neurol 2022; 13:719778. [PMID: 35449518 PMCID: PMC9017679 DOI: 10.3389/fneur.2022.719778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds Although there are a certain number of studies dedicated to the disturbances of the dopaminergic system induced by traumatic brain injury (TBI), the associations of abnormal dopaminergic systems with post-traumatic anxiety and depressive disorders and their underlying mechanisms have not been clarified yet. In the midbrain, dopaminergic neurons are mainly situated in the substantia nigra (SN) and the ventral tegmental area (VTA). Thus, we selected SN and VTA as regions of interest and performed a seed-based global correlation to evaluate the altered functional connectivity throughout the dopaminergic system post-TBI. Methods Thirty-three individuals with TBI and 21 healthy controls were recruited in the study. Anxiety and depressive symptoms were examined by the Hospital Anxiety and Depression Scale. All MRI data were collected using a Siemens Prisma 3.0 Tesla MRI system. The volume of SN and the global functional connectivity of the SN and VTA were analyzed. Results In the present study, patients with TBI reported more anxiety and depressive symptoms. More importantly, some structural and functional alterations, such as smaller SN and reduced functional connectivity in the left SN, were seen in individuals with TBI. Patients with TBI had smaller substantia nigra on both right and left sides, and the left substantia nigra was relatively small in contrast with the right one. Among these findings, functional connectivity between left SN and left angular gyrus was positively associated with post-traumatic anxiety symptoms and negatively associated with depressive symptoms. Conclusions The TBI causes leftward lateralization of structural and functional alterations in the substantia nigra. An impaired mesocortical functional connectivity might be implicated in post-traumatic anxiety and depression.
Collapse
Affiliation(s)
- Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shun Gong
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Gaoyi Li
- Department of Neurosurgery, People's Hospital of Putuo District, Tongji University School of Medicine, Shanghai, China
| | - Wusong Tong
- Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, Shanghai, China
| | - Mingxia Fan
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| | - Xianzhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Yin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yu Song
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Songyu Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingrong Huang
- Psychology Honors Program, University of California, San Diego, San Diego, CA, United States
| | - Chengbin Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Dong
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Shanghai Tenth People's Hospital Clinical Medicine Scientific and Technical Innovation Park, Shanghai, China
| |
Collapse
|
50
|
Balboni E, Nocetti L, Carbone C, Dinsdale N, Genovese M, Guidi G, Malagoli M, Chiari A, Namburete AIL, Jenkinson M, Zamboni G. The impact of transfer learning on 3D deep learning convolutional neural network segmentation of the hippocampus in mild cognitive impairment and Alzheimer disease subjects. Hum Brain Mapp 2022; 43:3427-3438. [PMID: 35373881 PMCID: PMC9248306 DOI: 10.1002/hbm.25858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Research on segmentation of the hippocampus in magnetic resonance images through deep learning convolutional neural networks (CNNs) shows promising results, suggesting that these methods can identify small structural abnormalities of the hippocampus, which are among the earliest and most frequent brain changes associated with Alzheimer disease (AD). However, CNNs typically achieve the highest accuracy on datasets acquired from the same domain as the training dataset. Transfer learning allows domain adaptation through further training on a limited dataset. In this study, we applied transfer learning on a network called spatial warping network segmentation (SWANS), developed and trained in a previous study. We used MR images of patients with clinical diagnoses of mild cognitive impairment (MCI) and AD, segmented by two different raters. By using transfer learning techniques, we developed four new models, using different training methods. Testing was performed using 26% of the original dataset, which was excluded from training as a hold‐out test set. In addition, 10% of the overall training dataset was used as a hold‐out validation set. Results showed that all the new models achieved better hippocampal segmentation quality than the baseline SWANS model (ps < .001), with high similarity to the manual segmentations (mean dice [best model] = 0.878 ± 0.003). The best model was chosen based on visual assessment and volume percentage error (VPE). The increased precision in estimating hippocampal volumes allows the detection of small hippocampal abnormalities already present in the MCI phase (SD = [3.9 ± 0.6]%), which may be crucial for early diagnosis.
Collapse
Affiliation(s)
- Erica Balboni
- Health Physics Unit, Azienda Ospedaliera di Modena, Modena, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Nocetti
- Health Physics Unit, Azienda Ospedaliera di Modena, Modena, Italy
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Modena, Italy
| | - Nicola Dinsdale
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Oxford Machine Learning in NeuroImaging Lab, Department of Computer Science, Oxford, UK
| | | | - Gabriele Guidi
- Health Physics Unit, Azienda Ospedaliera di Modena, Modena, Italy
| | | | - Annalisa Chiari
- Neuroradiology Unit, Azienda Ospedaliera di Modena, Modena, Italy
| | - Ana I L Namburete
- Oxford Machine Learning in NeuroImaging Lab, Department of Computer Science, Oxford, UK
| | - Mark Jenkinson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,Australian Institute for Machine Learning, School of Computer Science, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Neurosciences and Neurotechnology, Università di Modena e Reggio Emilia, Modena, Italy.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|