1
|
Guldner S, Prignitz M, Nees F. Mindfulness facets are differentially related with reward processing stages in striatum and alcohol use in adolescence. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111113. [PMID: 39094927 DOI: 10.1016/j.pnpbp.2024.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Attenuated functional processing of non-drug rewards in striatal regions is an important mechanism in the transition from normal to hazardous alcohol use. Recent interventions seek to enhance nondrug reward processing through mindfulness, a mechanism that targets attention regulation and self-regulatory processes. It is yet unclear which specific aspects of mindfulness and which stages of reward processing are relevant preventive targets, particularly in adolescence, where alcohol use is often initiated and reward relating processing streams undergo continuous maturation. Fifty-four 14- and 16-year-old adolescents (54% female) completed the monetary incentive delay task (MID) during event-related functional magnetic resonance imaging. Alcohol use and dispositional mindfulness facets were measured using self-report instruments. Mindful Attention Regulation was positively associated with anticipatory reward processing in ventral striatum, whereas feedback-related processing in dorsal striatum was associated with the mindfulness facet Body-Listening. Only Attention Regulation was additionally associated with frequency of alcohol consumption and mediated the relationship between functional activation in ventral striatum during reward anticipation and alcohol use. Attention Regulation, beyond other mindfulness facets, might contribute to potentially triggering neural mechanisms of anticipatory, but not feedback-related reward processing and alcohol use, presenting a potential target for preventive efforts in combating transitions to substance-related disorders in adolescents.
Collapse
Affiliation(s)
- Stella Guldner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | - Maren Prignitz
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
2
|
Martin E, Cao M, Schulz KP, Hildebrandt T, Sysko R, Berner LA, Li X. Distinct Topological Properties of the Reward Anticipation Network in Preadolescent Children With Binge Eating Disorder Symptoms. J Am Acad Child Adolesc Psychiatry 2024; 63:1158-1168. [PMID: 38461893 PMCID: PMC11380707 DOI: 10.1016/j.jaac.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Few studies have considered the neural underpinnings of binge eating disorder (BED) in children, despite clinical and subclinical symptom presentation occurring in this age group. Symptom presentation at this age is of clinical relevance, as early onset of binge eating is linked to negative health outcomes. Studies in adults have highlighted dysfunction in the frontostriatal reward system as a potential candidate for binge eating pathophysiology, although the exact nature of such dysfunction is currently unclear. METHOD Data from 83 children (mean age 9.9 years, SD = 0.60) with symptoms of BED (57% girls) and 123 control participants (mean age 10.0 years, SD = 0.60) (52% girls) were acquired from the 4.0 baseline release of the Adolescent Brain Cognitive Development Study. Task-based graph theoretic techniques were used to analyze data from anticipation trials of the monetary incentive delay task. Network and nodal properties were compared between groups. RESULTS The BED-S group showed alterations in topological properties associated with the frontostriatal subnetwork, such as reduced nodal efficiency in the superior frontal gyrus, nucleus accumbens, putamen, and in normal sex-difference patterns of these properties, such as diminished girls-greater-than-boys pattern of betweenness-centrality in nucleus accumbens observed in controls. CONCLUSION Distinct network properties and sex-difference patterns in preadolescent children with BED-S suggest dysregulation in the reward system compared to those of matched controls. For the first time, these results quantify this dysregulation in terms of systems-level properties during anticipation of monetary reward and significantly inform the early and sex-related brain markers of BED symptoms. PLAIN LANGUAGE SUMMARY Binge eating disorder is the most common eating disorder. One factor that may contribute to binge eating is dysregulation of the reward system in the brain. This study analyzed brain activity during anticipation of monetary rewards in 83 youth with and 123 children without binge eating disorder symptoms from the Adolescent Brain Cognitive Development Study. The authors found specific alterations in the frontostriatal system, responsible for reward processing, in children with binge eating disorder symptoms, compared to the control group, suggesting dysregulation of the reward system.
Collapse
Affiliation(s)
- Elizabeth Martin
- Icahn School of Medicine at Mount Sinai, New York, New Jersey; New Jersey Institute of Technology, Newark, New Jersey
| | - Meng Cao
- New Jersey Institute of Technology, Newark, New Jersey
| | - Kurt P Schulz
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Tom Hildebrandt
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Robyn Sysko
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Xiaobo Li
- New Jersey Institute of Technology, Newark, New Jersey.
| |
Collapse
|
3
|
Zhang S, Li P, Feng Q, Shen R, Zhou H, Zhao Z. Using individualized structural covariance networks to analyze the heterogeneity of cerebral small vessel disease with cognitive impairment. J Stroke Cerebrovasc Dis 2024; 33:107829. [PMID: 38901472 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (CSVD) includes vascular disorders characterized by heterogeneous pathomechanisms and different neuropathological clinical manifestations. Cognitive dysfunction in CSVD is associated with reductions in structural covariance networks (SCNs). A majority of research conducted on SCNs focused on group-level analysis. However, it is crucial to investigate the individualized variations in order to gain a better understanding of heterogeneous disorders such as CSVD. Therefore, this study aimed to utilize individualized differential structural covariance network (IDSCN) analysis to detect individualized structural covariance aberration. METHODS A total of 35 healthy controls and 33 CSVD patients with cognitive impairment participated in this investigation. Using the regional gray matter volume in their T1 images, the IDSCN was constructed for each participant. Finally, the differential structural covariance edges between the two groups were determined by comparing their IDSCN using paired-sample t-tests. On the basis of these differential edges, the two subtypes of cognitively impaired CSVD patients were identified. RESULTS The findings revealed that the differential structural covariance edges in CSVD patients with cognitive impairment showed a highly heterogeneous distribution, with the edges primarily cross-distributed between the occipital lobe (specifically inferior occipital gyrus and cuneus), temporal lobe (specifically superior temporal gyrus), and the cerebellum. To varying degrees, the inferior frontal gyrus and the superior parietal gyrus were also distributed. Subsequently, a correlation analysis was performed between the resulting differential edges and the cognitive scale scores. A significant negative association was observed between the cognitive scores and the differential edges distributed in the inferior frontal gyrus and inferior occipital gyrus, the superior temporal gyrus and inferior occipital gyrus, and within the temporal lobe. Particularly in the cognitive domain of attention, the two subtypes separated by differential edges exhibited differences in cognitive scale scores [Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA)]. The differential edges of the subtype 1, characterized by lower cognitive level, were mainly cross-distributed in the limbic lobe (specifically the cingulate gyrus and hippocampus), the parietal lobe (including the superior parietal gyrus and precuneus), and the cerebellum. In contrast, the differential edges of the subtype 2 with a relatively high level of cognition were distributed between the cuneus and the cerebellum. CONCLUSIONS The differential structural covariance was investigated between the healthy controls and the CSVD patients with cognitive impairment, showing that differential structural covariance existed between the two groups. The edge distributions in certain parts of the brain, such as cerebellum and occipital and temporal lobes, verified this. Significant associations were seen between cognitive scale scores and some of those differential edges .The two subtypes that differed in both differential edges and cognitive levels were also identified. The differential edges of subtype 1 with relatively lower cognitive levels were more distributed in the cingulate gyrus, hippocampus, superior parietal gyrus, and precuneus. This could potentially offer significant benefits in terms of accurate diagnosis and targeted treatment of heterogeneous disorders such as CSVD.
Collapse
Affiliation(s)
- Shiyu Zhang
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Ping Li
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Qian Feng
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Rong Shen
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China
| | - Hua Zhou
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| | - Zhong Zhao
- Department of Neurology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215000, China.
| |
Collapse
|
4
|
Hogeveen J, Campbell EM, Mullins TS, Robertson-Benta CR, Quinn DK, Mayer AR, Cavanagh JF. Neural response to monetary incentives in acquired adolescent depression after mild traumatic brain injury: Stage 2 Registered Report. Brain Commun 2024; 6:fcae250. [PMID: 39234169 PMCID: PMC11371397 DOI: 10.1093/braincomms/fcae250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Depression is a common consequence of traumatic brain injury. Separately, spontaneous depression-arising without brain injury-has been linked to abnormal responses in motivational neural circuitry to the anticipation or receipt of rewards. It is unknown if post-injury and spontaneously occurring depression share similar phenotypic profiles. This issue is compounded by the fact that nearly all examinations of these psychiatric sequelae are post hoc: there are rarely any prospective assessments of mood and neural functioning before and after a brain injury. In this Stage 2 Registered Report, we used the Adolescent Brain Cognitive Development Consortium dataset to examine if a disruption in functional neural responses to rewards is present in patients with depression after a mild traumatic brain injury. Notably, this study provides an unparalleled opportunity to examine the trajectory of neuropsychiatric symptoms longitudinally within-subjects. This allowed us to isolate mild traumatic brain injury-specific variance independent from pre-existing functioning. Here, we focus on a case-control comparison between 43 youth who experienced a mild traumatic brain injury between MRI visits, and 43 well-matched controls. Contrary to pre-registered predictions (https://osf.io/h5uba/), there was no statistically credible increase in depression in mild traumatic brain injury cases relative to controls. Mild traumatic brain injury was associated with subtle changes in motivational neural circuit recruitment during the anticipation of incentives on the Monetary Incentive Delay paradigm. Specifically, changes in neural recruitment appeared to reflect a failure to deactivate 'task-negative' brain regions (ventromedial prefrontal cortex), alongside blunted recruitment of 'task-positive' regions (anterior cingulate, anterior insula and caudate), during the anticipation of reward and loss in adolescents following mild brain injuries. Critically, these changes in brain activity were not correlated with depressive symptoms at either visit or depression change scores before and after the brain injury. Increased time since injury was associated with a recovery of cognitive functioning-driven primarily by processing speed differences-but depression did not scale with time since injury. These cognitive changes were also uncorrelated with neural changes after mild traumatic brain injury. This report provides evidence that acquired depression may not be observed as commonly after a mild traumatic brain injury in late childhood and early adolescence, relative to findings in adult cases. Several reasons for these differing findings are considered, including sampling enrichment in retrospective cohort studies, under-reporting of depressive symptoms in parent-report data, and neuroprotective factors in childhood and adolescence.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ethan M Campbell
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Teagan S Mullins
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Cidney R Robertson-Benta
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| | - Davin K Quinn
- Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Andrew R Mayer
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Psychiatry & Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- The Mind Research Network/Lovelace Biomedical Research Institute, Albuquerque, NM 87106, USA
| | - James F Cavanagh
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
- Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
McDonald M, Kohls G, Henke N, Wahl H, Backhausen LL, Roessner V, Buse J. Altered neural anticipation of reward and loss but not receipt in adolescents with obsessive-compulsive disorder. BMC Psychiatry 2024; 24:362. [PMID: 38745267 PMCID: PMC11094903 DOI: 10.1186/s12888-024-05808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by persistent, unwanted thoughts and repetitive actions. Such repetitive thoughts and/or behaviors may be reinforced either by reducing anxiety or by avoiding a potential threat or harm, and thus may be rewarding to the individual. The possible involvement of the reward system in the symptomatology of OCD is supported by studies showing altered reward processing in reward-related regions, such as the ventral striatum (VS) and the orbitofrontal cortex (OFC), in adults with OCD. However, it is not clear whether this also applies to adolescents with OCD. METHODS Using functional magnetic resonance imaging, two sessions were conducted focusing on the anticipation and receipt of monetary reward (1) or loss (2), each contrasted to a verbal (control) condition. In each session, adolescents with OCD (n1=31/n2=26) were compared with typically developing (TD) controls (n1=33/ n2=31), all aged 10-19 years, during the anticipation and feedback phase of an adapted Monetary Incentive Delay task. RESULTS Data revealed a hyperactivation of the VS, but not the OFC, when anticipating both monetary reward and loss in the OCD compared to the TD group. CONCLUSIONS These findings suggest that aberrant neural reward and loss processing in OCD is associated with greater motivation to gain or maintain a reward but not with the actual receipt. The greater degree of reward 'wanting' may contribute to adolescents with OCD repeating certain actions more and more frequently, which then become habits (i.e., OCD symptomatology).
Collapse
Affiliation(s)
- Maria McDonald
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany.
| | - Nathalie Henke
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany
| | - Hannes Wahl
- Institute of Neuroradiology, Faculty of Medicine, TUD Dresden University of Technology, Dresden, Germany
| | - Lea L Backhausen
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany
| | - Judith Buse
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TUD Dresden University of Technology, Fetscherstraße 74, Dresden, 01307, Germany
- Clinical Child and Adolescent Psychology, Institute of Clinical Psychology and Psychotherapy, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
6
|
Yang B, Zhou Z, Devakonda V, Qu Y. The role of neural reward sensitivity in the longitudinal relations between parents' familism values and Latinx American youth's prosocial behaviors. Dev Cogn Neurosci 2024; 66:101343. [PMID: 38286089 PMCID: PMC10839261 DOI: 10.1016/j.dcn.2024.101343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024] Open
Abstract
Past research suggests that parents' familism values play a positive role in Latinx American youth's prosocial tendencies. However, little is known about how individual differences in youth's neural development may contribute to this developmental process. Therefore, using two-wave longitudinal data of 1916 early adolescents (mean age = 9.90 years; 50% girls) and their parents (mean age = 38.43 years; 90% mothers) from the Adolescent Brain Cognitive Development study, this pre-registered study took a biopsychosocial approach to examine the moderating role of youth's neural reward sensitivity in the link between parents' familism values and youth's prosocial behaviors. Results showed that parents' familism values were associated with increased prosocial behaviors among youth two years later, controlling for baseline prosocial behaviors and demographic covariates. Notably, parents' familism values played a larger role in promoting youth's prosocial behaviors among youth who showed lower ventral striatum activation during reward anticipation. Moreover, such association between parents' familism values and youth's later prosocial behaviors was stronger among youth who showed lower levels of prosocial behaviors initially. Taken together, the findings highlight individual differences in neurobiological development and baseline prosocial behaviors as markers of sensitivity to cultural environments with regard to Latinx American youth's prosocial development.
Collapse
Affiliation(s)
- Beiming Yang
- School of Education and Social Policy, Northwestern University, USA.
| | - Zexi Zhou
- Department of Human Development and Family Sciences, University of Texas at Austin, USA.
| | - Varun Devakonda
- School of Education and Social Policy, Northwestern University, USA
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, USA.
| |
Collapse
|
7
|
Barendse MEA, Swartz JR, Taylor SL, Fine JR, Shirtcliff EA, Yoon L, McMillan SJ, Tully LM, Guyer AE. Sex and pubertal variation in reward-related behavior and neural activation in early adolescents. Dev Cogn Neurosci 2024; 66:101358. [PMID: 38401329 PMCID: PMC10904160 DOI: 10.1016/j.dcn.2024.101358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/01/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024] Open
Abstract
This study aimed to characterize the role of sex and pubertal markers in reward motivation behavior and neural processing in early adolescence. We used baseline and two-year follow-up data from the Adolescent Brain and Cognitive DevelopmentSM study (15844 observations; 52% from boys; age 9-13). Pubertal development was measured with parent-reported Pubertal Development Scale, and DHEA, testosterone, and estradiol levels. Reward motivation behavior and neural processing at anticipation and feedback stages were assessed with the Monetary Incentive Delay task. Boys had higher reward motivation than girls, demonstrating greater accuracy difference between reward and neutral trials and higher task earnings. Girls had lower neural activation during reward feedback than boys in the nucleus accumbens, caudate, rostral anterior cingulate, medial orbitofrontal cortex, superior frontal gyrus and posterior cingulate. Pubertal stage and testosterone levels were positively associated with reward motivation behavior, although these associations changed when controlling for age. There were no significant associations between pubertal development and neural activation during reward anticipation and feedback. Sex differences in reward-related processing exist in early adolescence, signaling the need to understand their impact on typical and atypical functioning as it unfolds into adulthood.
Collapse
Affiliation(s)
- M E A Barendse
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA; Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - J R Swartz
- Department of Human Ecology, UC Davis, CA, USA
| | - S L Taylor
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | - J R Fine
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | | | - L Yoon
- Center for Mind and Brain, UC Davis, CA, USA
| | - S J McMillan
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA
| | - L M Tully
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - A E Guyer
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA.
| |
Collapse
|
8
|
Yu W, Chen J, Kong Z, Sun W, Zhou X, Lu L, Gao X, Sun H. Understanding the cognitive and neuroimaging bases underlying the detrimental impact of sleep deprivation on reciprocity. iScience 2024; 27:109155. [PMID: 38425845 PMCID: PMC10904273 DOI: 10.1016/j.isci.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/24/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Although the impact of sleep loss on social behaviors has been widely observed in recent years, the mechanisms underpinning these impacts remain unclear. In this study, we explored the detrimental effects of sleep deprivation on reciprocity behavior as well as its underlying psychological and neuroimaging mechanisms by combining sleep manipulation, an interpersonal interactive game, computational modeling and neuroimaging. Our results suggested that after sleep deprivation, individuals showed reduced reciprocity behavior, mainly due to their reduced weights on communal concern when making social decisions. At neural level, we demonstrated that sleep deprivation's effects were observed in the precuneus (hyperactivity) and temporoparietal junction, dorsal lateral prefrontal cortex (DLPFC) (both hypoactivity), and reduced reciprocity was also accounted for by increased precuneus-thalamus connectivity and DLPFC-thalamus connectivity. Our findings contributed to the understanding of the psychological and neuroimaging bases underlying the deleterious impact of sleep deprivation on social behaviors.
Collapse
Affiliation(s)
- Wenwen Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Jie Chen
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Zhifei Kong
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Wei Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaolin Zhou
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- School of Business and Management, Shanghai International Studies University, Shanghai 200083, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiaoxue Gao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
9
|
Kroker T, Rehbein MA, Wyczesany M, Bölte J, Roesmann K, Wessing I, Junghöfer M. Higher-order comparative reward processing is affected by noninvasive stimulation of the ventromedial prefrontal cortex. J Neurosci Res 2024; 102:e25248. [PMID: 37815024 DOI: 10.1002/jnr.25248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 09/10/2023] [Indexed: 10/11/2023]
Abstract
A crucial skill, especially in rapidly changing environments, is to be able to learn efficiently from prior rewards or losses and apply this acquired knowledge in upcoming situations. Often, we must weigh the risks of different options and decide whether an option is worth the risk or whether we should choose a safer option. The ventromedial prefrontal cortex (vmPFC) is suggested as a major hub for basic but also higher-order reward processing. Dysfunction in this region has been linked to cognitive risk factors for depression and behavioral addictions, including reduced optimism and feedback learning. Here, we test whether modulations of vmPFC excitability via noninvasive transcranial direct current stimulation (tDCS) can alter reward anticipation and reward processing. In a financial gambling task, participants chose between a higher and a lower monetary risk option and eventually received feedback whether they won or lost. Simultaneously feedback on the unchosen option was presented as well. Behavioral and magnetoencephalographic correlates of reward processing were evaluated in direct succession of either excitatory or inhibitory tDCS of the vmPFC. We were able to show modulated reward approach behavior (expectancy of greater reward magnitudes) as well as altered reevaluation of received feedback by vmPFC tDCS as indicated by modified choice behavior following the feedback. Thereby, tDCS not only influenced early, rather basic reward processing, but it also modulated higher-order comparative feedback evaluation of gains and losses relative to alternative outcomes. The neural results underline this idea, as stimulation-driven modulations of the basic reward-related effect occurred at rather early time intervals and were followed by stimulation effects related to comparative reward processing. Importantly, behavioral ratings were correlated with neural activity in left frontal areas. Our results imply a dual function of the vmPFC consisting of approaching reward (as indicated by more risky choices) and elaborately evaluating outcomes. In addition, our data suggest that vmPFC activity is associated with adaptive decision-making in the future via modulated behavioral adaptation or reinforcement learning.
Collapse
Affiliation(s)
- Thomas Kroker
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Maimu Alissa Rehbein
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | | | - Jens Bölte
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Institute of Psychology, University of Muenster, Muenster, Germany
| | - Kati Roesmann
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Institute for Clinical Psychology and Psychotherapy, University of Siegen, Siegen, Germany
| | - Ida Wessing
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
- Department of Child and Adolescent Psychiatry, University Hospital Muenster, Muenster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University of Muenster, Muenster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| |
Collapse
|
10
|
Demidenko MI, Mumford JA, Ram N, Poldrack RA. A multi-sample evaluation of the measurement structure and function of the modified monetary incentive delay task in adolescents. Dev Cogn Neurosci 2024; 65:101337. [PMID: 38160517 PMCID: PMC10801229 DOI: 10.1016/j.dcn.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Interpreting the neural response elicited during task functional magnetic resonance imaging (fMRI) remains a challenge in neurodevelopmental research. The monetary incentive delay (MID) task is an fMRI reward processing task that is extensively used in the literature. However, modern psychometric tools have not been used to evaluate measurement properties of the MID task fMRI data. The current study uses data for a similar task design across three adolescent samples (N = 346 [Agemean 12.0; 44 % Female]; N = 97 [19.3; 58 %]; N = 112 [20.2; 38 %]) to evaluate multiple measurement properties of fMRI responses on the MID task. Confirmatory factor analysis (CFA) is used to evaluate an a priori theoretical model for the task and its measurement invariance across three samples. Exploratory factor analysis (EFA) is used to identify the data-driven measurement structure across the samples. CFA results suggest that the a priori model is a poor representation of these MID task fMRI data. Across the samples, the data-driven EFA models consistently identify a six-to-seven factor structure with run and bilateral brain region factors. This factor structure is moderately-to-highly congruent across the samples. Altogether, these findings demonstrate a need to evaluate theoretical frameworks for popular fMRI task designs to improve our understanding and interpretation of brain-behavior associations.
Collapse
Affiliation(s)
| | | | - Nilam Ram
- Department of Psychology, Stanford University, Stanford, United States
| | | |
Collapse
|
11
|
Kirk‐Provencher KT, Hakimi RH, Andereas K, Penner AE, Gowin JL. Neural response to threat and reward among young adults at risk for alcohol use disorder. Addict Biol 2024; 29:e13378. [PMID: 38334006 PMCID: PMC10898840 DOI: 10.1111/adb.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/10/2024]
Abstract
Alcohol use disorder (AUD) is heritable. Thus, young adults with positive family histories represent an at-risk group relative to those without a family history, and if studied at a time when both groups have similar levels of alcohol use, it provides an opportunity to identify neural processing patterns associated with risk for AUD. Previous studies have shown that diminished response to potential reward is associated with genetic risk for AUD, but it is unclear how threat may modulate this response. We used a modified Monetary Incentive Delay task during fMRI to examine neural correlates of the interaction between threat and reward anticipation in a sample of young adults with (n = 31) and without (n = 44) family histories of harmful alcohol use. We found an interaction (p = 0.048) between cue and group in the right nucleus accumbens where the family history positive group showed less differentiation to the anticipation of gaining $5 and losing $5 relative to gaining $0. The family history-positive group also reported less excitement for trials to gain $5 relative to gaining $0 (p < 0.001). Family history-positive individuals showed less activation in the left insula during both safe and threat blocks compared to family history-negative individuals (p = 0.005), but the groups did not differ as a function of threat (p > 0.70). Young adults with, relative to without, enriched risk for AUD may have diminished reward processing via both neural and behavioural markers to potential rewarding and negative consequences. Neural response to threat may not be a contributing factor to risk at this stage.
Collapse
Affiliation(s)
- Katelyn T. Kirk‐Provencher
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rosa H. Hakimi
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Keinada Andereas
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Anne E. Penner
- Department of Psychiatry, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joshua L. Gowin
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
12
|
Chase HW. A novel technique for delineating the effect of variation in the learning rate on the neural correlates of reward prediction errors in model-based fMRI. Front Psychol 2023; 14:1211528. [PMID: 38187436 PMCID: PMC10768009 DOI: 10.3389/fpsyg.2023.1211528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction Computational models play an increasingly important role in describing variation in neural activation in human neuroimaging experiments, including evaluating individual differences in the context of psychiatric neuroimaging. In particular, reinforcement learning (RL) techniques have been widely adopted to examine neural responses to reward prediction errors and stimulus or action values, and how these might vary as a function of clinical status. However, there is a lack of consensus around the importance of the precision of free parameter estimation for these methods, particularly with regard to the learning rate. In the present study, I introduce a novel technique which may be used within a general linear model (GLM) to model the effect of mis-estimation of the learning rate on reward prediction error (RPE)-related neural responses. Methods Simulations employed a simple RL algorithm, which was used to generate hypothetical neural activations that would be expected to be observed in functional magnetic resonance imaging (fMRI) studies of RL. Similar RL models were incorporated within a GLM-based analysis method including derivatives, with individual differences in the resulting GLM-derived beta parameters being evaluated with respect to the free parameters of the RL model or being submitted to other validation analyses. Results Initial simulations demonstrated that the conventional approach to fitting RL models to RPE responses is more likely to reflect individual differences in a reinforcement efficacy construct (lambda) rather than learning rate (alpha). The proposed method, adding a derivative regressor to the GLM, provides a second regressor which reflects the learning rate. Validation analyses were performed including examining another comparable method which yielded highly similar results, and a demonstration of sensitivity of the method in presence of fMRI-like noise. Conclusion Overall, the findings underscore the importance of the lambda parameter for interpreting individual differences in RPE-coupled neural activity, and validate a novel neural metric of the modulation of such activity by individual differences in the learning rate. The method is expected to find application in understanding aberrant reinforcement learning across different psychiatric patient groups including major depression and substance use disorder.
Collapse
Affiliation(s)
- Henry W. Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
13
|
Zhang Y, Li Q, Rong Y, Hu L, Müller HJ, Wei P. Comparing monetary gain and loss in the monetary incentive delay task: EEG evidence. Psychophysiology 2023; 60:e14383. [PMID: 37427496 DOI: 10.1111/psyp.14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 04/04/2023] [Accepted: 06/19/2023] [Indexed: 07/11/2023]
Abstract
What is more effective to guide behavior: The desire to gain or the fear to lose? Electroencephalography (EEG) studies have yielded inconsistent answers. In a systematic exploration of the valence and magnitude parameters in monetary gain and loss processing, we used time-domain and time-frequency-domain analyses to uncover the underlying neural processes. A group of 24 participants performed a monetary incentive delay (MID) task in which cue-induced anticipation of a high or low magnitude of gain or loss was manipulated trial-wise. Behaviorally, the anticipation of both gain and loss expedited responses, with gain anticipation producing greater facilitation than loss anticipation. Analyses of cue-locked P2 and P3 components revealed the significant valence main effect and valence × magnitude interaction: amplitude differences between high and low incentive magnitudes were larger with gain vs. loss cues. However, the contingent negative variation component was sensitive to incentive magnitude but did not vary with incentive valence. In the feedback phase, the RewP component exhibited reversed patterns for gain and loss trials. Time-frequency analyses revealed a large increase in delta/theta-ERS oscillatory activity in high- vs. low-magnitude conditions and a large decrease of alpha-ERD oscillatory activity in gain vs. loss conditions in the anticipation stage. In the consumption stage, delta/theta-ERS turned out stronger for negative than positive feedback, especially in the gain condition. Overall, our study provides new evidence for the neural oscillatory features of monetary gain and loss processing in the MID task, suggesting that participants invested more attention under gain and high-magnitude conditions vs. loss and low-magnitude conditions.
Collapse
Affiliation(s)
- Yan Zhang
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Qiuhao Li
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Yachao Rong
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| | - Li Hu
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hermann J Müller
- General & Experimental Psychology, Department of Psychology, LMU München, Munich, Germany
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition and School of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
14
|
Gao Y, Tian S, Tang Y, Yang X, Dou W, Wang T, Shen Y, Tang Y, Zhang L, Ding H, Zhu Q, Li J, Qi M, Zhu Y. Investigating the spontaneous brain activities of patients with subjective cognitive decline and mild cognitive impairment: an amplitude of low-frequency fluctuation functional magnetic resonance imaging study. Quant Imaging Med Surg 2023; 13:8557-8570. [PMID: 38106284 PMCID: PMC10722053 DOI: 10.21037/qims-23-808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/26/2023] [Indexed: 12/19/2023]
Abstract
Background Subjective cognitive decline (SCD) and mild cognitive impairment (MCI) are neurodegenerative processing stages of Alzheimer's disease (AD). Cognitive decline is thought to manifest in intrinsic brain activity changes, but research results yielded conflicting and few studies have explored the roles of brain regions in cognitive decline, and sensitivity of the cognitive field to changes in the altered intrinsic brain activity. Methods In this cross-sectional study, 158 elderly participants were recruited from the memory clinic of the First Affiliated Hospital of Nanjing Medical University from July 2019 to May 2021, and grouped into SCD (n=73), MCI (n=46), and normal controls (NC) (n=39). The amplitude of low-frequency fluctuation (ALFF) was calculated and evaluated among the groups. Then canonical correlation analysis (CCA) was conducted to investigate the associations between imaging outcomes and cognitive behaviors. Results Neuropsychological tests in different cognitive dimensions and ALFF values of the prefrontal, parietal, and temporal gyrus, were significantly different (P<0.05) among the three groups, with no appreciable decline in daily activity. The changes in intrinsic activities were closely related to the decline in cognitive function (R=0.73, P=0.002). ALFF values in the left middle occipital gyrus, right middle frontal gyrus, left superior frontal gyrus, left angular gyrus, and superior temporal gyrus played significant roles in the analysis, while the Montreal Cognitive Assessment (MoCA) and Auditory-Verbal Learning Test scores were found to be more sensitive to changes in ALFF values. Conclusions Spontaneous brain activity is a stable imaging biomarker of cognitive impairment. ALFF changes of the prefrontal, occipital, left angular, and temporal gyrus were sensitive to identifying cognitive decline, and the scores of the Auditory-Verbal Learning Test and MoCA could predict the abnormal intrinsic activities.
Collapse
Affiliation(s)
- Yaxin Gao
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Rehabilitation Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Shui Tian
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Tang
- Rehabilitation Medicine Department, Jiangsu Province Geriatric Hospital, Nanjing, China
| | - Xi Yang
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, China
| | - Tong Wang
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Shen
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yin Tang
- Department of Medical imaging, Jingjiang People’s Hospital, Jingjiang, China
| | - Ling Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongyuan Ding
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinqin Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiahuan Li
- School of Rehabilitation Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Qi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Zhu
- Rehabilitation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Mihara M, Izumika R, Tsukiura T. Remembering unexpected beauty: Contributions of the ventral striatum to the processing of reward prediction errors regarding the facial attractiveness in face memory. Neuroimage 2023; 282:120408. [PMID: 37838105 DOI: 10.1016/j.neuroimage.2023.120408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/12/2023] [Indexed: 10/16/2023] Open
Abstract
The COVID-19 pandemic has led people to predict facial attractiveness from partially covered faces. Differences in the predicted and observed facial attractiveness (i.e., masked and unmasked faces, respectively) are defined as reward prediction error (RPE) in a social context. Cognitive neuroscience studies have elucidated the neural mechanisms underlying RPE-induced memory improvements in terms of monetary rewards. However, little is known about the mechanisms underlying RPE-induced memory modulation in terms of social rewards. To elucidate this, the present functional magnetic resonance imaging (fMRI) study investigated activity and functional connectivity during face encoding. In encoding trials, participants rated the predicted attractiveness of faces covered except for around the eyes (prediction phase) and then rated the observed attractiveness of these faces without any cover (outcome phase). The difference in ratings between these phases was defined as RPE in facial attractiveness, and RPE was categorized into positive RPE (increased RPE from the prediction to outcome phases), negative RPE (decreased RPE from the prediction to outcome phases), and non-RPE (no difference in RPE between the prediction and outcome phases). During retrieval, participants were presented with individual faces that had been seen and unseen in the encoding trials, and were required to judge whether or not each face had been seen in the encoding trials. Univariate activity in the ventral striatum (VS) exhibited a linear increase with increased RPE in facial attractiveness. In the multivariate pattern analysis (MVPA), activity patterns in the VS and surrounding areas (extended VS) significantly discriminated between positive/negative RPE and non-RPE. In the functional connectivity analysis, significant functional connectivity between the extended VS and the hippocampus was observed most frequently in positive RPE. Memory improvements by face-based RPE could be involved in functional networks between the extended VS (representing RPE) and the hippocampus, and the interaction could be modulated by RPE values in a social context.
Collapse
Affiliation(s)
- Moe Mihara
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Reina Izumika
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Tsukiura
- Department of Cognitive, Behavioral and Health Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-Nihonmatsu-Cho Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
16
|
Lloyd A, Viding E, McKay R, Furl N. Understanding patch foraging strategies across development. Trends Cogn Sci 2023; 27:1085-1098. [PMID: 37500422 DOI: 10.1016/j.tics.2023.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Patch foraging is a near-ubiquitous behaviour across the animal kingdom and characterises many decision-making domains encountered by humans. We review how a disposition to explore in adolescence may reflect the evolutionary conditions under which hunter-gatherers foraged for resources. We propose that neurocomputational mechanisms responsible for reward processing, learning, and cognitive control facilitate the transition from exploratory strategies in adolescence to exploitative strategies in adulthood - where individuals capitalise on known resources. This developmental transition may be disrupted by psychopathology, as there is emerging evidence of biases in explore/exploit choices in mental health problems. Explore/exploit choices may be an informative marker for mental health across development and future research should consider this feature of decision-making as a target for clinical intervention.
Collapse
Affiliation(s)
- Alex Lloyd
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK.
| | - Essi Viding
- Clinical, Educational, and Health Psychology, Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP, UK
| | - Ryan McKay
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| | - Nicholas Furl
- Department of Psychology, Royal Holloway, University of London, Egham Hill, Egham, TW20 0EX, UK
| |
Collapse
|
17
|
Crane NA, Molla H, de Wit H. Methamphetamine alters nucleus accumbens neural activation to monetary loss in healthy young adults. Psychopharmacology (Berl) 2023; 240:1891-1900. [PMID: 37530883 PMCID: PMC10572040 DOI: 10.1007/s00213-023-06398-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Stimulant drugs like methamphetamine (MA) activate brain reward circuitry, which is linked to the development of problematic drug use. It is not clear how drugs like MA alter neural response to a non-drug reward. OBJECTIVES We examined how acute MA impacts neural response to receipt of a monetary reward relative to a loss in healthy adults. We hypothesized that MA (vs. placebo) would increase mesolimbic neural activation to reward, relative to loss. METHODS In a within-subject, randomized, cross-over, double-blind, placebo-controlled design, 41 healthy adults completed the Doors monetary reward task during fMRI after ingestion of placebo or 20 mg MA. We examined drug effects on neural response to reward receipt (Win vs. Loss) using a priori anatomical striatal regions of interest (nucleus accumbens (NAcc), caudate, putamen). RESULTS MA decreased NAcc BOLD activation to reward vs loss compared to placebo (p=.007) without altering caudate or putamen BOLD activation. Similar effects for reward vs. loss were obtained using whole brain analysis. Additional exploratory ROI analysis comparing reward and loss activation relative to a neutral "fixation" period indicated that MA increased NAcc BOLD activation during loss trials, without decreasing activation during win trials. CONCLUSIONS This preliminary evidence suggests that MA increases NAcc neural response to the receipt of monetary loss. Additional studies are needed to replicate our findings and clarify the mechanisms contributing to altered mesolimbic neural response to reward and loss receipt during stimulant intoxication.
Collapse
Affiliation(s)
- Natania A Crane
- Department of Psychiatry, University of Illinois, 1601 W Taylor St (M/C 912), Chicago, IL, 60612, USA.
| | - Hanna Molla
- Department of Psychiatry and Behavioral Neuroscience, University of Illinois, Chicago, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Illinois, Chicago, USA
| |
Collapse
|
18
|
Dadario NB, Sughrue ME. The functional role of the precuneus. Brain 2023; 146:3598-3607. [PMID: 37254740 DOI: 10.1093/brain/awad181] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Recent advancements in computational approaches and neuroimaging techniques have refined our understanding of the precuneus. While previously believed to be largely a visual processing region, the importance of the precuneus in complex cognitive functions has been previously less familiar due to a lack of focal lesions in this deeply seated region, but also a poor understanding of its true underlying anatomy. Fortunately, recent studies have revealed significant information on the structural and functional connectivity of this region, and this data has provided a more detailed mechanistic understanding of the importance of the precuneus in healthy and pathologic states. Through improved resting-state functional MRI analyses, it has become clear that the function of the precuneus can be better understood based on its functional association with large scale brain networks. Dual default mode network systems have been well explained in recent years in supporting episodic memory and theory of mind; however, a novel 'para-cingulate' network, which is a subnetwork of the larger central executive network, with likely significant roles in self-referential processes and related psychiatric symptoms is introduced here and requires further clarification. Importantly, detailed anatomic studies on the precuneus structural connectivity inside and beyond the cingulate cortex has demonstrated the presence of large structural white matter connections, which provide an additional layer of meaning to the structural-functional significance of this region and its association with large scale brain networks. Together, the structural-functional connectivity of the precuneus has provided central elements which can model various neurodegenerative diseases and psychiatric disorders, such as Alzheimer's disease and depression.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 07102, USA
| | | |
Collapse
|
19
|
Rehbein MA, Kroker T, Winker C, Ziehfreund L, Reschke A, Bölte J, Wyczesany M, Roesmann K, Wessing I, Junghöfer M. Non-invasive stimulation reveals ventromedial prefrontal cortex function in reward prediction and reward processing. Front Neurosci 2023; 17:1219029. [PMID: 37650099 PMCID: PMC10465130 DOI: 10.3389/fnins.2023.1219029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/20/2023] [Indexed: 09/01/2023] Open
Abstract
Introduction Studies suggest an involvement of the ventromedial prefrontal cortex (vmPFC) in reward prediction and processing, with reward-based learning relying on neural activity in response to unpredicted rewards or non-rewards (reward prediction error, RPE). Here, we investigated the causal role of the vmPFC in reward prediction, processing, and RPE signaling by transiently modulating vmPFC excitability using transcranial Direct Current Stimulation (tDCS). Methods Participants received excitatory or inhibitory tDCS of the vmPFC before completing a gambling task, in which cues signaled varying reward probabilities and symbols provided feedback on monetary gain or loss. We collected self-reported and evaluative data on reward prediction and processing. In addition, cue-locked and feedback-locked neural activity via magnetoencephalography (MEG) and pupil diameter using eye-tracking were recorded. Results Regarding reward prediction (cue-locked analysis), vmPFC excitation (versus inhibition) resulted in increased prefrontal activation preceding loss predictions, increased pupil dilations, and tentatively more optimistic reward predictions. Regarding reward processing (feedback-locked analysis), vmPFC excitation (versus inhibition) resulted in increased pleasantness, increased vmPFC activation, especially for unpredicted gains (i.e., gain RPEs), decreased perseveration in choice behavior after negative feedback, and increased pupil dilations. Discussion Our results support the pivotal role of the vmPFC in reward prediction and processing. Furthermore, they suggest that transient vmPFC excitation via tDCS induces a positive bias into the reward system that leads to enhanced anticipation and appraisal of positive outcomes and improves reward-based learning, as indicated by greater behavioral flexibility after losses and unpredicted outcomes, which can be seen as an improved reaction to the received feedback.
Collapse
Affiliation(s)
- Maimu Alissa Rehbein
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Thomas Kroker
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Constantin Winker
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Lena Ziehfreund
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
| | - Anna Reschke
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
| | - Jens Bölte
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute of Psychology, University of Münster, Münster, Germany
| | | | - Kati Roesmann
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Institute for Clinical Psychology, University of Siegen, Siegen, Germany
| | - Ida Wessing
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Department of Child and Adolescent Psychiatry, University Hospital Münster, Münster, Germany
| | - Markus Junghöfer
- Institute for Biomagnetism and Biosignalanalysis, University Hospital Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| |
Collapse
|
20
|
Yang B, Anderson Z, Zhou Z, Liu S, Haase CM, Qu Y. The longitudinal role of family conflict and neural reward sensitivity in youth's internalizing symptoms. Soc Cogn Affect Neurosci 2023; 18:nsad037. [PMID: 37531585 PMCID: PMC10396325 DOI: 10.1093/scan/nsad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/13/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023] Open
Abstract
Adolescence is often associated with an increase in psychopathology. Although previous studies have examined how family environments and neural reward sensitivity separately play a role in youth's emotional development, it remains unknown how they interact with each other in predicting youth's internalizing symptoms. Therefore, the current research took a biopsychosocial approach to examine this question using two-wave longitudinal data of 9353 preadolescents (mean age = 9.93 years at T1; 51% boys) from the Adolescent Brain Cognitive Development study. Using mixed-effects models, results showed that higher family conflict predicted youth's increased internalizing symptoms 1 year later, whereas greater ventral striatum (VS) activity during reward receipt predicted reduced internalizing symptoms over time. Importantly, there was an interaction effect between family conflict and VS activity. For youth who showed greater VS activation during reward receipt, high family conflict was more likely to predict increased internalizing symptoms. In contrast, youth with low VS activation during reward receipt showed high levels of internalizing symptoms regardless of family conflict. The findings suggest that youth's neural reward sensitivity is a marker of susceptibility to adverse family environments and highlight the importance of cultivating supportive family environments where youth experience less general conflict within the family.
Collapse
Affiliation(s)
- Beiming Yang
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208, USA
| | - Zachary Anderson
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Zexi Zhou
- Department of Human Development and Family Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sihong Liu
- Stanford Center on Early Childhood, Stanford University, Stanford, CA 94305, USA
| | - Claudia M Haase
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208, USA
| | - Yang Qu
- School of Education and Social Policy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Dong TS, Gee GC, Beltran-Sanchez H, Wang M, Osadchiy V, Kilpatrick LA, Chen Z, Subramanyam V, Zhang Y, Guo Y, Labus JS, Naliboff B, Cole S, Zhang X, Mayer EA, Gupta A. How Discrimination Gets Under the Skin: Biological Determinants of Discrimination Associated With Dysregulation of the Brain-Gut Microbiome System and Psychological Symptoms. Biol Psychiatry 2023; 94:203-214. [PMID: 36754687 PMCID: PMC10684253 DOI: 10.1016/j.biopsych.2022.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Discrimination is associated with negative health outcomes as mediated in part by chronic stress, but a full understanding of the biological pathways is lacking. Here we investigate the effects of discrimination involved in dysregulating the brain-gut microbiome (BGM) system. METHODS A total of 154 participants underwent brain magnetic resonance imaging to measure functional connectivity. Fecal samples were obtained for 16S ribosomal RNA profiling and fecal metabolites and serum for inflammatory markers, along with questionnaires. The Everyday Discrimination Scale was administered to measure chronic and routine experiences of unfair treatment. A sparse partial least squares-discriminant analysis was conducted to predict BGM alterations as a function of discrimination, controlling for sex, age, body mass index, and diet. Associations between discrimination-related BGM alterations and psychological variables were assessed using a tripartite analysis. RESULTS Discrimination was associated with anxiety, depression, and visceral sensitivity. Discrimination was associated with alterations of brain networks related to emotion, cognition and self-perception, and structural and functional changes in the gut microbiome. BGM discrimination-related associations varied by race/ethnicity. Among Black and Hispanic individuals, discrimination led to brain network changes consistent with psychological coping and increased systemic inflammation. For White individuals, discrimination was related to anxiety but not inflammation, while for Asian individuals, the patterns suggest possible somatization and behavioral (e.g., dietary) responses to discrimination. CONCLUSIONS Discrimination is attributed to changes in the BGM system more skewed toward inflammation, threat response, emotional arousal, and psychological symptoms. By integrating diverse lines of research, our results demonstrate evidence that may explain how discrimination contributes to health inequalities.
Collapse
Affiliation(s)
- Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System, Los Angeles, California.
| | - Gilbert C Gee
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - Hiram Beltran-Sanchez
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California; California Center for Population Research, University of California, Los Angeles, Los Angeles, California
| | - May Wang
- Department of Community Health Sciences Fielding School of Public Health, Los Angeles, California
| | - Vadim Osadchiy
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lisa A Kilpatrick
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Zixi Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Vishvak Subramanyam
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yurui Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Yinming Guo
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Bruce Naliboff
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Steve Cole
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry & Biobehavioral Sciences and Medicine, University of California, Los Angeles, Los Angeles, California
| | - Xiaobei Zhang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; UCLA Microbiome Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
22
|
Gadassi Polack R, Mollick JA, Keren H, Joormann J, Watts R. Neural responses to reward valence and magnitude from pre- to early adolescence. Neuroimage 2023; 275:120166. [PMID: 37178821 PMCID: PMC10311119 DOI: 10.1016/j.neuroimage.2023.120166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Neural activation during reward processing is thought to underlie critical behavioral changes that take place during the transition to adolescence (e.g., learning, risk-taking). Though literature on the neural basis of reward processing in adolescence is booming, important gaps remain. First, more information is needed regarding changes in functional neuroanatomy in early adolescence. Another gap is understanding whether sensitivity to different aspects of the incentive (e.g., magnitude and valence) changes during the transition into adolescence. We used fMRI from a large sample of preadolescent children to characterize neural responses to incentive valence vs. magnitude during anticipation and feedback, and their change over a period of two years. METHODS Data were taken from the Adolescent Cognitive and Brain DevelopmentSM (ABCD®) study release 3.0. Children completed the Monetary Incentive Delay task at baseline (ages 9-10) and year 2 follow-up (ages 11-12). Based on data from two sites (N = 491), we identified activation-based Regions of Interest (ROIs; e.g., striatum, prefrontal regions, etc.) that were sensitive to trial type (win $5, win $0.20, neutral, lose $0.20, lose $5) during anticipation and feedback phases. Then, in an independent subsample (N = 1470), we examined whether these ROIs were sensitive to valence and magnitude and whether that sensitivity changed over two years. RESULTS Our results show that most ROIs involved in reward processing (including the striatum, prefrontal cortex, and insula) are specialized, i.e., mainly sensitive to either incentive valence or magnitude, and this sensitivity was consistent over a 2-year period. The effect sizes of time and its interactions were significantly smaller (0.002≤η2≤0.02) than the effect size of trial type (0.06≤η2≤0.30). Interestingly, specialization was moderated by reward processing phase but was stable across development. Biological sex and pubertal status differences were few and inconsistent. Developmental changes were mostly evident during success feedback, where neural reactivity increased over time. CONCLUSIONS Our results suggest sub-specialization to valence vs. magnitude within many ROIs of the reward circuitry. Additionally, in line with theoretical models of adolescent development, our results suggest that the ability to benefit from success increases from pre- to early adolescence. These findings can inform educators and clinicians and facilitate empirical research of typical and atypical motivational behaviors during a critical time of development.
Collapse
Affiliation(s)
- Reuma Gadassi Polack
- Psychology Department, Yale University, United States; Psychiatry Department, Yale University, United States; School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Israel.
| | | | - Hanna Keren
- Faculty of Medicine, Bar-Ilan University, Israel
| | | | - Richard Watts
- Psychology Department, Yale University, United States
| |
Collapse
|
23
|
Carruzzo F, Giarratana AO, Del Puppo L, Kaiser S, Tobler PN, Kaliuzhna M. Neural bases of reward anticipation in healthy individuals with low, mid, and high levels of schizotypy. Sci Rep 2023; 13:9953. [PMID: 37337085 DOI: 10.1038/s41598-023-37103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023] Open
Abstract
A growing body of research has placed the ventral striatum at the center of a network of cerebral regions involved in anticipating rewards in healthy controls. However, little is known about the functional connectivity of the ventral striatum associated with reward anticipation in healthy controls. In addition, few studies have investigated reward anticipation in healthy humans with different levels of schizotypy. Here, we investigated reward anticipation in eighty-four healthy individuals (44 females) recruited based on their schizotypy scores. Participants performed a variant of the Monetary Incentive Delay Task while undergoing event-related fMRI.Participants showed the expected decrease in response times for highly rewarded trials compared to non-rewarded trials. Whole-brain activation analyses replicated previous results, including activity in the ventral and dorsal striatum. Whole-brain psycho-physiological interaction analyses of the left and right ventral striatum revealed increased connectivity during reward anticipation with widespread regions in frontal, parietal and occipital cortex as well as the cerebellum and midbrain. Finally, we found no association between schizotypal personality severity and neural activity and cortico-striatal functional connectivity. In line with the motivational, attentional, and motor functions of rewards, our data reveal multifaceted cortico-striatal networks taking part in reward anticipation in healthy individuals. The ventral striatum is connected to regions of the salience, attentional, motor and visual networks during reward anticipation and thereby in a position to orchestrate optimal goal-directed behavior.
Collapse
Affiliation(s)
- F Carruzzo
- Clinical and Experimental Psychopathology Laboratory, University Hospital Geneva, Belle-Idée, Bâtiment Les Voirons, Chemin Petit-Bel-Air 2, 1226, Thônex, Switzerland.
| | - A O Giarratana
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - L Del Puppo
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - S Kaiser
- Clinical and Experimental Psychopathology Laboratory, University Hospital Geneva, Belle-Idée, Bâtiment Les Voirons, Chemin Petit-Bel-Air 2, 1226, Thônex, Switzerland
| | - P N Tobler
- Laboratory for Social and Neural Systems Research, Department of Economics, University of Zurich, Zurich, Switzerland
| | - M Kaliuzhna
- Clinical and Experimental Psychopathology Laboratory, University Hospital Geneva, Belle-Idée, Bâtiment Les Voirons, Chemin Petit-Bel-Air 2, 1226, Thônex, Switzerland
| |
Collapse
|
24
|
Dugré JR, Potvin S. Neural bases of frustration-aggression theory: A multi-domain meta-analysis of functional neuroimaging studies. J Affect Disord 2023; 331:64-76. [PMID: 36924847 DOI: 10.1016/j.jad.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Early evidence suggests that unexpected non-reward may increase the risk for aggressive behaviors. Despite the growing interest in understanding brain functions that may be implicated in aggressive behaviors, the neural processes underlying such frustrative events remain largely unknown. Furthermore, meta-analytic results have produced discrepant results, potentially due to substantial differences in the definition of anger/aggression constructs. METHODS Therefore, we conducted a coordinate-based meta-analysis, using the activation likelihood estimation algorithm, on neuroimaging studies examining reward omission and retaliatory behaviors in healthy subjects. Conjunction analyses were further examined to discover overlapping brain activations across these meta-analytic maps. RESULTS Frustrative non-reward deactivated the orbitofrontal cortex, ventral striatum and posterior cingulate cortex, whereas increased activations were observed in midcingulo-insular regions. Retaliatory behaviors recruited the left fronto-insular and anterior midcingulate cortices, the dorsal caudate and the primary somatosensory cortex. Conjunction analyses revealed that both strongly activated midcingulo-insular regions. LIMITATIONS Spatial overlap between neural correlates of frustration and retaliatory behaviors was conducted using a conjunction analysis. Therefore, neurobiological markers underlying the temporal sequence of the frustration-aggression theory should be interpreted with caution. CONCLUSIONS Nonetheless, our results underscore the role of anterior midcingulate/pre-supplementary motor area and fronto-insular cortex in both frustration and retaliatory behaviors. A neurobiological framework for understanding frustration-based impulsive aggression is provided.
Collapse
Affiliation(s)
- Jules R Dugré
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| | - Stéphane Potvin
- Centre de recherche de l'Institut Universitaire en Santé Mentale de Montréal, Montréal, Canada; Department of Psychiatry and Addiction, Faculty of Medicine, University of Montreal, Montréal, Canada.
| |
Collapse
|
25
|
Zhang X, Cao J, Huang Q, Hong S, Dai L, Chen X, Chen J, Ai M, Gan Y, He J, Kuang L. Severity related neuroanatomical and spontaneous functional activity alteration in adolescents with major depressive disorder. Front Psychiatry 2023; 14:1157587. [PMID: 37091700 PMCID: PMC10113492 DOI: 10.3389/fpsyt.2023.1157587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
Background Major depressive disorder (MDD) is a disabling and severe psychiatric disorder with a high rate of prevalence, and adolescence is one of the most probable periods for the first onset. The neurobiological mechanism underlying the adolescent MDD remains unexplored. Methods In this study, we examined the cortical and subcortical alterations of neuroanatomical structures and spontaneous functional activation in 50 unmedicated adolescents with MDD vs. 39 healthy controls through the combined structural and resting-state functional magnetic resonance imaging. Results Significantly altered regional gray matter volume was found at broader frontal-temporal-parietal and subcortical brain areas involved with various forms of information processing in adolescent MDD. Specifically, the increased GM volume at the left paracentral lobule and right supplementary motor cortex was significantly correlated with depression severity in adolescent MDD. Furthermore, lower cortical thickness at brain areas responsible for visual and auditory processing as well as motor movements was found in adolescent MDD. The lower cortical thickness at the superior premotor subdivision was positively correlated with the course of the disease. Moreover, higher spontaneous neuronal activity was found at the anterior cingulum and medial prefrontal cortex, and this hyperactivity was also negatively correlated with the course of the disease. It potentially reflected the rumination, impaired concentration, and physiological arousal in adolescent MDD. Conclusion The abnormal structural and functional findings at cortico-subcortical areas implied the dysfunctional cognitive control and emotional regulations in adolescent depression. The findings might help elaborate the underlying neural mechanisms of MDD in adolescents.
Collapse
Affiliation(s)
- Xiaoliu Zhang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Xiaoliu Zhang ;
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Huang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Su Hong
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Linqi Dai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaorong Chen
- Mental Health Center, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jianmei Chen
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Ai
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yao Gan
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglan He
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Liu Q, Ely BA, Stern ER, Xu J, Kim JW, Pick DG, Alonso CM, Gabbay V. Neural function underlying reward expectancy and attainment in adolescents with diverse psychiatric symptoms. Neuroimage Clin 2022; 36:103258. [PMID: 36451362 PMCID: PMC9668660 DOI: 10.1016/j.nicl.2022.103258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Reward dysfunction has been hypothesized to play a key role in the development of psychiatric conditions during adolescence. To help capture the complexity of reward function in youth, we used the Reward Flanker fMRI Task, which enabled us to examine neural activity during expectancy and attainment of both certain and uncertain rewards. Participants were 84 psychotropic-medication-free adolescents, including 67 with diverse psychiatric conditions and 17 healthy controls. Functional MRI used high-resolution acquisition and high-fidelity processing techniques modeled after the Human Connectome Project. Analyses examined neural activation during reward expectancy and attainment, and their associations with clinical measures of depression, anxiety, and anhedonia severity, with results controlled for family-wise errors using non-parametric permutation tests. As anticipated, reward expectancy activated regions within the fronto-striatal reward network, thalamus, occipital lobe, superior parietal lobule, temporoparietal junction, and cerebellum. Unexpectedly, however, reward attainment was marked by widespread deactivation in many of these same regions, which we further explored using cosine similarity analysis. Across all subjects, striatum and thalamus activation during reward expectancy negatively correlated with anxiety severity, while activation in numerous cortical and subcortical regions during reward attainment positively correlated with both anxiety and depression severity. These findings highlight the complexity and dynamic nature of neural reward processing in youth.
Collapse
Affiliation(s)
- Qi Liu
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Benjamin A Ely
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Emily R Stern
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States; Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Danielle G Pick
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Carmen M Alonso
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Vilma Gabbay
- Department of Psychiatry & Behavioral Science, Albert Einstein College of Medicine, Bronx, NY, United States; Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States.
| |
Collapse
|
27
|
Kim JU, Bessette KL, Westlund-Schreiner M, Pocius S, Dillahunt AK, Frandsen S, Thomas L, Easter R, Skerrett K, Stange JP, Welsh RC, Langenecker SA, Koppelmans V. Relations of gray matter volume to dimensional measures of cognition and affect in mood disorders. Cortex 2022; 156:57-70. [PMID: 36191367 PMCID: PMC10150444 DOI: 10.1016/j.cortex.2022.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
Understanding the relationship between brain measurements and behavioral performance is an important step in developing approaches for early identification of any psychiatric difficulties and interventions to modify these challenges. Conventional methods to identify associations between regional brain volume and behavioral measures are not optimized, either in scale, scope, or specificity. To find meaningful associations between brain and behavior with greater sensitivity and precision, we applied data-driven factor analytic models to identify and extract individual differences in latent cognitive functions embedded across several computerized cognitive tasks. Furthermore, we simultaneously utilized a keyword-based neuroimaging meta-analytic tool (i.e., NeuroSynth), restricted atlas-parcel matching, and factor-analytic models to narrow down the scope of search and to further aggregate gray matter volume (GMV) data into empirical clusters. We recruited an early adult community cross-sectional sample (Total n = 177, age 18-30) that consisted of individuals with no history of any mood disorder (healthy controls, n = 44), those with remitted major depressive disorder (rMDD, n = 104), and those with a diagnosis of bipolar disorder currently in euthymic state (eBP, n = 29). Study participants underwent structural magnetic resonance imaging (MRI) scans and separately completed behavioral testing using computerized measures. Factor-analyzing five computerized tasks used to assess aspects of cognitive and affective processing resulted in seven latent dimensions: (a) Emotional Memory, (b) Interference Resolution, (c) Reward Sensitivity, (d) Complex Inhibitory Control, (e) Facial Emotion Sensitivity, (f) Sustained attention, and (g)Simple Impulsivity/Response Style. These seven dimensions were then labeled with specific keywords which were used to create neuroanatomical maps using NeuroSynth. These masks were further subdivided into GMV clusters. Using regression, we identified GMV clusters that were predictive of individual differences across each of the aforementioned seven cognitive dimensions. We demonstrate that a dimensional approach consistent with core principles of RDoC can be utilized to identify structural variability predictive of critical dimensions of human behavior.
Collapse
Affiliation(s)
- Joseph U Kim
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; VA Salt Lake City Health Care System, USA
| | - Katie L Bessette
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; Departments of Psychiatry & Psychology, University of Illinois at Chicago, USA
| | | | - Stephanie Pocius
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Alina K Dillahunt
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Summer Frandsen
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Leah Thomas
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA; Department of Psychology, University of Utah, USA
| | - Rebecca Easter
- Departments of Psychiatry & Psychology, University of Illinois at Chicago, USA
| | - Kristy Skerrett
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | | | - Robert C Welsh
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Scott A Langenecker
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA
| | - Vincent Koppelmans
- Department of Psychiatry & Huntsman Mental Health Institute, University of Utah, USA.
| |
Collapse
|
28
|
Frank GKW, Shott ME, Sternheim LC, Swindle S, Pryor TL. Persistence, Reward Dependence, and Sensitivity to Reward Are Associated With Unexpected Salience Response in Girls but Not in Adult Women: Implications for Psychiatric Vulnerabilities. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1170-1182. [PMID: 33872764 DOI: 10.1016/j.bpsc.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Adolescence is a critical period for the development of not only personality but also psychopathology. These processes may be specific to sex, and brain reward circuits may have a role. Here, we studied how reward processing and temperament associations differ across adolescent and adult females. METHODS A total of 29 adolescent girls and 41 adult women completed temperament assessments and performed a classical taste conditioning paradigm during brain imaging. Data were analyzed for the dopamine-related prediction error response. In addition, unexpected stimulus receipt or omission and expected receipt response were also analyzed. Heat maps identified cortical-subcortical brain response associations. RESULTS Adolescents showed stronger prediction error and unexpected receipt and omission responses (partial η2 = 0.063 to 0.166; p = .001 to .043) in insula, orbitofrontal cortex (OFC), and striatum than adults. Expected stimulus receipt response was similar between groups. In adolescents versus adults, persistence was more strongly positively related to prediction error (OFC, insula, striatum; Fisher's z = 1.704 to 3.008; p = .001 to .044) and unexpected stimulus receipt (OFC, insula; Fisher's z = 1.843 to 2.051; p = .014 to .033) and negatively with omission (OFC, insula, striatum; Fisher's z = -1.905 to -3.069; p = .001 to .028). Reward sensitivity and reward dependence correlated more positively with unexpected stimulus receipt and more negatively with stimulus omission response in adolescents. Adolescents showed significant correlations between the striatum and FC for unexpected stimulus receipt and omission that correlated with persistence but were absent in adults. CONCLUSIONS Associations between temperamental traits and brain reward response may provide neurotypical markers that contribute to developing adaptive or maladaptive behavior patterns when transitioning from adolescence to adulthood.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, University of California San Diego, San Diego, California; Eating Disorders Center for Treatment and Research, UC San Diego Health, San Diego, California.
| | - Megan E Shott
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Lot C Sternheim
- Department of Clinical Psychology, Utrecht University, Utrecht, the Netherlands
| | - Skylar Swindle
- Department of Psychiatry, University of California San Diego, San Diego, California
| | | |
Collapse
|
29
|
Kaiser A, Holz NE, Banaschewski T, Baumeister S, Bokde ALW, Desrivières S, Flor H, Fröhner JH, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Paillère Martinot ML, Artiges E, Millenet S, Orfanos DP, Poustka L, Schwarz E, Smolka MN, Walter H, Whelan R, Schumann G, Brandeis D, Nees F. A Developmental Perspective on Facets of Impulsivity and Brain Activity Correlates From Adolescence to Adulthood. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1103-1115. [PMID: 35182817 PMCID: PMC9636026 DOI: 10.1016/j.bpsc.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND On a theoretical level, impulsivity represents a multidimensional construct associated with acting without foresight, inefficient inhibitory response control, and alterations in reward processing. On an empirical level, relationships and changes in associations between different measures of impulsivity from adolescence into young adulthood and their relation to neural activity during inhibitory control and reward anticipation have not been fully understood. METHODS We used data from IMAGEN, a longitudinal multicenter, population-based cohort study in which 2034 healthy adolescents were investigated at age 14, and 1383 were reassessed as young adults at age 19. We measured the construct of trait impulsivity using self-report questionnaires and neurocognitive indices of decisional impulsivity. With functional magnetic resonance imaging, we assessed brain activity during inhibition error processing using the stop signal task and during reward anticipation in the monetary incentive delay task. Correlations were analyzed, and mixed-effect models were fitted to explore developmental and predictive effects. RESULTS All self-report and neurocognitive measures of impulsivity proved to be correlated during adolescence and young adulthood. Further, pre-supplementary motor area and inferior frontal gyrus activity during inhibition error processing was associated with trait impulsivity in adolescence, whereas in young adulthood, a trend-level association with reward anticipation activity in the ventral striatum was found. For adult delay discounting, a trend-level predictive effect of adolescent neural activity during inhibition error processing emerged. CONCLUSIONS Our findings help to inform theories of impulsivity about the development of its multidimensional nature and associated brain activity patterns and highlight the need for taking functional brain development into account when evaluating neuromarker candidates.
Collapse
Affiliation(s)
- Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands; Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Antoine Grigis
- NeuroSpin, Commissariat à l'énergie atomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Department of Psychology, University of Vermont, Burlington, Vermont
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt, Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, L'Assistance Publique-Hôpitaux de Paris Sorbonne Université, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale U A10 "Trajectoires développementales en psychiatrie", Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Centre Borelli, Gif-sur-Yvette, France; Psychiatry Department 91G16, Orsay Hospital, Orsay, France
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technical University Dresden, Dresden, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychiatry, University of Vermont, Burlington, Vermont
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Population Neuroscience Research Group, Department of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany; Centre for Population Neuroscience and Precision Medicine, Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom; Institute for Science and Technology of Brain-inspired Intelligence, Fudan University, Shanghai, China
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, Swiss Federal Institute of Technology and University of Zürich, Zürich, Switzerland
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
30
|
Decreased reward circuit connectivity during reward anticipation in major depression. Neuroimage Clin 2022; 36:103226. [PMID: 36257119 PMCID: PMC9668633 DOI: 10.1016/j.nicl.2022.103226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 09/21/2022] [Accepted: 10/08/2022] [Indexed: 11/11/2022]
Abstract
An important symptom of major depressive disorder (MDD) is the inability to experience pleasure, possibly due to a dysfunction of the reward system. Despite promising insights regarding impaired reward-related processing in MDD, circuit-level abnormalities remain largely unexplored. Furthermore, whereas studies contrasting experimental conditions from incentive tasks have revealed important information about reward processing, temporal difference modeling of reward-related prediction error (PE) signals might give a more accurate representation of the reward system. We used a monetary incentive delay task during functional MRI scanning to explore PE-related striatal and ventral tegmental area (VTA) activation in response to anticipation and delivery of monetary rewards in 24 individuals with MDD versus 24 healthy controls (HCs). Furthermore, we investigated group differences in temporal difference related connectivity with a generalized psychophysiological interaction (gPPI) analysis with the VTA, ventral striatum (VS) and dorsal striatum (DS) as seeds during reward versus neutral, both in anticipation and delivery. Relative to HCs, MDD patients displayed a trend-level (p = 0.052) decrease in temporal difference-related activation in the VS during reward anticipation and delivery combined. Moreover, gPPI analyses revealed that during reward anticipation, MDD patients exhibited decreased functional connectivity between the VS and anterior cingulate cortex / medial prefrontal cortex, anterior cingulate gyrus, angular/middle orbital gyrus, left insula, superior/middle frontal gyrus (SFG/MFG) and precuneus/superior occipital gyrus/cerebellum compared to HC. Moreover, MDD patients showed decreased functional connectivity between the VTA and left insula compared to HC during reward anticipation. Exploratory analysis separating medication free patients from patients using antidepressant revealed that these decreased functional connectivity patterns were mainly apparent in the MDD group that used antidepressants. These results suggest that MDD is characterized by alterations in reward circuit connectivity rather than isolated activation impairments. These findings represent an important extension of the existing literature since improved understanding of neural pathways underlying depression-related reward dysfunctions, may help currently unmet diagnostic and therapeutic efforts.
Collapse
|
31
|
Skumlien M, Mokrysz C, Freeman TP, Wall MB, Bloomfield M, Lees R, Borissova A, Petrilli K, Carson J, Coughlan T, Ofori S, Langley C, Sahakian BJ, Curran HV, Lawn W. Neural responses to reward anticipation and feedback in adult and adolescent cannabis users and controls. Neuropsychopharmacology 2022; 47:1976-1983. [PMID: 35388175 PMCID: PMC9485226 DOI: 10.1038/s41386-022-01316-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Chronic use of drugs may alter the brain's reward system, though the extant literature concerning long-term cannabis use and neural correlates of reward processing has shown mixed results. Adolescents may be more vulnerable to the adverse effects of cannabis than adults; however, this has not been investigated for reward processing. As part of the 'CannTeen' study, in the largest functional magnetic resonance imaging study of reward processing and cannabis use to date, we investigated reward anticipation and feedback in 125 adult (26-29 years) and adolescent (16-17 years) cannabis users (1-7 days/week cannabis use) and gender- and age-matched controls, using the Monetary Incentive Delay task. Blood-oxygen-level-dependent responses were examined using region of interest (ROI) analyses in the bilateral ventral striatum for reward anticipation and right ventral striatum and left ventromedial prefrontal cortex for feedback, and exploratory whole-brain analyses. Results showed no User-Group or User-Group × Age-Group effects during reward anticipation or feedback in pre-defined ROIs. These null findings were supported by post hoc Bayesian analyses. However, in the whole-brain analysis, cannabis users had greater feedback activity in the prefrontal and inferior parietal cortex compared to controls. In conclusion, cannabis users and controls had similar neural responses during reward anticipation and in hypothesised reward-related regions during reward feedback. The whole-brain analysis revealed tentative evidence of greater fronto-parietal activity in cannabis users during feedback. Adolescents showed no increased vulnerability compared with adults. Overall, reward anticipation and feedback processing appear spared in adolescent and adult cannabis users, but future longitudinal studies are needed to corroborate this.
Collapse
Affiliation(s)
- Martine Skumlien
- Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK.
| | - Claire Mokrysz
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Tom P Freeman
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Matthew B Wall
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
- Invicro, London, UK
- Faculty of Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Rachel Lees
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - Anna Borissova
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Kat Petrilli
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
- Addiction and Mental Health Group (AIM), Department of Psychology, University of Bath, Bath, UK
| | - James Carson
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Tiernan Coughlan
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Shelan Ofori
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Christelle Langley
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Barbara J Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - H Valerie Curran
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
| | - Will Lawn
- Clinical Psychopharmacology Unit, Clinical, Educational and Health Psychology Department, University College London, London, UK
- National Addiction Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
32
|
Duell N, Kwon SJ, Do KT, Turpyn CC, Prinstein MJ, Lindquist KA, Telzer EH. Positive risk taking and neural sensitivity to risky decision making in adolescence. Dev Cogn Neurosci 2022; 57:101142. [PMID: 35930925 PMCID: PMC9356152 DOI: 10.1016/j.dcn.2022.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
This study examines associations between adolescents' positive risk taking and neural activation during risky decision-making. Participants included 144 adolescents ages 13-16 years (Mage = 14.23; SDage = 0.7) from diverse racial and ethnic groups. Participants self-reported their engagement in positive and negative risk taking. Additionally, participants played the Cups task during fMRI, where they chose between a safe choice (guaranteed earning of 15 cents) and a risky choice (varying probabilities of earning more than 15 cents). Using a risk-return framework, we examined adolescents' sensitivity to both risks (safe versus risky) and returns (expected value, or potential reward as a function of its probability of occurring) at the behavioral and neural levels. All participants took more risks when the expected value of the choice was high. However, high positive risk taking was uniquely associated with dampened dmPFC tracking of expected value. Together, results show that adolescents' positive risk taking is associated with neural activity during risky decision-making. Findings are among the first to identify brain-behavior correlations associated with positive risk taking during adolescence.
Collapse
Affiliation(s)
- Natasha Duell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States.
| | - Seh-Joo Kwon
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Kathy T Do
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Caitlin C Turpyn
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599-3270, United States
| |
Collapse
|
33
|
Kaliuzhna M, Kirschner M, Tobler PN, Kaiser S. Comparing adaptive coding of reward in bipolar I disorder and schizophrenia. Hum Brain Mapp 2022; 44:523-534. [PMID: 36111883 PMCID: PMC9842918 DOI: 10.1002/hbm.26078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Deficits in neural processing of reward have been described in both bipolar disorder (BD) and schizophrenia (SZ), but it remains unclear to what extent these deficits are caused by similar mechanisms. Efficient reward processing relies on adaptive coding which allows representing large input spans by limited neuronal encoding ranges. Deficits in adaptive coding of reward have previously been observed across the SZ spectrum and correlated with total symptom severity. In the present work, we sought to establish whether adaptive coding is similarly affected in patients with BD. Twenty-five patients with BD, 27 patients with SZ and 25 healthy controls performed a variant of the Monetary Incentive Delay task during functional magnetic resonance imaging in two reward range conditions. Adaptive coding was impaired in the posterior part of the right caudate in BD and SZ (trend level). In contrast, BD did not show impaired adaptive coding in the anterior caudate and right precentral gyrus/insula, where SZ showed deficits compared to healthy controls. BD patients show adaptive coding deficits that are similar to those observed in SZ in the right posterior caudate. Adaptive coding in BD appeared more preserved as compared to SZ participants especially in the more anterior part of the right caudate and to a lesser extent also in the right precentral gyrus. Thus, dysfunctional adaptive coding could constitute a fundamental deficit in severe mental illnesses that extends beyond the SZ spectrum.
Collapse
Affiliation(s)
- Mariia Kaliuzhna
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland
| | | | - Philippe N. Tobler
- Laboratory for Social and Neural Systems Research, Department of EconomicsUniversity of ZurichZurichSwitzerland
| | - Stefan Kaiser
- Clinical and Experimental Psychopathology Group, Department of PsychiatryUniversity of GenevaGenevaSwitzerland,Department of Psychiatry, Psychotherapy and PsychosomaticsPsychiatric Hospital, University of ZurichZurichSwitzerland
| |
Collapse
|
34
|
Abnormal Brain Networks Related to Drug and Nondrug Reward Anticipation and Outcome Processing in Stimulant Use Disorder: A Functional Connectomics Approach. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 8:560-571. [PMID: 36108930 DOI: 10.1016/j.bpsc.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Drug addiction is associated with blunted neural responses to nondrug rewards, such as money, but heightened responses to drug cues that predict drug-reward outcomes. This dissociation underscores the role of incentive context in the attribution of motivational salience, which may reflect a narrowing toward drug-related goals. This hypothesis, however, has scarcely been investigated. METHODS To address this important scientific gap, the current study performed an empirical assessment of differences in salience attribution by comparing patients with stimulant use disorder (SUD) (n = 41) with control participants (n = 48) on network connectivity related to anticipation and outcome processing using a modified monetary incentive delay task. We hypothesized increased task-related activation and connectivity to drug rewards in patients with SUD, and reduced task-related activation and connectivity to monetary rewards during incentive processing across brain networks. RESULTS In the presence of behavioral and regional brain activation similarities, we found that patients with SUD showed significantly less connectivity involving three separate distributed networks during monetary reward anticipation, and drug and monetary reward outcome processing. No group connectivity differences for drug reward anticipation were identified. Additional graph theory analyses revealed that patients with SUD had longer path lengths across these networks, all of which positively correlated with the duration of stimulant drug use. CONCLUSIONS Specific disruptions in connectivity in networks related to the anticipation of nondrug reward together with more general dysconnectivity in the processing of rewarding outcomes suggest an insensitivity to consequences. These observations support the notion of a predominance of habitual control in patients with SUD.
Collapse
|
35
|
Feng C, Huang W, Xu K, Stewart JL, Camilleri JA, Yang X, Wei P, Gu R, Luo W, Eickhoff SB. Neural substrates of motivational dysfunction across neuropsychiatric conditions: Evidence from meta-analysis and lesion network mapping. Clin Psychol Rev 2022; 96:102189. [PMID: 35908312 PMCID: PMC9720091 DOI: 10.1016/j.cpr.2022.102189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/13/2022] [Accepted: 07/18/2022] [Indexed: 02/03/2023]
Abstract
Motivational dysfunction constitutes one of the fundamental dimensions of psychopathology cutting across traditional diagnostic boundaries. However, it is unclear whether there is a common neural circuit responsible for motivational dysfunction across neuropsychiatric conditions. To address this issue, the current study combined a meta-analysis on psychiatric neuroimaging studies of reward/loss anticipation and consumption (4308 foci, 438 contrasts, 129 publications) with a lesion network mapping approach (105 lesion cases). Our meta-analysis identified transdiagnostic hypoactivation in the ventral striatum (VS) for clinical/at-risk conditions compared to controls during the anticipation of both reward and loss. Moreover, the VS subserves a key node in a distributed brain network which encompasses heterogeneous lesion locations causing motivation-related symptoms. These findings do not only provide the first meta-analytic evidence of shared neural alternations linked to anticipatory motivation-related deficits, but also shed novel light on the role of VS dysfunction in motivational impairments in terms of both network integration and psychological functions. Particularly, the current findings suggest that motivational dysfunction across neuropsychiatric conditions is rooted in disruptions of a common brain network anchored in the VS, which contributes to motivational salience processing rather than encoding positive incentive values.
Collapse
Affiliation(s)
- Chunliang Feng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education (South China Normal University), Guangzhou, China,Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenhao Huang
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China,Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Germany
| | - Kangli Xu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | | | - Julia A. Camilleri
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Xiaofeng Yang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, and School of Psychology, Capital Normal University, Beijing, China
| | - Ruolei Gu
- Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China,Corresponding authors at: Guangdong Provincial Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China. (C. Feng), (R. Gu)
| | - Wenbo Luo
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany,Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
36
|
Brislin SJ, Weigard AS, Hardee JE, Cope LM, Martz ME, Zucker RA, Heitzeg MM. Sex Moderates Reward- and Loss-Related Neural Correlates of Triarchic-Model Traits and Antisocial Behavior. Clin Psychol Sci 2022; 10:700-713. [PMID: 35874917 PMCID: PMC9306410 DOI: 10.1177/21677026211054780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Abnormalities in responses to reward and loss are implicated in the etiology of antisocial behavior and psychopathic traits. While there is evidence for sex differences in neural response to reward and loss, it remains unclear how sex differences may moderate links between these neural responses and the phenotypic expression of antisocial behavior and psychopathic traits. This study examined sex differences in associations of neural response to reward and loss with antisocial personality symptoms and psychopathic traits. Functional neuroimaging data were collected during a monetary incentive delay task from 158 participants. Among males, during loss anticipation, activation in the left nucleus accumbens was negatively associated with antisocial behavior. Among females, during loss feedback, activation in the left nucleus accumbens and left amygdala was negatively associated with antisocial behavior. These results suggest that phenotypic sex differences in psychopathic traits and antisocial behavior may in part be attributable to different etiological pathways.
Collapse
Affiliation(s)
- Sarah J. Brislin
- Virginia Commonwealth University, Department of Psychology, 8 N Harrison Rd, Richmond VA, 23220, USA
| | - Alexander S. Weigard
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Jillian E. Hardee
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Lora M. Cope
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Meghan E. Martz
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Robert A. Zucker
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Mary M. Heitzeg
- University of Michigan, Department of Psychiatry and Addiction Center, 4250 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Liu T, Wang D, Wang C, Xiao T, Shi J. The influence of reward anticipation on conflict control in children and adolescents: Evidences from hierarchical drift-diffusion model and event-related potentials. Dev Cogn Neurosci 2022; 55:101118. [PMID: 35653919 PMCID: PMC9163699 DOI: 10.1016/j.dcn.2022.101118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
Reward is deemed a performance reinforcer. The current study investigated how social and monetary reward anticipation affected cognitive control in 39 children, 40 adolescents, and 40 adults. We found that cognitive control performance improved with age in a Simon task, and the reaction time (RT) was modulated by the reward magnitude. The conflict monitoring process (target N2 amplitudes) of adolescents and the attentional control processes (target P3 amplitudes) of adolescents and adults could be adjusted by reward magnitude, suggesting that adolescents were more sensitive to rewards compared to children. Reward magnitudes influenced the neural process of attentional control with larger P3 in congruent trails than that in incongruent trials only in low reward condition. The result of hierarchical drift-diffusion model indicated that children had slower drift rates, higher decision threshold, and longer non-decision time than adolescents and adults. Adolescents had faster drift rates in monetary task than in social task under the high reward condition, and they had faster drift rates under high reward condition than no reward condition only in the monetary task. The correlation analysis further showed that adults' non-decision time and decision threshold correlated with conflict monitoring process (N2 responses) and attentional control process on conflicts (P3 responses). Adolescents' drift rates associated with neural process of attentional control. The current study reveals that reward magnitude and reward type can modulate cognitive control process, especially in adolescents.
Collapse
Affiliation(s)
- Tongran Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Di Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Chenglong Wang
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Tong Xiao
- School of Computer Science and Engineering, Northeastern University, Shenyang, China
| | - Jiannong Shi
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China; Department of Learning and Philosophy, Aalborg University, Denmark
| |
Collapse
|
38
|
Calabrese JR, Goetschius LG, Murray L, Kaplan MR, Lopez-Duran N, Mitchell C, Hyde LW, Monk CS. Mapping frontostriatal white matter tracts and their association with reward-related ventral striatum activation in adolescence. Brain Res 2022; 1780:147803. [PMID: 35090884 DOI: 10.1016/j.brainres.2022.147803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/21/2022]
Abstract
The ventral striatum (VS) is implicated in reward processing and motivation. Human and non-human primate studies demonstrate that the VS and prefrontal cortex (PFC), which comprise the frontostriatal circuit, interact to influence motivated behavior. However, there is a lack of research that precisely maps and quantifies VS-PFC white matter tracts. Moreover, no studies have linked frontostriatal white matter to VS activation. Using a multimodal neuroimaging approach with diffusion MRI (dMRI) and functional MRI (fMRI), the present study had two objectives: 1) to chart white matter tracts between the VS and specific PFC structures and 2) assess the association between the degree of VS-PFC white matter tract connectivity and VS activation in 187 adolescents. White matter connectivity was assessed with probabilistic tractography and functional activation was examined with two fMRI tasks (one task with social reward and another task using monetary reward). We found widespread but variable white matter connectivity between the VS and areas of the PFC, with the anterior insula and subgenual cingulate cortex demonstrating the greatest degree of connectivity with the VS. VS-PFC structural connectivity was related to functional activation in the VS though activation depended on the specific PFC region and reward task.
Collapse
Affiliation(s)
| | | | - Laura Murray
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Megan R Kaplan
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Peckins MK, Westerman HB, Burt SA, Murray L, Alves M, Miller AL, Gearhardt AN, Klump KL, Lumeng JC, Hyde LW. A brief child-friendly reward task reliably activates the ventral striatum in two samples of socioeconomically diverse youth. PLoS One 2022; 17:e0263368. [PMID: 35113913 PMCID: PMC8812963 DOI: 10.1371/journal.pone.0263368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 01/18/2022] [Indexed: 11/18/2022] Open
Abstract
Adolescence is a period of increased risk-taking behavior, thought to be driven, in part, by heightened reward sensitivity. One challenge of studying reward processing in the field of developmental neuroscience is finding a task that activates reward circuitry, and is short, not too complex, and engaging for youth of a wide variety of ages and socioeconomic backgrounds. In the present study, we tested a brief child-friendly reward task for activating reward circuitry in two independent samples of youth ages 7-19 years old enriched for poverty (study 1: n = 464; study 2: n = 27). The reward task robustly activated the ventral striatum, with activation decreasing from early to mid-adolescence and increasing from mid- to late adolescence in response to reward. This response did not vary by gender, pubertal development, or income-to-needs ratio, making the task applicable for a wide variety of populations. Additionally, ventral striatum activation to the task did not differ between youth who did and did not expect to receive a prize at the end of the task, indicating that an outcome of points alone may be enough to engage reward circuitry. Thus, this reward task is effective for studying reward processing in youth from different socioeconomic backgrounds.
Collapse
Affiliation(s)
- Melissa K. Peckins
- Department of Psychology, St. John’s University, Queens, New York, United States of America
| | - Heidi B. Westerman
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - S. Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, Michigan, United States of America
| | - Laura Murray
- McLean Imaging Center, McLean Hospital, Belmont, Massachusetts, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martha Alves
- Department of Family Medicine, Michigan Medicine, Ann Arbor, Michigan, United States of America
| | - Alison L. Miller
- Department of Health Behavior and Health Education, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ashley N. Gearhardt
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kelly L. Klump
- Department of Psychology, Michigan State University, East Lansing, Michigan, United States of America
| | - Julie C. Lumeng
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
40
|
Rohlfing N, Bonnet U, Tendolkar I, Hinney A, Scherbaum N. Subjective reward processing and catechol- O- methyltransferase Val158Met polymorphism as potential research domain criteria in addiction: A pilot study. Front Psychiatry 2022; 13:992657. [PMID: 36311493 PMCID: PMC9613938 DOI: 10.3389/fpsyt.2022.992657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The Research Domain Criteria (RDoC) approach seeks to understand mental functioning in continuous valid dimensions ranging from functional to pathological. Reward processing is a transdiagnostic functioning domain of the RDoC. Due to prototypical abnormalities, addictions are especially applicable for the investigation of reward processing. Subjective reward processing is challenging to determine and differs between genotypes of the catechol-O-methyltransferase gene (COMT) Val158Met polymorphism for incomparable daily life experiences. Thus, we implemented the monetary incentive delay (MID) task with comparable reward cues and visual analog scales (VAS) to assess subjective reward processing in male abstinent cannabis-dependent individuals (N = 13) and a control group of nicotine smokers (N = 13). COMT Val158Met genotypes were nominally associated with differences in cigarettes smoked per day and motivation in the MID Task (p = 0.028; p = 0.017). For feedback gain, activation of the right insula was increased in controls, and activation correlated with gain expectancy and satisfaction about gain. Subjective value is not detached from reward parameters, but is modulated from expectancy and reward by the insula. The underlying neural mechanisms are a fundamental target point for treatments, interventions, and cognitive behavioral therapy.
Collapse
Affiliation(s)
- Nico Rohlfing
- Department of Addictive Behaviour and Addiction Medicine, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Udo Bonnet
- Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Evangelisches Krankenhaus Castrop-Rauxel, Academic Teaching Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Centre for Medical Neuroscience, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Norbert Scherbaum
- Department of Addictive Behaviour and Addiction Medicine, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany.,Department of Psychiatry and Psychotherapy, LVR-Hospital Essen, Hospital of the University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
41
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Hypothalamic Functional Connectivity and Apathy in People with Alzheimer's Disease and Cognitively Normal Healthy Controls. J Alzheimers Dis 2022; 90:1615-1628. [PMID: 36314209 PMCID: PMC10064487 DOI: 10.3233/jad-220708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Earlier studies have described the neural markers of apathy in Alzheimer's disease (AD) and mild cognitive impairment (MCI), but few focused on the motivation circuits. Here, we targeted hypothalamus, a hub of the motivation circuit. OBJECTIVE To examine hypothalamic resting state functional connectivity (rsFC) in relation to apathy. METHODS We performed whole-brain regression of hypothalamic rsFC against Apathy Evaluation Scale (AES) total score and behavioral, cognitive, and emotional subscores in 29 patients with AD/MCI and 28 healthy controls (HC), controlling for age, sex, education, cognitive status, and depression. We evaluated the results at a corrected threshold and employed path analyses to assess possible interaction between hypothalamic rsFCs, apathy and depression/memory. Finally, we re-examined the findings in a subsample of amyloid-β-verified AD. RESULTS AES total score correlated negatively with hypothalamic precuneus (PCu)/posterior cingulate cortex (PCC) and positively with left middle temporal gyrus (MTG) and supramarginal gyrus rsFCs. Behavioral subscore correlated negatively with hypothalamic PCu/PCC and positively with middle frontal gyrus rsFC. Cognitive subscore correlated positively with hypothalamic MTG rsFC. Emotional subscore correlated negatively with hypothalamic calcarine cortex rsFC. In path analyses, hypothalamic-PCu/PCC rsFC negatively modulated apathy and, in turn, depression. The model where hypothalamic MTG rsFC and memory independently modulated apathy also showed a good fit. The findings of diminished hypothalamic-PCu/PCC rsFC in relation to apathy and, in turn, depression were confirmed in amyloid-verified AD. CONCLUSION The findings together support a role of altered hypothalamic connectivity in relation to apathy and depression, and modulation of apathy by memory dysfunction.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Medicine & Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Alzheimer's Disease Research Unit, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA.,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Harju-Seppänen J, Irizar H, Bramon E, Blakemore SJ, Mason L, Bell V. Reward Processing in Children With Psychotic-Like Experiences. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgab054. [PMID: 35036918 PMCID: PMC8756103 DOI: 10.1093/schizbullopen/sgab054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alterations to striatal reward pathways have been identified in individuals with psychosis. They are hypothesized to be a key mechanism that generate psychotic symptoms through the production of aberrant attribution of motivational salience and are proposed to result from accumulated childhood adversity and genetic risk, making the striatal system hyper-responsive to stress. However, few studies have examined whether children with psychotic-like experiences (PLEs) also exhibit these alterations, limiting our understanding of how differences in reward processing relate to hallucinations and delusional ideation in childhood. Consequently, we examined whether PLEs and PLE-related distress were associated with reward-related activation in the nucleus accumbens (NAcc). The sample consisted of children (N = 6718) from the Adolescent Brain Cognitive Development (ABCD) study aged 9-10 years who had participated in the Monetary Incentive Delay (MID) task in functional MRI. We used robust mixed-effects linear regression models to investigate the relationship between PLEs and NAcc activation during the reward anticipation and reward outcome stages of the MID task. Analyses were adjusted for gender, household income, ethnicity, depressive symptoms, movement in the scanner, pubertal development, scanner ID, subject and family ID. There was no reliable association between PLEs and alterations to anticipation- or outcome-related striatal reward processing. We discuss the implications for developmental models of psychosis and suggest a developmental delay model of how PLEs may arise at this stage of development.
Collapse
Affiliation(s)
- Jasmine Harju-Seppänen
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Haritz Irizar
- Division of Psychiatry, University College London, London, UK
- Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
| | | | - Liam Mason
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Wellcome Trust Centre for Human Neuroimaging, University College London, London, UK
| | - Vaughan Bell
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
43
|
Cao Z, Ottino-Gonzalez J, Cupertino RB, Juliano A, Chaarani B, Banaschewski T, Bokde ALW, Quinlan EB, Desrivières S, Flor H, Grigis A, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Paus T, Poustka L, Hohmann S, Millenet S, Fröhner JH, Robinson L, Smolka MN, Walter H, Winterer J, Schumann G, Whelan R, Mackey S, Garavan H. Characterizing reward system neural trajectories from adolescence to young adulthood. Dev Cogn Neurosci 2021; 52:101042. [PMID: 34894615 PMCID: PMC8668439 DOI: 10.1016/j.dcn.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/05/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Mixed findings exist in studies comparing brain responses to reward in adolescents and adults. Here we examined the trajectories of brain response, functional connectivity and task-modulated network properties during reward processing with a large-sample longitudinal design. Participants from the IMAGEN study performed a Monetary Incentive Delay task during fMRI at timepoint 1 (T1; n = 1304, mean age=14.44 years old) and timepoint 2 (T2; n = 1241, mean age=19.09 years). The Alcohol Use Disorders Identification Test (AUDIT) was administrated at both T1 and T2 to assess a participant’s alcohol use during the past year. Voxel-wise linear mixed effect models were used to compare whole brain response as well as functional connectivity of the ventral striatum (VS) during reward anticipation (large reward vs no-reward cue) between T1 and T2. In addition, task-modulated networks were constructed using generalized psychophysiological interaction analysis and summarized with graph theory metrics. To explore alcohol use in relation to development, participants with no/low alcohol use at T1 but increased alcohol use to hazardous use level at T2 (i.e., participants with AUDIT≤2 at T1 and ≥8 at T2) were compared against those with consistently low scores (i.e., participants with AUDIT≤2 at T1 and ≤7 at T2). Across the whole sample, lower brain response during reward anticipation was observed at T2 compared with T1 in bilateral caudate nucleus, VS, thalamus, midbrain, dorsal anterior cingulate as well as left precentral and postcentral gyrus. Conversely, greater response was observed bilaterally in the inferior and middle frontal gyrus and right precentral and postcentral gyrus at T2 (vs. T1). Increased functional connectivity with VS was found in frontal, temporal, parietal and occipital regions at T2. Graph theory metrics of the task-modulated network showed higher inter-regional connectivity and topological efficiency at T2. Interactive effects between time (T1 vs. T2) and alcohol use group (low vs. high) on the functional connectivity were observed between left middle temporal gyrus and right VS and the characteristic shortest path length of the task-modulated networks. Collectively, these results demonstrate the utility of the MID task as a probe of typical brain response and network properties during development and of differences in these features related to adolescent drinking, a reward-related behaviour associated with heightened risk for future negative health outcomes. Imaging data during reward anticipation at T1 (age 14) and T2 (age 19) was compared. Brain response decreased in subcortical areas and increased in cortical areas at T2. Functional connectivity (FC) with the ventral striatum increased at T2. Topological efficiency of task-modulated network increased at T2. The developmental pattern was altered in those who increased drinking most at T2.
Collapse
Affiliation(s)
- Zhipeng Cao
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA.
| | - Jonatan Ottino-Gonzalez
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Renata B Cupertino
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Anthony Juliano
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Bader Chaarani
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin D2, Ireland
| | - Erin Burke Quinlan
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom
| | - Sylvane Desrivières
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim 68131, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, D-10587, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France; AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, 75013, Paris
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli, Gif-sur-Yvette 91191, France; Psychiatry Department, EPS Barthélémy Durand, 91152 Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany; Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel 24118, Germany
| | | | - Tomáš Paus
- Departments of Psychiatry and Neuroscience and Centre Hospitalier Universitaire Sainte Justine, University of Montreal, Montreal, Quebec H3T 1C5, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Ontario M6A 2E1, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, Göttingen 37075, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim 68159, Germany
| | - Juliane H Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Lauren Robinson
- Department of Psychological Medicine, Section for Eating Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden 01062, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany
| | - Jeanne Winterer
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin 10117, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin 14195, Germany
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute of Psychiatry, Psychology & Neuroscience, SGDP Centre, King's College London, London SE5 8AF, United Kingdom; PONS Research Group, Dept of Psychiatry and Psychotherapy, Campus Charite Mitte, Humboldt University, Berlin D-10099 and Leibniz Institute for Neurobiology, Magdeburg 39118, Germany; Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai 200433, PR China
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin D2, Ireland
| | - Scott Mackey
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT 05401, USA
| | | |
Collapse
|
44
|
Srirangarajan T, Mortazavi L, Bortolini T, Moll J, Knutson B. Multi-band FMRI compromises detection of mesolimbic reward responses. Neuroimage 2021; 244:118617. [PMID: 34600102 PMCID: PMC8626533 DOI: 10.1016/j.neuroimage.2021.118617] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022] Open
Abstract
Recent innovations in Functional Magnetic Resonance Imaging (FMRI) have sped data collection by enabling simultaneous scans of neural activity in multiple brain locations, but have these innovations come at a cost? In a meta-analysis and preregistered direct comparison of original data, we examined whether acquiring FMRI data with multi-band versus single-band scanning protocols might compromise detection of mesolimbic activity during reward processing. Meta-analytic results (n = 44 studies; cumulative n = 5005 subjects) indicated that relative to single-band scans, multi-band scans showed significantly decreased effect sizes for reward anticipation in the Nucleus Accumbens (NAcc) by more than half. Direct within-subject comparison of single-band versus multi-band scanning data (multi-band factors = 4 and 8; n = 12 subjects) acquired during repeated administration of the Monetary Incentive Delay task indicated that reductions in temporal signal-to-noise ratio could account for compromised detection of task-related responses in mesolimbic regions (i.e., the NAcc). Together, these findings imply that researchers should opt for single-band over multi-band scanning protocols when probing mesolimbic responses with FMRI. The findings also have implications for inferring mesolimbic activity during related tasks and rest, for summarizing historical results, and for using neuroimaging data to track individual differences in reward-related brain activity.
Collapse
Affiliation(s)
- Tara Srirangarajan
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Leili Mortazavi
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - Tiago Bortolini
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Jorge Moll
- Department of Psychology, Stanford University, Stanford, CA, United States; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - Brian Knutson
- Department of Psychology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
45
|
Chai Y, Chimelis-Santiago JR, Bixler KA, Aalsma M, Yu M, Hulvershorn LA. Sex-specific frontal-striatal connectivity differences among adolescents with externalizing disorders. NEUROIMAGE-CLINICAL 2021; 32:102789. [PMID: 34469847 PMCID: PMC8405840 DOI: 10.1016/j.nicl.2021.102789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sex-specific neurobiological underpinnings of impulsivity in youth with externalizing disorders have not been well studied. The only report of functional connectivity (FC) findings in this area demonstrated sex differences in fronto-subcortical connectivity in youth with attention-deficit/hyperactivity disorder (ADHD). METHODS The current study used functional magnetic resonance imaging(fMRI) to examine sex differences in resting-state seed-based FC, self-rated impulsivity, and their interactions in 11-12-year-old boys (n = 43) and girls (n = 43) with externalizing disorders. Generalized linear models controlling for pubertal development were used. Seeds were chosen in the ventral striatum, medial prefrontal cortex, middle frontal gyrus and amygdala. RESULTS Impulsivity scores were greater in boys than girls (p < 0.05). Boys showed greater positive connectivity within a ventromedial prefrontal-ventral striatal network. In addition, boys demonstrated weaker connectivity than girls within two medial-lateral prefrontal cortical networks. However, only boys showed greater medial-lateral prefrontal connectivity correlated with greater impulsivity. CONCLUSIONS The findings provide evidence supporting sex differences in both ventral striatal-ventromedial prefrontal and medial-lateral prefrontal functional networks in youth with externalizing disorders. These important networks are thought to be implicated in impulse control. Medial-lateral prefrontal connectivity may represent a male-specific biomarker of impulsivity.
Collapse
Affiliation(s)
- Ya Chai
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Kristy A Bixler
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Matthew Aalsma
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Meichen Yu
- Indiana Alzheimer Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Network Science Institute, Bloomington, IN, USA
| | - Leslie A Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
46
|
Chaarani B, Hahn S, Allgaier N, Adise S, Owens MM, Juliano AC, Yuan DK, Loso H, Ivanciu A, Albaugh MD, Dumas J, Mackey S, Laurent J, Ivanova M, Hagler DJ, Cornejo MD, Hatton S, Agrawal A, Aguinaldo L, Ahonen L, Aklin W, Anokhin AP, Arroyo J, Avenevoli S, Babcock D, Bagot K, Baker FC, Banich MT, Barch DM, Bartsch H, Baskin-Sommers A, Bjork JM, Blachman-Demner D, Bloch M, Bogdan R, Bookheimer SY, Breslin F, Brown S, Calabro FJ, Calhoun V, Casey BJ, Chang L, Clark DB, Cloak C, Constable RT, Constable K, Corley R, Cottler LB, Coxe S, Dagher RK, Dale AM, Dapretto M, Delcarmen-Wiggins R, Dick AS, Do EK, Dosenbach NUF, Dowling GJ, Edwards S, Ernst TM, Fair DA, Fan CC, Feczko E, Feldstein-Ewing SW, Florsheim P, Foxe JJ, Freedman EG, Friedman NP, Friedman-Hill S, Fuemmeler BF, Galvan A, Gee DG, Giedd J, Glantz M, Glaser P, Godino J, Gonzalez M, Gonzalez R, Grant S, Gray KM, Haist F, Harms MP, Hawes S, Heath AC, Heeringa S, Heitzeg MM, Hermosillo R, Herting MM, Hettema JM, Hewitt JK, Heyser C, Hoffman E, Howlett K, Huber RS, Huestis MA, Hyde LW, Iacono WG, Infante MA, Irfanoglu O, Isaiah A, Iyengar S, Jacobus J, James R, Jean-Francois B, Jernigan T, Karcher NR, Kaufman A, Kelley B, Kit B, Ksinan A, Kuperman J, Laird AR, Larson C, LeBlanc K, Lessov-Schlagger C, Lever N, Lewis DA, Lisdahl K, Little AR, Lopez M, Luciana M, Luna B, Madden PA, Maes HH, Makowski C, Marshall AT, Mason MJ, Matochik J, McCandliss BD, McGlade E, Montoya I, Morgan G, Morris A, Mulford C, Murray P, Nagel BJ, Neale MC, Neigh G, Nencka A, Noronha A, Nixon SJ, Palmer CE, Pariyadath V, Paulus MP, Pelham WE, Pfefferbaum D, Pierpaoli C, Prescot A, Prouty D, Puttler LI, Rajapaske N, Rapuano KM, Reeves G, Renshaw PF, Riedel MC, Rojas P, de la Rosa M, Rosenberg MD, Ross MJ, Sanchez M, Schirda C, Schloesser D, Schulenberg J, Sher KJ, Sheth C, Shilling PD, Simmons WK, Sowell ER, Speer N, Spittel M, Squeglia LM, Sripada C, Steinberg J, Striley C, Sutherland MT, Tanabe J, Tapert SF, Thompson W, Tomko RL, Uban KA, Vrieze S, Wade NE, Watts R, Weiss S, Wiens BA, Williams OD, Wilbur A, Wing D, Wolff-Hughes D, Yang R, Yurgelun-Todd DA, Zucker RA, Potter A, Garavan HP. Baseline brain function in the preadolescents of the ABCD Study. Nat Neurosci 2021; 24:1176-1186. [PMID: 34099922 PMCID: PMC8947197 DOI: 10.1038/s41593-021-00867-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/30/2021] [Indexed: 02/05/2023]
Abstract
The Adolescent Brain Cognitive Development (ABCD) Study® is a 10-year longitudinal study of children recruited at ages 9 and 10. A battery of neuroimaging tasks are administered biennially to track neurodevelopment and identify individual differences in brain function. This study reports activation patterns from functional MRI (fMRI) tasks completed at baseline, which were designed to measure cognitive impulse control with a stop signal task (SST; N = 5,547), reward anticipation and receipt with a monetary incentive delay (MID) task (N = 6,657) and working memory and emotion reactivity with an emotional N-back (EN-back) task (N = 6,009). Further, we report the spatial reproducibility of activation patterns by assessing between-group vertex/voxelwise correlations of blood oxygen level-dependent (BOLD) activation. Analyses reveal robust brain activations that are consistent with the published literature, vary across fMRI tasks/contrasts and slightly correlate with individual behavioral performance on the tasks. These results establish the preadolescent brain function baseline, guide interpretation of cross-sectional analyses and will enable the investigation of longitudinal changes during adolescent development.
Collapse
Affiliation(s)
- B Chaarani
- Department of Psychiatry, University of Vermont, Burlington, VT, USA.
| | - S Hahn
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - N Allgaier
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - S Adise
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - M M Owens
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - A C Juliano
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - D K Yuan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - H Loso
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - A Ivanciu
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - M D Albaugh
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - J Dumas
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - S Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - J Laurent
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - M Ivanova
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - D J Hagler
- University of California, San Diego, La Jolla, CA, USA
| | - M D Cornejo
- Institute of Physics UC, Pontificia Universidad Catolica de Chile, Pontificia, Chile
| | - S Hatton
- University of California, San Diego, La Jolla, CA, USA
| | - A Agrawal
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - L Aguinaldo
- University of California, San Diego, La Jolla, CA, USA
| | - L Ahonen
- University of Pittsburgh, Pittsburgh, PA, USA
| | - W Aklin
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - A P Anokhin
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - J Arroyo
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - S Avenevoli
- National Institute of Mental Health, Bethesda, MD, USA
| | - D Babcock
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - K Bagot
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F C Baker
- SRI International, Menlo Park, CA, USA
| | - M T Banich
- University of Colorado, Boulder, CO, USA
| | - D M Barch
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - H Bartsch
- Haukeland University Hospital, Bergen, Norway
| | | | - J M Bjork
- Virginia Commonwealth University, Richmond, VA, USA
| | - D Blachman-Demner
- NIH Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - M Bloch
- National Cancer Institute, Bethesda, MD, USA
| | - R Bogdan
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | | | - F Breslin
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - S Brown
- University of California, San Diego, La Jolla, CA, USA
| | - F J Calabro
- University of Pittsburgh, Pittsburgh, PA, USA
| | - V Calhoun
- University of Colorado, Boulder, CO, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | | | - L Chang
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - D B Clark
- University of Pittsburgh, Pittsburgh, PA, USA
| | - C Cloak
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - K Constable
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - R Corley
- University of Colorado, Boulder, CO, USA
| | | | - S Coxe
- Florida International University, Miami, FL, USA
| | - R K Dagher
- National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - A M Dale
- University of California, San Diego, La Jolla, CA, USA
| | - M Dapretto
- University of California, Los Angeles, CA, USA
| | | | - A S Dick
- Florida International University, Miami, FL, USA
| | - E K Do
- Virginia Commonwealth University, Richmond, VA, USA
| | - N U F Dosenbach
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - G J Dowling
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - S Edwards
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - T M Ernst
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - D A Fair
- Oregon Health & Science University, Portland, OR, USA
| | - C C Fan
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - E Feczko
- Oregon Health & Science University, Portland, OR, USA
| | | | | | - J J Foxe
- University of Rochester, Rochester, NY, USA
| | | | | | | | | | - A Galvan
- University of California, Los Angeles, CA, USA
| | - D G Gee
- Yale University, New Haven, CT, USA
| | - J Giedd
- University of California, San Diego, La Jolla, CA, USA
| | - M Glantz
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - P Glaser
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - J Godino
- University of California, San Diego, La Jolla, CA, USA
| | - M Gonzalez
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - R Gonzalez
- Florida International University, Miami, FL, USA
| | - S Grant
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - K M Gray
- Medical University of South Carolina, Charleston, SC, USA
| | - F Haist
- University of California, San Diego, La Jolla, CA, USA
| | - M P Harms
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - S Hawes
- Florida International University, Miami, FL, USA
| | - A C Heath
- University of California, San Diego, La Jolla, CA, USA
| | - S Heeringa
- University of Michigan, Ann Arbor, MI, USA
| | | | - R Hermosillo
- Oregon Health & Science University, Portland, OR, USA
| | - M M Herting
- University of Southern California, Los Angeles, CA, USA
| | - J M Hettema
- Virginia Commonwealth University, Richmond, VA, USA
| | - J K Hewitt
- University of Colorado, Boulder, CO, USA
| | - C Heyser
- University of California, San Diego, La Jolla, CA, USA
| | - E Hoffman
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - K Howlett
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - R S Huber
- University of Utah, Salt Lake City, UT, USA
| | - M A Huestis
- Thomas Jefferson University, Philadelphia, PA, USA
| | - L W Hyde
- University of Michigan, Ann Arbor, MI, USA
| | - W G Iacono
- University of Minnesota, Minneapolis, MN, USA
| | - M A Infante
- University of California, San Diego, La Jolla, CA, USA
| | - O Irfanoglu
- National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, USA
| | - A Isaiah
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - S Iyengar
- National Endowment for the Arts, Washington DC, USA
| | - J Jacobus
- University of California, San Diego, La Jolla, CA, USA
| | - R James
- Virginia Commonwealth University, Richmond, VA, USA
| | - B Jean-Francois
- National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - T Jernigan
- University of California, San Diego, La Jolla, CA, USA
| | - N R Karcher
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - A Kaufman
- National Cancer Institute, Bethesda, MD, USA
| | - B Kelley
- National Institute of Justice, Washington DC, USA
| | - B Kit
- National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - A Ksinan
- Virginia Commonwealth University, Richmond, VA, USA
| | - J Kuperman
- University of California, San Diego, La Jolla, CA, USA
| | - A R Laird
- Florida International University, Miami, FL, USA
| | - C Larson
- University of Wisconsin, Milwaukee, WI, USA
| | - K LeBlanc
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - C Lessov-Schlagger
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - N Lever
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - D A Lewis
- University of Pittsburgh, Pittsburgh, PA, USA
| | - K Lisdahl
- University of Wisconsin, Milwaukee, WI, USA
| | - A R Little
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - M Lopez
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - M Luciana
- University of Minnesota, Minneapolis, MN, USA
| | - B Luna
- University of Pittsburgh, Pittsburgh, PA, USA
| | - P A Madden
- Department of Psychiatry, Washington University in Saint Louis, St. Louis, MO, USA
| | - H H Maes
- Virginia Commonwealth University, Richmond, VA, USA
| | - C Makowski
- University of California, San Diego, La Jolla, CA, USA
| | - A T Marshall
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - M J Mason
- University of Tennessee, Knoxville, TN, USA
| | - J Matochik
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | | | - E McGlade
- University of Utah, Salt Lake City, UT, USA
| | - I Montoya
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - G Morgan
- National Cancer Institute, Bethesda, MD, USA
| | - A Morris
- Oklahoma State University, Stillwater, OK, USA
| | - C Mulford
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - P Murray
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - B J Nagel
- Oregon Health & Science University, Portland, OR, USA
| | - M C Neale
- Virginia Commonwealth University, Richmond, VA, USA
| | - G Neigh
- Virginia Commonwealth University, Richmond, VA, USA
| | - A Nencka
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - A Noronha
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - S J Nixon
- University of Florida, Gainesville, FL, USA
| | - C E Palmer
- University of California, San Diego, La Jolla, CA, USA
| | - V Pariyadath
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - M P Paulus
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - W E Pelham
- Florida International University, Miami, FL, USA
| | | | - C Pierpaoli
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - A Prescot
- University of Utah, Salt Lake City, UT, USA
| | - D Prouty
- SRI International, Menlo Park, CA, USA
| | | | - N Rajapaske
- National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | | | - G Reeves
- University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - M C Riedel
- Florida International University, Miami, FL, USA
| | - P Rojas
- Florida International University, Miami, FL, USA
| | - M de la Rosa
- Florida International University, Miami, FL, USA
| | | | - M J Ross
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - M Sanchez
- Florida International University, Miami, FL, USA
| | - C Schirda
- University of Pittsburgh, Pittsburgh, PA, USA
| | - D Schloesser
- NIH Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | | | - K J Sher
- University of Missouri, Columbia, MO, USA
| | - C Sheth
- University of Utah, Salt Lake City, UT, USA
| | - P D Shilling
- University of California, San Diego, La Jolla, CA, USA
| | - W K Simmons
- Laureate Institute for Brain Research, Tulsa, OK, USA
| | - E R Sowell
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - N Speer
- University of Colorado, Boulder, CO, USA
| | - M Spittel
- NIH Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - L M Squeglia
- Medical University of South Carolina, Charleston, SC, USA
| | - C Sripada
- University of Michigan, Ann Arbor, MI, USA
| | - J Steinberg
- Virginia Commonwealth University, Richmond, VA, USA
| | - C Striley
- University of Florida, Gainesville, FL, USA
| | | | - J Tanabe
- University of Colorado, Boulder, CO, USA
| | - S F Tapert
- University of California, San Diego, La Jolla, CA, USA
| | - W Thompson
- University of California, San Diego, La Jolla, CA, USA
| | - R L Tomko
- Medical University of South Carolina, Charleston, SC, USA
| | - K A Uban
- University of California, Irvine, CA, USA
| | - S Vrieze
- University of Minnesota, Minneapolis, MN, USA
| | - N E Wade
- University of California, San Diego, La Jolla, CA, USA
| | - R Watts
- Yale University, New Haven, CT, USA
| | - S Weiss
- National Institute on Drug Abuse, Bethesda, MD, USA
| | - B A Wiens
- University of Florida, Gainesville, FL, USA
| | - O D Williams
- Florida International University, Miami, FL, USA
| | - A Wilbur
- SRI International, Menlo Park, CA, USA
| | - D Wing
- University of California, San Diego, La Jolla, CA, USA
| | - D Wolff-Hughes
- NIH Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - R Yang
- University of California, San Diego, La Jolla, CA, USA
| | | | - R A Zucker
- University of Michigan, Ann Arbor, MI, USA
| | - A Potter
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - H P Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
47
|
Gonçalves SF, Turpyn CC, Niehaus CE, Mauro KL, Hinagpis CL, Thompson JC, Chaplin TM. Neural activation to loss and reward among alcohol naive adolescents who later initiate alcohol use. Dev Cogn Neurosci 2021; 50:100978. [PMID: 34167021 PMCID: PMC8227823 DOI: 10.1016/j.dcn.2021.100978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/13/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
Adolescent alcohol use is associated with adverse psychosocial outcomes, including an increased risk of alcohol use disorder in adulthood. It is therefore important to identify risk factors of alcohol initiation in adolescence. Research to date has shown that altered neural activation to reward is associated with alcohol use in adolescence; however, few studies have focused on neural activation to loss and alcohol use. The current study examined neural activation to loss and reward among 64 alcohol naive 12−14 year olds that did (n = 20) and did not initiate alcohol use by a three year follow-up period. Results showed that compared to adolescents that did not initiate alcohol use, adolescents that did initiate alcohol use by the three year follow-up period had increased activation to loss in the left striatum (i.e., putamen), right precuneus, and the brainstem/pons when they were alcohol naive at baseline. By contrast, alcohol initiation was not associated with neural activation to winning a reward. These results suggest that increased activation in brain regions implicated in salience, error detection/self-referential processing, and sensorimotor function, especially to negative outcomes, may represent an initial vulnerability factor for alcohol use in adolescence.
Collapse
Affiliation(s)
- Stefanie F Gonçalves
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| | - Caitlin C Turpyn
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, United States.
| | - Claire E Niehaus
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| | - Kelsey L Mauro
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| | - Cristopher L Hinagpis
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| | - James C Thompson
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| | - Tara M Chaplin
- Department of Psychology, George Mason University, Fairfax, VA, 22030, United States.
| |
Collapse
|
48
|
Grimm O, van Rooij D, Hoogman M, Klein M, Buitelaar J, Franke B, Reif A, Plichta MM. Transdiagnostic neuroimaging of reward system phenotypes in ADHD and comorbid disorders. Neurosci Biobehav Rev 2021; 128:165-181. [PMID: 34144113 DOI: 10.1016/j.neubiorev.2021.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 02/08/2023]
Abstract
ADHD is a disorder characterized by changes in the reward system and which is highly comorbid with other mental disorders, suggesting common neurobiological pathways. Transdiagnostic neuroimaging findings could help to understand whether a dysregulated reward pathway might be the actual link between ADHD and its comorbidities. We here synthesize ADHD neuroimaging findings on the reward system with findings in obesity, depression, and substance use disorder including their comorbid appearance regarding neuroanatomical features (structural MRI) and activation patterns (resting-state and functional MRI). We focus on findings from monetary-incentive-delay (MID) and delay-discounting (DD) tasks and then review data on striatal connectivity and volumetry. Next, for better understanding of comorbidity in adult ADHD, we discuss these neuroimaging features in ADHD, obesity, depression and substance use disorder and ask whether ADHD heterogeneity and comorbidity are reflected by a common dysregulation in the reward system. Finally, we highlight conceptual issues related to heterogeneous paradigms, different phenotyping, longitudinal prediction and highlight some promising future directions for using striatal reward functioning as a clinical biomarker.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany.
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Martine Hoogman
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Marieke Klein
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jan Buitelaar
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Barbara Franke
- Donders Centre for Cognitive Neuroimaging, CNS Department, University Medical Centre Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Michael M Plichta
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| |
Collapse
|
49
|
Neurodevelopment of the incentive network facilitates motivated behaviour from adolescence to adulthood. Neuroimage 2021; 237:118186. [PMID: 34020019 DOI: 10.1016/j.neuroimage.2021.118186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/28/2022] Open
Abstract
The ability to enhance motivated performance through incentives is crucial to guide and ultimately optimise the outcome of goal-directed behaviour. It remains largely unclear how motivated behaviour and performance develops particularly across adolescence. Here, we used computational fMRI to assess how response speed and its underlying neural circuitry are modulated by reward and loss in a monetary incentive delay paradigm. We demonstrate that maturational fine-tuning of functional coupling within the cortico-striatal incentive circuitry from adolescence to adulthood facilitates the ability to enhance performance selectively for higher subjective values. Additionally, during feedback, we found developmental sex differences of striatal representations of reward prediction errors in an exploratory analysis. Our findings suggest that a reduced capacity to utilise subjective value for motivated behaviour in adolescence is rooted in immature information processing in the incentive system. This indicates that the neurocircuitry for coordination of incentivised, motivated cognitive control acts as a bottleneck for behavioural adjustments in adolescence.
Collapse
|
50
|
Demidenko MI, Weigard AS, Ganesan K, Jang H, Jahn A, Huntley ED, Keating DP. Interactions between methodological and interindividual variability: How Monetary Incentive Delay (MID) task contrast maps vary and impact associations with behavior. Brain Behav 2021; 11:e02093. [PMID: 33750042 PMCID: PMC8119872 DOI: 10.1002/brb3.2093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/28/2022] Open
Abstract
INTRODUCTION Phenomena related to reward responsiveness have been extensively studied in their associations with substance use and socioemotional functioning. One important task in this literature is the Monetary Incentive Delay (MID) task. By cueing and delivering performance-contingent reward, the MID task has been demonstrated to elicit robust activation of neural circuits involved in different phases of reward responsiveness. However, systematic evaluations of common MID task contrasts have been limited to between-study comparisons of group-level activation maps, limiting their ability to directly evaluate how researchers' choice of contrasts impacts conclusions about individual differences in reward responsiveness or brain-behavior associations. METHODS In a sample of 104 participants (Age Mean = 19.3, SD = 1.3), we evaluate similarities and differences between contrasts in: group- and individual-level activation maps using Jaccard's similarity index, region of interest (ROI) mean signal intensities using Pearson's r, and associations between ROI mean signal intensity and psychological measures using Bayesian correlation. RESULTS Our findings demonstrate more similarities than differences between win and loss cues during the anticipation contrast, dissimilarity between some win anticipation contrasts, an apparent deactivation effect in the outcome phase, likely stemming from the blood oxygen level-dependent undershoot, and behavioral associations that are less robust than previously reported. CONCLUSION Consistent with recent empirical findings, this work has practical implications for helping researchers interpret prior MID studies and make more informed a priori decisions about how their contrast choices may modify results.
Collapse
Affiliation(s)
| | - Alexander S Weigard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Addiction Center, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | - Hyesue Jang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew Jahn
- The Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Edward D Huntley
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Daniel P Keating
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|