1
|
Chu T, Si X, Xie H, Ma H, Shi Y, Yao W, Xing D, Zhao F, Dong F, Gai Q, Che K, Guo Y, Chen D, Ming D, Mao N. Regional Structural-Functional Connectivity Coupling in Major Depressive Disorder Is Associated With Neurotransmitter and Genetic Profiles. Biol Psychiatry 2025; 97:290-301. [PMID: 39218135 DOI: 10.1016/j.biopsych.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms that underlie regional SC-FC coupling patterns are not well understood. METHODS We enrolled 182 patients with MDD and 157 healthy control participants and quantified the intergroup differences in regional SC-FC coupling. Extreme gradient boosting (XGBoost), support vector machine, and random forest models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS We observed increased regional SC-FC coupling in the default mode network (t337 = 3.233) and decreased coupling in the frontoparietal network (t337 = -3.471) in patients with MDD compared with healthy control participants. XGBoost (area under the receiver operating characteristic curve = 0.853), support vector machine (area under the receiver operating characteristic curve = 0.832), and random forest (p < .05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of 4 neurotransmitters (p < .05) and expression maps of specific genes. These enriched genes were implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on 2 brain atlases. CONCLUSIONS This work enhances our understanding of MDD and paves the way for the development of additional targeted therapeutic interventions.
Collapse
Affiliation(s)
- Tongpeng Chu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Si
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Wei Yao
- Department of Neurology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, China
| | - Dong Xing
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business, University, Yantai, Shandong, China
| | - Fanghui Dong
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Yuting Guo
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Danni Chen
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; State Key Laboratory of Advanced Medical Materials and Devices, Tianjin, China; Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, China; Tianjin Key Laboratory of Brain Science and Neuroengineering, Tianjin University, Tianjin, China.
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Intelligent Diagnosis and Treatment for Women's Diseases, Yantai Yuhuangding Hospital, Yantai, Shandong, China; Big Data and Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Saleh N, Blaise C, Daoudi A, Queneau M, Fard K, Dumurgier J, Munoz-Musat E, Marlinge E, Hugon J, Hourregue C, Paquet C, Cognat E. Brain 18FDG-PET pattern in cognitively impaired elderly patients with bipolar disorder. Int J Bipolar Disord 2024; 12:45. [PMID: 39739252 DOI: 10.1186/s40345-024-00366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/04/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND Patients with bipolar disorder (BD) are at increased risk of dementia. The underlying mechanisms are debated. FDG-PET elucidates glucose metabolic reductions due to altered neuronal activity in the cerebral cortex, allowing detection and identification of neurodegenerative processes. This study aims to investigate cerebral glucose metabolism in cognitively impaired elderly patients with BD using FDG-PET imaging, to elucidate potential underlying mechanisms and improve diagnostic accuracy. METHODS We conducted a retrospective analysis of FDG-PET scans from 32 cognitively impaired elderly patients with BD (mean age 70.4 years). These were compared with scans from 35 non-degenerative controls (NDC) and patients diagnosed with Alzheimer's disease (AD, n = 27), frontotemporal dementia (FTD, n = 26), and dementia with Lewy bodies (DLB, n = 18). Voxel-wise statistical analysis was performed using SPM software, adjusting for age and sex. RESULTS No significant cortical hypometabolism was found in patients with BD compared to NDC. In contrast, typical patterns of hypometabolism were observed in the AD, FTD, and DLB groups. The findings suggest that late-life cognitive impairment in patients with BD is not due to a single common neurodegenerative process. CONCLUSION The absence of abnormal cortical metabolism in cognitively impaired elderly patients with BD suggests that cognitive impairment in this population may not be driven by a common neurodegenerative pathway. Further studies using other biomarkers are needed to investigate the brain processes involved, which could lead to improved understanding and management of cognitive impairment in patients with BD.
Collapse
Affiliation(s)
- Nouredine Saleh
- Department of nuclear medicine, Centre de Neurologie Cognitive, GHU AP-HP.Nord, Site Lariboisière Fernand-Widal, 200 rue du Faubourg Saint-Denis, Paris, 75010, France
| | | | - Amina Daoudi
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
| | - Matthieu Queneau
- Molecular and functional Imaging, IMF Group, Saint-Denis, France
| | - Karim Fard
- Institut Caribéen d'imagerie nucléaire, ICIN, CHU Martinique, Fort-de-France, France
| | - Julien Dumurgier
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
- Université Paris Cité, Inserm U1153, Paris, France
| | - Esteban Munoz-Musat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Emeline Marlinge
- Département de Psychiatrie, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Jacques Hugon
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | | | - Claire Paquet
- Université Paris Cité, UMRS 1144, INSERM, Paris, France
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France
| | - Emmanuel Cognat
- Université Paris Cité, UMRS 1144, INSERM, Paris, France.
- Cognitive Neurology Center, AP-HP.Nord, Site Lariboisière Fernand-Widal, Paris, France.
| |
Collapse
|
3
|
Zhang X, Yang L, Lu J, Yuan Y, Li D, Zhang H, Yao R, Xiang J, Wang B. Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach. Transl Psychiatry 2024; 14:507. [PMID: 39737898 DOI: 10.1038/s41398-024-03212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes. This study employed hidden Markov model (HMM) analysis to delve deeper into the moment-to-moment temporal patterns of brain activity in BD. We utilized resting-state functional magnetic resonance imaging (rs-fMRI) data from 43 BD patients and 51 controls to evaluate the altered dynamic spatiotemporal architecture of the whole-brain network and identify unique activation patterns in BD. Additionally, we investigated the relationship between altered brain dynamics and structural disruption through the ridge regression (RR) algorithm. The results demonstrated that BD spent less time in a hyperconnected state with higher network efficiency and lower segregation. Conversely, BD spent more time in anticorrelated states featuring overall negative correlations, particularly among pairs of default mode network (DMN) and sensorimotor network (SMN), DMN and insular-opercular ventral attention networks (ION), subcortical network (SCN) and SMN, as well as SCN and ION. Interestingly, the hypoactivation of the cognitive control network in BD may be associated with the structural disruption primarily situated in the frontal and parietal lobes. This study investigated the dynamic mechanisms of brain network dysfunction in BD and offered fresh perspectives for exploring the physiological foundation of altered brain dynamics.
Collapse
Affiliation(s)
- Xi Zhang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Lan Yang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jiayu Lu
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yuting Yuan
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Dandan Li
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Hui Zhang
- School of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Yao
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jie Xiang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China
| | - Bin Wang
- School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
4
|
Huang Z, Zheng H, Wang L, Ding S, Li R, Qing Y, Peng S, Zhu M, Cai J. Aberrant brain structural-functional coupling and structural/functional network topology explain developmental delays in pediatric Prader-Willi syndrome. Eur Child Adolesc Psychiatry 2024:10.1007/s00787-024-02631-3. [PMID: 39704789 DOI: 10.1007/s00787-024-02631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
Prader-Willi syndrome (PWS) is a neurodevelopmental disorder characterized by dysplasia in early life. Psychoradiology studies have suggested that mental and behavioral deficits in individuals with PWS are linked to abnormalities in brain structural and functional networks. However, little is known about changes in network-based structural-functional coupling and structural/functional topological properties and their correlations with developmental scales in children with PWS. Here, we acquired diffusion tensor imaging and resting-state functional magnetic resonance imaging data from 25 children with PWS and 28 age- and sex-matched healthy controls, constructed structural and functional networks, examined intergroup differences in structural-functional coupling and structural/functional topological properties (both global and nodal), and tested their partial correlations with developmental scales. We found that children with PWS exhibited (1) decreased structural-functional coupling, (2) a higher characteristic path length and lower global efficiency in the structural network in terms of global properties, (3) alterations in classical cortical and subcortical networks in terms of nodal properties, with the structural network dominated by decreases and the functional network dominated by increases, and (4) partial correlation with developmental scales, especially for functional networks. These findings suggest that structural-functional decoupling and abundant structural/functional network topological properties may reveal the mechanism of early neurodevelopmental delays in PWS from a neuroimaging perspective and might serve as potential markers to assess early neurodevelopmental backwardness in PWS.
Collapse
Affiliation(s)
- Zhongxin Huang
- Department of Radiology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China
- Department of Radiology, Chongqing Health Center for Women and Children, Chongqing, 401147, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Rong Li
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Yong Qing
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China
| | - Song Peng
- Department of Radiology, Women and Children's Hospital of Chongqing Medical University, Chongqing, 401147, China.
- Department of Radiology, Chongqing Health Center for Women and Children, Chongqing, 401147, China.
| | - Min Zhu
- Department of Endocrinology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing, 400014, China.
| |
Collapse
|
5
|
Zhang Q, Zhang A, Zhao Z, Li Q, Hu Y, Huang X, Kemp GJ, Kuang W, Zhao Y, Gong Q. Temporoparietal structural-functional coupling abnormalities in drug-naïve first-episode major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111211. [PMID: 39642975 DOI: 10.1016/j.pnpbp.2024.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Major depressive disorder (MDD) is a debilitating and heterogeneous disease. Many MDD patients experience concurrent anxiety symptoms, often referred to as anxious depression (MDD-ANX). The relationships between network alterations in structural connectivity (SC) and functional connectivity (FC) in MDD and its anxiety-related subtype remain areas that require further investigation. METHODS We investigated SC-FC coupling at the system and regional levels in 80 never-treated first-episode MDD patients and 80 healthy control (HC) subjects. For brain systems and regions showing significant between-group coupling differences, we further conducted subgroup comparisons between MDD-ANX, non-anxious depression (MDD-NANX) and HC. We also investigated topological features at the corresponding levels, and assessed the correlation patterns between significant coupling alterations and the topological and clinical characteristics. RESULTS Relative to HC, MDD patients showed increased SC-FC coupling in the temporal system (right hippocampus and left superior temporal gyrus [STG]) but decreased coupling in the parietal system (right postcentral gyrus and left angular gyrus). These systems and regions were further characterized by disturbed inter-module connections and impaired structural network efficiency in MDD. Notably, SC-FC coupling of the right hippocampus was significantly increased in MDD-ANX compared to MDD-NANX, which further showed distinct correlation patterns with structural network efficiency. CONCLUSIONS Alterations in both SC-FC coupling and topological properties in the temporal and parietal regions provide insights into the interplay between the structural and functional network abnormalities in MDD. SC-FC coupling alterations in the right hippocampus, associated with structural nodal efficiency, may be implicated in the neuropathology of anxious depression.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Aoxiang Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ziyuan Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yongbo Hu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xiaoqi Huang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre (LiMRIC) and Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Weihong Kuang
- Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, China
| | - Youjin Zhao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Xiamen Key Laboratory of Psychoradiology and Neuromodulation, Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| |
Collapse
|
6
|
Ma J, Chen M, Liu GH, Gao M, Chen NH, Toh CH, Hsu JL, Wu KY, Huang CM, Lin CM, Fang JT, Lee SH, Lee TMC. Effects of sleep on the glymphatic functioning and multimodal human brain network affecting memory in older adults. Mol Psychiatry 2024:10.1038/s41380-024-02778-0. [PMID: 39397082 DOI: 10.1038/s41380-024-02778-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Understanding how sleep affects the glymphatic system and human brain networks is crucial for elucidating the neurophysiological mechanism underpinning aging-related memory declines. We analyzed a multimodal dataset collected through magnetic resonance imaging (MRI) and polysomnographic recording from 72 older adults. A proxy of the glymphatic functioning was obtained from the Diffusion Tensor Image Analysis along the Perivascular Space (DTI-ALPS) index. Structural and functional brain networks were constructed based on MRI data, and coupling between the two networks (SC-FC coupling) was also calculated. Correlation analyses revealed that DTI-ALPS was negatively correlated with sleep quality measures [e.g., Pittsburgh Sleep Quality Index (PSQI) and apnea-hypopnea index]. Regarding human brain networks, DTI-ALPS was associated with the strength of both functional connectivity (FC) and structural connectivity (SC) involving regions such as the middle temporal gyrus and parahippocampal gyrus, as well as with the SC-FC coupling of rich-club connections. Furthermore, we found that DTI-ALPS positively mediated the association between sleep quality and rich-club SC-FC coupling. The rich-club SC-FC coupling further mediated the association between DTI-ALPS and memory function in good sleepers but not in poor sleepers. The results suggest a disrupted glymphatic-brain relationship in poor sleepers, which underlies memory decline. Our findings add important evidence that sleep quality affects cognitive health through the underlying neural relationships and the interplay between the glymphatic system and multimodal brain networks.
Collapse
Affiliation(s)
- Junji Ma
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Menglu Chen
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Geng-Hao Liu
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Acupuncture and Moxibustion, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Sleep Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Mengxia Gao
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China
| | - Ning-Hung Chen
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Sleep Center, Respiratory Therapy, Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng Hong Toh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan
| | - Jung-Lung Hsu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
- Department of Neurology, at Linkou, Chang Gung Memorial Hospital and College of Medicine, Neuroscience Research Center, Chang-Gung University, Taoyuan, Taiwan
- Graduate Institute of Mind, Brain, & Consciousness, Taipei Medical University, Taipei, Taiwan
| | - Kuan-Yi Wu
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chih-Mao Huang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chih-Ming Lin
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan
- Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ji-Tseng Fang
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Shwu-Hua Lee
- College of Medicine, Chang Gung University, Taoyuan County, Taiwan.
- Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China.
- Laboratory of Neuropsychology & Human Neuroscience, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
8
|
Poortman SR, Barendse ME, Setiaman N, van den Heuvel MP, de Lange SC, Hillegers MH, van Haren NE. Age Trajectories of the Structural Connectome in Child and Adolescent Offspring of Individuals With Bipolar Disorder or Schizophrenia. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100336. [PMID: 39040431 PMCID: PMC11260845 DOI: 10.1016/j.bpsgos.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 07/24/2024] Open
Abstract
Background Offspring of parents with severe mental illness (e.g., bipolar disorder or schizophrenia) are at elevated risk of developing psychiatric illness owing to both genetic predisposition and increased burden of environmental stress. Emerging evidence indicates a disruption of brain network connectivity in young offspring of patients with bipolar disorder and schizophrenia, but the age trajectories of these brain networks in this high-familial-risk population remain to be elucidated. Methods A total of 271 T1-weighted and diffusion-weighted scans were obtained from 174 offspring of at least 1 parent diagnosed with bipolar disorder (n = 74) or schizophrenia (n = 51) and offspring of parents without severe mental illness (n = 49). The age range was 8 to 23 years; 97 offspring underwent 2 scans. Anatomical brain networks were reconstructed into structural connectivity matrices. Network analysis was performed to investigate anatomical brain connectivity. Results Offspring of parents with schizophrenia had differential trajectories of connectivity strength and clustering compared with offspring of parents with bipolar disorder and parents without severe mental illness, of global efficiency compared with offspring of parents without severe mental illness, and of local connectivity compared with offspring of parents with bipolar disorder. Conclusions The findings of this study suggest that familial high risk of schizophrenia is related to deviations in age trajectories of global structural connectome properties and local connectivity strength.
Collapse
Affiliation(s)
- Simon R. Poortman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Marjolein E.A. Barendse
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Nikita Setiaman
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child Psychiatry, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Siemon C. de Lange
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Manon H.J. Hillegers
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| | - Neeltje E.M. van Haren
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
9
|
Zhang H, Cao P, Mak HKF, Hui ES. The structural-functional-connectivity coupling of the aging brain. GeroScience 2024; 46:3875-3887. [PMID: 38443539 PMCID: PMC11226573 DOI: 10.1007/s11357-024-01106-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Aging primarily affects memory and executive functions, a relationship that may be underpinned by the fact that almost all adults over 60 years old develop small vessel disease (SVD). The fact that a wide range of neuropathologies could only explain up to 43% of the variation in age-related cognitive impairment suggests that other factors, such as cognitive reserve, may play a role in the brain's resilience against aging-related cognitive decline. This study aims to examine the relationship between structural-functional-connectivity coupling (SFC), and aging, cognitive abilities and reserve, and SVD-related neuropathologies using a cohort of n = 176 healthy elders from the Harvard Aging Brain Study. The SFC is a recently proposed biomarker that reflects the extent to which anatomical brain connections can predict coordinated neural activity. After controlling for the effect of age, sex, and years of education, global SFC, as well as the intra-network SFC of the dorsolateral somatomotor and dorsal attention networks, and the inter-network SFC between dorsolateral somatomotor and frontoparietal networks decreased with age. The global SFC decreased with total cognitive score. There were significant interaction effects between years of education versus white matter hyperintensities and between years of education versus cerebral microbleeds on inter-network SFC. Enlarged perivascular space in basal ganglia was associated with higher inter-network SFC. Our results suggest that cognitive ability is associated with brain coupling at the global level and cognitive reserve with brain coupling at the inter-functional-brain-cluster level with interaction effect from white matter hyperintensities and cerebral microbleed in a cohort of healthy elderlies.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong, China
| | - Peng Cao
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
| | - Henry K F Mak
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China
- Alzheimer's Disease Research Network, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Edward S Hui
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China.
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.
- CU Lab for AI in Radiology (CLAIR), The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Liao QM, Zhang ZJ, Yang X, Wei JX, Wang M, Dou YK, Du Y, Ma XH. Changes of structural functional connectivity coupling and its correlations with cognitive function in patients with major depressive disorder. J Affect Disord 2024; 351:259-267. [PMID: 38266932 DOI: 10.1016/j.jad.2024.01.173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/05/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Previous neuroimaging studies have reported structural and functional brain abnormalities in major depressive disorder (MDD). This study aimed to explore whether the coherence of structural-functional networks was affected by disease and investigate its correlation with clinical manifestations. METHODS The severity of symptoms and cognitive function of 121 MDD patients and 139 healthy controls (HC) were assessed, and imaging data, including diffusion tensor imaging, T1 structural magnetic resonance imaging (MRI) and resting-state functional MRI, were collected. Spearman correlation coefficients of Kullback-Leibler similarity (KLS), fiber number (FN), fractional anisotropy (FA) and functional connectivity (FC) were calculated as coupling coefficients. Double-weight median correlation analysis was conducted to investigate the correlations between differences in brain networks and clinical assessments. RESULTS The percentage of total correct response of delayed matching to sample and the percentage of delayed correct response of pattern recognition memory was lower in MDD. Compared with the HC, KLS-FC coupling between the parietal lobe and subcortical area, FA-FC coupling between the temporal and parietal lobe, and FN-FC coupling in the frontal lobe was lower in MDD. Several correlations between structural-functional connectivity and clinical manifestations were identified. LIMITATIONS First, our study lacks longitudinal follow-up data. Second, the sample size was relatively small. Moreover, we only used the Anatomical Automatic Labeling template to construct the brain network. Finally, the validation of the causal relationship of neuroimaging-behavior factors was still insufficient. CONCLUSIONS The alternation in structural-functional coupling were related to clinical characterization and might be involved in the neuropathology of depression.
Collapse
Affiliation(s)
- Qi-Meng Liao
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Zi-Jian Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao Yang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Jin-Xue Wei
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yi-Kai Dou
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Du
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Hong Ma
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
11
|
Normand F, Gajwani M, Côté DC, Allard A. NBS-SNI, an extension of the network-based statistic: Abnormal functional connections between important structural actors. Netw Neurosci 2024; 8:44-80. [PMID: 38562286 PMCID: PMC10861162 DOI: 10.1162/netn_a_00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Elucidating the coupling between the structure and the function of the brain and its development across maturation has attracted a lot of interest in the field of network neuroscience in the last 15 years. Mounting evidence supports the hypothesis that the onset of certain brain disorders is linked with the interplay between the structural architecture of the brain and its functional processes, often accompanied with unusual connectivity features. This paper introduces a method called the network-based statistic-simultaneous node investigation (NBS-SNI) that integrates both representations into a single framework, and identifies connectivity abnormalities in case-control studies. With this method, significance is given to the properties of the nodes, as well as to their connections. This approach builds on the well-established network-based statistic (NBS) proposed in 2010. We uncover and identify the regimes in which NBS-SNI offers a gain in statistical resolution to identify a contrast of interest using synthetic data. We also apply our method on two real case-control studies, one consisting of individuals diagnosed with autism and the other consisting of individuals diagnosed with early psychosis. Using NBS-SNI and node properties such as the closeness centrality and local information dimension, we found hypo- and hyperconnected subnetworks and show that our method can offer a 9 percentage points gain in prediction power over the standard NBS.
Collapse
Affiliation(s)
- Francis Normand
- Centre de Recherche CERVO, Québec, Canada
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
- The Turner Institute for Brain and Mental Health and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Mehul Gajwani
- The Turner Institute for Brain and Mental Health and Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Daniel C. Côté
- Centre de Recherche CERVO, Québec, Canada
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
| | - Antoine Allard
- Centre Interdisciplinaire en Modélisation Mathématique, Université Laval, Québec, Canada
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, Canada
| |
Collapse
|
12
|
Huang Q, Yang Y, Qi N, Guan Y, Zhao J, Hua F, Ren S, Xie F. Coupling Between Human Brain Cortical Thickness and Glucose Metabolism from Regional to Connective Level: A Positron Emission Tomography/Magnetic Resonance Imaging Study. Brain Connect 2024; 14:122-129. [PMID: 38308482 DOI: 10.1089/brain.2023.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024] Open
Abstract
Background: Balance between brain structure and function is implicated in aging and many brain disorders. This study aimed to investigate the coupling between brain structure and function using 18F-fludeoxyglucose positron emission tomography (PET)/magnetic resonance imaging (MRI). Methods: One hundred thirty-eight subjects who underwent brain 18F-FDG PET/MRI were recruited. The structural and functional coupling at the regional level was explored by calculating within-subject Spearman's correlation between glucose metabolism (GluM) and cortical thickness (CTh) across the cortex for each subject, which was then correlated with age to explore its physiological effects. Then, subjects were divided into groups of middle-aged and young adults and older adults (OAs); structural connectivity (SC) based on CTh and functional connectivity (FC) based on GluM were constructed for the two groups, respectively, followed by exploring the connective-level structural and functional coupling on SC and FC matrices. The global and local efficiency values of the brain SC and FC were also evaluated. Results: Of the subjects, 97.83% exhibited a significant negative correlation between regional CTh and GluM (r = -0.24 to -0.71, p < 0.05, FDR correction), and this CTh-GluM correlation was negatively correlated with age (R = -0.35, p < 0.001). For connectivity matrices, many regions showed positive correlation between SC and FC, especially in the OA group. Besides, FC exhibited denser connections than SC, resulting in both higher global and local efficiency, but lower global efficiency when the network size was corrected. Conclusions: This study found couplings between CTh and GluM at both regional and connective levels, which reflected the aging progress, and might provide new insight into brain disorders. Impact statement The intricate interplay between brain structures and functions plays a pivotal role in unraveling the complexities inherent in the aging process and the pathogenesis of neurological disorders. This study revealed that 97.83% subjects showed negative correlation between the brain's regional cortical thickness and glucose metabolism, while at the connective level, many regions showed positive correlations between structural and functional connectivity. The observed coupling at the regional and connective levels reflected physiological progress, such as aging, and provides insights into the brain mechanisms and potential implications for the diagnosis and treatment of brain disorders.
Collapse
Affiliation(s)
- Qi Huang
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihong Yang
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Na Qi
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fengchun Hua
- Department of Nuclear Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuhua Ren
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Fang Xie
- Department of Nuclear Medicine and PET Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Xie Y, Li C, Guan M, Zhang T, Ma C, Wang Z, Ma Z, Wang H, Fang P. Low-frequency rTMS induces modifications in cortical structural connectivity - functional connectivity coupling in schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2024; 45:e26614. [PMID: 38375980 PMCID: PMC10878014 DOI: 10.1002/hbm.26614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Collapse
Affiliation(s)
- Yuanjun Xie
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Department of Radiology, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Chenxi Li
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Muzhen Guan
- Department of Mental HealthXi'an Medical CollegeXi'anChina
| | - Tian Zhang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Chaozong Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Zhongheng Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Zhujing Ma
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
| | - Huaning Wang
- Department of Psychiatry, Xijing HospitalFourth Military Medical UniversityXi'anChina
| | - Peng Fang
- Military Medical Psychology SchoolFourth Military Medical UniversityXi'anChina
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent PerceptionXi'anChina
| |
Collapse
|
14
|
Shang S, Wang L, Xu Y, Zhang H, Chen L, Dou W, Yin X, Ye J, Chen YC. Optimization of structural connectomes and scaled patterns of structural-functional decoupling in Parkinson's disease. Neuroimage 2023; 284:120450. [PMID: 37949260 DOI: 10.1016/j.neuroimage.2023.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Parkinson's disease (PD) is manifested with disrupted topology of the structural connection network (SCN) and the functional connection network (FCN). However, the SCN and its interactions with the FCN remain to be further investigated. This multimodality study attempted to precisely characterize the SCN using diffusion kurtosis imaging (DKI) and further identify the neuropathological pattern of SCN-FCN decoupling, underscoring the neurodegeneration of PD. Diffusion-weighted imaging and resting-state functional imaging were available for network constructions among sixty-nine patients with PD and seventy demographically matched healthy control (HC) participants. The classification performance and topological prosperities of both the SCN and the FCN were analyzed, followed by quantification of the SCN-FCN couplings across scales. The SCN constructed by kurtosis metrics achieved optimal classification performance (area under the curve 0.89, accuracy 80.55 %, sensitivity 78.40 %, and specificity 80.65 %). Along with diverse alterations of structural and functional network topology, the PD group exhibited decoupling across scales including: reduced global coupling; increased nodal coupling within the sensorimotor network (SMN) and subcortical network (SN); higher intramodular coupling within the SMN and SN and lower intramodular coupling of the default mode network (DMN); decreased coupling between the modules of DMN-fronto-parietal network and DMN-visual network, but increased coupling between the SMN-SN module. Several associations between the coupling coefficient and topological properties of the SCN, as well as between network values and clinical scores, were observed. These findings validated the clinical implementation of DKI for structural network construction with better differentiation ability and characterized the SCN-FCN decoupling as supplementary insight into the pathological process underlying PD.
Collapse
Affiliation(s)
- Song'an Shang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lijuan Wang
- Department of Radiology, Jintang First People's Hospital, Sichuan University, Chengdu, China
| | - Yao Xu
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Hongying Zhang
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Lanlan Chen
- Department of Neurology, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Weiqiang Dou
- MR Research China, GE Healthcare, Beijing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Ye
- Department of Medical imaging center, Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Song L, Liu X, Yang W, Li M, Xu B, Chen Q, Yang Z, Liu W, Wang H, Wang Z. Association of aberrant structural-functional network coupling with cognitive decline in patients with non-dialysis-dependent stage 5 chronic kidney disease. Quant Imaging Med Surg 2023; 13:8611-8624. [PMID: 38106236 PMCID: PMC10721997 DOI: 10.21037/qims-23-295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/07/2023] [Indexed: 12/19/2023]
Abstract
Background Cognitive decline exists in the chronic kidney disease (CKD) population and is particularly severe in patients with stage 5 CKD, but the mechanisms underlying this relationship are unclear. Structural-functional coupling, an integrated measure that combines functional and structural networks, offers the possibility of exploring changes in network relationships in patients with stage 5 CKD. This study aimed to investigate the brain network topology and structural-functional coupling characteristics in patients with non-dialysis-dependent stage 5 CKD (CKD 5ND) and the correlation between network changes and cognitive scores. Methods We prospectively performed diffusion tensor and resting-state functional magnetic resonance (rs-fMRI) imaging on 40 patients with CKD 5ND disease and 47 healthy controls (HCs). Graph theory analysis of functional and structural connectivity (SC) was performed. Small-world properties and network efficiency properties were calculated, including characteristic path length (Lp), clustering coefficient (Cp), normalized clustering coefficient (Gamma), normalized characteristic path length (Lambda), small-worldness (Sigma), global efficiency (Eglob), and local efficiency (Eloc). The SC-functional connectivity (FC) coupling characteristics and the association between Montreal Cognitive Assessment (MoCA) scores and graph-theoretical features were analyzed. Results For SC, the Sigma (P=0.009), Cp (P=0.01), Eglob (P<0.001), and Eloc (P=0.01) were significantly lower in patients with CKD 5ND than in HCs, while Lp (P<0.001) and Lambda (P<0.001) were significantly higher in the patients than in the HCs. For FC, the Sigma (P=0.008), Gamma (P=0.009), Eglob (P=0.04), and Eloc (P<0.0001) were lower in patients with CKD 5ND than in HCs; however, the Lp (P=0.02) was higher in the patients than in the HCs. SC-SC coupling (P<0.001) was greater in patients with CKD 5ND than in HCs. The structural (Cp, Eloc, Eglob) and functional network parameters (Sigma, Gamma, Eglob) of the patients with CKD 5ND were positively correlated with MoCA scores; however, the Lp of both structural and functional networks was negatively correlated with MoCA scores. Conclusions All patients with CKD 5ND included in the study exhibited changes in their structural and functional brain network topology closely related to mild cognitive impairment. SC-SC coupling was elevated in the patients compared with that in the controls. This may provide vital information for understanding and revealing the underlying mechanisms of cognitive impairment in patients with CKD 5ND.
Collapse
Affiliation(s)
- Lijun Song
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenbo Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingan Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Boyan Xu
- MR Research, GE Healthcare, Beijing, China
| | - Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenhu Liu
- Department of Nephrology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
16
|
Fotiadis P, Cieslak M, He X, Caciagli L, Ouellet M, Satterthwaite TD, Shinohara RT, Bassett DS. Myelination and excitation-inhibition balance synergistically shape structure-function coupling across the human cortex. Nat Commun 2023; 14:6115. [PMID: 37777569 PMCID: PMC10542365 DOI: 10.1038/s41467-023-41686-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/08/2023] [Indexed: 10/02/2023] Open
Abstract
Recent work has demonstrated that the relationship between structural and functional connectivity varies regionally across the human brain, with reduced coupling emerging along the sensory-association cortical hierarchy. The biological underpinnings driving this expression, however, remain largely unknown. Here, we postulate that intracortical myelination and excitation-inhibition (EI) balance mediate the heterogeneous expression of structure-function coupling (SFC) and its temporal variance across the cortical hierarchy. We employ atlas- and voxel-based connectivity approaches to analyze neuroimaging data acquired from two groups of healthy participants. Our findings are consistent across six complementary processing pipelines: 1) SFC and its temporal variance respectively decrease and increase across the unimodal-transmodal and granular-agranular gradients; 2) increased myelination and lower EI-ratio are associated with more rigid SFC and restricted moment-to-moment SFC fluctuations; 3) a gradual shift from EI-ratio to myelination as the principal predictor of SFC occurs when traversing from granular to agranular cortical regions. Collectively, our work delivers a framework to conceptualize structure-function relationships in the human brain, paving the way for an improved understanding of how demyelination and/or EI-imbalances induce reorganization in brain disorders.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Matthew Cieslak
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Xiaosong He
- Department of Psychology, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mathieu Ouellet
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Santa Fe Institute, Santa Fe, NM, 87501, USA.
| |
Collapse
|
17
|
Niu X, Gao X, Lv Q, Zhang M, Dang J, Sun J, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Increased spontaneous activity of the superior frontal gyrus with reduced functional connectivity to visual attention areas and cerebellum in male smokers. Front Hum Neurosci 2023; 17:1153976. [PMID: 37007679 PMCID: PMC10063805 DOI: 10.3389/fnhum.2023.1153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundChronic smokers have abnormal spontaneous regional activity and disrupted functional connectivity as revealed by previous neuroimaging studies. Combining different dimensions of resting-state functional indicators may help us learn more about the neuropathological mechanisms of smoking.MethodsThe amplitude of low frequency fluctuations (ALFF) of 86 male smokers and 56 male non-smokers were first calculated. Brain regions that displayed significant differences in ALFF between two groups were selected as seeds for further functional connectivity analysis. Besides, we examined correlations between brain areas with abnormal activity and smoking measurements.ResultsIncreased ALFF in left superior frontal gyrus (SFG), left medial superior frontal gyrus (mSFG) and middle frontal gyrus (MFG) as well as decreased ALFF in right calcarine sulcus were observed in smokers compared with non-smokers. In the seed-based functional connectivity analysis, smokers showed attenuated functional connectivity with left SFG in left precuneus, left fusiform gyrus, left lingual gyrus, left cerebellum 4 5 and cerebellum 6 as well as lower functional connectivity with left mSGF in left fusiform gyrus, left lingual gyrus, left parahippocampal gyrus (PHG), left calcarine sulcus, left cerebellum 4 5, cerebellum 6 and cerebellum 8 (GRF corrected, Pvoxel < 0.005, Pcluster<0.05). Furthermore, attenuated functional connectivity with left mSGF in left lingual gyrus and PHG displayed a negative correlation with FTND scores (r = −0.308, p = 0.004; r = −0.326, p = 0.002 Bonferroni corrected).ConclusionOur findings of increased ALFF in SFG with reduced functional connectivity to visual attention areas and cerebellum subregions may shed new light on the pathophysiology of smoking.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qingqing Lv
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Shaoqiang Han,
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- *Correspondence: Yong Zhang,
| |
Collapse
|
18
|
Guo J, Chen Y, Huang L, Liu W, Hu D, Lv Y, Kang H, Li N, Peng Y. Local structural-functional connectivity decoupling of caudate nucleus in infantile esotropia. Front Neurosci 2022; 16:1098735. [PMID: 36620443 PMCID: PMC9815444 DOI: 10.3389/fnins.2022.1098735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal brain structural and functional properties were demonstrated in patients with infantile esotropia (IE). However, few studies have investigated the interaction between structural and functional connectivity (SC-FC) in patients with IE. Structural network was generated with diffusion tensor imaging and functional network was constructed with resting-state functional magnetic resonance imaging for 18 patients with IE as well as 20 age- and gender- matched healthy subjects. The SC-FC coupling for global connectome, short connectome and long connectome were examined in IE patients and compared with those of healthy subjects. A linear mixed effects model was employed to examine the group-age interaction in terms of the coupling metrics. The Pearson correlation between coupling measures and strabismus degree was evaluated in IE patients, on which the regulatory effect of age was also investigated through hierarchical regression analysis. Significantly decreased SC-FC coupling score for short connections was observed in left caudate nucleus (CAU) in IE patients, whereas no brain regions exhibited altered coupling metrics for global connections or long connections. The group-age interaction was also evident in local coupling metrics of left CAU. The age-related regulatory effect on coupling-degree association was distinguishing between brain regions implicated in visual processing and cognition-related brain areas in IE patients. Local SC-FC decoupling in CAU was evident in patients with IE and was initiated in their early postnatal period, possibly interfering the visual cortico-striatal loop and subcortical optokinetic pathway subserving visual processing and nasalward optokinesis during neurodevelopment, which provides new insight into underlying neuropathological mechanism of IE.
Collapse
Affiliation(s)
- Jianlin Guo
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yuanyuan Chen
- Tianjin International Joint Research Center for Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Lijuan Huang
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wen Liu
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Di Hu
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Yanqiu Lv
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Huiying Kang
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China
| | - Ningdong Li
- Department of Ophthalmology, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China,*Correspondence: Ningdong Li,
| | - Yun Peng
- Imaging Center, MOE Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medical University, Beijing, China,Yun Peng,
| |
Collapse
|
19
|
Zhang S, Xu X, Li Q, Chen J, Liu S, Zhao W, Cai H, Zhu J, Yu Y. Brain Network Topology and Structural–Functional Connectivity Coupling Mediate the Association Between Gut Microbiota and Cognition. Front Neurosci 2022; 16:814477. [PMID: 35422686 PMCID: PMC9002058 DOI: 10.3389/fnins.2022.814477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence indicates that gut microbiota can influence cognition via the gut–brain axis, and brain networks play a critical role during the process. However, little is known about how brain network topology and structural–functional connectivity (SC–FC) coupling contribute to gut microbiota-related cognition. Fecal samples were collected from 157 healthy young adults, and 16S amplicon sequencing was used to assess gut diversity and enterotypes. Topological properties of brain structural and functional networks were acquired by diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (fMRI data), and SC–FC coupling was further calculated. 3-Back, digit span, and Go/No-Go tasks were employed to assess cognition. Then, we tested for potential associations between gut microbiota, complex brain networks, and cognition. The results showed that gut microbiota could affect the global and regional topological properties of structural networks as well as node properties of functional networks. It is worthy of note that causal mediation analysis further validated that gut microbial diversity and enterotypes indirectly influence cognitive performance by mediating the small-worldness (Gamma and Sigma) of structural networks and some nodal metrics of functional networks (mainly distributed in the cingulate gyri and temporal lobe). Moreover, gut microbes could affect the degree of SC–FC coupling in the inferior occipital gyrus, fusiform gyrus, and medial superior frontal gyrus, which in turn influence cognition. Our findings revealed novel insights, which are essential to provide the foundation for previously unexplored network mechanisms in understanding cognitive impairment, particularly with respect to how brain connectivity participates in the complex crosstalk between gut microbiota and cognition.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Xiaotao Xu
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qian Li
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
| | - Jingyao Chen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Siyu Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- *Correspondence: Jiajia Zhu,
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Research Center of Clinical Medical Imaging, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Hefei, China
- Department of Radiology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Radiology, Chaohu Hospital of Anhui Medical University, Hefei, China
- Yongqiang Yu,
| |
Collapse
|
20
|
Chen Q, Lv H, Wang Z, Wei X, Liu J, Liu F, Zhao P, Yang Z, Gong S, Wang Z. Distinct brain structural-functional network topological coupling explains different outcomes in tinnitus patients treated with sound therapy. Hum Brain Mapp 2022; 43:3245-3256. [PMID: 35332961 PMCID: PMC9189078 DOI: 10.1002/hbm.25848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Topological properties, which serve as the core of the neural network, and their couplings can reflect different therapeutic effects in tinnitus patients. We hypothesized that tinnitus patients with different outcomes after sound therapy (narrowband noise) would have distinct brain network topological alterations. Diffusion tensor imaging and resting‐state functional magnetic resonance imaging (fMRI) were prospectively performed in 60 patients with idiopathic tinnitus and 57 healthy controls (HCs). Graph‐theoretical network analyses of structural connectivity (SC), functional connectivity (FC), and SC and FC coupling were performed. Associations between clinical performance and graph‐theoretical features were also analyzed. Treatment was effective (effective group; EG) in 28 patients and ineffective (ineffective group; IG) in 32 patients. For FC, the patients in the EG showed higher local efficiency than patients in the IG. For SC, patients in both the EG and IG displayed lower normalized characteristic path length, characteristic path length, and global efficiency than the HCs. More importantly, patients in the IG had higher coupling than the HCs, whereas there was no difference in coupling between patients in the EG and HCs. Additionally, there were significant associations between the SC features and clinical performance in patients in the EG. Our findings demonstrate that tinnitus patients exhibited significant brain network topological alterations, especially in the structural brain network. More importantly, patients who demonstrated different curative effects showed distinct SC‐FC topological coupling properties. SC‐FC coupling could be an indicator that could be used to predict prognoses in patients with idiopathic tinnitus before sound therapy.
Collapse
Affiliation(s)
- Qian Chen
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhaodi Wang
- Department of Otolaryngology, Beijing Jingmei Group General Hospital, Beijing, China
| | - Xuan Wei
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiao Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fang Liu
- Department of Otolaryngology, Beijing Hospital, National Center of Gerontology, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Ye C, Huang J, Liang L, Yan Z, Qi Z, Kang X, Liu Z, Dong H, Lv H, Ma T, Lu J. Coupling of brain activity and structural network in multiple sclerosis: A graph frequency analysis study. J Neurosci Res 2022; 100:1226-1238. [PMID: 35184336 DOI: 10.1002/jnr.25028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/06/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Affiliation(s)
| | - Jing Huang
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Li Liang
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
| | - Zehong Yan
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
| | - Zhigang Qi
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Xiong Kang
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| | - Zheng Liu
- Department of Neurology Xuanwu Hospital, Capital Medical University Beijing China
| | - Huiqing Dong
- Department of Neurology Xuanwu Hospital, Capital Medical University Beijing China
| | - Haiyan Lv
- Mindsgo Life Science Shenzhen Co. Ltd Shenzhen China
| | - Ting Ma
- Peng Cheng Laboratory Shenzhen China
- Department of Electronic and Information Engineering Harbin Institute of Technology at Shenzhen Shenzhen China
- Advanced Innovation Center for Human Brain Protection Capital Medical University Beijing China
- National Clinical Research Center for Geriatric Disorders Xuanwu Hospital Capital Medical University Beijing China
| | - Jie Lu
- Department of Radiology and Nuclear Medicine Xuanwu Hospital, Capital Medical University Beijing China
- Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics Capital Medical University Beijing China
| |
Collapse
|
22
|
Hoptman MJ, Tural U, Lim KO, Javitt DC, Oberlin LE. Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sci 2022; 12:brainsci12020156. [PMID: 35203920 PMCID: PMC8870342 DOI: 10.3390/brainsci12020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects, and we acquired resting state fMRI and diffusion tensor imaging. We used the Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal component analysis. Of the 28 possible region pairs, 9 showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes, with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS correlated with several aspects of the Positive and Negative Syndrome Scale, with higher multimodal connectivity associated with outward-directed (externalizing) behavior and lower multimodal connectivity related to psychosis per se. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Matthew J. Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: or ; Tel.: +1-845-398-6569
| | - Umit Tural
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Daniel C. Javitt
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; or
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lauren E. Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
23
|
Relationship between Amyloid-β Deposition and the Coupling between Structural and Functional Brain Networks in Patients with Mild Cognitive Impairment and Alzheimer's Disease. Brain Sci 2021; 11:brainsci11111535. [PMID: 34827535 PMCID: PMC8615711 DOI: 10.3390/brainsci11111535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
Previous studies have demonstrated that the accumulation of amyloid-β (Aβ) pathologies has distinctive stage-specific effects on the structural and functional brain networks along the Alzheimer's disease (AD) continuum. A more comprehensive account of both types of brain network may provide a better characterization of the stage-specific effects of Aβ pathologies. A potential candidate for this joint characterization is the coupling between the structural and functional brain networks (SC-FC coupling). We therefore investigated the effect of Aβ accumulation on global SC-FC coupling in patients with mild cognitive impairment (MCI), AD, and healthy controls. Patients with MCI were dichotomized according to their level of Aβ pathology seen in 18F-flutemetamol PET-CT scans-namely, Aβ-negative and Aβ-positive. Our results show that there was no difference in global SC-FC coupling between different cohorts. During the prodromal AD stage, there was a significant negative correlation between the level of Aβ pathology and the global SC-FC coupling of MCI patients with positive Aβ, but no significant correlation for MCI patients with negative Aβ. During the AD dementia stage, the correlation between Aβ pathology and global SC-FC coupling in patients with AD was positive. Our results suggest that Aβ pathology has distinctive stage-specific effects on global coupling between the structural and functional brain networks along the AD continuum.
Collapse
|
24
|
Chen H, Geng W, Shang S, Shi M, Zhou L, Jiang L, Wang P, Yin X, Chen YC. Alterations of brain network topology and structural connectivity-functional connectivity coupling in capsular versus pontine stroke. Eur J Neurol 2021; 28:1967-1976. [PMID: 33657258 DOI: 10.1111/ene.14794] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND PURPOSE This study was conducted to investigate whether capsular stroke (CS) and pontine stroke (PS) have different topological alterations of structural connectivity (SC) and functional connectivity (FC), as well as correlations of SC-FC coupling with movement assessment scores. METHODS Resting-state functional magnetic resonance imaging and diffusion tensor imaging were prospectively acquired in 46 patients with CS, 36 with PS, and 29 healthy controls (HCs). Graph theoretical network analyses of SC and FC were performed. Patients with left and right lesions were analyzed separately. RESULTS With regard to FC, the PS and CS groups both showed higher local efficiency than the HCs, and the CS group also had a higher clustering coefficient (Cp) than the HCs in the right lesion analysis. With regard to SC, the PS and CS groups both showed different normalized clustering coefficient (γ), small-worldness (σ), and characteristic path length (Lp) compared with the HC group. Additionally, the CS group showed higher normalized characteristic path length (λ) and a lower Cp than the HCs and the PS group showed higher λ and lower global efficiency than the HCs in the right-lesion analysis. However, γ, σ, Cp and Lp were only significantly different in the PS and CS groups compared with the HC group in the right-lesion analysis. Importantly, the CS group was found to have a weaker SC-FC coupling than the PS group and the HC group in the right-lesion analysis. In addition, both patient groups had weaker structural-functional connectome correlation than the HCs. CONCLUSIONS The CS and PS groups both showed FC and SC disruption and the CS group had a weaker SC-FC coupling than the PS group in the right lesion analysis. This may provide useful information for individualized rehabilitative strategies.
Collapse
Affiliation(s)
- Huiyou Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Geng
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Song'an Shang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Mengye Shi
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Leilei Zhou
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liang Jiang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Structural-functional decoupling predicts suicide attempts in bipolar disorder patients with a current major depressive episode. Neuropsychopharmacology 2020; 45:1735-1742. [PMID: 32604403 PMCID: PMC7421902 DOI: 10.1038/s41386-020-0753-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder (BD) is associated with a high risk of suicidality, and it is challenging to predict suicide attempts in clinical practice to date. Although structural and functional connectivity alterations from neuroimaging studies have been previously reported in BD with suicide attempts, little is known about how abnormal structural and functional connectivity relates to each other. Here, we hypothesize that structure connectivity constrains functional connectivity, and structural-functional coupling is a more sensitive biomarker to detect subtle brain abnormalities than any single modality in BD patients with a current major depressive episode who had attempted suicide. By investigating structural and resting-state fMRI connectivity, as well as their coupling among 191 BD depression patients with or without a history of suicide attempts and 113 healthy controls, we found that suicide attempters in BD depression patients showed significantly decreased central-temporal structural connectivity, increased frontal-temporal functional connectivity, along with decreased structural-functional coupling compared with non-suicide attempters. Crucially, the altered structural connectivity network predicted the abnormal functional connectivity network profile, and the structural-functional coupling was significantly correlated with suicide risk but not with depression or anxiety severity. Our findings suggest that the structural connectome is the key determinant of brain dysfunction, and structural-functional coupling could serve as a valuable trait-like biomarker for BD suicidal predication over and above the intramodality network connectivity. Such a measure can have clinical implications for early identification of suicide attempters with BD depression and inform strategies for prevention.
Collapse
|
26
|
Kim DJ, Min BK. Rich-club in the brain's macrostructure: Insights from graph theoretical analysis. Comput Struct Biotechnol J 2020; 18:1761-1773. [PMID: 32695269 PMCID: PMC7355726 DOI: 10.1016/j.csbj.2020.06.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
The brain is a complex network. Growing evidence supports the critical roles of a set of brain regions within the brain network, known as the brain’s cores or hubs. These regions require high energy cost but possess highly efficient neural information transfer in the brain’s network and are termed the rich-club. The rich-club of the brain network is essential as it directly regulates functional integration across multiple segregated regions and helps to optimize cognitive processes. Here, we review the recent advances in rich-club organization to address the fundamental roles of the rich-club in the brain and discuss how these core brain regions affect brain development and disorders. We describe the concepts of the rich-club behind network construction in the brain using graph theoretical analysis. We also highlight novel insights based on animal studies related to the rich-club and illustrate how human studies using neuroimaging techniques for brain development and psychiatric/neurological disorders may be relevant to the rich-club phenomenon in the brain network.
Collapse
Key Words
- AD, Alzheimer’s disease
- ADHD, attention deficit hyperactivity disorder
- ASD, autism spectrum disorder
- BD, bipolar disorder
- Brain connectivity
- Brain network
- DTI, diffusion tensor imaging
- EEG, electroencephalography
- Graph theory
- MDD, major depressive disorder
- MEG, magnetoencephalography
- MRI, magnetic resonance imaging
- Neuroimaging
- Rich-club
- TBI, traumatic brain injury
Collapse
Affiliation(s)
- Dae-Jin Kim
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Byoung-Kyong Min
- Department of Brain and Cognitive Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
27
|
Nabulsi L, McPhilemy G, Kilmartin L, O'Hora D, O'Donoghue S, Forcellini G, Najt P, Ambati S, Costello L, Byrne F, McLoughlin J, Hallahan B, McDonald C, Cannon DM. Bipolar Disorder and Gender Are Associated with Frontolimbic and Basal Ganglia Dysconnectivity: A Study of Topological Variance Using Network Analysis. Brain Connect 2019; 9:745-759. [PMID: 31591898 DOI: 10.1089/brain.2019.0667] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Well-established structural abnormalities, mostly involving the limbic system, have been associated with disorders of emotion regulation. Understanding the arrangement and connections of these regions with other functionally specialized cortico-subcortical subnetworks is key to understanding how the human brain's architecture underpins abnormalities of mood and emotion. We investigated topological patterns in bipolar disorder (BD) with the anatomically improved precision conferred by combining subject-specific parcellation/segmentation with nontensor-based tractograms derived using a high-angular resolution diffusion-weighted approach. Connectivity matrices were constructed using 34 cortical and 9 subcortical bilateral nodes (Desikan-Killiany), and edges that were weighted by fractional anisotropy and streamline count derived from deterministic tractography using constrained spherical deconvolution. Whole-brain and rich-club connectivity alongside a permutation-based statistical approach was used to investigate topological variance in predominantly euthymic BD relative to healthy volunteers. BP patients (n = 40) demonstrated impairments across whole-brain topological arrangements (density, degree, and efficiency), and a dysconnected subnetwork involving limbic and basal ganglia relative to controls (n = 45). Increased rich-club connectivity was most evident in females with BD, with frontolimbic and parieto-occipital nodes not members of BD rich-club. Increased centrality in females relative to males was driven by basal ganglia and fronto-temporo-limbic nodes. Our subject-specific cortico-subcortical nontensor-based connectome map presents a neuroanatomical model of BD dysconnectivity that differentially involves communication within and between emotion-regulatory and reward-related subsystems. Moreover, the female brain positions more dependence on nodes belonging to these two differently specialized subsystems for communication relative to males, which may confer increased susceptibility to processes dependent on integration of emotion and reward-related information.
Collapse
Affiliation(s)
- Leila Nabulsi
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Liam Kilmartin
- College of Engineering and Informatics, National University of Ireland Galway, Galway, Ireland
| | - Denis O'Hora
- School of Psychology, National University of Ireland Galway, Galway, Ireland
| | - Stefani O'Donoghue
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Giulia Forcellini
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland.,Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Pablo Najt
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Srinath Ambati
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Laura Costello
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Fintan Byrne
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - James McLoughlin
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
28
|
Zhang R, Shao R, Xu G, Lu W, Zheng W, Miao Q, Chen K, Gao Y, Bi Y, Guan L, McIntyre RS, Deng Y, Huang X, So KF, Lin K. Aberrant brain structural-functional connectivity coupling in euthymic bipolar disorder. Hum Brain Mapp 2019; 40:3452-3463. [PMID: 31282606 DOI: 10.1002/hbm.24608] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/28/2019] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant structural (diffusion tensor imaging [DTI]) and resting-state functional magnetic resonance imagining connectivity are core features of bipolar disorder. However, few studies have explored the integrity agreement between structural and functional connectivity (SC-FC) in bipolar disorder. We examine SC connectivity coupling index whether could potentially provide additional clinical predictive value for bipolar disorder spectrum disorders besides the intramodality network measures. By examining the structural (DTI) and resting-state functional network properties, as well as their coupling index, among 57 euthymic bipolar disorder patients (age 13-28 years, 18 females) and 42 age- and gender-matched healthy controls (age 13-28 years, 16 females), we found that compared to controls, bipolar disorder patients showed increased structural rich-club connectivity as well as decreased functional modularity. Importantly, the coupling strength between structural and functional connectome was decreased in patients compared to controls, which emerged as the most powerful feature discriminating the two groups. Our findings suggest that structural-functional coupling strength could serve as a valuable biological trait-like feature for bipolar disorder over and above the intramodality network measures. Such measure can have important clinical implications for early identification of bipolar disorder individuals, and inform strategies for prevention of bipolar disorder onset and relapse.
Collapse
Affiliation(s)
- Ruibin Zhang
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China.,Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China
| | - Robin Shao
- Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Guiyun Xu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicong Lu
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Zheng
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingzhe Miao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Kun Chen
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanling Gao
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanan Bi
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijie Guan
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Roger S McIntyre
- Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Psychiatry, University of Toronto, Toronto, Canada.,Mood Disorders Psychopharmacology Unit, University Health Network, Toronto, Canada
| | - Yue Deng
- Department of Psychology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejun Huang
- Department of Psychology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kwok-Fai So
- Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China.,The State Key Laboratory of Brain and Cognitive Sciences and Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Laboratory of Neuropsychology, Laboratory of Social Cognitive Affective Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China.,Academician workstation of Mood and Brain Sciences, Guangzhou Medical University, Guangzhou, China.,Laboratory of Emotion and Cognition, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China.,GMH Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|