1
|
Schneider CV, Decraecker M, Beaufrère A, Payancé A, Coilly A, Schneider KM, Bioulac P, Blanc JF, Le Bail B, Amintas S, Bouchecareilh M. Alpha-1 antitrypsin deficiency and primary liver cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189290. [PMID: 39999944 DOI: 10.1016/j.bbcan.2025.189290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Primary liver cancers (PLCs) remain a major challenge to global health and an escalating threat to human life, with a growing incidence worldwide. PLCs are composed of hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and mixed HCC-CCA, accounting for 85 %, 10 %, and 5 % of cases, respectively. Among the numerous identified risk factors associated with liver cancers, Alpha 1-AntiTrypsin Deficiency (AATD) genetic disease emerges as an intriguing one. AATD-related liver disease may lead to chronic hepatitis, cirrhosis, and PLCs in adulthood. Although our knowledge about the natural history of AATD-liver disease has improved recently, liver cancers associated with AATD remain poorly understood and explored, while this specific population is at a 20 to 50 times higher risk of developing PLC. Thus, we review here current knowledge about AATD-associated PLCs, describing the impact of AATD genotypes on their occurrence. We also discuss emerging hypotheses regarding the AATD PiZZ genotype-related hepatic carcinogenesis process. Finally, we perform an updated analysis of the United Kingdom Biobank database that highlights and confirms AATD PiZZ genotype as an important HCC risk factor.
Collapse
Affiliation(s)
- Carolin Victoria Schneider
- Department of Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Aachen, Germany
| | - Marie Decraecker
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Aurélie Beaufrère
- AP-HP Nord, Department of Pathology, FHU MOSAIC, SIRIC InsiTu, DMU DREAM, Université Paris Cité, Beaujon Hospital, Clichy, France
| | - Audrey Payancé
- AP-HP, Hôpital Beaujon, Service d'Hépatologie, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Audrey Coilly
- Centre Hépato-Biliaire, Hôpital Paul Brousse, UMR-1193, APHP, Université Paris Saclay, Villejuif, France
| | - Kai Markus Schneider
- Departement of Medicine I, Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany; Else Kroener Fresenius Center for Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Paulette Bioulac
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France
| | - Jean-Frédéric Blanc
- Oncology Unit, Hôpital Haut Lévêque, CIC 1401, Bordeaux University Hospital, 33604 Pessac, France
| | - Brigitte Le Bail
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Pathology Department, Pellegrin University Hospital, CHU Bordeaux, France; French National and Bordeaux Local Liver Tumor Bank, France
| | - Samuel Amintas
- University of Bordeaux, CNRS, INSERM, BRIC, U1312 Bordeaux, France; Tumor Biology and Tumor Bank Laboratory, CHU Bordeaux, Pessac, France.
| | | |
Collapse
|
2
|
Kent D, Ng SS, Syanda AM, Khoshkenar P, Ronzoni R, Li CZ, Zieger M, Greer C, Hatch S, Segal J, Blackford SJI, Im YR, Chowdary V, Ismaili T, Danovi D, Lewis PA, Irving JA, Sahdeo S, Lomas DA, Ebner D, Mueller C, Rashid ST. Reduction of Z alpha-1 antitrypsin polymers in human iPSC-hepatocytes and mice by LRRK2 inhibitors. Hepatology 2025; 81:903-916. [PMID: 38954820 DOI: 10.1097/hep.0000000000000969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/29/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Alpha-1 antitrypsin deficiency (A1ATD) is a life-threatening condition caused by the inheritance of the serpin family A member 1 "Z" genetic variant driving alpha-1 antitrypsin (AAT) protein misfolding in hepatocytes. There are no approved medicines for this disease. METHODS We conducted a high-throughput image-based small molecule screen using patient-derived induced pluripotent stem cell-hepatocytes (iPSC-hepatocytes). Identified targets were validated in vitro using 3 independent patient iPSC lines. The effects of the identified target, leucine-rich repeat kinase 2 (LRRK2), were further evaluated in an animal model of A1ATD through histology and immunohistochemistry and in an autophagy-reporter line. Autophagy induction was assessed through immunoblot and immunofluorescence analyses. RESULTS Small-molecule screen performed in iPSC-hepatocytes identified LRRK2 as a potentially new therapeutic target. Of the commercially available LRRK2 inhibitors tested, we identified CZC-25146, a candidate with favorable pharmacokinetic properties, as capable of reducing polymer load, increasing normal AAT secretion, and reducing inflammatory cytokines in both cells and PiZ mice. Mechanistically, this effect was achieved through the induction of autophagy. CONCLUSIONS Our findings support the use of CZC-25146 and leucine-rich repeat kinase-2 inhibitors in hepatic proteinopathy research and their further investigation as novel therapeutic candidates for A1ATD.
Collapse
Affiliation(s)
- Deniz Kent
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Adam M Syanda
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Payam Khoshkenar
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Riccardo Ronzoni
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Chao Zheng Li
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Marina Zieger
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Cindy Greer
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Stephanie Hatch
- National Phenotypic Screening Centre, University of Oxford, Headington, Oxford, UK
| | - Joe Segal
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Samuel J I Blackford
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Yu Ri Im
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Vivek Chowdary
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - Taylor Ismaili
- Discovery Sciences, Janssen Research and Development, San Diego, California, USA
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | - James A Irving
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Sunil Sahdeo
- Discovery Sciences, Janssen Research and Development, San Diego, California, USA
| | - David A Lomas
- UCL Respiratory and the Institute of Structural and Molecular Biology, University College London, London, UK
| | - Daniel Ebner
- National Phenotypic Screening Centre, University of Oxford, Headington, Oxford, UK
| | - Christian Mueller
- Gene Therapy Center, University of Massachusetts, Worchester, Massachusetts, USA
| | - S Tamir Rashid
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| |
Collapse
|
3
|
Sun S, Wang C, Hu J, Zhao P, Wang X, Balch WE. Spatial covariance reveals isothiocyanate natural products adjust redox stress to restore function in alpha-1-antitrypsin deficiency. Cell Rep Med 2025; 6:101917. [PMID: 39809267 DOI: 10.1016/j.xcrm.2024.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 06/09/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is a monogenic disease caused by misfolding of AAT variants resulting in gain-of-toxic aggregation in the liver and loss of monomer activity in the lung leading to chronic obstructive pulmonary disease (COPD). Using high-throughput screening, we discovered a bioactive natural product, phenethyl isothiocyanate (PEITC), highly enriched in cruciferous vegetables, including watercress and broccoli, which improves the level of monomer secretion and neutrophil elastase (NE) inhibitory activity of AAT-Z through the endoplasmic reticulum (ER) redox sensor protein disulfide isomerase (PDI) A4 (PDIA4). The intracellular polymer burden of AAT-Z can be managed by combination treatment of PEITC and an autophagy activator. Using Gaussian process (GP)-based spatial covariance (SCV) (GP-SCV) machine learning to map on a residue-by-residue basis at atomic resolution all variants in the worldwide AATD clinical population, we reveal a global rescue of monomer secretion and NE inhibitory activity for most variants triggering disease. We present a proof of concept that GP-SCV mapping of restoration of AAT variant function serves as a standard model to discover natural products such as the anti-oxidant PEITC that could potentially impact the redox/inflammatory environment of the ER to provide a nutraceutical approach to help minimize disease in AATD patients.
Collapse
Affiliation(s)
- Shuhong Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Institute for Brain Tumors, Collaborative Innovation Center for Cancer Personalized Medicine, and Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Junyan Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Pei Zhao
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Xi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William E Balch
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
4
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
5
|
Ruiz M, Lacaille F, Schrader C, Pons M, Socha P, Krag A, Sturm E, Bouchecareilh M, Strnad P. Pediatric and Adult Liver Disease in Alpha-1 Antitrypsin Deficiency. Semin Liver Dis 2023; 43:258-266. [PMID: 37402396 DOI: 10.1055/a-2122-7674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) arises due to inherited variants in SERPINA1, the AAT gene that impairs the production or secretion of this hepatocellular protein and leads to a gain-of-function liver proteotoxicity. Homozygous Pi*Z pathogenic variant (Pi*ZZ genotype) is the leading cause of severe AATD. It manifests in 2 to 10% of carriers as neonatal cholestasis and 20 to 35% of adults as significant liver fibrosis. Both children and adults may develop an end-stage liver disease requiring liver transplantation. Heterozygous Pi*Z pathogenic variant (Pi*MZ genotype) constitutes an established disease modifier. Our review summarizes the natural history and management of subjects with both pediatric and adult AATD-associated liver disease. Current findings from a phase 2 clinical trial indicate that RNA silencing may constitute a viable therapeutic approach for adult AATD. In conclusion, AATD is an increasingly appreciated pediatric and adult liver disorder that is becoming an attractive target for modern pharmacologic strategies.
Collapse
Affiliation(s)
- Mathias Ruiz
- Hépatologie, Gastroentérologie et Nutrition Pédiatriques, Hôpital Femme Mère Enfant, Hospices civils de Lyon, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Lyon, France
| | - Florence Lacaille
- Service de Gastroentérologie-Nutrition Pédiatriques et Unité d'Hépatologie Pédiatrique Hôpital Universitaire Necker-Enfants Malades, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Paris, France
| | - Christina Schrader
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Piotr Socha
- The Children's Memorial Health Institute, Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, Al. Dzieci Polskich, Warszawa, Poland
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Ekkehard Sturm
- Pediatric Gastroenterology and Hepatology, University Children's Hospital Tübingen, Member Center of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Tübingen, Germany
| | | | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
6
|
Li Y, Guha C, Asp P, Wang X, Tchaikovskya TL, Kim K, Mendel M, Cost GJ, Perlmutter DH, Roy-Chowdhury N, Fox IJ, Conway A, Roy-Chowdhury J. Resolution of hepatic fibrosis after ZFN-mediated gene editing in the PiZ mouse model of human α1-antitrypsin deficiency. Hepatol Commun 2023; 7:e0070. [PMID: 36848094 PMCID: PMC9974076 DOI: 10.1097/hc9.0000000000000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/21/2022] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND α1-antitrypsin deficiency is most commonly caused by a mutation in exon-7 of SERPINA1 (SA1-ATZ), resulting in hepatocellular accumulation of a misfolded variant (ATZ). Human SA1-ATZ-transgenic (PiZ) mice exhibit hepatocellular ATZ accumulation and liver fibrosis. We hypothesized that disrupting the SA1-ATZ transgene in PiZ mice by in vivo genome editing would confer a proliferative advantage to the genome-edited hepatocytes, enabling them to repopulate the liver. METHODS To create a targeted DNA break in exon-7 of the SA1-ATZ transgene, we generated 2 recombinant adeno-associated viruses (rAAV) expressing a zinc-finger nuclease pair (rAAV-ZFN), and another rAAV for gene correction by targeted insertion (rAAV-TI). PiZ mice were injected i.v. with rAAV-TI alone or the rAAV-ZFNs at a low (7.5×1010vg/mouse, LD) or a high dose (1.5×1011vg/mouse, HD), with or without rAAV-TI. Two weeks and 6 months after treatment, livers were harvested for molecular, histological, and biochemical analyses. RESULTS Two weeks after treatment, deep sequencing of the hepatic SA1-ATZ transgene pool showed 6%±3% or 15%±4% nonhomologous end joining in mice receiving LD or HD rAAV-ZFN, respectively, which increased to 36%±12% and 36%±12%, respectively, 6 months after treatment. Two weeks postinjection of rAAV-TI with LD or HD of rAAV-ZFN, repair by targeted insertion occurred in 0.10%±0.09% and 0.25%±0.14% of SA1-ATZ transgenes, respectively, which increased to 5.2%±5.0% and 33%±13%, respectively, 6 months after treatment. Six months after rAAV-ZFN administration, there was a marked clearance of ATZ globules from hepatocytes, and resolution of liver fibrosis, along with reduction of hepatic TAZ/WWTR1, hedgehog ligands, Gli2, a TIMP, and collagen content. CONCLUSIONS ZFN-mediated SA1-ATZ transgene disruption provides a proliferative advantage to ATZ-depleted hepatocytes, enabling them to repopulate the liver and reverse hepatic fibrosis.
Collapse
Affiliation(s)
- Yanfeng Li
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York, USA
- Department of Pathology, Albert Einstein College of Medicine, New York, New York, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Patrik Asp
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Xia Wang
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Tatyana L. Tchaikovskya
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, New York, USA
| | - Kenneth Kim
- Sangamo Therapeutics, Richmond, California, USA
| | | | | | - David H. Perlmutter
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Namita Roy-Chowdhury
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| | - Ira J. Fox
- Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Jayanta Roy-Chowdhury
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Lu Y, Wang LR, Lee J, Mohammad NS, Aranyos AM, Gould C, Khodayari N, Oshins RA, Moneypenny CG, Brantly ML. The unfolded protein response to PI*Z alpha-1 antitrypsin in human hepatocellular and murine models. Hepatol Commun 2022; 6:2354-2367. [PMID: 35621045 PMCID: PMC9426387 DOI: 10.1002/hep4.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/16/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
Alpha-1 antitrypsin (AAT) deficiency (AATD) is an inherited disease caused by mutations in the serpin family A member 1 (SERPINA1, also known as AAT) gene. The most common variant, PI*Z (Glu342Lys), causes accumulation of aberrantly folded AAT in the endoplasmic reticulum (ER) of hepatocytes that is associated with a toxic gain of function, hepatocellular injury, liver fibrosis, and hepatocellular carcinoma. The unfolded protein response (UPR) is a cellular response to improperly folded proteins meant to alleviate ER stress. It has been unclear whether PI*Z AAT elicits liver cell UPR, due in part to limitations of current cellular and animal models. This study investigates whether UPR is activated in a novel human PI*Z AAT cell line and a new PI*Z human AAT (hAAT) mouse model. A PI*Z AAT hepatocyte cell line (Huh7.5Z) was established using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing of the normal ATT (PI*MM) gene in the Huh7.5 cell line. Additionally, novel full-length genomic DNA PI*Z hAAT and PI*M hAAT transgenic mouse models were established. Using these new models, UPR in Huh7.5Z cells and PI*Z mice were comprehensively determined. Robust activation of UPR was observed in Huh7.5Z cells compared to Huh7.5 cells. Activated caspase cascade and apoptosis markers, increased chaperones, and autophagy markers were also detected in Z hepatocytes. Selective attenuation of UPR signaling branches was observed in PI*Z hAAT mice in which the protein kinase R-like ER kinase and inositol-requiring enzyme1α branches were suppressed while the activating transcription factor 6α branch remained active. This study provides direct evidence that PI*Z AAT triggers canonical UPR and that hepatocytes survive pro-apoptotic UPR by selective suppression of UPR branches. Our data improve understanding of underlying pathological molecular mechanisms of PI*Z AATD liver disease.
Collapse
Affiliation(s)
- Yuanqing Lu
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Liqun R. Wang
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Jungnam Lee
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Naweed S. Mohammad
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Alek M. Aranyos
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Calvin Gould
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Nazli Khodayari
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Regina A. Oshins
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Craig G. Moneypenny
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| | - Mark L. Brantly
- Division of Pulmonary, Critical Care and Sleep MedicineDepartment of MedicineUniversity of FloridaFloridaUSA
| |
Collapse
|
8
|
Abstract
Liver disease in homozygous ZZ alpha-1 antitrypsin (AAT) deficiency occurs due to the accumulation of large quantities of AAT mutant Z protein polymers in the liver. The mutant Z protein folds improperly during biogenesis and is retained within the hepatocytes rather than appropriately secreted. These intracellular polymers trigger an injury cascade, which leads to liver injury. However, the clinical liver disease is highly variable and not all patients with this same homozygous ZZ genotype develop liver disease. Evidence suggests that genetic determinants of intracellular protein processing, among other unidentified genetic and environmental factors, likely play a role in liver disease susceptibility. Advancements made in development of new treatment strategies using siRNA technology, and other novel approaches, are promising, and multiple human liver disease trials are underway.
Collapse
Affiliation(s)
- Anandini Suri
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA.
| | - Dhiren Patel
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| | - Jeffrey H Teckman
- Division of Pediatric Gastroenetrology, Hepatology and Nutrition, Department of Pediatrics, Saint Louis University School of Medicine, SSM Health Cardinal Glennon Children's Hospital, 1465 S Grand Boulevard, St. Louis, MO 63104, USA
| |
Collapse
|
9
|
Fromme M, Schneider CV, Pereira V, Hamesch K, Pons M, Reichert MC, Benini F, Ellis P, H Thorhauge K, Mandorfer M, Burbaum B, Woditsch V, Chorostowska-Wynimko J, Verbeek J, Nevens F, Genesca J, Miravitlles M, Nuñez A, Schaefer B, Zoller H, Janciauskiene S, Abreu N, Jasmins L, Gaspar R, Liberal R, Macedo G, Mahadeva R, Gomes C, Schneider KM, Trauner M, Krag A, Gooptu B, Thorburn D, Marshall A, Hurst JR, Lomas DA, Lammert F, Gaisa NT, Clark V, Griffiths W, Trautwein C, Turner AM, McElvaney NG, Strnad P. Hepatobiliary phenotypes of adults with alpha-1 antitrypsin deficiency. Gut 2022; 71:415-423. [PMID: 33632708 DOI: 10.1136/gutjnl-2020-323729] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/07/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Alpha-1 antitrypsin deficiency (AATD) is a common, potentially lethal inborn disorder caused by mutations in alpha-1 antitrypsin (AAT). Homozygosity for the 'Pi*Z' variant of AAT (Pi*ZZ genotype) causes lung and liver disease, whereas heterozygous 'Pi*Z' carriage (Pi*MZ genotype) predisposes to gallstones and liver fibrosis. The clinical significance of the more common 'Pi*S' variant remains largely undefined and no robust data exist on the prevalence of liver tumours in AATD. DESIGN Baseline phenotypes of AATD individuals and non-carriers were analysed in 482 380 participants in the UK Biobank. 1104 participants of a multinational cohort (586 Pi*ZZ, 239 Pi*SZ, 279 non-carriers) underwent a comprehensive clinical assessment. Associations were adjusted for age, sex, body mass index, diabetes and alcohol consumption. RESULTS Among UK Biobank participants, Pi*ZZ individuals displayed the highest liver enzyme values, the highest occurrence of liver fibrosis/cirrhosis (adjusted OR (aOR)=21.7 (8.8-53.7)) and primary liver cancer (aOR=44.5 (10.8-183.6)). Subjects with Pi*MZ genotype had slightly elevated liver enzymes and moderately increased odds for liver fibrosis/cirrhosis (aOR=1.7 (1.2-2.2)) and cholelithiasis (aOR=1.3 (1.2-1.4)). Individuals with homozygous Pi*S mutation (Pi*SS genotype) harboured minimally elevated alanine aminotransferase values, but no other hepatobiliary abnormalities. Pi*SZ participants displayed higher liver enzymes, more frequent liver fibrosis/cirrhosis (aOR=3.1 (1.1-8.2)) and primary liver cancer (aOR=6.6 (1.6-26.9)). The higher fibrosis burden was confirmed in a multinational cohort. Male sex, age ≥50 years, obesity and the presence of diabetes were associated with significant liver fibrosis. CONCLUSION Our study defines the hepatobiliary phenotype of individuals with the most relevant AATD genotypes including their predisposition to liver tumours, thereby allowing evidence-based advice and individualised hepatological surveillance.
Collapse
Affiliation(s)
- Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vitor Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Karim Hamesch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Federica Benini
- Gastroenterology Unit, Department of Medicine, Spedali Civili and University, Brescia, Italy
| | - Paul Ellis
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Katrine H Thorhauge
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Barbara Burbaum
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Tuberculosis and Lung Diseases Institute, Warszawa, Poland
| | - Jef Verbeek
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Frederik Nevens
- Department of Gastroenterology & Hepatology, KU Leuven University Hospitals Leuven, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Leuven, Flanders, Belgium
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Universitat Autonoma de Barcelona, Barcelona, Catalunya, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain
| | - Marc Miravitlles
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Alexa Nuñez
- Pneumology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tirol, Austria
| | | | - Nélia Abreu
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Luís Jasmins
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Guilherme Macedo
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge University Hospitals, Cambridge, UK
| | - Catarina Gomes
- Gastroenterology Department, Centro Hospitalar de Vila Nova de Gaia Espinho EPE, Vila Nova de Gaia, Porto, Portugal
| | - Kai Markus Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Bibek Gooptu
- NIHR Leicester BRC-Respiratory and Leicester Institute of Structural & Chemical Biology, University of Leicester, Leicester, Leicestershire, UK.,London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK
| | - Douglas Thorburn
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Aileen Marshall
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,Sheila Sherlock Liver Unit and UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - John R Hurst
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,UCL Respiratory, Division of Medicine, University College London, London, UK
| | - David A Lomas
- London Alpha-1 Antitrypsin Deficiency Service, Royal Free Hospital, London, UK.,UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School (MHH), Hannover, Germany
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, USA
| | - William Griffiths
- Department of Hepatology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, UK
| | - Christian Trautwein
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| | - Alice M Turner
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pavel Strnad
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN RARE LIVER), Aachen, Germany
| |
Collapse
|
10
|
Marek G, Collinsworth A, Liu C, Brantly M, Clark V. Quantitative measurement of the histological features of alpha-1 antitrypsin deficiency-associated liver disease in biopsy specimens. PLoS One 2021; 16:e0256117. [PMID: 34398915 PMCID: PMC8366994 DOI: 10.1371/journal.pone.0256117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/31/2021] [Indexed: 11/27/2022] Open
Abstract
Background Pathological mutations in Alpha-1 Antitrypsin (AAT) protein cause retention of toxic polymers in the hepatocyte endoplasmic reticulum. The risk for cirrhosis in AAT deficiency is likely directly related to retention of these polymers within the liver. Polymers are classically identified on liver biopsy as inclusion bodies by periodic acid schiff staining after diastase treatment and immunohistochemistry. However, characterization of the polymer burden within a biopsy sample is limited to a semi-quantitative scale as described by a pathologist. Better methods to quantify polymer are needed to advance our understanding of pathogenesis of disease. Therefore, we developed a method to quantify polymer aggregation from standard histologic specimens. In addition, we sought to understand the relationship of polymer burden and other histologic findings to the presence of liver fibrosis. Methods Liver samples from a well-categorized AATD cohort were used to develop histo-morphometric tools to measure protein aggregation. Results Whole-slide morphometry reliably quantifies aggregates in AATD individuals. Despite very low levels of inclusions present (0–0.41%), accumulation of globules is not linear and is associated with higher fibrosis stages. Immunohistochemistry demonstrates that fibrosis is associated with polymer accumulation and not total AAT. A proportion of patients were found to be “heavy accumulators” with a polymer burden above the upper 25% of normal distribution. Males had significantly more liver inclusions and polymer than females. These measurements also highlight interrelated phenotypes of hepatocellular degeneration and autophagy in AATD liver disease. Conclusion Quantitative inclusion analysis measures AAT accumulation in liver biopsy specimens. Quantification of polymer may identify individuals at risk for progressive disease and candidates for therapeutic interventions. Furthermore, these methods may be useful for evaluating efficacy of drugs targeting accumulation of AAT.
Collapse
Affiliation(s)
- George Marek
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Amy Collinsworth
- Advanced Pathology Solutions, Little Rock, Arkansas, United States of America
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Mark Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Virginia Clark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
11
|
Callea F, Tomà P, Bellacchio E. The Recruitment-Secretory Block ("R-SB") Phenomenon and Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22136807. [PMID: 34202771 PMCID: PMC8269287 DOI: 10.3390/ijms22136807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 01/28/2023] Open
Abstract
In this article, we review the biological and clinical implication of the Recruitment-Secretory Block (“R-SB”) phenomenon. The phenomenon refers to the reaction of the liver with regard to protein secretion in conditions of clinical stimulation. Our basic knowledge of the process is due to the experimental work in animal models. Under basal conditions, the protein synthesis is mainly carried out by periportal (zone 1) hepatocytes that are considered the “professional” synthesizing protein cells. Under stimulation, midlobular and centrolobular (zones 2 and 3) hepatocytes, are progressively recruited according to lobular gradients and contribute to the increase of synthesis and secretion. The block of secretion, operated by exogenous agents, causes intracellular retention of all secretory proteins. The Pi MZ phenotype of Alpha-1-antitrypsin deficiency (AATD) has turned out to be the key for in vivo studies of the reaction of the liver, as synthesis and block of secretion are concomitant. Indeed, the M fraction of AAT is stimulated for synthesis and regularly exported while the Z fraction is mostly retained within the cell. For that reason, the phenomenon has been designated “Recruitment-Secretory Block” (“R-SB”). The “R-SB” phenomenon explains why: (a) the MZ individuals can correct the serum deficiency; (b) the resulting immonohistochemical and electron microscopic (EM) patterns are very peculiar and specific for the diagnosis of the Z mutation in tissue sections in the absence of genotyping; (c) the term carrier is no longer applicable for the heterozygous condition as all Pi MZ individuals undergo storage and the storage predisposes to liver damage. The storage represents the true elementary lesion and consequently reflects the phenotype-genotype correlation; (d) the site and function of the extrahepatic AAT and the relationship between intra and extracellular AAT; (e) last but not least, the concept of Endoplasmic Reticulum Storage Disease (ERSD) and of a new disease, hereditary hypofibrinogenemia with hepatic storage (HHHS). In the light of the emerging phenomenon, described in vitro, namely that M and Z AAT can form heteropolymers within hepatocytes as well as in circulation, we have reviewed the whole clinical and experimental material collected during forty years, in order to evaluate to what extent the polymerization phenomenon occurs in vivo. The paper summarizes similarities and differences between AAT and Fibrinogen as well as between the related diseases, AATD and HHHS. Indeed, fibrinogen gamma chain mutations undergo an aggregation process within the RER of hepatocytes similar to AATD. In addition, this work has clarified the intriguing phenomenon underlying a new syndrome, hereditary hypofibrinogenemia and hypo-APO-B-lipoproteinemia with hepatic storage of fibrinogen and APO-B lipoproteins. It is hoped that these studies could contribute to future research and select strategies aimed to simultaneously correct the hepatocytic storage, thus preventing the liver damage and the plasma deficiency of the two proteins.
Collapse
Affiliation(s)
- Francesco Callea
- Department of Histopathology, Bugando Medical Centre, Catholic University of Healthy and Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (E.B.); Tel.: +255-7543343938 (F.C.); +39-0668594291 (E.B.)
| | - Paolo Tomà
- Dipartimento Diagnostica Immagini, Bambino Gesù Childrens’ Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Roma, Italy;
| | - Emanuele Bellacchio
- Area di Ricerca Genetica e Malattie Rare Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Roma, Italy
- Correspondence: (F.C.); (E.B.); Tel.: +255-7543343938 (F.C.); +39-0668594291 (E.B.)
| |
Collapse
|
12
|
Callea F, Francalanci P, Giovannoni I. Hepatic and Extrahepatic Sources and Manifestations in Endoplasmic Reticulum Storage Diseases. Int J Mol Sci 2021; 22:ijms22115778. [PMID: 34071368 PMCID: PMC8198767 DOI: 10.3390/ijms22115778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-1-antitrypsin (AAT) and fibrinogen are secretory acute phase reactant proteins. Circulating AAT and fibrinogen are synthesized exclusively in the liver. Mutations in the encoding genes result in conformational abnormalities of the two molecules that aggregate within the rough endoplasmic reticulum (RER) instead of being regularly exported. That results in AAT-deficiency (AATD) and in hereditary hypofibrinogenemia with hepatic storage (HHHS). The association of plasma deficiency and liver storage identifies a new group of pathologies: endoplasmic reticulum storage disease (ERSD).
Collapse
Affiliation(s)
- Francesco Callea
- Bugando Medical Centre, Department of Molecular Histopathology, Catholic University Health Allied Sciences, Mwanza P.O. Box 1464, Tanzania
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Paola Francalanci
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
- Correspondence: (F.C.); (P.F.); Tel.: +255-754-334-3938 (F.C.)
| | - Isabella Giovannoni
- Department of Pathology, Childrens’ Hospital Bambino Gesù IRCCS, 00165 Rome, Italy;
| |
Collapse
|
13
|
Sari G, van Oord GW, van de Garde MDB, Voermans JJC, Boonstra A, Vanwolleghem T. Sexual Dimorphism in Hepatocyte Xenograft Models. Cell Transplant 2021; 30:9636897211006132. [PMID: 33938243 PMCID: PMC8114754 DOI: 10.1177/09636897211006132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Humanized liver mouse models are crucial tools in liver research, specifically in the fields of liver cell biology, viral hepatitis and drug metabolism. The livers of these humanized mouse models are repopulated by 3-dimensional islands of fully functional primary human hepatocytes (PHH), which are notoriously difficult to maintain in vitro. As low efficiency and high cost hamper widespread use, optimization is of great importance. In the present study, we analyzed experimental factors associated with Hepatitis E virus (HEV) infection and PHH engraftment in 2 xenograft systems on a Nod-SCID-IL2Ry-/- background: the alb-urokinase plasminogen activator mouse model (uPA-NOG, n=399); and the alb-HSV thymidine kinase model (TK-NOG, n = 198). In a first analysis, HEV fecal shedding in liver humanized uPA-NOG and TK-NOG mice with comparable human albumin levels was found to be similar irrespective of the mouse genetic background. In a second analysis, sex, mouse age at transplantation and hepatocyte donor were the most determinant factors for xenograft success in both models. The sexual imbalance for xenograft success was related to higher baseline ALT levels and lower thresholds for ganciclovir induced liver morbidity and mortality in males. These data call for sexual standardization of human hepatocyte xenograft models, but also provide a platform for further studies on mechanisms behind sexual dimorphism in liver diseases.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gertine W van Oord
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn D B van de Garde
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda J C Voermans
- Department of Viroscience, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Netherlands.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium, Netherlands
| |
Collapse
|
14
|
Wooddell CI, Blomenkamp K, Peterson RM, Subbotin VM, Schwabe C, Hamilton J, Chu Q, Christianson DR, Hegge JO, Kolbe J, Hamilton HL, Branca-Afrazi MF, Given BD, Lewis DL, Gane E, Kanner SB, Teckman JH. Development of an RNAi therapeutic for alpha-1-antitrypsin liver disease. JCI Insight 2020; 5:135348. [PMID: 32379724 DOI: 10.1172/jci.insight.135348] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
The autosomal codominant genetic disorder alpha-1 antitrypsin (AAT) deficiency (AATD) causes pulmonary and liver disease. Individuals homozygous for the mutant Z allele accumulate polymers of Z-AAT protein in hepatocytes, where AAT is primarily produced. This accumulation causes endoplasmic reticulum (ER) stress, oxidative stress, damage to mitochondria, and inflammation, leading to fibrosis, cirrhosis, and hepatocellular carcinoma. The magnitude of AAT reduction and duration of response from first-generation intravenously administered RNA interference (RNAi) therapeutic ARC-AAT and then with next-generation subcutaneously administered ARO-AAT were assessed by measuring AAT protein in serum of the PiZ transgenic mouse model and human volunteers. The impact of Z-AAT reduction by RNAi on liver disease phenotypes was evaluated in PiZ mice by measuring polymeric Z-AAT in the liver; expression of genes associated with fibrosis, autophagy, apoptosis, and redox regulation; inflammation; Z-AAT globule parameters; and tumor formation. Ultrastructure of the ER, mitochondria, and autophagosomes in hepatocytes was evaluated by electron microscopy. In mice, sustained RNAi treatment reduced hepatic Z-AAT polymer, restored ER and mitochondrial health, normalized expression of disease-associated genes, reduced inflammation, and prevented tumor formation. RNAi therapy holds promise for the treatment of patients with AATD-associated liver disease. ARO-AAT is currently in phase II/III clinical trials.
Collapse
Affiliation(s)
| | - Keith Blomenkamp
- Department of Pediatrics, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | - Qili Chu
- Arrowhead Pharmaceuticals, Madison, Wisconsin, USA
| | | | | | - John Kolbe
- Auckland Clinical Studies, Auckland, New Zealand
| | | | | | - Bruce D Given
- Arrowhead Pharmaceuticals, Pasadena, California, USA
| | | | - Edward Gane
- Auckland Clinical Studies, Auckland, New Zealand
| | | | - Jeffrey H Teckman
- Departments of Pediatrics and Biochemistry, St. Louis University School of Medicine, Cardinal Glennon Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Yip E, Giousoh A, Fung C, Wilding B, Prakash MD, Williams C, Verkade H, Bryson-Richardson RJ, Bird PI. A transgenic zebrafish model of hepatocyte function in human Z α1-antitrypsin deficiency. Biol Chem 2020; 400:1603-1616. [PMID: 31091192 DOI: 10.1515/hsz-2018-0391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/06/2019] [Indexed: 12/28/2022]
Abstract
In human α1-antitrypsin deficiency, homozygous carriers of the Z (E324K) mutation in the gene SERPINA1 have insufficient circulating α1-antitrypsin and are predisposed to emphysema. Misfolding and accumulation of the mutant protein in hepatocytes also causes endoplasmic reticulum stress and underpins long-term liver damage. Here, we describe transgenic zebrafish (Danio rerio) expressing the wildtype or the Z mutant form of human α1-antitrypsin in hepatocytes. As observed in afflicted humans, and in rodent models, about 80% less α1-antitrypsin is evident in the circulation of zebrafish expressing the Z mutant. Although these zebrafish also show signs of liver stress, they do not accumulate α1-antitrypsin in hepatocytes. This new zebrafish model will provide useful insights into understanding and treatment of α1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Evelyn Yip
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Aminah Giousoh
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Connie Fung
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Brendan Wilding
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Monica D Prakash
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| | - Caitlin Williams
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia
| | - Heather Verkade
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville 3052, Victoria, Australia
| | | | - Phillip I Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
16
|
|
17
|
Mela M, Smeeton W, Davies SE, Miranda E, Scarpini C, Coleman N, Alexander GJM. The Alpha-1 Antitrypsin Polymer Load Correlates With Hepatocyte Senescence, Fibrosis Stage and Liver-Related Mortality. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2020; 7:151-162. [PMID: 32726073 DOI: 10.15326/jcopdf.7.3.2019.0158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Alpha-1 antitrypsin deficiency (AATD) is an important, inherited cause of chronic liver disease. Marked variation in fibrosis stages in patients with homozygous deficiency and those factors that determine whether heterozygous carriers develop liver fibrosis, remain unexplained. Murine studies implicate polymerized alpha-1 antitrypsin (AAT) within hepatocytes as pathogenic. Aims and Methods The relationship between the quantity of polymerized AAT within hepatocytes (polymer load), stage of hepatic fibrosis and liver-related clinical outcomes (death, evolution to hepatocellular carcinoma, or need for liver transplantation) were investigated using liver tissue from 92 patients at first presentation with either homozygous or heterozygous AATD. Further tissue-based studies were undertaken to determine if polymerized AAT was associated with failure of cell cycle progression, accelerated aging or hepatocyte senescence by immunohistochemical analysis. Results The AAT polymer load correlated closely with hepatic fibrosis stage and long-term clinical outcome, independent of homozygous or heterozygous status. AAT polymers within hepatocytes correlated closely with failure of cell cycle progression assessed using cell cycle phase markers, accelerated aging manifest as shortened telomeres and other markers consistent with hepatocyte senescence manifest as the presence of nuclear p21 expression and enlarged nuclei. The proportion of p21 positive hepatocytes or hepatocytes with enlarged nuclei correlated with hepatic fibrosis stage and the long-term clinical outcome. Conclusion These data suggest that accumulation of AAT polymers within hepatocytes drives senescence. Quantitation of both the AAT polymer load or hepatocyte senescence markers correlated with hepatic fibrosis stage and the long-term clinical outcome. Either or both could be considered markers of disease severity and treatment response in clinical trials.
Collapse
Affiliation(s)
- Marianna Mela
- Division of Gastroenterology and Hepatology, University Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Wendy Smeeton
- Division of Gastroenterology and Hepatology, University Department of Medicine, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Susan E Davies
- Department of Histopathology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Elena Miranda
- Department of Biology and Biotechnologies, Charles Darwin and Pasteur Institute Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Cinzia Scarpini
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Nick Coleman
- Department of Pathology, Cambridge University, Cambridge, United Kingdom
| | - Graeme J M Alexander
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
18
|
Hamesch K, Mandorfer M, Pereira VM, Moeller LS, Pons M, Dolman GE, Reichert MC, Schneider CV, Woditsch V, Voss J, Lindhauer C, Fromme M, Spivak I, Guldiken N, Zhou B, Arslanow A, Schaefer B, Zoller H, Aigner E, Reiberger T, Wetzel M, Siegmund B, Simões C, Gaspar R, Maia L, Costa D, Bento-Miranda M, van Helden J, Yagmur E, Bzdok D, Stolk J, Gleiber W, Knipel V, Windisch W, Mahadeva R, Bals R, Koczulla R, Barrecheguren M, Miravitlles M, Janciauskiene S, Stickel F, Lammert F, Liberal R, Genesca J, Griffiths WJ, Trauner M, Krag A, Trautwein C, Strnad P. Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation. Gastroenterology 2019; 157:705-719.e18. [PMID: 31121167 DOI: 10.1053/j.gastro.2019.05.013] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation-associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%-36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or γ-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter ≥280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-low-density lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Z-overexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosis and impaired lipid secretion. We identified factors associated with significant liver fibrosis in patients, which could facilitate hepatologic assessment and counseling of individuals who carry the Pi*ZZ mutation. ClinicalTrials.gov Number NCT02929940.
Collapse
Affiliation(s)
- Karim Hamesch
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Vítor M Pereira
- Department of Gastroenterology, Centro Hospitalar do Funchal, Madeira, Portugal
| | - Linda S Moeller
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Monica Pons
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Grace E Dolman
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Matthias C Reichert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Carolin V Schneider
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Vivien Woditsch
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jessica Voss
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Cecilia Lindhauer
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Malin Fromme
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Igor Spivak
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Nurdan Guldiken
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Anita Arslanow
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany; Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Benedikt Schaefer
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University Innsbruck, Innsbruck, Austria
| | - Elmar Aigner
- Department of Internal Medicine I, Paracelsus Medical University, Salzburg, Austria
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Martin Wetzel
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Britta Siegmund
- Department of Medicine I, Charité-Universitaetsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Carolina Simões
- Gastroenterology Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal
| | - Rui Gaspar
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Luís Maia
- Gastroenterology Department, Centro Hospitalar do Porto, Porto, Portugal
| | - Dalila Costa
- Gastroenterology Department, Hospital de Braga, Braga, Portugal
| | - Mário Bento-Miranda
- Gastroenterology Department, Hospital Universitário de Coimbra, Coimbra, Portugal
| | - Josef van Helden
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Eray Yagmur
- Medical Care Centre, Dr Stein and Colleagues, Moenchengladbach, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany; Jülich Aachen Research Alliance-Brain, Aachen, Germany
| | - Jan Stolk
- Clinic for Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Gleiber
- Clinic for Pulmonology, University Hospital Frankfurt, Frankfurt, Germany
| | - Verena Knipel
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Wolfram Windisch
- Department of Pneumology, Cologne Merheim Hospital, Kliniken der Stadt Köln gGmbH, Witten/Herdecke University, Faculty of Health/School of Medicine, Cologne, Germany
| | - Ravi Mahadeva
- Department of Respiratory Medicine, Cambridge National Institute for Health Research, Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Robert Bals
- Department of Medicine V, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rembert Koczulla
- Clinic for Pneumology, Marburg University Hospital, Marburg, Germany; Institute for Pulmonary Rehabilitation Research, Schoen Clinic Berchtesgadener Land, Member of the Deutsches Zentrum für Lungenforschung, Schönau am Königssee, Germany
| | - Miriam Barrecheguren
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Marc Miravitlles
- Department of Pneumology, Vall d'Hebron University Hospital, Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Sabina Janciauskiene
- Clinic for Pneumology, German Center for Lung Research, Medical University Hannover, Hannover, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Rodrigo Liberal
- Gastroenterology Department, Centro Hospitalar de São João, Faculty of Medicine of Porto University, Porto, Portugal
| | - Joan Genesca
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autonoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - William J Griffiths
- Department of Hepatology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, UK
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Odense University Hospital, Odense, Denmark
| | - Christian Trautwein
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Pavel Strnad
- Coordinating Center for Alpha1-Antitrypsin Deficiency-Related Liver Disease of the European Reference Network "Rare Liver" and the European Association for the Study of the Liver Registry Group "Alpha1-Liver," University Hospital Aachen, Aachen, Germany; Medical Clinic III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany.
| | | |
Collapse
|
19
|
Wang L, Marek GW, Hlady RA, Wagner RT, Zhao X, Clark VC, Fan AX, Liu C, Brantly M, Robertson KD. Alpha-1 Antitrypsin Deficiency Liver Disease, Mutational Homogeneity Modulated by Epigenetic Heterogeneity With Links to Obesity. Hepatology 2019; 70:51-66. [PMID: 30681738 DOI: 10.1002/hep.30526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/15/2019] [Indexed: 01/20/2023]
Abstract
Alpha-1 antitrypsin deficiency (AATD) liver disease is characterized by marked heterogeneity in presentation and progression, despite a common underlying gene mutation, strongly suggesting the involvement of other genetic and/or epigenetic modifiers. Variation in clinical phenotype has added to the challenge of detection, diagnosis, and testing of new therapies in patients with AATD. We examined the contribution of DNA methylation (5-methylcytosine [5mC]) to AATD liver disease heterogeneity because 5mC responds to environmental and genetic cues and its deregulation is a major driver of liver disease. Using liver biopsies from adults with early-stage AATD and the ZZ genotype, genome-wide 5mC patterns were interrogated. We compared DNA methylation among patients with early AATD, and among patients with normal liver, cirrhosis, and hepatocellular carcinoma derived from multiple etiologic exposures, and linked patient clinical/demographic features. Global analysis revealed significant genomic hypomethylation in AATD liver-impacting genes related to liver cancer, cell cycle, and fibrosis, as well as key regulatory molecules influencing growth, migration, and immune function. Further analysis indicated that 5mC changes are localized, with hypermethylation occurring within a background of genome-wide 5mC loss and with patients with AATD manifesting distinct epigenetic landscapes despite their mutational homogeneity. By integrating clinical data with 5mC landscapes, we observed that CpGs differentially methylated among patients with AATD disease are linked to hallmark clinical features of AATD (e.g., hepatocyte degeneration and polymer accumulation) and further reveal links to well-known sex-specific effects of liver disease progression. Conclusion: Our data reveal molecular epigenetic signatures within this mutationally homogeneous group that point to ways to stratify patients for liver disease risk.
Collapse
Affiliation(s)
- Liguo Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN
| | - George W Marek
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Ryan A Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Ryan T Wagner
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN
| | - Virginia C Clark
- Division of Gastroenterology, Hepatology & Nutrition, University of Florida, Gainesville, FL
| | - Alex Xiucheng Fan
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ
| | - Mark Brantly
- Division of Pulmonary, Critical Care & Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN.,Center for Individualized Medicine Epigenomics Program, Mayo Clinic, Rochester, MN
| |
Collapse
|
20
|
Abstract
In homozygous ZZ alpha-1-antitrypsin (AAT) deficiency, the liver synthesizes large quantities of AAT mutant Z, which folds improperly during biogenesis and is retained within the hepatocytes and directed into intracellular proteolysis pathways. These intracellular polymers trigger an injury cascade, which can lead to liver injury. This is highly variable and not all patients develop liver disease. Although not fully described, there is likely a strong influence of genetic and environmental modifiers of the injury cascade and of the fibrotic response. With improved understanding of liver injury mechanisms, new strategies for treatment are now being explored.
Collapse
Affiliation(s)
- Dhiren Patel
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Saint Louis University School of Medicine, 1465 South Grand Boulevard, St Louis, MO 63104, USA
| | - Jeffrey H Teckman
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Saint Louis University School of Medicine, 1465 South Grand Boulevard, St Louis, MO 63104, USA; Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1465 South Grand Boulevard, St Louis, MO 63104, USA.
| |
Collapse
|
21
|
Kaserman JE, Wilson AA. Patient-Derived Induced Pluripotent Stem Cells for Alpha-1 Antitrypsin Deficiency Disease Modeling and Therapeutic Discovery. CHRONIC OBSTRUCTIVE PULMONARY DISEASES-JOURNAL OF THE COPD FOUNDATION 2018; 5:258-266. [PMID: 30723783 DOI: 10.15326/jcopdf.5.4.2017.0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PIZZ alpha-1 antitrypsin deficiency (AATD) is an autosomal recessive disease affecting approximately 100,000 individuals in the United States and one of the most common hereditary causes of liver disease.1 The most common form of the disease results from a single base pair mutation (Glu342Lys), known as the "Z" mutation, that encodes a mutant protein (Z alpha-1 antritypsin [AAT]) that is prone to misfolding and is retained in the endoplasmic reticulum (ER) rather than appropriately secreted. Some of the retained mutant protein attains an unusual aggregated or polymerized conformation. Retained polymeric ZAAT aggregates are hepatotoxic and lead to downstream liver disease in a subset of PiZZ neonates and adults through a gain-of-function mechanism. PiZZ individuals are likewise highly predisposed to developing chronic obstructive pulmonary disease (COPD)/emphysema as a result of low circulating levels of AAT protein and associated protease-antiprotease imbalance. Much of our understanding of the molecular pathogenesis of AATD is based on studies employing either transgenic mice that express the mutant human Z allele or immortalized cell lines transduced to overexpress ZAAT. While they have been quite informative, these models fail to capture the patient-to-patient variability in disease phenotype that clinicians observe in their AATD patients, raising the question of whether alternative models might provide new insight. Induced pluripotent stem cells (iPSCs), first described in 2006, have the capacity to differentiate into a broad array of cell types from all 3 germ layers, including hepatocytes. Disease-specific iPSCs have been derived from patients with a variety of monogenic disorders and have been found to faithfully recapitulate features of such diseases as spinal muscular atrophy, familial dysautonomia, Rett syndrome, polycythemia vera, type 1A glycogen storage disease, familial hypercholesterolemia, long QT syndrome, and others. This discussion reviews the potential applications of iPSCs for understanding AATD-associated liver disease as well as for development of potential therapeutic strategies.
Collapse
Affiliation(s)
- Joseph E Kaserman
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, Massachusetts
| |
Collapse
|
22
|
NFκB mitigates the pathological effects of misfolded α1-antitrypsin by activating autophagy and an integrated program of proteostasis mechanisms. Cell Death Differ 2018; 26:455-469. [PMID: 29795336 DOI: 10.1038/s41418-018-0130-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022] Open
Abstract
Intrahepatocytic accumulation of misfolded α1-antitrypsin Z variant (ATZ) is responsible for liver disease in some individuals with α1-antitrypsin deficiency (ATD), characterized by fibrosis/cirrhosis and predisposition to carcinogenesis. Previous results showing that accumulation of ATZ in model systems activates the NFκB signaling pathway have led us to hypothesize that downstream targets of NFκB are elements of a proteostasis response network for this type of proteinopathy. Here we show that only a subset of downstream targets within the NFκB transcriptomic repertoire are activated in model systems of this proteinopathy. Breeding of the PiZ mouse model of ATD to two different mouse models with NFκB deficiency led to greater intrahepatocytic accumulation of ATZ, more severe hepatic fibrosis, decreased autophagy and hyperproliferation of hepatocytes with massive ATZ inclusions. Specific downstream targets of NFκB could be implicated in each pathological effect. These results suggest a new role for NFκB signaling in which specific downstream targets of this pathway mediate an integrated program of proteostatic responses designed to mitigate the pathologic effects of proteinopathy, including autophagic disposal of misfolded protein, degradation of collagen and prevention of hyperproliferation.
Collapse
|
23
|
Bjursell M, Porritt MJ, Ericson E, Taheri-Ghahfarokhi A, Clausen M, Magnusson L, Admyre T, Nitsch R, Mayr L, Aasehaug L, Seeliger F, Maresca M, Bohlooly-Y M, Wiseman J. Therapeutic Genome Editing With CRISPR/Cas9 in a Humanized Mouse Model Ameliorates α1-antitrypsin Deficiency Phenotype. EBioMedicine 2018; 29:104-111. [PMID: 29500128 PMCID: PMC5925576 DOI: 10.1016/j.ebiom.2018.02.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/05/2022] Open
Abstract
α1-antitrypsin (AAT) is a circulating serine protease inhibitor secreted from the liver and important in preventing proteolytic neutrophil elastase associated tissue damage, primarily in lungs. In humans, AAT is encoded by the SERPINA1 (hSERPINA1) gene in which a point mutation (commonly referred to as PiZ) causes aggregation of the miss-folded protein in hepatocytes resulting in subsequent liver damage. In an attempt to rescue the pathologic liver phenotype of a mouse model of human AAT deficiency (AATD), we used adenovirus to deliver Cas9 and a guide-RNA (gRNA) molecule targeting hSERPINA1. Our single dose therapeutic gene editing approach completely reverted the phenotype associated with the PiZ mutation, including circulating transaminase and human AAT (hAAT) protein levels, liver fibrosis and protein aggregation. Furthermore, liver histology was significantly improved regarding inflammation and overall morphology in hSERPINA1 gene edited PiZ mice. Genomic analysis confirmed significant disruption to the hSERPINA1 transgene resulting in a reduction of hAAT protein levels and quantitative mRNA analysis showed a reduction in fibrosis and hepatocyte proliferation as a result of editing. Our findings indicate that therapeutic gene editing in hepatocytes is possible in an AATD mouse model. α1-antitrypsin (AAT) is a circulating protein secreted from the liver and important in preventing tissue damage in lungs. We used CRISPR/Cas9 to disrupt the gene of a mutant version of the protein to reverse liver pathology in a mouse model of human AAT deficiency (AATD) Our gene editing approach reverted the AATD pathology and genomic analysis confirmed significant disruption to the gene.
In an attempt to treat a pathologic liver disease called α1-antitrypsin deficiency (AATD) in a mouse model of the human disease, we used CRISPR/Cas9 technology to remove a mutant form of hSERPINA1, which causes AATD in the mouse. Our gene editing approach reverted the disease associated with the mutated gene and we saw a reversal in liver fibrosis and mutant protein aggregation. Our findings in a mouse model indicate that therapeutic gene removal, by editing out a mutated form of the gene, in liver cells is possible.
Collapse
Affiliation(s)
- Mikael Bjursell
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Elke Ericson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - Maryam Clausen
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lisa Magnusson
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Therese Admyre
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Roberto Nitsch
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz Mayr
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Leif Aasehaug
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | - John Wiseman
- Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
24
|
Abstract
Alpha-1 antitrypsin deficiency is predominantly caused by point mutations that alter the protein's folding. These mutations fall into two broad categories: those that destabilize the protein dramatically and lead to its post-translational degradation and those that affect protein structure more subtly to promote protein polymerization within the endoplasmic reticulum (ER). This distinction is important because it determines the cell's response to each mutant. The severely misfolded mutants trigger an unfolded protein response (UPR) that promotes improved protein folding but can kill the cell in the chronic setting. In contrast, mutations that permit polymer formation fail to activate the UPR but instead promote a nuclear factor-κB-mediated ER overload response. The ability of polymers to increase a cell's sensitivity to ER stress likely explains apparent inconsistencies in the alpha-1 antitrypsin-signaling literature that have linked polymers with the UPR. In this review we discuss the use of mutant serpins to dissect each signaling pathway.
Collapse
|
25
|
Mitchell EL, Khan Z. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Approaches and Future Directions. CURRENT PATHOBIOLOGY REPORTS 2017; 5:243-252. [PMID: 29399420 PMCID: PMC5780543 DOI: 10.1007/s40139-017-0147-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review The aim of the study is to review the liver disease caused by alpha-1 antitrypsin deficiency (A1ATD), including pathogenesis, epidemiology, diagnostic testing, and recent therapeutic developments. Recent Findings Therapeutic approaches target several intracellular pathways to reduce the cytotoxic effects of the misfolded mutant globular protein (ATZ) on the hepatocyte. These include promoting ATZ transport out of the endoplasmic reticulum (ER), enhancing ATZ degradation, and preventing ATZ globule-aggregation. Summary A1ATD is the leading genetic cause of liver disease among children. It is a protein-folding disorder in which toxic insoluble ATZ proteins aggregate in the ER of hepatocytes leading to inflammation, fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. The absence of the normal A1AT serum protein also predisposes patients to pan lobar emphysema as adults. At this time, the only approved therapy for A1ATD-associated liver disease is orthotopic liver transplantation, which is curative. However, there has been significant recent progress in the development of small molecule therapies with potential both to preserve the native liver and prevent hepatotoxicity.
Collapse
Affiliation(s)
- Ellen L Mitchell
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Zahida Khan
- 1Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Faculty Pavilion 6th Fl, Pittsburgh, PA 15224-1334 USA.,2Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,3Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,4McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA.,5Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
26
|
Karadagi A, Johansson H, Zemack H, Salipalli S, Mörk LM, Kannisto K, Jorns C, Gramignoli R, Strom S, Stokkeland K, Ericzon BG, Jonigk D, Janciauskiene S, Nowak G, Ellis ECS. Exogenous alpha 1-antitrypsin down-regulates SERPINA1 expression. PLoS One 2017; 12:e0177279. [PMID: 28486562 PMCID: PMC5423693 DOI: 10.1371/journal.pone.0177279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/01/2017] [Indexed: 11/19/2022] Open
Abstract
The main goal of the therapy with purified human plasma alpha1-antitrypsin (A1AT) is to increase A1AT levels and to prevent lungs from elastolytic activity in patients with PiZZ (Glu342Lys) A1AT deficiency-related emphysema. Potential hepatic gains of this therapy are unknown. Herein, we investigated the effect of A1AT therapy on SERPINA1 (gene encoding A1AT) expression. The expression of SERPINA1 was determined in A1AT or A1AT plus Oncostatin M (OSM) treated primary human hepatocytes isolated from liver tissues from A1AT deficient patients and control liver tissues. In addition, SERPINA1 mRNA was assessed in lung tissues from PiZZ emphysema patients with and without A1AT therapy, and in adherent human peripheral blood mononuclear cells (PBMC) isolated from healthy PiMM donors. In a dose-dependent manner purified A1AT lowered SERPINA1 expression in hepatocytes. This latter effect was more prominent in hepatocytes stimulated with OSM. Although it did not reach statistical significance (P = 0.0539)-analysis of lung tissues showed lower SERPINA1 expression in PiZZ emphysema patients receiving augmentation therapy relative to those without therapy. Finally, exogenously added purified A1AT (1mg/ml) reduced SERPINA1 expression in naïve as well as in lipopolysaccharide (LPS)-stimulated human adherent PBMCs. Exogenous A1AT protein reduces its own endogenous expression. Hence, augmentation with native M-A1AT protein and a parallel reduction in expression of dysfunctional mutant Z-A1AT may be beneficial for PiZZ liver, and this motivates further studies.
Collapse
Affiliation(s)
- Ahmad Karadagi
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helene Johansson
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Helen Zemack
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sandeep Salipalli
- Department of Respiratory Medicine, Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Lisa-Mari Mörk
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kristina Kannisto
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Carl Jorns
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Stephen Strom
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Knut Stokkeland
- Department of Medicine, Visby Hospital, Visby, Sweden
- Department of Medicine, Gastroenterology and Hepatology Unit, Karolinska Institute, Stockholm, Sweden
| | - Bo-Göran Ericzon
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Department of Respiratory Medicine, Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Greg Nowak
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Ewa C S Ellis
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
27
|
Baligar P, Kochat V, Arindkar SK, Equbal Z, Mukherjee S, Patel S, Nagarajan P, Mohanty S, Teckman JH, Mukhopadhyay A. Bone marrow stem cell therapy partially ameliorates pathological consequences in livers of mice expressing mutant human α1-antitrypsin. Hepatology 2017; 65:1319-1335. [PMID: 28056498 DOI: 10.1002/hep.29027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 10/20/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022]
Abstract
UNLABELLED Alpha-1-antitrypsin (AAT) deficiency (AATD) is a genetic disease, caused by mutation of the AAT gene. Accumulation of mutated AAT protein aggregates in hepatocytes leads to endoplasmic reticulum stress, resulting in impairment of liver functions and, in some cases, hepatocellular carcinoma, whereas decline of AAT levels in sera is responsible for pulmonary emphysema. In advanced liver disease, the only option for treatment is liver transplantation, whereas AAT replacement therapy is therapeutic for emphysema. Given that hepatocytes are the primary affected cells in AATD, we investigated whether transplantation of bone marrow (BM)-derived stem cells in transgenic mice expressing human AATZ (the Z variant of AAT) confers any competitive advantages compared to host cells that could lead to pathological improvement. Mouse BM progenitors and human mesenchymal stem cells (MSCs) appeared to contribute in replacement of 40% and 13% host hepatocytes, respectively. Transplantation of cells resulted in decline of globule-containing hepatocytes, improvement in proliferation of globule-devoid hepatocytes from the host-derived hepatocytes, and apparently, donor-derived cells. Further analyses revealed that transplantation partially improves liver pathology as reflected by inflammatory response, fibrosis, and apoptotic death of hepatocytes. Cell therapy was also found to improve liver glycogen storage and sera glucose level in mice expressing human AATZ mice. These overall improvements in liver pathology were not restricted to transplantation of mouse BM cells. Preliminary results also showed that following transplantation of human BM-derived MSCs, globule-containing hepatocytes declined and donor-derived cells expressed human AAT protein. CONCLUSION These results suggest that BM stem cell transplantation may be a promising therapy for AATD-related liver disease. (Hepatology 2017;65:1319-1335).
Collapse
Affiliation(s)
- Prakash Baligar
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Veena Kochat
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | | | - Zaffar Equbal
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Snehashish Mukherjee
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Swati Patel
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| | - Perumal Nagarajan
- Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Sujata Mohanty
- Stem Cell Facility, All Indian Institute of Medical Sciences, New Delhi, India
| | - Jeffrey H Teckman
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO
| | - Asok Mukhopadhyay
- Stem Cell Biology, Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
28
|
Khan Z, Yokota S, Ono Y, Bell AW, Oertel M, Stolz DB, Michalopoulos GK. Bile Duct Ligation Induces ATZ Globule Clearance in a Mouse Model of α-1 Antitrypsin Deficiency. Gene Expr 2017; 17:115-127. [PMID: 27938510 PMCID: PMC5296240 DOI: 10.3727/105221616x692991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
α-1 Antitrypsin deficiency (A1ATD) can progress to cirrhosis and hepatocellular carcinoma; however, not all patients are susceptible to severe liver disease. In A1ATD, a toxic gain-of-function mutation generates insoluble ATZ "globules" in hepatocytes, overwhelming protein clearance mechanisms. The relationship between bile acids and hepatocytic autophagy is less clear but may involve altered gene expression pathways. Based on previous findings that bile duct ligation (BDL) induces autophagy, we hypothesized that retained bile acids may have hepatoprotective effects in PiZZ transgenic mice, which model A1ATD. We performed BDL and partial BDL (pBDL) in PiZZ mice, followed by analysis of liver tissues. PiZZ liver subjected to BDL showed up to 50% clearance of ATZ globules, with increased expression of autophagy proteins. Analysis of transcription factors revealed significant changes. Surprisingly nuclear TFEB, a master regulator of autophagy, remained unchanged. pBDL confirmed that ATZ globule clearance was induced by localized stimuli rather than diet or systemic effects. Several genes involved in bile metabolism were overexpressed in globule-devoid hepatocytes, compared to globule-containing cells. Retained bile acids led to a dramatic reduction of ATZ globules, with enhanced hepatocyte regeneration and autophagy. These findings support investigation of synthetic bile acids as potential autophagy-enhancing agents.
Collapse
Affiliation(s)
- Zahida Khan
- *Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shinichiro Yokota
- §Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ¶Department of Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yoshihiro Ono
- §Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron W. Bell
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Oertel
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Donna B. Stolz
- ‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- #Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - George K. Michalopoulos
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Tang Y, Fickert P, Trauner M, Marcus N, Blomenkamp K, Teckman J. Autophagy induced by exogenous bile acids is therapeutic in a model of α-1-AT deficiency liver disease. Am J Physiol Gastrointest Liver Physiol 2016; 311:G156-65. [PMID: 27102560 DOI: 10.1152/ajpgi.00143.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/17/2016] [Indexed: 02/07/2023]
Abstract
The bile acid nor-ursodeoxycholic acid (norUDCA) has many biological actions, including antiapoptotic effects. Homozygous PIZZ α-1-antitrypsin (A1AT)-deficient humans are known to be at risk for liver disease, cirrhosis, and liver cancer as a result of the accumulation of the toxic, A1AT mutant Z protein within hepatocytes. This accumulation triggers cell death in the hepatocytes with the largest mutant Z-protein burdens, followed by compensatory proliferation. Proteolysis pathways within the hepatocyte, including autophagy, act to reduce the intracellular burden of A1AT Z protein. We hypothesized that norUDCA would reduce liver cell death and injury in A1AT deficiency. We treated groups of PiZ transgenic mice and wild-type mice with norUDCA or vehicle, orally, and examined the effects on the liver. The PiZ mouse is the best model of A1AT liver injury and recapitulates many features of the human liver disease. Mice treated with norUDCA demonstrated reduced hepatocellular death by compensatory hepatocellular proliferation as determined by bromodeoxyuridine incorporation (3.8% control, 0.88% treated, P < 0.04). Ki-67 staining as a marker for hepatocellular senescence and death was also reduced (P < 0.02). Reduced apoptotic signaling was associated with norUDCA, including reduced cleavage of caspases-3, -7, and -8 (all P < 0.05). We determined that norUDCA was associated with a >70% reduction in intrahepatic mutant Z protein (P < 0.01). A 32% increase in hepatic autophagy associated with norUDCA was the likely mechanism. norUDCA administration is associated with increased autophagy, reduced A1AT protein accumulation, and reduced liver injury in a model of A1AT deficiency.
Collapse
Affiliation(s)
- Youcai Tang
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Peter Fickert
- Research Unit for Experimental and Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; and
| | - Michael Trauner
- Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Nancy Marcus
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Keith Blomenkamp
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri
| | - Jeffrey Teckman
- Pediatrics and Biochemistry, Saint Louis University, and Cardinal Glennon Children's Medical Center, St. Louis, Missouri;
| |
Collapse
|
30
|
Chu AS, Chopra KB, Perlmutter DH. Is severe progressive liver disease caused by alpha-1-antitrypsin deficiency more common in children or adults? Liver Transpl 2016; 22:886-94. [PMID: 26946192 DOI: 10.1002/lt.24434] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/23/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
The classical form of alpha-1-antitrypsin deficiency (A1ATD) is known to cause liver disease in children and adults, but there is relatively little information about the risk of severe, progressive liver disease and the need for liver transplantation. To better understand how newly evolving pharmacological, genetic, and cellular therapies may be targeted according to risk for progressive liver disease, we sought to determine the age distribution of A1ATD as a cause of severe liver disease, as defined by the need for liver transplantation. Using 3 US liver transplantation databases for the period 1991-2012, we found 77.2% of 1677 liver transplants with a reported diagnosis of A1ATD were adults. The peak age range was 50-64 years. Using 2 of the databases which included specific A1AT phenotypes, we found that many of these adults who undergo liver transplantation with A1ATD as the diagnosis are heterozygotes and have other potential causes of liver disease, most notably obesity and ethanol abuse. However, even when these cases are excluded and only ZZ and SZ phenotypes are considered, severe liver disease requiring transplantation is more than 2.5 times as likely in adults. The analysis also showed a markedly increased risk for males. In the pediatric group, almost all of the transplants are done in children less than 5 years of age. In conclusion, A1ATD causes progressive liver disease most commonly in adults with males in the highest risk category. In the pediatric group, children less than 5 years of age are highest in risk. These results suggest that A1ATD most commonly causes liver disease by mechanisms similar to age-dependent degenerative diseases and more rarely in children by powerful modifiers. Liver Transplantation 22 886-894 2016 AASLD.
Collapse
Affiliation(s)
- Andrew S Chu
- Pediatrics.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - David H Perlmutter
- Pediatrics.,Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA.,Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
31
|
Gaczynska M, Karpowicz P, Stuart CE, Norton MG, Teckman JH, Marszal E, Osmulski PA. AFM Imaging Reveals Topographic Diversity of Wild Type and Z Variant Polymers of Human α1-Proteinase Inhibitor. PLoS One 2016; 11:e0151902. [PMID: 27008547 PMCID: PMC4805282 DOI: 10.1371/journal.pone.0151902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/04/2016] [Indexed: 12/17/2022] Open
Abstract
α1-Proteinase inhibitor (antitrypsin) is a canonical example of the serpin family member that binds and inhibits serine proteases. The natural metastability of serpins is crucial to carry out structural rearrangements necessary for biological activity. However, the enhanced metastability of the mutant Z variant of antitrypsin, in addition to folding defect, may substantially contribute to its polymerization, a process leading to incurable serpinopathy. The metastability also impedes structural studies on the polymers. There are no crystal structures of Z monomer or any kind of polymers larger than engineered wild type (WT) trimer. Our understanding of polymerization mechanisms is based on biochemical data using in vitro generated WT oligomers and molecular simulations. Here we applied atomic force microscopy (AFM) to compare topography of monomers, in vitro formed WT oligomers, and Z type polymers isolated from transgenic mouse liver. We found the AFM images of monomers closely resembled an antitrypsin outer shell modeled after the crystal structure. We confirmed that the Z variant demonstrated higher spontaneous propensity to dimerize than WT monomers. We also detected an unexpectedly broad range of different types of polymers with periodicity and topography depending on the applied method of polymerization. Short linear oligomers of unit arrangement similar to the Z polymers were especially abundant in heat-treated WT preparations. Long linear polymers were a prominent and unique component of liver extracts. However, the liver preparations contained also multiple types of oligomers of topographies undistinguishable from those found in WT samples polymerized with heat, low pH or guanidine hydrochloride treatments. In conclusion, we established that AFM is an excellent technique to assess morphological diversity of antitrypsin polymers, which is important for etiology of serpinopathies. These data also support previous, but controversial models of in vivo polymerization showing a surprising diversity of polymer topography.
Collapse
Affiliation(s)
- Maria Gaczynska
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Przemyslaw Karpowicz
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Christine E. Stuart
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Malgorzata G. Norton
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jeffrey H. Teckman
- Department of Pediatrics and Biochemistry, Saint Louis University School of Medicine, Cardinal Glennon Children’s Medical Center, St. Louis, Missouri, United States of America
| | - Ewa Marszal
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Pawel A. Osmulski
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
32
|
Huang J, Schriefer AE, Cliften PF, Dietzen D, Kulkarni S, Sing S, Monga SPS, Rudnick DA. Postponing the Hypoglycemic Response to Partial Hepatectomy Delays Mouse Liver Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:587-99. [PMID: 26772417 DOI: 10.1016/j.ajpath.2015.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 12/13/2022]
Abstract
All serious liver injuries alter metabolism and initiate hepatic regeneration. Recent studies using partial hepatectomy (PH) and other experimental models of liver regeneration implicate the metabolic response to hepatic insufficiency as an important source of signals that promote regeneration. Based on these considerations, the analyses reported here were undertaken to assess the impact of interrupting the hypoglycemic response to PH on liver regeneration in mice. A regimen of parenteral dextrose infusion that delays PH-induced hypoglycemia for 14 hours after surgery was identified, and the hepatic regenerative response to PH was compared between dextrose-treated and control mice. The results showed that regenerative recovery of the liver was postponed in dextrose-infused mice (versus vehicle control) by an interval of time comparable to the delay in onset of PH-induced hypoglycemia. The regulation of specific liver regeneration-promoting signals, including hepatic induction of cyclin D1 and S-phase kinase-associated protein 2 expression and suppression of peroxisome proliferator-activated receptor γ and p27 expression, was also disrupted by dextrose infusion. These data support the hypothesis that alterations in metabolism that occur in response to hepatic insufficiency promote liver regeneration, and they define specific pro- and antiregenerative molecular targets whose regenerative regulation is postponed when PH-induced hypoglycemia is delayed.
Collapse
Affiliation(s)
- Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Andrew E Schriefer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Paul F Cliften
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
| | - Dennis Dietzen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sakil Kulkarni
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Sucha Sing
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P S Monga
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David A Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
33
|
Abstract
Hepatic neoplasia is a rare but serious complication of metabolic diseases in children. The risk of developing neoplasia, the age at onset, and the measures to prevent it differ in the various diseases. We review the most common metabolic disorders that are associated with a heightened risk of developing hepatocellular neoplasms, with a special emphasis on reviewing recent advances in the molecular pathogenesis of the disorders and pre-clinical therapeutic options. The cellular and genetic pathways driving carcinogenesis are poorly understood, but best understood in tyrosinemia.
Collapse
Affiliation(s)
- Deborah A Schady
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Angshumoy Roy
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| | - Milton J Finegold
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
34
|
Hempel M, Schmitz A, Winkler S, Kucukoglu O, Brückner S, Niessen C, Christ B. Pathological implications of cadherin zonation in mouse liver. Cell Mol Life Sci 2015; 72:2599-612. [PMID: 25687506 PMCID: PMC11113307 DOI: 10.1007/s00018-015-1861-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
Both acute and chronic liver diseases are associated with ample re-modeling of the liver parenchyma leading to functional impairment, which is thus obviously the cause or the consequence of the disruption of the epithelial integrity. It was, therefore, the aim of this study to investigate the distribution of the adherens junction components E- and N-cadherin, which are important determinants of tissue cohesion. E-cadherin was expressed in periportal but not in perivenous hepatocytes. In contrast, N-cadherin was more enriched towards the perivenous hepatocytes. In agreement, β-catenin, which links both cadherins via α-catenin to the actin cytoskeleton, was expressed ubiquitously. This zonal expression of cadherins was preserved in acute liver injury after treatment with acetaminophen or partial hepatectomy, but disrupted in chronic liver damage like in non-alcoholic steatohepatitis (NASH) or α1-antitrypsin deficiency. Hepatocyte proliferation during acetaminophen-induced liver damage was predominant at the boundary between the damaged perivenous and the intact periportal parenchyma indicating a minor contribution of periportal hepatocytes to liver regeneration. In NASH livers, an oval cell reaction was observed pointing to massive tissue damage coinciding with the gross impairment of hepatocyte proliferation. In the liver parenchyma, metabolic functions are distributed heterogeneously. For example, the expression of phosphoenolpyruvate carboxykinase and E-cadherin overlapped in periportal hepatocytes. Thus, during liver regeneration after acute damage, the intact periportal parenchyma might sustain essential metabolic support like glucose supply or ammonia detoxification. However, disruption of epithelial integrity during chronic challenges may increase susceptibility to metabolic liver diseases such as NASH or vice versa. This might suggest the regulatory integration of tissue cohesion and metabolic functions in the liver.
Collapse
Affiliation(s)
- Madlen Hempel
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Annika Schmitz
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Sandra Winkler
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Ozlem Kucukoglu
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, Leipzig, Germany
| | - Sandra Brückner
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
| | - Carien Niessen
- Department of Dermatology, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bruno Christ
- Applied Molecular Hepatology Lab, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University of Leipzig, Liebigstraße 21, 04103 Leipzig, Germany
- Translational Centre for Regenerative Medicine (TRM), Universität Leipzig, Leipzig, Germany
| |
Collapse
|
35
|
Teckman JH, Mangalat N. Alpha-1 antitrypsin and liver disease: mechanisms of injury and novel interventions. Expert Rev Gastroenterol Hepatol 2015; 9:261-8. [PMID: 25066184 DOI: 10.1586/17474124.2014.943187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α-1-Antitrypsin (α1AT) is a serum glycoprotein synthesized in the liver. The majority of patients with α1AT deficiency liver disease are homozygous for the Z mutant of α1AT (called ZZ or 'PIZZ'). This mutant gene directs the synthesis of an abnormal protein which folds improperly during biogenesis. Most of these mutant Z protein molecules undergo proteolysis; however, some of the mutant protein accumulates in hepatocytes. Hepatocytes with the largest mutant protein burdens undergo apoptosis, causing compensatory hepatic proliferation. Cycles of hepatocyte injury, cell death and compensatory proliferation results in liver disease ranging from mild asymptomatic enzyme elevations to hepatic fibrosis, cirrhosis and hepatocellular carcinoma. There is a high variability in clinical disease presentation suggesting that environmental and genetic modifiers are important. Management of α1AT liver disease is based on standard supportive care and liver transplant. However, increased understanding of the cellular mechanisms of liver injury has led to new clinical trials.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd, St. Louis, MO 63104, USA
| | | |
Collapse
|
36
|
Giovannoni I, Callea F, Stefanelli M, Mariani R, Santorelli FM, Francalanci P. Alpha-1-antitrypsin deficiency: from genoma to liver disease. PiZ mouse as model for the development of liver pathology in human. Liver Int 2015; 35:198-206. [PMID: 24529185 DOI: 10.1111/liv.12504] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/08/2014] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS Homozygous individuals with alpha-1-antitrypsin deficiency (AATD) type PiZ have an increased risk of chronic liver disease and hepatocellular carcinoma (HCC). It is noteworthy that HCCs are composed by hepatocytes without accumulation of AAT, but the reason for this remains unclear. The aim of this study was to determine liver pathology in PiZ mice, focusing the attention on the distribution of AAT globules in normal liver, regenerative foci and neoplastic nodules. METHODS Liver of 79 PiZ mice and 18 wild type (Wt) was histologically analysed for steatosis, clear cell foci, hyperplasia and neoplasia. The expression of human-AAT transgene and murine AAT, in non-neoplastic liver and in hyperplastic/neoplastic nodules was tested by qPCR and qRT-PCR. RT-PCR was used to study expression of hepatic markers: albumin, α-foetoprotein, transthyretin, AAT, glucose-6-phospate, tyrosine aminotransferase. RESULTS Liver pathology was seen more frequently in PiZ (47/79) than in Wt (5/18) and its development was age related. In older PiZ mice (18-24 m), livers showed malignant tumours (HCC and angiosarcoma) (17/50), hyperplastic nodules (28/50), non-specific changes (33/50), whereas only 9/50 were normal. Both human-AATZ DNA and mRNA showed no differences between tumours/nodules and normal liver, while murine-AAT mRNA was reduced in tumours/nodules. CONCLUSION Accumulation of AAT is associated with an increased risk of liver nodules. The presence of globule-devoid hepatocytes and the reduced expression of murine-AAT mRNA in hyperplastic and neoplastic nodules suggest that these hepatic lesions in AATD could originate from proliferating dedifferentiated cells, lacking AAT storage and becoming capable of AFP re-expression.
Collapse
Affiliation(s)
- Isabella Giovannoni
- Department of Pathology, Children's Hospital Bambino Gesù, IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Alpha-1-antitrypsin (a1AT) deficiency is a common, but under-diagnosed, genetic disease. In the classical form, patients are homozygous for the Z mutant of the a1AT gene (called ZZ or PIZZ), which occurs in 1 in 2,000-3,500 births. The mutant Z gene directs the synthesis of large quantities of the mutant Z protein in the liver, which folds abnormally during biogenesis and accumulates intracellularly, rather than being efficiently secreted. The accumulation mutant Z protein within hepatocytes causes liver injury, cirrhosis, and hepatocellular carcinoma via a cascade of chronic hepatocellular apoptosis, regeneration, and end organ injury. There is no specific treatment for a1AT-associated liver disease, other than standard supportive care and transplantation. There is high variability in the clinical manifestations among ZZ homozygous patients, suggesting a strong influence of genetic and environmental modifiers. New insights into the biological mechanisms of intracellular injury have led to new, rational therapeutic approaches.
Collapse
Affiliation(s)
- Jeffrey H Teckman
- St. Louis University School of Medicine, Cardinal Glennon Children's Medical Center, 1465 South Grand Blvd., St. Louis, MO, 63104, USA,
| | | |
Collapse
|
38
|
Ghouse R, Chu A, Wang Y, Perlmutter DH. Mysteries of α1-antitrypsin deficiency: emerging therapeutic strategies for a challenging disease. Dis Model Mech 2014; 7:411-9. [PMID: 24719116 PMCID: PMC3974452 DOI: 10.1242/dmm.014092] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The classical form of α1-antitrypsin deficiency (ATD) is an autosomal co-dominant disorder that affects ~1 in 3000 live births and is an important genetic cause of lung and liver disease. The protein affected, α1-antitrypsin (AT), is predominantly derived from the liver and has the function of inhibiting neutrophil elastase and several other destructive neutrophil proteinases. The genetic defect is a point mutation that leads to misfolding of the mutant protein, which is referred to as α1-antitrypsin Z (ATZ). Because of its misfolding, ATZ is unable to efficiently traverse the secretory pathway. Accumulation of ATZ in the endoplasmic reticulum of liver cells has a gain-of-function proteotoxic effect on the liver, resulting in fibrosis, cirrhosis and/or hepatocellular carcinoma in some individuals. Moreover, because of reduced secretion, there is a lack of anti-proteinase activity in the lung, which allows neutrophil proteases to destroy the connective tissue matrix and cause chronic obstructive pulmonary disease (COPD) by loss of function. Wide variation in the incidence and severity of liver and lung disease among individuals with ATD has made this disease one of the most challenging of the rare genetic disorders to diagnose and treat. Other than cigarette smoking, which worsens COPD in ATD, genetic and environmental modifiers that determine this phenotypic variability are unknown. A limited number of therapeutic strategies are currently available, and liver transplantation is the only treatment for severe liver disease. Although replacement therapy with purified AT corrects the loss of anti-proteinase function, COPD progresses in a substantial number of individuals with ATD and some undergo lung transplantation. Nevertheless, advances in understanding the variability in clinical phenotype and in developing novel therapeutic concepts is beginning to address the major clinical challenges of this mysterious disorder.
Collapse
Affiliation(s)
- Raafe Ghouse
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Andrew Chu
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Yan Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Children’s Hospital of Pittsburgh of UPMC, One Children’s Hospital Drive, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, 3500 Terrace Street, 5362 Biomedical Sciences Tower, Pittsburgh, PA 15261, USA
| |
Collapse
|
39
|
[Hepatic involvement in hereditary alpha-1-antitrypsin deficiency]. Rev Mal Respir 2014; 31:357-64. [PMID: 24750955 DOI: 10.1016/j.rmr.2013.10.651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 10/21/2013] [Indexed: 01/18/2023]
Abstract
Apha-1-antitrypsin deficiency is an autosomal recessive genetic disorder seen in all races. The molecular defect is a specific mutation of the SERPINA1 gene leading to synthesis of an abnormal protein (alpha-1-antitrypsin Z) that cannot be secreted and polymerizes in the endoplasmic reticulum of hepatocytes. The inter-individual variability in the responses to intracellular stress induced by the accumulation of abnormal polymers and the mechanisms allowing their degradation is, without doubt, responsible for the different clinical manifestations of the disease. The disease affects the liver where the abnormal protein is synthesized and the lung, which is its place of action. Liver involvement is well recognized in homozygous infants of the phenotype ZZ. In this situation the disease may present a varying picture from neonatal cholestasis (about 15% of neonatal defects) to cirrhosis. However, evolution towards cirrhosis affects less than 3% of infants with the ZZ phenotype and it is preceded in 80% of cases by neonatal cholestasis. In adolescents or adults the manifestations associated with alpha-1-antitrypsin deficiency are usually limited to biochemical abnormalities but may lead to cirrhosis or hepatocellular carcinoma. The hepatic disorder and its complications are treated symptomatically though the pulmonary involvement may benefit from substitution treatment. More specific treatments targeting the molecular and cellular abnormalities are the subject of research.
Collapse
|
40
|
O'Reilly LP, Perlmutter DH, Silverman GA, Pak SC. α1-antitrypsin deficiency and the hepatocytes - an elegans solution to drug discovery. Int J Biochem Cell Biol 2014; 47:109-12. [PMID: 24355812 PMCID: PMC3970812 DOI: 10.1016/j.biocel.2013.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 11/29/2013] [Accepted: 12/08/2013] [Indexed: 11/24/2022]
Abstract
Hepatocytes are metabolically active cells of the liver that play an important role in the biosynthesis of proteins including α1-antitrypsin. Mutations in the α1-antitrypsin gene can lead to protein misfolding, polymerization/aggregation and retention of protein within the endoplasmic reticulum of hepatocytes. The intracellular accumulation of α1-antitrypsin aggregates can lead to liver disease and increased likelihood of developing hepatocellular carcinomas. Of note, only ~10% of individuals with α1-antitrypsin-deficiency develop severe liver disease suggesting that there are other genetic and/or environmental factors that determine disease outcome. The nematode, Caenorhabditis elegans, is a powerful genetic model organism to study molecular aspects of human disease. In this review, we discuss the functional similarities between the intestinal cells of C. elegans and human hepatocytes and how a C. elegans model of α1-antitrypsin-deficiency can be used as a tool for identifying genetic modifiers and small molecule drugs.
Collapse
Affiliation(s)
- Linda P O'Reilly
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - David H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Gary A Silverman
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Stephen C Pak
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, USA.
| |
Collapse
|
41
|
Wang Y, Perlmutter DH. Targeting intracellular degradation pathways for treatment of liver disease caused by α1-antitrypsin deficiency. Pediatr Res 2014; 75:133-9. [PMID: 24226634 PMCID: PMC4174576 DOI: 10.1038/pr.2013.190] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
The classic form of α1-antitrypsin deficiency (ATD) is a well-known genetic cause of severe liver disease in childhood. A point mutation alters the folding of a hepatic secretory glycoprotein such that the protein is prone to misfolding and polymerization. Liver injury, characterized predominantly by fibrosis/cirrhosis and carcinogenesis, is caused by the proteotoxic effect of polymerized mutant α1-antitrypsin Z (ATZ), which accumulates in the endoplasmic reticulum (ER) of hepatocytes. Several intracellular pathways have been shown to be responsible for disposal of ATZ after it accumulates in the ER, but autophagy appears to be specialized for disposal of insoluble ATZ polymers. Recently, we have found that drugs that enhance the activity of the autophagic pathway reduce the cellular load of mutant ATZ and reverse hepatic fibrosis in a mouse model of ATD. Because several of these autophagy enhancers have been used safely in humans for other reasons, we have been able to initiate a clinical trial of one of these drugs, carbamazepine, to determine its efficacy in severe liver disease due to ATD. In this review, we discuss the autophagy enhancer drugs as a new therapeutic strategy that targets cell biological mechanisms integral to the pathogenesis of liver disease due to ATD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - David H. Perlmutter
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Guo S, Booten SL, Aghajan M, Hung G, Zhao C, Blomenkamp K, Gattis D, Watt A, Freier SM, Teckman JH, McCaleb ML, Monia BP. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest 2013; 124:251-61. [PMID: 24355919 DOI: 10.1172/jci67968] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 10/15/2013] [Indexed: 02/04/2023] Open
Abstract
Alpha-1 antitrypsin deficiency (AATD) is a rare genetic disease that results from mutations in the alpha-1 antitrypsin (AAT) gene. The mutant AAT protein aggregates and accumulates in the liver leading to AATD liver disease, which is only treatable by liver transplant. The PiZ transgenic mouse strain expresses a human AAT (hAAT) transgene that contains the AATD-associated Glu342Lys mutation. PiZ mice exhibit many AATD symptoms, including AAT protein aggregates, increased hepatocyte death, and liver fibrosis. In the present study, we systemically treated PiZ mice with an antisense oligonucleotide targeted against hAAT (AAT-ASO) and found reductions in circulating levels of AAT and both soluble and aggregated AAT protein in the liver. Furthermore, AAT-ASO administration in these animals stopped liver disease progression after short-term treatment, reversed liver disease after long-term treatment, and prevented liver disease in young animals. Additionally, antisense oligonucleotide treatment markedly decreased liver fibrosis in this mouse model. Administration of AAT-ASO in nonhuman primates led to an approximately 80% reduction in levels of circulating normal AAT, demonstrating potential for this approach in higher species. Antisense oligonucleotides thus represent a promising therapy for AATD liver disease.
Collapse
|
43
|
Strnad P, Nuraldeen R, Guldiken N, Hartmann D, Mahajan V, Denk H, Haybaeck J. Broad Spectrum of Hepatocyte Inclusions in Humans, Animals, and Experimental Models. Compr Physiol 2013; 3:1393-436. [DOI: 10.1002/cphy.c120032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Elucidating the metabolic regulation of liver regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:309-21. [PMID: 24139945 DOI: 10.1016/j.ajpath.2013.04.034] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/01/2013] [Indexed: 02/08/2023]
Abstract
The regenerative capability of liver is well known, and the mechanisms that regulate liver regeneration are extensively studied. Such analyses have defined general principles that govern the hepatic regenerative response and implicated specific extracellular and intracellular signals as regulated during and essential for normal liver regeneration. Nevertheless, the most proximal events that stimulate liver regeneration and the distal signals that terminate this process remain incompletely understood. Recent data suggest that the metabolic response to hepatic insufficiency might be the proximal signal that initiates regenerative hepatocellular proliferation. This review provides an overview of the data in support of a metabolic model of liver regeneration and reflects on the clinical implications and areas for further study suggested by these findings.
Collapse
|
45
|
Eggenschwiler R, Loya K, Wu G, Sharma AD, Sgodda M, Zychlinski D, Herr C, Steinemann D, Teckman J, Bals R, Ott M, Schambach A, Schöler HR, Cantz T. Sustained knockdown of a disease-causing gene in patient-specific induced pluripotent stem cells using lentiviral vector-based gene therapy. Stem Cells Transl Med 2013; 2:641-54. [PMID: 23926210 DOI: 10.5966/sctm.2013-0017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Patient-specific induced pluripotent stem cells (iPSCs) hold great promise for studies on disease-related developmental processes and may serve as an autologous cell source for future treatment of many hereditary diseases. New genetic engineering tools such as zinc finger nucleases and transcription activator-like effector nuclease allow targeted correction of monogenetic disorders but are very cumbersome to establish. Aiming at studies on the knockdown of a disease-causing gene, lentiviral vector-mediated expression of short hairpin RNAs (shRNAs) is a valuable option, but it is limited by silencing of the knockdown construct upon epigenetic remodeling during differentiation. Here, we propose an approach for the expression of a therapeutic shRNA in disease-specific iPSCs using third-generation lentiviral vectors. Targeting severe α-1-antitrypsin (A1AT) deficiency, we overexpressed a human microRNA 30 (miR30)-styled shRNA directed against the PiZ variant of A1AT, which is known to cause chronic liver damage in affected patients. This knockdown cassette is traceable from clonal iPSC lines to differentiated hepatic progeny via an enhanced green fluorescence protein reporter expressed from the same RNA-polymerase II promoter. Importantly, the cytomegalovirus i/e enhancer chicken β actin (CAG) promoter-driven expression of this construct is sustained without transgene silencing during hepatic differentiation in vitro and in vivo. At low lentiviral copy numbers per genome we confirmed a functional relevant reduction (-66%) of intracellular PiZ protein in hepatic cells after differentiation of patient-specific iPSCs. In conclusion, we have demonstrated that lentiviral vector-mediated expression of shRNAs can be efficiently used to knock down and functionally evaluate disease-related genes in patient-specific iPSCs.
Collapse
Affiliation(s)
- Reto Eggenschwiler
- Research Group Translational Hepatology and Stem Cell Biology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Teckman JH. Liver Disease in Alpha-1 Antitrypsin Deficiency: Current Understanding and Future Therapy. COPD 2013; 10 Suppl 1:35-43. [DOI: 10.3109/15412555.2013.765839] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
47
|
Is there a therapeutic role for selenium in alpha-1 antitrypsin deficiency? Nutrients 2013; 5:758-70. [PMID: 23478569 PMCID: PMC3705318 DOI: 10.3390/nu5030758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/22/2013] [Accepted: 02/26/2013] [Indexed: 12/20/2022] Open
Abstract
Selenium is an essential trace mineral of fundamental importance to human health. Much of its beneficial influence is attributed to its presence within selenoproteins, a group of proteins containing the rare amino acid selenocysteine. There are 25 known human selenoproteins including glutathione peroxidases, thioredoxin reductases and selenoproteins. Selenoprotein S (SEPS1) is an endoplasmic reticulum (ER) resident selenoprotein involved in the removal of misfolded proteins from the ER. SEPS1 expression can be induced by ER stress, an event that is associated with conformational disorders and occurs due to accumulation of misfolded proteins within the ER. Alpha-1 antitrypsin (AAT) deficiency, also known as genetic emphysema, is a conformational disorder in which the roles of ER stress, SEPS1 and selenium have been investigated. SEPS1 can relieve ER stress in an in vitro model of AAT deficiency by reducing levels of active ATF6 and inhibiting grp78 promoter- and NFκB activity; some of these effects are enhanced in the presence of selenium supplementation. Other studies examining the molecular mechanisms by which selenium mediates its anti-inflammatory effects have identified a role for prostaglandin 15d-PGJ2 in targeting NFκB and PPARγ. Together these ER stress-relieving and anti-inflammatory properties suggest a therapeutic potential for selenium supplementation in genetic emphysema.
Collapse
|
48
|
Marcus NY, Blomenkamp K, Ahmad M, Teckman JH. Oxidative stress contributes to liver damage in a murine model of alpha-1-antitrypsin deficiency. Exp Biol Med (Maywood) 2012; 237:1163-72. [PMID: 23104507 DOI: 10.1258/ebm.2012.012106] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alpha-1-antitrypsin deficiency is a genetic disorder resulting in the expression of misfolded mutant protein that can polymerize and accumulate in hepatocytes, leading to liver disease in some individuals. Transgenic PiZ mice are a well-characterized model, which express human alpha-1-antitrypsin mutant Z protein (ATZ protein) and faithfully recapitulate the human liver disease. Liver tissue expressing alpha-1-antitrypsin mutant Z protein exhibits inflammation, injury and replacement of damaged cells. Fibrosis and hepatocellular carcinoma (HCC) develop in aging PiZ mice. In this study, microarray analysis was performed comparing young PiZ (ZY) mice to wild-type (WY), and indicated that there were alterations in gene expression levels that could influence a number of pathways leading to liver disease. Redox-regulating genes were up-regulated in ZY tissue, including carbonyl reductase 3 (CBR3), glutathione S-transferase alpha 1 + 2 (GSTA(1 + 2)) and glutathione S-transferase mu 3 (GSTM3). We hypothesized that oxidative stress could develop in Z mouse liver, contributing to tissue damage and disease progression with age. The results of biochemical analysis of PiZ mouse liver revealed that higher levels of reactive oxygen species (ROS) and a more oxidized, cellular redox state occurred in liver tissue from ZY mice than WY. ZY mice showed little evidence of oxidative cellular damage as assessed by protein carbonylation levels, malondialdehyde levels and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8oxodG) staining. Aging liver tissue from PiZ older mice (ZO) had elevated ROS, generally lower levels of antioxidant enzymes than younger mice and evidence of cellular damage. These data indicate that oxidative stress is a contributing factor in the development of liver disease in this model of alpha-1-antitrypsin deficiency.
Collapse
Affiliation(s)
- Nancy Y Marcus
- Department of Pediatrics, St Louis University School of Medicine, Cardinal Glennon Children's Medical Center, St Louis, MO 63104, USA.
| | | | | | | |
Collapse
|
49
|
Gazit V, Huang J, Weymann A, Rudnick DA. Analysis of the role of hepatic PPARγ expression during mouse liver regeneration. Hepatology 2012; 56:1489-98. [PMID: 22707117 PMCID: PMC3465497 DOI: 10.1002/hep.25880] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED Mice subjected to partial hepatectomy (PH) develop hypoglycemia, followed by increased systemic lipolysis and hepatic fat accumulation, prior to onset of hepatocellular proliferation. Strategies that disrupt these metabolic events inhibit regeneration. These observations suggest that alterations in metabolism in response to hepatic insufficiency promote liver regeneration. Hepatic expression of the peroxisome proliferator-activated receptor gamma (PPARγ) influences fat accumulation in the liver. Therefore, the studies reported here were undertaken to assess the effects of disruption of hepatic PPARγ expression on hepatic fat accumulation and hepatocellular proliferation during liver regeneration. The results showed that liver regeneration was not suppressed, but rather modestly augmented in liver-specific PPARγ null mice maintained on a normal diet. These animals also exhibited accelerated hepatic cyclin D1 expression. Because hepatic PPARγ expression is increased in experimental models of fatty liver disease in which liver regeneration is impaired, regeneration in liver-specific PPARγ null mice with chronic hepatic steatosis was also examined. In contrast to the results described above, disruption of hepatic PPARγ expression in mice with diet-induced hepatic steatosis resulted in significant suppression of hepatic regeneration. CONCLUSION The metabolic and hepatocellular proliferative responses to PH are modestly augmented in liver-specific PPARγ null mice, thus providing additional support for a metabolic model of liver regeneration. Furthermore, regeneration is significantly impaired in liver-specific PPARγ null mice in the setting of diet-induced chronic steatosis, suggesting that pharmacological strategies to augment hepatic PPARγ activity might improve regeneration of the fatty liver.
Collapse
Affiliation(s)
- Vered Gazit
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Jiansheng Huang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexander Weymann
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110
| | - David A. Rudnick
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
50
|
Maurice N, Perlmutter DH. Novel treatment strategies for liver disease due to α1-antitrypsin deficiency. Clin Transl Sci 2012; 5:289-94. [PMID: 22686209 DOI: 10.1111/j.1752-8062.2011.00363.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alpha1-antitrypsin (AT) deficiency is the most common genetic cause of liver disease in children and is also a cause of chronic hepatic fibrosis, cirrhosis, and hepatocellular carcinoma in adults. Recent advances in understanding how mutant AT molecules accumulate within hepatocytes and cause liver cell injury have led to a novel strategy for chemoprophylaxis of this liver disease. This strategy involves a class of drugs, which enhance the intracellular degradation of mutant AT and, because several of these drugs have been used safely in humans for other indications, the strategy can be moved immediately into clinical trials. In this review, we will also report on advances that provide a basis for several other strategies that could be used in the future for treatment of the liver disease associated with AT deficiency.
Collapse
Affiliation(s)
- Nicholas Maurice
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|