1
|
Safety and Efficacy of Epigenetically Converted Human Fibroblasts Into Insulin-Secreting Cells: A Preclinical Study. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1079:151-162. [PMID: 29500792 DOI: 10.1007/5584_2018_172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 Diabetes Mellitus (T1DM) is a chronic disease that leads to loss of insulin secreting β-cells, causing high levels of blood glucose. Exogenous insulin administration is not sufficient to mimic the normal function of β-cells and, consequently, diabetes mellitus often progresses and can lead to major chronic complications and morbidity. The physiological control of glucose levels can only be restored by replacing the β-cell mass.We recently developed a new strategy that allows for epigenetic conversion of dermal fibroblasts into insulin-secreting cells (EpiCC), using a brief exposure to the demethylating agent 5-aza-cytidine (5-aza-CR), followed by a pancreatic induction protocol. This method has notable advantages compared to the alternative available procedures and may represent a promising tool for clinical translation as a therapy for T1DM. However, a thought evaluation of its therapeutic safety and efficacy is mandatory to support preclinical studies based on EpiCC treatment.We here report the data obtained using human fibroblasts isolated from diabetic and healthy individuals, belonging the two genders. EpiCC were injected into 650 diabetic severe combined immunodeficiency (SCID) mice and demonstrated to be able to restore and maintain glycemic levels within the physiological range. Cells had the ability to self-regulate and not to cause hypoglycemia, when transplanted in healthy animals. Efficacy tests showed that EpiCC successfully re-established normoglycemia in diabetic mice, using a dose range that appeared clinically relevant to the concentration 0.6 × 106 EpiCC. Necropsy and histopathological investigations demonstrated the absence of malignant transformation and cell migration to organs and lymph nodes.The present preclinical study demonstrates safety and efficacy of human EpiCC in diabetic mice and supports the use of epigenetic converted cells for regenerative medicine of diabetes mellitus.
Collapse
|
2
|
Ghurburrun E, Borbath I, Lemaigre FP, Jacquemin P. Liver and Pancreas: Do Similar Embryonic Development and Tissue Organization Lead to Similar Mechanisms of Tumorigenesis? Gene Expr 2018; 18:149-155. [PMID: 29580319 PMCID: PMC6190115 DOI: 10.3727/105221618x15216414278706] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.
Collapse
Affiliation(s)
- Elsa Ghurburrun
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Ivan Borbath
- †Université catholique de Louvain, Department of Hepato-Gastro-Enterology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | - Patrick Jacquemin
- *Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| |
Collapse
|
3
|
Boggs K, Wang T, Orabi AI, Mukherjee A, Eisses JF, Sun T, Wen L, Javed TA, Esni F, Chen W, Husain SZ. Pancreatic gene expression during recovery after pancreatitis reveals unique transcriptome profiles. Sci Rep 2018; 8:1406. [PMID: 29362419 PMCID: PMC5780441 DOI: 10.1038/s41598-018-19392-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
It is well known that pancreatic recovery after a single episode of injury such as an isolated bout of pancreatitis occurs rapidly. It is unclear, however, what changes are inflicted in such conditions to the molecular landscape of the pancreas. In the caerulein hyperstimulation model of pancreatitis, the murine pancreas has the ability to recover within one week based on histological appearance. In this study, we sought to characterize by RNA-sequencing (RNA-seq) the transcriptional profile of the recovering pancreas up to two weeks post-injury. We found that one week after injury there were 319 differentially expressed genes (DEGs) compared with baseline and that after two weeks there were 53 DEGs. Forty (12.5%) of the DEGs persisted from week one to week two, and another 13 DEGs newly emerged in the second week. Amongst the top up-regulated DEGs were several trypsinogen genes (trypsinogen 4, 5, 12, 15, and 16). To our knowledge, this is the first characterization of the transcriptome during pancreatic recovery by deep sequencing, and it reveals on a molecular basis that there is an ongoing recovery of the pancreas even after apparent histological resolution. The findings also raise the possibility of an emerging novel transcriptome upon pancreatic recovery.
Collapse
Affiliation(s)
- Kristy Boggs
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Ting Wang
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Abrahim I Orabi
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Amitava Mukherjee
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - John F Eisses
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tao Sun
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Li Wen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Tanveer A Javed
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Farzad Esni
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Wei Chen
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Sohail Z Husain
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
4
|
Kim HS, Lee MK. β-Cell regeneration through the transdifferentiation of pancreatic cells: Pancreatic progenitor cells in the pancreas. J Diabetes Investig 2016; 7:286-96. [PMID: 27330712 PMCID: PMC4847880 DOI: 10.1111/jdi.12475] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/27/2015] [Accepted: 01/04/2016] [Indexed: 12/17/2022] Open
Abstract
Pancreatic progenitor cell research has been in the spotlight, as these cells have the potential to replace pancreatic β‐cells for the treatment of type 1 and 2 diabetic patients with the absence or reduction of pancreatic β‐cells. During the past few decades, the successful treatment of diabetes through transplantation of the whole pancreas or isolated islets has nearly been achieved. However, novel sources of pancreatic islets or insulin‐producing cells are required to provide sufficient amounts of donor tissues. To overcome this limitation, the use of pancreatic progenitor cells is gaining more attention. In particular, pancreatic exocrine cells, such as duct epithelial cells and acinar cells, are attractive candidates for β‐cell regeneration because of their differentiation potential and pancreatic lineage characteristics. It has been assumed that β‐cell neogenesis from pancreatic progenitor cells could occur in pancreatic ducts in the postnatal stage. Several studies have shown that insulin‐producing cells can arise in the duct tissue of the adult pancreas. Acinar cells also might have the potential to differentiate into insulin‐producing cells. The present review summarizes recent progress in research on the transdifferentiation of pancreatic exocrine cells into insulin‐producing cells, especially duct and acinar cells.
Collapse
Affiliation(s)
- Hyo-Sup Kim
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism Department of Medicine Sungkyunkwan University School of Medicine Samsung Biomedical Research Institute Samsung Medical Center Seoul Korea
| |
Collapse
|
5
|
Noguchi H, Miyagi-Shiohira C, Kurima K, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Matsushita M. Islet Culture/Preservation Before Islet Transplantation. CELL MEDICINE 2015; 8:25-9. [PMID: 26858905 DOI: 10.3727/215517915x689047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although islet culture prior to transplantation provides flexibility for the evaluation of isolated islets and the pretreatment of patients, it is well known that isolated islets deteriorate rapidly in culture. Human serum albumin (HSA) is used for medium supplementation instead of fetal bovine serum (FBS), which is typically used for islet culture research, to avoid the introduction of xenogeneic materials. However, FBS contains several factors that are beneficial to islet viability and which also neutralize the endogenous pancreatic enzymes or exogenous enzymes left over from the isolation process. Several groups have reported the comparison of cultures at 22°C and 37°C. Recent studies have demonstrated the superiority of 4°C preservation to 22°C and 37°C cultures. We herein review the current research on islet culture/preservation for clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | - Kiyoto Kurima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| | | | - Issei Saitoh
- ‡ Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University , Niigata , Japan
| | - Masami Watanabe
- § Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Yasufumi Noguchi
- ¶ Department of Socio-environmental Design, Hiroshima International University , Hiroshima , Japan
| | - Masayuki Matsushita
- # Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus , Okinawa , Japan
| |
Collapse
|
6
|
Probert PME, Meyer SK, Alsaeedi F, Axon AA, Fairhall EA, Wallace K, Charles M, Oakley F, Jowsey PA, Blain PG, Wright MC. An expandable donor-free supply of functional hepatocytes for toxicology. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00214h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
The B-13 cell is a readily expandable rat pancreatic acinar-like cell that differentiates on simple plastic culture substrata into replicatively-senescent hepatocyte-like (B-13/H) cells in response to glucocorticoid exposure. B-13/H cells express a variety of liver-enriched and liver-specific genes, many at levels similar to hepatocytes in vivo. Furthermore, the B-13/H phenotype is maintained for at least several weeks in vitro, in contrast to normal hepatocytes which rapidly de-differentiate under the same simple – or even under more complex – culture conditions. The origin of the B-13 cell line and the current state of knowledge regarding differentiation to B-13/H cells are presented, followed by a review of recent advances in the use of B-13/H cells in a variety of toxicity endpoints. B-13 cells therefore offer Toxicologists a cost-effective and easy to use system to study a range of toxicologically-related questions. Dissecting the mechanism(s) regulating the formation of B-13/H cell may also increase the likelihood of engineering a human equivalent, providing Toxicologists with an expandable donor-free supply of functional rat and human hepatocytes, invaluable additions to the tool kit of in vitro toxicity tests.
Collapse
Affiliation(s)
- Philip M. E. Probert
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Stephanie K. Meyer
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fouzeyyah Alsaeedi
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Andrew A. Axon
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Emma A. Fairhall
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Karen Wallace
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Michelle Charles
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Fiona Oakley
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Paul A. Jowsey
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Peter G. Blain
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Matthew C. Wright
- Institute Cellular Medicine, Level 4 Leech Building; Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| |
Collapse
|
7
|
Nukaya D, Minami K, Hoshikawa R, Yokoi N, Seino S. Preferential gene expression and epigenetic memory of induced pluripotent stem cells derived from mouse pancreas. Genes Cells 2015; 20:367-81. [PMID: 25727848 DOI: 10.1111/gtc.12227] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/31/2014] [Indexed: 11/27/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have been established from various somatic cell types. Accumulating evidence suggests that iPSCs from different cell sources have distinct molecular and functional properties. Here, we establish iPSC derived from mouse pancreas (Panc-iPSC) and compared their properties with those of iPSC derived from tail-tip fibroblast (TTF-iPSC). The metabolic profile differs between Panc-iPSC and TTF-iPSC, indicating distinct cell properties in these iPSCs. Expression of Pdx1, a marker of pancreas differentiation, is increased through formation of embryoid body (EB) in Panc-iPSC, but the level is similar to that in TTF-iPSC. In contrast, EBs derived from Panc-iPSC express liver-specific albumin (Alb) and alpha-fetoprotein (Afp) genes much more strongly than those from TTF-iPSC. Epigenetic analysis shows a different histone modification pattern between Panc-iPSC and TTF-iPSC. Promoter regions of Alb and Afp genes in Panc-iPSC are suggested to have a more open chromatin structure than those in TTF-iPSC, which also is seen in primary cultured pancreatic cells. Our data suggest that Panc-iPSC possesses distinct differentiation capacity from that of TTF-PSC, which may be influenced by epigenetic memory.
Collapse
Affiliation(s)
- Daiki Nukaya
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; Regenerative and Cellular Medicine Office, Sumitomo Dainippon Pharma Co., Ltd, 2-2-2 Minatojimaminami-machi, Chuo-ku, Kobe, 650-0047, Japan
| | | | | | | | | |
Collapse
|
8
|
Conversion of one cell type into another: implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans 2015; 42:609-16. [PMID: 24849227 DOI: 10.1042/bst20140058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metaplasia is the irreversible conversion of one differentiated cell or tissue type into another. Metaplasia usually occurs in tissues that undergo regeneration, and may, in a pathological context, predispose to an increased risk of disease. Studying the conditions leading to the development of metaplasia is therefore of significant clinical interest. In contrast, transdifferentiation (or cellular reprogramming) is a subset of metaplasia that describes the permanent conversion of one differentiated cell type into another, and generally occurs between cells that arise from neighbouring regions of the same germ layer. Transdifferentiation, although rare, has been shown to occur in Nature. New insights into the signalling pathways involved in normal tissue development may be obtained by investigating the cellular and molecular mechanisms in metaplasia and transdifferentiation, and additional identification of key molecular regulators in transdifferentiation and metaplasia could provide new targets for therapeutic treatment of diseases such as cancer, as well as generating cells for transplantation into patients with degenerative disorders. In the present review, we focus on the transdifferentiation of pancreatic cells into hepatocyte-like cells, the development of Barrett's metaplasia in the oesophagus, and the cellular and molecular mechanisms underlying both processes.
Collapse
|
9
|
Lu J, Jaafer R, Bonnavion R, Bertolino P, Zhang CX. Transdifferentiation of pancreatic α-cells into insulin-secreting cells: From experimental models to underlying mechanisms. World J Diabetes 2014; 5:847-853. [PMID: 25512786 PMCID: PMC4265870 DOI: 10.4239/wjd.v5.i6.847] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/10/2014] [Accepted: 07/29/2014] [Indexed: 02/05/2023] Open
Abstract
Pancreatic insulin-secreting β-cells are essential regulators of glucose metabolism. New strategies are currently being investigated to create insulin-producing β cells to replace deficient β cells, including the differentiation of either stem or progenitor cells, and the newly uncovered transdifferentiation of mature non-β islet cell types. However, in order to correctly drive any cell to adopt a new β-cell fate, a better understanding of the in vivo mechanisms involved in the plasticity and biology of islet cells is urgently required. Here, we review the recent studies reporting the phenomenon of transdifferentiation of α cells into β cells by focusing on the major candidates and contexts revealed to be involved in adult β-cell regeneration through this process. The possible underlying mechanisms of transdifferentiation and the interactions between several key factors involved in the process are also addressed. We propose that it is of importance to further study the molecular and cellular mechanisms underlying α- to β-cell transdifferentiation, in order to make β-cell regeneration from α cells a relevant and realizable strategy for developing cell-replacement therapy.
Collapse
|
10
|
Lemper M, Leuckx G, Heremans Y, German MS, Heimberg H, Bouwens L, Baeyens L. Reprogramming of human pancreatic exocrine cells to β-like cells. Cell Death Differ 2014; 22:1117-30. [PMID: 25476775 PMCID: PMC4572860 DOI: 10.1038/cdd.2014.193] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/04/2014] [Accepted: 10/23/2014] [Indexed: 12/31/2022] Open
Abstract
Rodent acinar cells exhibit a remarkable plasticity as they can transdifferentiate to duct-, hepatocyte- and islet β-like cells. We evaluated whether exocrine cells from adult human pancreas can similarly respond to proendocrine stimuli. Exocrine cells from adult human pancreas were transduced directly with lentiviruses expressing activated MAPK (mitogen-activated protein kinase) and STAT3 (signal transducer and activator of transcription 3) and cultured as monolayers or as 3D structures. Expression of STAT3 and MAPK in human exocrine cells activated expression of the proendocrine factor neurogenin 3 in 50% to 80% of transduced exocrine cells. However, the number of insulin-positive cells increased only in the exocrine cells grown initially in suspension before 3D culture. Lineage tracing identified human acinar cells as the source of Ngn3- and insulin-expressing cells. Long-term engraftment into immunocompromised mice increased the efficiency of reprogramming to insulin-positive cells. Our data demonstrate that exocrine cells from human pancreas can be reprogrammed to transplantable insulin-producing cells that acquire functionality. Given the large number of exocrine cells in a donor pancreas, this approach presents a novel strategy to expand cell therapy in type 1 diabetes.
Collapse
Affiliation(s)
- M Lemper
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - G Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Heremans
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - M S German
- Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - H Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - L Bouwens
- Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - L Baeyens
- 1] Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium [2] Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|
11
|
De Waele E, Wauters E, Ling Z, Bouwens L. Conversion of human pancreatic acinar cells toward a ductal-mesenchymal phenotype and the role of transforming growth factor β and activin signaling. Pancreas 2014; 43:1083-92. [PMID: 25003220 DOI: 10.1097/mpa.0000000000000154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Epithelial-mesenchymal transition may interfere with the differentiation of cultured pancreatic acinar cells toward endocrine cells. Therefore, it will be important to investigate into detail the reprogramming of human pancreatic acinar cells toward a mesenchymal phenotype: the association with acinoductal transdifferentiation, the influence of cell adhesion, and the regulation behind this process. METHODS Human exocrine cells, isolated from donor pancreata, were cultured in suspension or as monolayers. Non-genetic lineage tracing, using labeled ulex europaeus agglutinin 1 lectin, was performed, and the role of the transforming growth factor (TGF-β) superfamily was investigated. RESULTS After 7 days in monolayer culture, the human acinar cells coexpressed the mesenchymal marker vimentin and the ductal marker Sox9. However, when the human exocrine cells were cultured in suspension, epithelial-mesenchymal transition was not observed. The spontaneous transition of the human acinar cells toward a ductal and mesenchymal phenotype was decreased by inhibition of the TGF-β and activin signaling pathways. CONCLUSIONS The human acinar cells spontaneously undergo TGF-β- regulated reprogramming in the monolayer culture. These observations are helpful to develop culture methods for the in vitro reprogramming of pancreatic exocrine to endocrine cells. They are also of potential interest for studies on exocrine acinar cells in the development of pancreatic cancer.
Collapse
Affiliation(s)
- Evelien De Waele
- From the *Cell Differentiation Laboratory, and †Cell Therapy Laboratory, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
12
|
Orlando G, Gianello P, Salvatori M, Stratta RJ, Soker S, Ricordi C, Domínguez-Bendala J. Cell replacement strategies aimed at reconstitution of the β-cell compartment in type 1 diabetes. Diabetes 2014; 63:1433-44. [PMID: 24757193 DOI: 10.2337/db13-1742] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Emerging technologies in regenerative medicine have the potential to restore the β-cell compartment in diabetic patients, thereby overcoming the inadequacies of current treatment strategies and organ supply. Novel approaches include: 1) Encapsulation technology that protects islet transplants from host immune surveillance; 2) stem cell therapies and cellular reprogramming, which seek to regenerate the depleted β-cell compartment; and 3) whole-organ bioengineering, which capitalizes on the innate properties of the pancreas extracellular matrix to drive cellular repopulation. Collaborative efforts across these subfields of regenerative medicine seek to ultimately produce a bioengineered pancreas capable of restoring endocrine function in patients with insulin-dependent diabetes.
Collapse
|
13
|
Epigenetic reprogramming in Mist1(-/-) mice predicts the molecular response to cerulein-induced pancreatitis. PLoS One 2014; 9:e84182. [PMID: 24465395 PMCID: PMC3897368 DOI: 10.1371/journal.pone.0084182] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/20/2013] [Indexed: 01/26/2023] Open
Abstract
Gene expression is affected by modifications to histone core proteins within chromatin. Changes in these modifications, or epigenetic reprogramming, can dictate cell fate and promote susceptibility to disease. The goal of this study was to determine the extent of epigenetic reprogramming in response to chronic stress that occurs following ablation of MIST1 (Mist1−/−), which is repressed in pancreatic disease. Chromatin immunoprecipitation for trimethylation of lysine residue 4 on histone 3 (H3K4Me3) in purified acinar cells from wild type and Mist1−/− mice was followed by Next Generation sequencing (ChIP-seq) or ChIP-qPCR. H3K4Me3-enriched genes were assessed for expression by qRT-PCR in pancreatic tissue before and after induction of cerulein-induced pancreatitis. While most of H3K4Me3-enrichment is restricted to transcriptional start sites, >25% of enrichment sites are found within, downstream or between annotated genes. Less than 10% of these sites were altered in Mist1−/− acini, with most changes in H3K4Me3 enrichment not reflecting altered gene expression. Ingenuity Pathway Analysis of genes differentially-enriched for H3K4Me3 revealed an association with pancreatitis and pancreatic ductal adenocarcinoma in Mist1−/− tissue. Most of these genes were not differentially expressed but several were readily induced by acute experimental pancreatitis, with significantly increased expression in Mist1−/− tissue relative to wild type mice. We suggest that the chronic cell stress observed in the absence of MIST1 results in epigenetic reprogramming of genes involved in promoting pancreatitis to a poised state, thereby increasing the sensitivity to events that promote disease.
Collapse
|
14
|
Baeyens L, Lemper M, Leuckx G, De Groef S, Bonfanti P, Stangé G, Shemer R, Nord C, Scheel DW, Pan FC, Ahlgren U, Gu G, Stoffers DA, Dor Y, Ferrer J, Gradwohl G, Wright CVE, Van de Casteele M, German MS, Bouwens L, Heimberg H. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat Biotechnol 2014; 32:76-83. [PMID: 24240391 PMCID: PMC4096987 DOI: 10.1038/nbt.2747] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022]
Abstract
Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.
Collapse
Affiliation(s)
- Luc Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
- Diabetes Center, California Institute for Regenerative Medicine (CIRM), University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Marie Lemper
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Gunter Leuckx
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Sofie De Groef
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Paola Bonfanti
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Geert Stangé
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Ruth Shemer
- The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Christoffer Nord
- Umeå Center for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden
| | - David W. Scheel
- Diabetes Center, California Institute for Regenerative Medicine (CIRM), University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Fong C. Pan
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ulf Ahlgren
- Umeå Center for Molecular Medicine, Umeå University, S-901 87 Umeå, Sweden
| | - Guoqiang Gu
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Doris A. Stoffers
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Yuval Dor
- The Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Jorge Ferrer
- Institut d’Investigacions Biomediques August Pi i Sunyer, Hospital Clinic de Barcelona, Barcelona, Spain and Imperial College London, London W12 0NN, United Kingdom
| | - Gerard Gradwohl
- Development and Stem Cells Program, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, 67404, France
| | - Christopher VE Wright
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Michael S. German
- Diabetes Center, California Institute for Regenerative Medicine (CIRM), University of California San Francisco, San Francisco, CA 94143-0669, USA
| | - Luc Bouwens
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Harry Heimberg
- Diabetes Research Center, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| |
Collapse
|
15
|
Bouwens L, Houbracken I, Mfopou JK. The use of stem cells for pancreatic regeneration in diabetes mellitus. Nat Rev Endocrinol 2013; 9:598-606. [PMID: 23877422 DOI: 10.1038/nrendo.2013.145] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The endocrine pancreas represents an interesting arena for regenerative medicine and cell therapeutics. One of the major pancreatic diseases, diabetes mellitus is a metabolic disorder caused by having an insufficient number of insulin-producing β cells. Replenishment of β cells by cell transplantation can restore normal metabolic control. The shortage in donor pancreata has meant that the demand for transplantable β cells has outstripped the supply, which could be met by using alternative sources of stem cells. This situation has opened up new areas of research, such as cellular reprogramming and in vivo β-cell regeneration. Pluripotent stem cells seem to be the best option for clinical applications of β-cell regeneration in the near future, as these cells have been demonstrated to represent an unlimited source of functional β cells. Although compelling evidence shows that the adult pancreas retains regenerative capacity, it remains unclear whether this organ contains stem cells. Alternatively, specialized cell types within or outside the pancreas retain plasticity in proliferation and differentiation. Cellular reprogramming or transdifferentiation of exocrine cells or other types of endocrine cells in the pancreas could provide a long-term solution.
Collapse
Affiliation(s)
- Luc Bouwens
- Cell Differentiation Unit, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels B-1090, Belgium
| | | | | |
Collapse
|
16
|
Houbracken I, Baeyens L, Ravassard P, Heimberg H, Bouwens L. Gene delivery to pancreatic exocrine cells in vivo and in vitro. BMC Biotechnol 2012; 12:74. [PMID: 23088534 PMCID: PMC3487942 DOI: 10.1186/1472-6750-12-74] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Effective gene transfer to the pancreas or to pancreatic cells has remained elusive although it is essential for studies of genetic lineage tracing and modulation of gene expression. Different transduction methods and viral vectors were tested in vitro and in vivo, in rat and mouse pancreas. RESULTS For in vitro transfection/transduction of rat exocrine cells lipofection reagents, adenoviral vectors, and Mokola- and VSV-G pseudotyped lentiviral vectors were used. For in vivo transduction of mouse and rat pancreas adenoviral vectors and VSV-G lentiviral vectors were injected into the parenchymal tissue. Both lipofection of rat exocrine cell cultures and transduction with Mokola pseudotyped lentiviral vectors were inefficient and resulted in less than 4% EGFP expressing cells. Adenoviral transduction was highly efficient but its usefulness for gene delivery to rat exocrine cells in vitro was hampered by a drastic increase in cell death. In vitro transduction of rat exocrine cells was most optimal with VSV-G pseudotyped lentiviral vectors, with stable transgene expression, no significant effect on cell survival and about 40% transduced cells. In vivo, pancreatic cells could not be transduced by intra-parenchymal administration of lentiviral vectors in mouse and rat pancreas. However, a high efficiency could be obtained by adenoviral vectors, resulting in transient transduction of mainly exocrine acinar cells. Injection in immune-deficient animals diminished leukocyte infiltration and prolonged transgene expression. CONCLUSIONS In summary, our study remarkably demonstrates that transduction of pancreatic exocrine cells requires lentiviral vectors in vitro but adenoviral vectors in vivo.
Collapse
Affiliation(s)
- Isabelle Houbracken
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, B-1090, Belgium.
| | | | | | | | | |
Collapse
|
17
|
Asuelime GE, Shi Y. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. J Mol Cell Biol 2012; 4:190-6. [PMID: 22371436 PMCID: PMC3408064 DOI: 10.1093/jmcb/mjs005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.
Collapse
Affiliation(s)
- Grace E. Asuelime
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Ave., Pomona, CA 91768, USA
| | - Yanhong Shi
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
18
|
Grüner BM, Hahne H, Mazur PK, Trajkovic-Arsic M, Maier S, Esposito I, Kalideris E, Michalski CW, Kleeff J, Rauser S, Schmid RM, Küster B, Walch A, Siveke JT. MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer. PLoS One 2012; 7:e39424. [PMID: 22761793 PMCID: PMC3383687 DOI: 10.1371/journal.pone.0039424] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 05/20/2012] [Indexed: 01/07/2023] Open
Abstract
The identification of new biomarkers for preneoplastic pancreatic lesions (PanINs, IPMNs) and early pancreatic ductal adenocarcinoma (PDAC) is crucial due to the diseases high mortality rate upon late detection. To address this task we used the novel technique of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) on genetically engineered mouse models (GEM) of pancreatic cancer. Various GEM were analyzed with MALDI IMS to investigate the peptide/protein-expression pattern of precursor lesions in comparison to normal pancreas and PDAC with cellular resolution. Statistical analysis revealed several discriminative m/z-species between normal and diseased tissue. Intraepithelial neoplasia (PanIN) and intraductal papillary mucinous neoplasm (IPMN) could be distinguished from normal pancreatic tissue and PDAC by 26 significant m/z-species. Among these m/z-species, we identified Albumin and Thymosin-beta 4 by liquid chromatography and tandem mass spectrometry (LC-MS/MS), which were further validated by immunohistochemistry, western blot, quantitative RT-PCR and ELISA in both murine and human tissue. Thymosin-beta 4 was found significantly increased in sera of mice with PanIN lesions. Upregulated PanIN expression of Albumin was accompanied by increased expression of liver-restricted genes suggesting a hepatic transdifferentiation program of preneoplastic cells. In conclusion we show that GEM of endogenous PDAC are a suitable model system for MALDI-IMS and subsequent LC-MS/MS analysis, allowing in situ analysis of small precursor lesions and identification of differentially expressed peptides and proteins.
Collapse
Affiliation(s)
- Barbara M. Grüner
- II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Hannes Hahne
- Chair of Proteomics and Bioanalytics, Center of Life and Food Sciences, Technische Universität München, Munich, Germany
| | - Pawel K. Mazur
- II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | | | - Stefan Maier
- Chair of Proteomics and Bioanalytics, Center of Life and Food Sciences, Technische Universität München, Munich, Germany
- Institute of Pathology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Evdokia Kalideris
- II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | | | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Sandra Rauser
- Institute of Pathology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Roland M. Schmid
- II. Medizinische Klinik, Technische Universität München, Munich, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Center of Life and Food Sciences, Technische Universität München, Munich, Germany
- Center for Integrated Protein Science Munich, Munich, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Center Munich - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jens T. Siveke
- II. Medizinische Klinik, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
19
|
Johnson CL, Peat JM, Volante SN, Wang R, McLean CA, Pin CL. Activation of protein kinase Cδ leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1. J Pathol 2012; 228:351-65. [PMID: 22374815 DOI: 10.1002/path.4015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 12/19/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a 5 year survival rate post-diagnosis of < 5%. Individuals with chronic pancreatitis (CP) are 20-fold more likely to develop PDAC, making it a significant risk factor for PDAC. While the relationship for the increased susceptibility to PDAC is unknown, loss of the acinar cell phenotype is common to both pathologies. Pancreatic acinar cells can dedifferentiate or trans-differentiate into a number of cell types including duct cells, β cells, hepatocytes and adipocytes. Knowledge of the molecular pathways that regulate this plasticity should provide insight into PDAC and CP. MIST1 (encoded by Bhlha15 in mice) is a transcription factor required for complete acinar cell maturation. The goal of this study was to examine the plasticity of acinar cells that do not express MIST1 (Mist1(-/-) ). The fate of acinar cells from C57Bl6 or congenic Mist1(-/-) mice expressing an acinar specific, tamoxifen-inducible Cre recombinase mated to Rosa26 reporter LacZ mice (Mist1(CreERT/-) R26r) was determined following culture in a three-dimensional collagen matrix. Mist1(CreERT/-) R26r acini showed increased acinar dedifferentiation, formation of ductal cysts and transient increases in PDX1 expression compared to wild-type acinar cells. Other progenitor cell markers, including Foxa1, Sox9, Sca1 and Hes1, were elevated only in Mist1(-/-) cultures. Analysis of protein kinase C (PKC) isoforms by western blot and immunofluorescence identified increased PKCε accumulation and nuclear localization of PKCδ that correlated with increased duct formation. Treatment with rottlerin, a PKCδ-specific inhibitor, but not the PKCε-specific antagonist εV1-2, reduced acinar dedifferentiation, progenitor gene expression and ductal cyst formation. Immunocytochemistry on CP or PDAC tissue samples showed reduced MIST1 expression combined with increased nuclear PKCδ accumulation. These results suggest that the loss of MIST1 is a common event during PDAC and CP and events that affect MIST1 function and expression may increase susceptibility to these pathologies.
Collapse
|
20
|
Abstract
OBJECTIVE The objective of the study was to induce transdifferentiation of human hepatoma HepG2 cells into pancreatic-like cells without direct genetic intervention. METHODS HepG2 cells were transfected with plasmids for the hepatocyte marker protein green fluorescent protein (albumin-GFP) and the pancreatic cell marker Discosoma spp red fluorescent protein (elastase-DsRed) to create FAE-HepG2 cells. Fluorescent marker expression was used to monitor in vitro transdifferentiation stimulated 100 mM CCl₄, 2 mM D-galactosamine, or 200 μM ZnCl₂. Concentrations were selected for optimal cell survival rate. Transdifferentiation was also characterized by immunohistochemical detection of amylase, glucagon, and insulin and by polymerase change reaction analysis of amylase and insulin mRNA production. RESULTS Control cells expressed albumin-GFP but no elastase-DsRed. By 30 days of culture, all 3 agents induced expression of pancreatic-like cell marker elastase-DsRed. ZnCl₂ was the most effective as most cells expressed elastase-DsRed in the absence of simultaneous expression of albumin-GFP. For CCl₄ and D-galactosamine, elastase-DsRed was expressed in the same cells as albumin-GFP. Cells treated by each agent also expressed amylase, insulin, and glucagon proteins and mRNAs. CONCLUSIONS Without direct genetic intervention, select low small molecules can induce in vitro transformation of hepatoma cells into pancreatic-like cells.
Collapse
|
21
|
Bläuer M, Nordback I, Sand J, Laukkarinen J. A novel explant outgrowth culture model for mouse pancreatic acinar cells with long-term maintenance of secretory phenotype. Eur J Cell Biol 2011; 90:1052-60. [PMID: 21906833 DOI: 10.1016/j.ejcb.2011.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 07/01/2011] [Accepted: 07/07/2011] [Indexed: 12/20/2022] Open
Abstract
The development of in vitro models able to support the long-term viability and function of acinar cells is critical for exploring pancreatic pathophysiology. Despite considerable efforts, no long-term culture models for non-transformed pancreatic acini exist. Our aim was to develop and validate culture conditions for this purpose. An explant outgrowth culture design was established in which mouse pancreatic explants were cultured at the gas-liquid interphase. An enriched culture medium, pH 7.8, was employed to promote the selective outgrowth of acinar cells and to support their differentiated phenotype. After 7 days, the outgrown primary acinar cells were subcultured and maintained up to an additional 7 days as secondary monolayers on tissue culture plastic. Measurements of basal and caerulein-induced amylase secretion, phase-contrast microscopy and immunohistochemical analyses were used to characterize the cultures. Explants retained their pancreatic cytoarchitecture for 2 days in vitro. A triphasic dose response to caerulein was detected in 7-day primary cultures. The maximal rate of secretion was 1.2-fold versus basal (p=0.009) and 1.7-fold versus 1 pM caerulein (p=0.014). In secondary cultures the response was biphasic with maximal rates of secretion being 1.9-fold in 3- to 4-day cultures at 0.01 nM (p=0.049) and 2-fold in 6- to 7-day cultures at 0.1 nM (p=0.003). The present culture model provides a means to obtain functionally competent normal mouse acinar cells for long-term in vitro experimentation.
Collapse
Affiliation(s)
- Merja Bläuer
- Department of Gastroenterology and Alimentary Tract Surgery and Tampere Pancreas Laboratory, Tampere University Hospital, Teiskontie 35, FIN-33521 Tampere, Finland
| | | | | | | |
Collapse
|
22
|
Wallace K, Long Q, Fairhall EA, Charlton KA, Wright MC. Serine/threonine protein kinase SGK1 in glucocorticoid-dependent transdifferentiation of pancreatic acinar cells to hepatocytes. J Cell Sci 2011; 124:405-13. [PMID: 21224398 DOI: 10.1242/jcs.077503] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Elevated glucocorticoid levels result in the transdifferentiation of pancreatic acinar cells into hepatocytes through a process that requires a transient repression of WNT signalling upstream of the induction of C/EBP-β. However, the mechanism by which glucocorticoid interacts with WNT signalling is unknown. A screen of microarray data showed that the serine/threonine protein kinase SGK1 (serum- and glucocorticoid-regulated kinase 1) was markedly induced in the model B-13 pancreatic rat acinar cell line after glucocorticoid treatment (which converts them into hepatocyte-like 'B-13/H' cells) and this was confirmed at the level of mRNA (notably an alternatively transcribed SGK1C form) and protein. Knockdown of SGK1 using an siRNA designed to target all variant transcripts inhibited glucocorticoid-dependent transdifferentiation, whereas overexpression of the human C isoform (and also the human SGK1F isoform, for which no orthologue in the rat has been identified) alone - but not the wild-type A form - inhibited distal WNT signalling Tcf/Lef transcription factor activity, and converted B-13 cells into B-13/H cells. These effects were lost when the kinase functions of SGK1C and SGK1F were mutated. Inhibition of SGK1 kinase activity also inhibited glucocorticoid-dependent transdifferentiation. Expression of SGK1C and SGK1F resulted in the appearance of phosphorylated β-catenin, and recombinant SGK1 was shown to directly phosphorylate purified β-catenin in vitro in an ATP-dependent reaction. These data therefore demonstrate a crucial role for SGK1 induction in B-13 cell transdifferentiation to B-13/H hepatocytes and suggest that direct phosphorylation of β-catenin by SGK1C represents the mechanism of crosstalk between glucocorticoid and WNT signalling pathways.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE24HH, UK
| | | | | | | | | |
Collapse
|
23
|
Abstract
Hepatocytes maintained in culture provide an attractive model system for the study of liver function. Furthermore, hepatocyte transplantation offers an alternative cellular therapy to orthotopic liver transplantation for the treatment of hepatic failure and hereditary liver disease. To overcome the problem of organ shortage, additional source of hepatocytes must be found. Here, we present a strategy and protocol to transdifferentiate (or convert) developmentally related pancreatic cells into hepatocytes based on the addition of the synthetic glucocorticoid dexamethasone.
Collapse
|
24
|
Houbracken I, Bouwens L. The quest for tissue stem cells in the pancreas and other organs, and their application in beta-cell replacement. Rev Diabet Stud 2010; 7:112-23. [PMID: 21060970 PMCID: PMC2989784 DOI: 10.1900/rds.2010.7.112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 07/07/2010] [Accepted: 07/10/2010] [Indexed: 02/06/2023] Open
Abstract
Adult stem cell research has drawn a lot of attention by many researchers, due to its medical hope of cell replacement or regenerative therapy for diabetes patients. Despite the many research efforts to date, there is no consensus on the existence of stem cells in adult pancreas. Genetic lineage tracing experiments have put into serious doubt whether β-cell neogenesis from stem/progenitor cells takes place postnatally. Different in vitro experiments have suggested centroacinar, ductal, acinar, stellate, or yet unidentified clonigenic cells as candidate β-cell progenitors. As in the rest of the adult stem cell field, sound and promising observations have been made. However, these observations still need to be replicated. As an alternative to committed stem/progenitor cells in the pancreas, transdifferentiation or lineage reprogramming of exocrine acinar and endocrine α-cells may be used to generate new β-cells. At present, it is unclear which approach is most medically promising. This article highlights the progress being made in knowledge about tissue stem cells, their existence and availability for therapy in diabetes. Particular attention is given to the assessment of methods to verify the existence of tissue stem cells.
Collapse
Affiliation(s)
| | - Luc Bouwens
- Cell Differentiation Lab, Diabetes Research Center, Vrije Universiteit Brussel (Free University of Brussels), Laarbeeklaan 103, 1090 - Brussels, Belgium
| |
Collapse
|
25
|
Wallace K, Flecknell PA, Burt AD, Wright MC. Disrupted pancreatic exocrine differentiation and malabsorption in response to chronic elevated systemic glucocorticoid. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1225-32. [PMID: 20651242 DOI: 10.2353/ajpath.2010.100107] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glucocorticoids are antiinflammatory therapeutics that have potent effects on cell differentiation. The aim of this study was to establish whether systemic glucocorticoid exposure significantly affects pancreatic differentiation in vivo because hepatocyte-like cells have been documented to occur in the diseased rodent pancreas. Expression of hepatic markers was examined in pancreata from mice genetically modified to secrete elevated circulating endogenous glucocorticoid [Tg(Crh)]. Tg(Crh) mice with elevated glucocorticoid appeared cushingoid and by 21 weeks of age were obese, insulin-resistant, and had extensive areas of hepatic gene expression in exocrine tissue. Acinar cells from Tg(Crh) mice costained for both amylase and cyp2e1, suggesting direct acinar-hepatic transdifferentiation. Hepatic expression increased with age in the pancreas to such an extent that malabsorption and rapid weight loss occurred in a subset of aging mice; this effect was reversed by dietary porcine pancreatic enzyme supplementation. Indeed, pancreatic expression of hepatic markers was prevented by adrenalectomy, establishing a direct role for glucocorticoid. Elevated levels of circulating glucocorticoid therefore promote a transdifferentiation of adult exocrine pancreas into hepatocyte-like cells, and chronic exposure results in pancreatic malfunction. Glucocorticoids are thus capable of modulating the differentiation of terminally differentiated adult cells.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | | | | | | |
Collapse
|
26
|
Wallace K, Marek CJ, Hoppler S, Wright MC. Glucocorticoid-dependent transdifferentiation of pancreatic progenitor cells into hepatocytes is dependent on transient suppression of WNT signalling. J Cell Sci 2010; 123:2103-10. [DOI: 10.1242/jcs.070722] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Developmentally, the pancreas and liver are closely related and pathological conditions – including elevated glucocorticoid levels – result in the appearance of hepatocytes in the pancreas. The role of the WNT signalling pathway in this process has been examined in the model transdifferentiating pancreatic acinar AR42J-B-13 (B-13) cell. Glucocorticoid treatment resulted in a transient loss of constitutive WNT3a expression, phosphorylation and depletion of β-catenin, loss of β-catenin nuclear localisation, and significant reductions in T-cell factor/lymphoid enhancer factor (Tcf/Lef) transcriptional activity before overt changes in phenotype into hepatocyte-like (B-13/H) cells. A return to higher Tcf/Lef transcriptional activity correlated with the re-expression of WNT3a in B-13/H cells. β-catenin knock down alone substituted for and enhanced glucocorticoid-dependent transdifferentiation. Overexpression of a mutant β-catenin (pt-Xβ-cat) protein that blocked glucocorticoid-dependent suppression of Tcf/Lef activity resulted in inhibition of transdifferentiation. A small-molecule activator of Tcf/Lef transcription factors blocked glucocorticoid-dependent effects, as observed with pt-Xβ-cat expression. Quercetin – a Tcf/Lef inhibitor – did not promote transdifferentiation into B-13/H cells, but did potentiate glucocorticoid-mediated transdifferentiation. These data demonstrate that the transdifferentiation of B-13 cells into hepatocyte-like cells in response to glucocorticoid was dependent on the repression of constitutively active WNT signalling.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Level 2 Leech Building, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Carylyn J. Marek
- Institute of Cellular Medicine, Level 2 Leech Building, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Stefan Hoppler
- Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Matthew C. Wright
- Institute of Cellular Medicine, Level 2 Leech Building, Medical School, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
27
|
Wallace K, Fairhall EA, Charlton KA, Wright MC. AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes. Toxicology 2010; 278:277-87. [PMID: 20685382 DOI: 10.1016/j.tox.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 01/16/2023]
Abstract
Hepatocytes are the preparation of choice for Toxicological research in vitro. However, despite the fact that hepatocytes proliferate in vivo during liver regeneration, they are resistant to proliferation in vitro, do not tolerate sub-culture and tend to enter a de-differentiation program that results in a loss of hepatic function. These limitations have resulted in the search for expandable rodent and human cells capable of being directed to differentiate into functional hepatocytes. Research with stem cells suggests that it may be possible to provide the research community with hepatocytes in vitro although to date, significant challenges remain, notably generating a sufficiently pure population of hepatocytes with a quantitative functionality comparable with hepatocytes. This paper reviews work with the AR42J-B-13 (B-13) cell line. The B-13 cell was cloned from the rodent AR42J pancreatic cell line, express genes associated with pancreatic acinar cells and readily proliferates in simple culture media. When exposed to glucocorticoid, 75-85% of the cells trans-differentiate into hepatocyte-like (B-13/H) cells functioning at a level quantitatively similar to freshly isolated rat hepatocytes (with the remaining cells retaining the B-13 phenotype). Trans-differentiation of pancreatic acinar cells also appears to occur in vivo in rats treated with glucocorticoid; in mice with elevated circulating glucocorticoid and in humans treated for long periods with glucocorticoid. The B-13 response to glucocorticoid therefore appears to be related to a real pathophysiological response of a pancreatic cell to glucocorticoid. An understanding of how this process occurs and if it can be generated or engineered in human cells would result in a cell line with the ability to generate an unlimited supply of functional human hepatocytes in a cost effective manner.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
28
|
Wu SY, Hsieh CC, Wu RR, Susanto J, Liu TT, Shen CR, Chen Y, Su CC, Chang FP, Chang HM, Tosh D, Shen CN. Differentiation of pancreatic acinar cells to hepatocytes requires an intermediate cell type. Gastroenterology 2010; 138:2519-30. [PMID: 20178796 DOI: 10.1053/j.gastro.2010.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Revised: 01/06/2010] [Accepted: 02/09/2010] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The appearance of hepatic foci in pancreas has been well-documented in animal experiments and in patients with pancreatic cancer. We previously demonstrated that transdifferentiation of pancreatic exocrine cells to hepatocytes required members of the CCAAT enhancer binding protein family. Although the molecular basis of hepatic transdifferentiation is understood, the early cellular events remain to be defined. METHODS Dexamethasone and oncostatin M were used to induce transdifferentiation of primary cultures of mouse acinar cells and exocrine cell lines into hepatocytes. Fluorescent-activated cell sorting was used to identify intermediate cell types and side-population characteristics. Cre-loxP-based lineage tracing was used to investigate whether acinar cells contribute directly to hepatocytes via intermediates that express adenosine triphosphate-binding cassette subfamily G member 2 (ABCG2). RESULTS Lineage tracing studies showed that hepatocytes were derived directly from pancreatic cells via ABCG2-expressing intermediates. Exposure of cells to insulin increased Akt phosphorylation, ABCG2 expression, and hepatic transdifferentiation. Inhibition of the phosphoinositide 3-kinase pathway, through addition of LY294002 or overexpression of a dominant-negative form of Akt, was sufficient to prevent transdifferentiation. When ABCG2-expressing cells were incubated with glucagon-like-peptide 1 or epidermal growth factor, the intermediate cells could differentiate into insulin-producing beta-like cells. CONCLUSIONS The phosphoinositide 3-kinase pathway is important in the transdifferentiation of acinar cells to hepatocytes and those hepatocytes arise from acinar cells via ABCG2-expressing intermediates. Furthermore, ABCG2-expressing cells are multipotent and able to differentiate into hepatocytes and insulin-producing beta cells.
Collapse
Affiliation(s)
- Sung-Yu Wu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, Chujo D, Takita M, Kobayashi N, Onaca N, Levy MF, Matsumoto S. Low-temperature preservation of isolated islets is superior to conventional islet culture before islet transplantation. Transplantation 2010; 89:47-54. [PMID: 20061918 DOI: 10.1097/tp.0b013e3181be3bf2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although culturing islets before transplantation provides flexibility for evaluation of isolated islets and pretreatment of patients, it is well-known that isolated islets deteriorate rapidly in culture. In this study, we evaluated optimal temperature for culture/preservation of isolated human islets before transplantation. METHODS Isolated islets were cultured or preserved for 48 hr in the following culture/preservation conditions: preservation at 4 degrees C in University of Wisconsin solution and culture at 22 degrees C or 37 degrees C in culture medium. RESULTS Islet morphology after 4 degrees C preservation was similar to that of fresh islets, whereas islet diameter after 37 degrees C or 22 degrees C culture was smaller than that of fresh islets. Islet yield significantly decreased at higher temperatures (24% loss in 37 degrees C culture and 19% loss in 22 degrees C culture, but <5% loss in 4 degrees C preservation). Cultured/preserved islets were transplanted into diabetic nude mice. The attainability of posttransplantation normoglycemia was significantly higher in the 4 degrees C preservation group than in 22 degrees C and 37 degrees C culture groups. CONCLUSION Preservation of isolated islets at 4 degrees C improves the outcome of islet transplantation more efficiently than preservation at 22 degrees C or 37 degrees C. Based on these data, we have performed short-time cold storage of isolated islets instead of culturing for current clinical islet transplantation.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Baylor All Saints Medical Center, Baylor Research Institute, Fort Worth, TX 76104, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Eberhard D, O'Neill K, Burke ZD, Tosh D. In vitro reprogramming of pancreatic cells to hepatocytes. Methods Mol Biol 2010; 636:285-292. [PMID: 20336529 DOI: 10.1007/978-1-60761-691-7_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Transdifferentiation is defined as the conversion of one cell type to another. One well-documented example of transdifferentiation is the conversion of pancreatic cells to hepatocytes. Here we describe a robust in vitro model to study pancreas to liver transdifferentiation. It is based on the addition of the synthetic glucocorticoid dexamethasone to the rat pancreatic exocrine cell line AR42J. Following glucocorticoid treatment, cells resembling hepatocytes are induced. Transdifferentiated hepatocytes express many of the properties of bona fide hepatocytes, e.g. production of albumin and ability to respond to xenobiotics. These hepatocytes can be used for studying liver function in vitro as well as studying the molecular basis of transdifferentiation.
Collapse
Affiliation(s)
- Daniel Eberhard
- Department of Biology & Biochemistry, Centre for Regenerative Medicine, University of Bath, Bath, UK
| | | | | | | |
Collapse
|
31
|
Abstract
Prospects for inducing endogenous beta-cell regeneration in the pancreas, one of the most attractive approaches to reverse type 1 and type 2 diabetes, have gained substantially from recent evidence that cells in the adult pancreas exhibit more plasticity than previously recognized. There are two major pathways to beta-cell regeneration, beta-cell replication and beta-cell neogenesis. Substantial evidence for a role for both processes exists in different models. While beta-cell replication clearly occurs during development and early in life, the potential for replication appears to decline substantially with age. In contrast, we have demonstrated that the exocrine compartment of the adult human pancreas contains a facultative stem cell that can differentiate into beta-cells under specific circumstances. We have favoured the idea that, similar to models described in liver regeneration, beta-cell mass can be increased either by neogenesis or replication, depending on the intensity of different stimuli or stressors. Understanding the nature of endocrine stem/progenitor cells and the mechanism by which external stimuli mobilize them to exhibit endocrine differentiation is central for success in therapeutic approaches to induce meaningful endogenous beta-cell neogenesis.
Collapse
Affiliation(s)
- C Demeterco
- Department of Pediatrics, University of California San Diego, Rady Children's Hospital, La Jolla, USA
| | | | | | | | | |
Collapse
|
32
|
Wallace K, Marek CJ, Currie RA, Wright MC. Exocrine pancreas trans-differentiation to hepatocytes--a physiological response to elevated glucocorticoid in vivo. J Steroid Biochem Mol Biol 2009; 116:76-85. [PMID: 19446026 DOI: 10.1016/j.jsbmb.2009.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/03/2009] [Accepted: 05/04/2009] [Indexed: 12/28/2022]
Abstract
Damage or ectopic expression of some growth factors can lead to the appearance of hepatocyte-like cells within the pancreas. Since glucocorticoids promote liver hepatocyte phenotype in vitro, the effect of glucocorticoid on pancreatic differentiation in vivo was examined. Treatment of rats with glucocorticoid for 25 days at levels that significantly inhibited weight gain resulted in the appearance of acinar cells expressing cytokeratin 7 and hepatocyte markers glutamine synthetase, carbamoyl phosphate synthetase and cytochrome P450 2E (the nomenclature employed is that given at http://drnelson.utmem.edu/CytochromeP450.html). Using a plastic pancreatic acinar cell line, this response was shown to be associated with changes in the regulation of WNT signalling-related gene expression and a repression of WNT signalling activity. These data suggest that a pathological response of the pancreas in vivo to elevated glucocorticoid is a differentiation of exocrine pancreatic cells or pancreatic progenitor cells to an hepatocyte-like phenotype.
Collapse
Affiliation(s)
- Karen Wallace
- Institute of Cellular Medicine, University of Newcastle, Newcastle Upon Tyne, UK
| | | | | | | |
Collapse
|
33
|
Baeyens L, Bonné S, Bos T, Rooman I, Peleman C, Lahoutte T, German M, Heimberg H, Bouwens L. Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro. Gastroenterology 2009; 136:1750-60.e13. [PMID: 19208356 DOI: 10.1053/j.gastro.2009.01.047] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 12/08/2008] [Accepted: 01/16/2009] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Exocrine acinar cells in the pancreas are highly differentiated cells that retain a remarkable degree of plasticity. After isolation and an initial phase of dedifferentiation in vitro, rodent acinar cells can convert to endocrine beta-cells when cultured in the presence of appropriate factors. The mechanisms regulating this phenotypic conversion are largely unknown. METHODS Using rat acinar cell cultures, we studied the role of Notch signaling in a model of acinar-to-beta-cell conversion. RESULTS We report a novel lectin-based cell labeling method to demonstrate the acinar origin of newly formed insulin-expressing beta-cells. This method allows for specific tracing of the acinar cells. We demonstrate that growth factor-induced conversion of adult acinar cells to beta-cells is negatively regulated by Notch1 signaling. Activated Notch1 signaling prevents the reexpression of the proendocrine transcription factor Neurogenin-3, the key regulator of endocrine development in the embryonic pancreas. Interfering with Notch1 signaling allows modulating the acinar cell susceptibility to the differentiation-inducing factors. Its inhibition significantly improves beta-cell neoformation with approximately 30% of acinar cells that convert to beta-cells. The newly formed beta-cells mature when transplanted ectopically and are capable of restoring normal blood glycemia in diabetic recipients. CONCLUSIONS We report for the first time an efficient way to reprogram one third of the acinar cells to beta-cells by adult cell type conversion. This could find application in cell replacement therapy of type 1 diabetes, provided that it can be translated from rodent to human models.
Collapse
Affiliation(s)
- Luc Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sumitran-Holgersson S, Nowak G, Thowfeequ S, Begum S, Joshi M, Jaksch M, Kjaeldgaard A, Jorns C, Ericzon BG, Tosh D. Generation of Hepatocyte-Like Cells from in Vitro Transdifferentiated Human Fetal Pancreas. Cell Transplant 2009; 18:183-93. [DOI: 10.3727/096368909788341333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although the appearance of hepatic foci in the pancreas has been described in animal experiments and in human pathology, evidence for the conversion of human pancreatic cells to liver cells is still lacking. We therefore investigated the developmental plasticity between human embryonic pancreatic cells and liver cells. Cells were isolated and expanded from 7–8-week-old human fetal pancreata (HFP) and were characterized for the absence and presence of pancreatic and hepatic markers. In vitro expanded HFP were treated with fibroblast growth factor 2 (FGF2) and dexamethasone (DX) to induce a liver phenotye in the cells. These treated cells in various passages were further studied for their capacity to be functional in hepatic parenchyma following retrorsine-induced injury in nude C57 black mice. Amylase- and EPCAM-positive-enriched cells isolated from HFP and treated with FGF2 and DX lost expression of pancreatic markers and gained a liver phenotype. Hepatic differentiation was based on the expression (both at the mRNA and protein level) of liver markers albumin and cytokeratin 19. When transplanted in vivo into nude mice treated with retrorsine, both cell types successfully engrafted and functionally differentiated into hepatic cells expressing human albumin, glycogen, dipeptidyl peptidase, and γ-glutamyltranspeptidase. These data indicate that human fetal pancreatic cells have a capacity to alter their gene expression profile in response to exogenous treatment with FGF2 and DX. It may be possible to generate an unlimited supply of hepatocytes in vitro for cell therapy.
Collapse
Affiliation(s)
- Suchitra Sumitran-Holgersson
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Greg Nowak
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Shifaan Thowfeequ
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - Setara Begum
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Meghnad Joshi
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marie Jaksch
- The Burnham Institute for Medical Research, La Jolla, CA, USA
| | - Anders Kjaeldgaard
- Division of Obstetrics and Gynecology, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Carl Jorns
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Bo-Göran Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital-Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - David Tosh
- Centre for Regenerative Medicine, Department of Biology & Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
35
|
Abstract
A major goal of research aiming at improving islet cell replacement therapy is to find the most suitable progenitor cell type from which functional beta-cells can be generated in large numbers. Many possibilities have been raised, including beta-cells themselves, embryonic or adult stem cells and reprogramming of other cell types. Some of these progenitor types may be active or reside in a dormant state in adults in vivo, while others can be rather considered to be products of tissue engineering in vitro. Starting from the available pancreas organs from cadaveric donors, an attractive possibility is to reprogram acinar exocrine cells into beta-cells. Indeed, acinar cells isolated from adult rats display a pronounced plasticity in culture. After an initial step of dedifferentiation, they can be redirected to the beta-cell phenotype by adding agonists of the JAK2/STAT3 signalling pathway to the medium (epidermal growth factor and leukaemia inhibitory factor). The acinar cells that undergo exocrine-to-endocrine transdifferentiation first need to re-express neurogenin-3 and then need to escape inhibition by Notch signalling. The insulin-expressing cells that are generated in this way are glucose-regulated and can normalize glycaemia after transplantation into diabetic immunocompromised mice. It will now be important to translate these findings to human cells.
Collapse
Affiliation(s)
- L Baeyens
- Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel-Free University of Brussels, Brussels, Belgium
| | | |
Collapse
|
36
|
Kin T, Senior P, O'Gorman D, Richer B, Salam A, Shapiro AMJ. Risk factors for islet loss during culture prior to transplantation. Transpl Int 2008; 21:1029-35. [PMID: 18564983 DOI: 10.1111/j.1432-2277.2008.00719.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Culturing islets can add great flexibility to a clinical islet transplant program. However, a reduction in the islet mass has been frequently observed during culture and its degree varies. The aim of this study was to identify the risk factors associated with a significant islet loss during culture. One-hundred and four islet preparations cultured in an attempt to use for transplantation constituted this study. After culture for 20 h (median), islet yield significantly decreased from 363 309 +/- 12 647 to 313 035 +/- 10 862 islet equivalent yield (IE) (mean +/- SE), accompanied by a reduction in packed tissue volume from 3.9 +/- 0.1 to 3.0 +/- 0.1 ml and islet index (IE/islet particle count) from 1.20 +/- 0.04 to 1.05 +/- 0.04. Culture did not markedly alter islet purity or percent of trapped islet. Morphology score and viability were significantly improved after culture. Of 104 islet preparations, 37 suffered a substantial islet loss (> 20%) over culture. Factors significantly associated with risk of islet loss identified by univariate analysis were longer cold ischemia time, two-layer method (TLM) preservation, lower islet purity, and higher islet index. Multivariate analysis revealed that independent predictors of islet loss were higher islet index and the use of TLM. This study provides novel information on the link between donor- isolation factors and islet loss during culture.
Collapse
Affiliation(s)
- Tatsuya Kin
- Clinical Islet Transplant Program, University of Alberta and Capital Health, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In this issue of Cancer Cell, Dudley et al. (2008) report that endothelial cells (ECs) from murine prostate tumors unexpectedly differentiate into cells with characteristics of bone and cartilage and that human and murine prostate tumors contain "calcified" ECs. These observations open the possibility for targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Catherine M Verfaillie
- Interdepartmenteel Stamcelinstituut, Katholieke Universiteit Leuven, Onderwijs & Navorsing 1, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
38
|
Puglisi MA, Giuliani L, Fierabracci A. Identification and characterization of a novel expandable adult stem/progenitor cell population in the human exocrine pancreas. J Endocrinol Invest 2008; 31:563-72. [PMID: 18591892 DOI: 10.1007/bf03346409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It is a general opinion that tissue-specific stem cells are present in adult tissues but their specific properties remain elusive. They are rare in tissues and heterogeneous; in addition, their identification and the characterization of their progeny has encountered technical difficulties. In particular, the existence of pancreatic stem cells remains elusive because specific markers for their identification are not available. We established a method for the isolation of a population of stem/progenitor cells from the human exocrine pancreas, and propose it as a model for other human compact organs. We also used markers that identified and finally characterized these cells. Spheroids with self-replicative potential were obtained from all specimens. The isolated population contained a subset of CD34+ CD45- cells and was able to generate, in appropriate conditions, colonies that produce insulin. We obtained evidence that most freshly isolated spheroids, when co-cultured with the c-kit positive neuroblastoma cell line LAN 5, produced a c-kit positive progeny of cells larger in their cytoplasmic content than the original spheroid population, with elongated morphology resembling the neuronal phenotype. We identified a novel predominant functional type of stem/progenitor cell within the human exocrine pancreas, able to generate insulin-producing cells and potentially non-pancreatic cells.
Collapse
Affiliation(s)
- M A Puglisi
- Autoimmunity and Organ Regeneration Laboratory, Bambino Gesù Research Institute, 00165 Rome, Italy
| | | | | |
Collapse
|
39
|
Thowfeequ S, Myatt EJ, Tosh D. Transdifferentiation in developmental biology, disease, and in therapy. Dev Dyn 2008; 236:3208-17. [PMID: 17948254 DOI: 10.1002/dvdy.21336] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transdifferentiation (or metaplasia) refers to the conversion of one cell type to another. Because transdifferentiation normally occurs between cells that arise from the same region of the embryo, understanding the molecular and cellular events in cell type transformations may help to explain the mechanisms underlying normal development. Here we review examples of transdifferentiation in nature focusing on the possible role of cell type switching in metamorphosis and regeneration. We also examine transdifferentiation in mammals in relation to disease and the use of transdifferentiated cells in cellular therapy.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, United Kingdom
| | | | | |
Collapse
|
40
|
Lardon J, Corbeil D, Huttner WB, Ling Z, Bouwens L. Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas 2008; 36:e1-6. [PMID: 18192867 DOI: 10.1097/mpa.0b013e318149f2dc] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Many efforts are spent in identifying stem cells in adult pancreas because these could provide a source of beta cells for cell-based therapy of type 1 diabetes. Prominin-1, particularly its specific glycosylation-dependent AC133 epitope, is expressed on stem/progenitor cells of various human tissues and can be used to isolate them. We, therefore, examined its expression in adult human pancreas. METHODS To detect prominin-1 protein, monoclonal antibody CD133/1 (AC133 clone), which recognizes the AC133 epitope, and the alphahE2 antiserum, which is directed against the human prominin-1 polypeptide, were used. Prominin-1 RNA expression was analyzed by real-time polymerase chain reaction. RESULTS We report that all duct-lining cells of the pancreas express prominin-1. Most notably, the cells that react with the alphahE2 antiserum also react with the AC133 antibody. After isolation and culture of human exocrine cells, we found a relative increase in prominin-1 expression both at protein and RNA expression level, which can be explained by an enrichment of cells with ductal phenotype in these cultures. CONCLUSIONS Our data show that pancreatic duct cells express prominin-1 and surprisingly reveal that its particular AC133 epitope is not an exclusive stem and progenitor cell marker.
Collapse
Affiliation(s)
- Jessy Lardon
- Cell Differentiation Unit, Diabetes Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
41
|
Kuver R, Savard CE, Lee SK, Haigh WG, Lee SP. Murine gallbladder epithelial cells can differentiate into hepatocyte-like cells in vitro. Am J Physiol Gastrointest Liver Physiol 2007; 293:G944-55. [PMID: 17717044 DOI: 10.1152/ajpgi.00263.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined whether extrahepatic biliary epithelial cells can differentiate into cells with phenotypic features of hepatocytes. Gallbladders were removed from transgenic mice expressing hepatocyte-specific beta-galactosidase (beta-Gal) and cultured under standard conditions and under experimental conditions designed to induce differentiation into a hepatocyte-like phenotype. Gallbladder epithelial cells (GBEC) cultured under standard conditions exhibited no beta-Gal activity. beta-Gal expression was prominent in 50% of cells cultured under experimental conditions. Similar morphological changes were observed in GBEC from green fluorescent protein transgenic mice cultured under experimental conditions. These cells showed higher levels of mRNA for genes expressed in hepatocytes, but not in GBEC, including aldolase B, albumin, hepatocyte nuclear factor-4alpha, aldehyde dehydrogenase 1, and glutamine synthetase, and they synthesized bile acids. Additional functional evidence of a hepatocyte-like phenotype included LDL uptake and enhanced benzodiazepine metabolism. Connexin-32 expression was evident in murine hepatocytes and in cells cultured under experimental conditions, but not in cells cultured under standard conditions. Notch 1, 2, and 3 and Notch ligand Jagged 1 mRNAs were downregulated in these cells compared with cells cultured under standard conditions. CD34, alpha-fetoprotein, and Sca-1 mRNA were not expressed in cells cultured under standard conditions, suggesting that the hepatocyte-like cells did not arise from hematopoietic stem cells or oval cells. These results point to future avenues for investigation into the potential use of GBEC in the treatment of liver disease.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
42
|
Meivar-Levy I, Sapir T, Gefen-Halevi S, Aviv V, Barshack I, Onaca N, Mor E, Ferber S. Pancreatic and duodenal homeobox gene 1 induces hepatic dedifferentiation by suppressing the expression of CCAAT/enhancer-binding protein beta. Hepatology 2007; 46:898-905. [PMID: 17705277 DOI: 10.1002/hep.21766] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED It is believed that adult tissues in mammals lack the plasticity needed to assume new developmental fates because of the absence of efficient pathways of dedifferentiation. However, the well-documented ability of the transcription factor pancreatic and duodenal homeobox gene 1 (PDX-1) to activate pancreatic lineage development and insulin production following ectopic expression in liver suggests a surprising degree of residual plasticity in adult liver cells. This study seeks a mechanistic explanation for the capacity of PDX-1 to endow liver cells with pancreatic characteristics and function. We demonstrate that PDX-1, previously shown to play an essential role in normal pancreatic organogenesis and pancreatic beta-cell function and to possess the potential to activate multiple pancreatic markers in liver, can also direct hepatic dedifferentiation. PDX-1 represses the adult hepatic repertoire of gene expression and activates the expression of the immature hepatic marker alpha-fetoprotein. We present evidence indicating that PDX-1 triggers hepatic dedifferentiation by repressing the key hepatic transcription factor CCAAT/enhancer-binding protein beta. Hepatic dedifferentiation is necessary though not sufficient for the activation of the mature pancreatic repertoire in liver. CONCLUSION Our study suggests a dual role for PDX-1 in liver: inducing hepatic dedifferentiation and activating the pancreatic lineage. The identification of dedifferentiation signals may promote the capacity to endow mature tissues in mammals with the plasticity needed for acquiring novel developmental fates and functions to be implemented in the field of regenerative medicine.
Collapse
Affiliation(s)
- Irit Meivar-Levy
- The Endocrine Institute, Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Vasilijevic A, Buzadzic B, Korac A, Petrovic V, Jankovic A, Korac B. Beneficial effects of L-arginine nitric oxide-producing pathway in rats treated with alloxan. J Physiol 2007; 584:921-33. [PMID: 17717015 PMCID: PMC2276988 DOI: 10.1113/jphysiol.2007.140277] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In an attempt to elucidate molecular mechanisms and factors involved in beta cell regeneration, we evaluated a possible role of the L-arginine-nitric oxide (NO)-producing pathway in alloxan-induced diabetes mellitus. Diabetes was induced in male Mill Hill rats with a single alloxan dose (120 mg kg(-1)). Both non-diabetic and diabetic groups were additionally separated into three subgroups: (i) receiving L-arginine . HCl (2.25%), (ii) receiving L-NAME . HCl (0.01%) for 12 days as drinking liquids, and (iii) control. Treatment of diabetic animals started after diabetes induction (glucose level > or = 12 mmol l(-1)). We found that disturbed glucose homeostasis, i.e. blood insulin and glucose levels in diabetic rats was restored after L-arginine treatment. Immunohistochemical findings revealed that L-arginine had a favourable effect on beta cell neogenesis, i.e. it increased the area of insulin-immunopositive cells. Moreover, confocal microscopy showed colocalization of insulin and pancreas duodenum homeobox-1 (PDX-1) in both endocrine and exocrine pancreas. This increase in insulin-expressing cells was accompanied by increased cell proliferation (observed by proliferating cell nuclear antigen-PCNA immunopositivity) which occurred in a regulated manner since it was associated with increased apoptosis (detected by the TUNEL method). Furthermore, L-arginine enhanced both nuclear factor-kB (NF-kB) and neuronal nitric oxide synthase (nNOS) immunopositivities. The effect of L-arginine on antioxidative defence was observed especially in restoring to control level the diabetes-induced increase in glutathione peroxidase activity. In contrast to L-arginine, diabetic pancreas was not affected by L-NAME supplementation. In conclusion, the results suggest beneficial L-arginine effects on alloxan-induced diabetes resulting from the stimulation of beta cell neogenesis, including complex mechanisms of transcriptional and redox regulation.
Collapse
Affiliation(s)
- Ana Vasilijevic
- Department of Physiology, Institute for Biological Research, Sinia Stankovi, University of Belgrade, Bulevar Despota Stefana 142, 11060, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Stem cells are undifferentiated cells that can self-renew and generate specialized (functional) cell types. The remarkable ability of stem cells to differentiate towards functional cells makes them suitable modalities in cellular therapy (which means treating diseases with the body's own cells). Potential targets for cellular therapy include diabetes and liver failure. However, in order for stem cells to be clinically useful, we must learn to identify them and to regulate their differentiation. We will use the intestine as a classical example of a stem cell compartment, and then examine the evidence for the existence of adult stem cells in two endodermally derived organs: pancreas and liver. We will review the characteristics of the putative stem cells in these tissues and the transcription factors controlling their differentiation towards functional cell types.
Collapse
Affiliation(s)
- Zoë D. Burke
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Shifaan Thowfeequ
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Macarena Peran
- †Departamento de Neurociencias y Ciencias de la Salud, Universidad de Almería, Carretera de Sacramento s/n, Almería 04120, Spain
| | - David Tosh
- *Centre for Regenerative Medicine, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
45
|
Hinescu ME, Ardeleanu C, Gherghiceanu M, Popescu LM. Interstitial Cajal-like cells in human gallbladder. J Mol Histol 2007; 38:275-84. [PMID: 17541711 DOI: 10.1007/s10735-007-9099-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Accepted: 05/09/2007] [Indexed: 12/11/2022]
Abstract
We describe here an interstitial Cajal-like cell type (ICLC) in human gallbladder, resembling the archetypal enteric interstitial cells of Cajal. Gallbladder ICLC were demonstrated in fresh preparations (tissue cryosections) using methylene-blue, and fixed specimens in Epon semi-thin sections stained with toluidine blue or transmission electron microscopy (TEM). The positive diagnosis of gallbladder ICLC was further verified by immunohistochemistry: CD117/c-kit, CD34, and another 16 antigens: vimentin, desmin, nestin, alpha-smooth muscle actin, NK-1, S-100, PGP-9.5, tau protein, chromogranin A, NSE, GFAP, CD1a, CD62-P, CD68, estrogen and progesterone receptors. Double immunostaining was performed for CD117, CD34 and CD117 and nestin, respectively. In fresh specimens, the spatial density of gallbladder ICLC was 100-110 cells/mm(2). ICLC mainly appeared beneath the epithelium and in muscularis (about 7%, and approximately 5%, respectively). In toto, ICLC represent in gallbladder approximately 5.5% of subepithelial cells. TEM showed that diagnostic criteria were fulfilled by ICLC. Moreover, TEM indicated that the main ultrastructural distinctive feature for ICLC, the cell processes, develop into the characteristic shape at a relatively early stage of development. It remains to be established if, in humans, ICLC are involved in gallbladder (dis)functions (e.g. pace-making, secretion (auto-, juxta- and/or paracrine), intercellular signaling, or stone formation).
Collapse
Affiliation(s)
- Mihail E Hinescu
- Department of Cellular and Molecular Medicine, Carol Davila University of Medicine and Pharmacy, PO Box 35-29 Bucharest 35, Romania
| | | | | | | |
Collapse
|
46
|
Castell JV, Jover R, Martínez-Jiménez CP, Gómez-Lechón MJ. Hepatocyte cell lines: their use, scope and limitations in drug metabolism studies. Expert Opin Drug Metab Toxicol 2007; 2:183-212. [PMID: 16866607 DOI: 10.1517/17425255.2.2.183] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gaining knowledge on the metabolism of a drug, the enzymes involved and its inhibition or induction potential is a necessary step in pharmaceutical development of new compounds. Primary human hepatocytes are considered a cellular model of reference, as they express the majority of drug-metabolising enzymes, respond to enzyme inducers and are capable of generating in vitro a metabolic profile similar to what is found in vivo. However, hepatocytes show phenotypic instability and have a restricted accessibility. Different alternatives have been explored in the past recent years to overcome the limitations of primary hepatocytes. These include immortalisation of adult or fetal human hepatic cells by means of transforming tumour virus genes, oncogenes, conditionally immortalised hepatocytes, and cell fusion. New strategies are currently being used to upregulate the expression of drug-metabolising enzymes in cell lines or to derive hepatocytes from progenitor cells. This paper reviews the features of liver-derived cell lines, their suitability for drug metabolism studies as well as the state-of-the-art of the strategies pursued in order to generate metabolically competent hepatic cell lines.
Collapse
Affiliation(s)
- José V Castell
- University Hospital La Fe, Research Centre, Avda, Campanar 21, E-46009 Valencia, Spain
| | | | | | | |
Collapse
|
47
|
Okuno M, Minami K, Okumachi A, Miyawaki K, Yokoi N, Toyokuni S, Seino S. Generation of insulin-secreting cells from pancreatic acinar cells of animal models of type 1 diabetes. Am J Physiol Endocrinol Metab 2007; 292:E158-65. [PMID: 16926384 DOI: 10.1152/ajpendo.00180.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently found that pancreatic acinar cells isolated from normal adult mouse can transdifferentiate into insulin-secreting cells in vitro. Using two different animal models of type 1 diabetes, we show here that insulin-secreting cells can also be generated from pancreatic acinar cells of rodents in the diabetic state with absolute insulin deficiency. When pancreatic acinar cells of streptozotocin-treated mice were cultured in suspension in the presence of epidermal growth factor and nicotinamide under low-serum condition, expressions of insulin genes gradually increased. In addition, expressions of other pancreatic hormones, including glucagon, somatostatin, and pancreatic polypeptide, were also induced. Analysis by the Cre/loxP-based direct cell lineage tracing system revealed that these newly made cells originated from amylase-expressing pancreatic acinar cells. Insulin secretion from the newly made cells was significantly stimulated by high glucose and other secretagogues. In addition, insulin-secreting cells were generated from pancreatic acinar cells of Komeda diabetes-prone rats, another animal model of type 1 diabetes. The present study demonstrates that insulin-secreting cells can be generated by transdifferentiation from pancreatic acinar cells of rodents in the diabetic state and further suggests that pancreatic acinar cells represent a potential source of autologous transplantable insulin-secreting cells for treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Masaaki Okuno
- Division of Cellular and Molecular Medicine, Kobe Univ. Graduate School of Medicine, Kobe 650-0017, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Rooman I, De Medts N, Baeyens L, Lardon J, De Breuck S, Heimberg H, Bouwens L. Expression of the Notch signaling pathway and effect on exocrine cell proliferation in adult rat pancreas. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:1206-14. [PMID: 17003479 PMCID: PMC1698841 DOI: 10.2353/ajpath.2006.050926] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When pancreatic tissue is injured after duct obstruction, acinoductal metaplasia is observed. Similar metaplastic changes occur when exocrine pancreatic cells are isolated and cultured. We demonstrate that under these experimental conditions the exocrine acinar cells lose their differentiated characteristics: expression of the acinar transcription factors p48/Ptf1alpha and Mist1 is decreased or lost, whereas expression of the embryonic transcription factor Pdx1 is increased. The receptors Notch1 and Notch2, members of the DSL family of Notch ligands, and the target genes in the Notch-signaling pathway Hes1, Hey1, and Hey2 become strongly up-regulated. We noted also reduced expression of Sel1L, a Notch repressor that is normally highly expressed in exocrine pancreas. Stimulation of Notch by its ligand Jagged1 diminished the proliferation of cultured metaplastic exocrine cells. Chemical inhibition of Notch signaling resulted in increased proliferation and induction of the cell-cycle regulator p21Cip1. This effect seems to be Hes1-independent and mainly coincides with decreased Hey1 and Hey2 mRNA expression. In conclusion, we demonstrate that during acinoductal metaplasia the Notch-signaling pathway is activated concomitantly with changes in transcription factor expression of pancreatic acinar cells. In addition, we show that Notch signaling is implicated in the suppression of proliferation of these metaplastic exocrine cells. The latter may be important in protection from neoplastic transformation.
Collapse
Affiliation(s)
- Ilse Rooman
- Cell Differentiation Unit-Diabetes Research Center, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Evert M, Schildhaus HU, Schneider-Stock R, Dombrowski F. Cystic cholangiomas after transplantation of pancreatic islets into the livers of diabetic rats. Virchows Arch 2006; 448:776-87. [PMID: 16601979 DOI: 10.1007/s00428-006-0196-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Accepted: 02/21/2006] [Indexed: 12/23/2022]
Abstract
Islet transplantation is increasingly used as a therapy for human type 1 diabetes mellitus. In our study, we investigated the effect of the transplantation of a low number (n = 350) of pancreatic islets into the right liver part on the neighboring portal bile ducts. Male streptozotocin- diabetic Lewis or autoimmune-diabetic BB/Pfd rats (n = 1065) were subdivided into 11 experimental groups. A few days after low-number islet transplantation, cholangiocytes adjacent to the grafts showed an increase in proliferative activity. During the next 12-24 months, many peri-insular ductules progressed via tumor-like cystic lesions to large cystic cholangiomas, accompanied by a translocation of the insulin receptor into the cytoplasm and an increase in expression of insulin-related signaling proteins (Insulin-receptor-substrate-1, Raf-1, Mek-1). After 24 months, 53% of rats with low-number transplantation exhibited at least one cholangioma >10 mm, significantly outnumbering tumor development in the transplant-free left liver part and in any control group. No cholangiocarcinomas emerged. A graft cell origin of the tumors was excluded by Y chromosome in situ hybridization in cross-gender transplantations. Conclusively, low-number intrahepatic islet transplantation, most likely acting by permanent local hyperinsulinism, leads to prolonged cholangiocellular proliferation in streptozotocin- and in autoimmune-diabetic rats, resulting in the development of benign cystic cholangiomas.
Collapse
MESH Headings
- Adenoma, Bile Duct/etiology
- Adenoma, Bile Duct/immunology
- Adenoma, Bile Duct/pathology
- Animals
- Bile Duct Neoplasms/etiology
- Bile Duct Neoplasms/immunology
- Bile Duct Neoplasms/pathology
- Bile Ducts, Intrahepatic/immunology
- Bile Ducts, Intrahepatic/pathology
- Blood Glucose/analysis
- Body Weight
- Cell Proliferation
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Female
- Fluorescent Antibody Technique, Indirect
- Immunoenzyme Techniques
- Islets of Langerhans Transplantation/adverse effects
- Islets of Langerhans Transplantation/pathology
- Liver/pathology
- Liver/surgery
- Male
- Rats
- Rats, Inbred BB
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Matthias Evert
- Institute for Pathology, Otto-von-Guericke-University Magdeburg, Leipziger Strasse 44, 39120 Magdeburg, Germany
| | | | | | | |
Collapse
|
50
|
Baeyens L, Bonné S, German MS, Ravassard P, Heimberg H, Bouwens L. Ngn3 expression during postnatal in vitro beta cell neogenesis induced by the JAK/STAT pathway. Cell Death Differ 2006; 13:1892-9. [PMID: 16514419 DOI: 10.1038/sj.cdd.4401883] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The basic helix-loop-helix protein Neurogenin3 specifies precursor cells of the endocrine pancreas during embryonic development, and is thought to be absent postnatally. We have studied Ngn3 expression during in vitro generation of beta-cells from adult rat exocrine pancreas tissue treated with epidermal growth factor and leukaemia inhibitory factor. This treatment induced a transient expression of both Ngn3 and its upstream activator hepatocyte nuclear factor 6. Inhibition of EGF and LIF signalling by pharmacological antagonists of the JAK2/STAT3 pathway, or knockdown of Ngn3 by RNA interference prevented the generation of new insulin-positive cells. This study demonstrates that in vitro growth factor stimulation can induce recapitulation of an embryonic endocrine differentiation pathway in adult dedifferentiated exocrine cells. This could prove to be important for understanding the mechanism of beta-cell regeneration and for therapeutic ex vivo neogenesis of beta cells.
Collapse
Affiliation(s)
- L Baeyens
- Diabetes Research Center, Vrije Universiteit Brussel (Free University of Brussels), Brussels 1090, Belgium
| | | | | | | | | | | |
Collapse
|