1
|
Blake MJ, Steer CJ. Liver Regeneration in Acute on Chronic Liver Failure. Clin Liver Dis 2023; 27:595-616. [PMID: 37380285 DOI: 10.1016/j.cld.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Liver regeneration is a multifaceted process by which the organ regains its original size and histologic organization. In recent decades, substantial advances have been made in our understanding of the mechanisms underlying regeneration following loss of hepatic mass. Liver regeneration in acute liver failure possesses several classic pathways, while also exhibiting unique differences in key processes such as the roles of differentiated cells and stem cell analogs. Here we summarize these unique differences and new molecular mechanisms involving the gut-liver axis, immunomodulation, and microRNAs with an emphasis on applications to the patient population through stem cell therapies and prognostication.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA.
| | - Clifford J Steer
- Department of Medicine, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street Southeast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
2
|
Di-Iacovo N, Pieroni S, Piobbico D, Castelli M, Scopetti D, Ferracchiato S, Della-Fazia MA, Servillo G. Liver Regeneration and Immunity: A Tale to Tell. Int J Mol Sci 2023; 24:1176. [PMID: 36674692 PMCID: PMC9864482 DOI: 10.3390/ijms24021176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
The physiological importance of the liver is demonstrated by its unique and essential ability to regenerate following extensive injuries affecting its function. By regenerating, the liver reacts to hepatic damage and thus enables homeostasis to be restored. The aim of this review is to add new findings that integrate the regenerative pathway to the current knowledge. An optimal regeneration is achieved through the integration of two main pathways: IL-6/JAK/STAT3, which promotes hepatocyte proliferation, and PI3K/PDK1/Akt, which in turn enhances cell growth. Proliferation and cell growth are events that must be balanced during the three phases of the regenerative process: initiation, proliferation and termination. Achieving the correct liver/body weight ratio is ensured by several pathways as extracellular matrix signalling, apoptosis through caspase-3 activation, and molecules including transforming growth factor-beta, and cyclic adenosine monophosphate. The actors involved in the regenerative process are numerous and many of them are also pivotal players in both the immune and non-immune inflammatory process, that is observed in the early stages of hepatic regeneration. Balance of Th17/Treg is important in liver inflammatory process outcomes. Knowledge of liver regeneration will allow a more detailed characterisation of the molecular mechanisms that are crucial in the interplay between proliferation and inflammation.
Collapse
Affiliation(s)
- Nicola Di-Iacovo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Stefania Pieroni
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Danilo Piobbico
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Marilena Castelli
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Damiano Scopetti
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Simona Ferracchiato
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Maria Agnese Della-Fazia
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
| | - Giuseppe Servillo
- Department of Medicine and Surgery, University of Perugia, Piazzale L. Severi 1, 06129 Perugia, Italy
- Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F.), University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
3
|
Ando T, Hoshi M, Tezuka H, Ito H, Nakamoto K, Yamamoto Y, Saito K. Absence of indoleamine 2,3‑dioxygenase 2 promotes liver regeneration after partial hepatectomy in mice. Mol Med Rep 2022; 27:24. [PMID: 36484383 PMCID: PMC9813552 DOI: 10.3892/mmr.2022.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
The partial loss of liver due to liver transplantation or acute liver failure induces rapid liver regeneration. Recently, we reported that the selective inhibition of indoleamine 2,3‑dioxygenase (Ido) 1 promotes early liver regeneration. However, the role of Ido2 in liver regeneration remains unclear. Wild‑type (WT) and Ido2‑deficient (Ido2‑KO) mice were subjected to 70% partial hepatectomy (PHx). Hepatocyte growth was measured using immunostaining. The mRNA expression of inflammatory cytokines and production of kynurenine in intrahepatic mononuclear cells (MNCs) were analyzed using reverse transcription‑quantitative PCR and high‑performance liquid chromatography. The activation of NF‑κB was determined by both immunocytochemistry and western blotting analysis. The ratio of liver to body weight and the frequency of proliferation cells after PHx were significantly higher in Ido2‑KO mice compared with in WT mice. The expression of IL‑6 and TNF‑α in MNCs were transiently increased in Ido2‑KO mice. The nuclear transport of NF‑κB was significantly higher in peritoneal macrophages of Ido2‑KO mice compared with WT mice. These results suggested that Ido2 deficiency resulted in transiently increased production of inflammatory cytokines through the activation of NF‑kB, thereby promoting liver regeneration. Therefore, the regulation of Ido2 expression in MNCs may play a therapeutic role in liver regeneration under injury and disease conditions.
Collapse
Affiliation(s)
- Tatsuya Ando
- Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan,Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan,Correspondence to: Dr Tatsuya Ando, Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan, E-mail:
| | - Masato Hoshi
- Department of Informative Clinical Medicine, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Kentaro Nakamoto
- Department of Cell and Molecular Biology, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Yasuko Yamamoto
- Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Kuniaki Saito
- Research Promotion and Support Headquarters, Fujita Health University, Toyoake, Aichi 470-1192, Japan,Department of Advanced Diagnostic System Development, Fujita Health University Graduate School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
4
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Labiano I, Agirre-Lizaso A, Olaizola P, Echebarria A, Huici-Izagirre M, Olaizola I, Esparza-Baquer A, Sharif O, Hijona E, Milkiewicz P, Milkiewicz M, González-Romero F, Aspichueta P, Monte MJ, Marin JJG, Vucur M, Luedde T, Marzioni M, Mann DA, Bujanda L, Rodrigues PM, Banales JM, Perugorria MJ. TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation. J Hepatol 2022; 77:991-1004. [PMID: 35750136 DOI: 10.1016/j.jhep.2022.05.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis. METHODS TREM-2 expression was analyzed in the livers of patients with primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Primary cultured Kupffer cells were incubated with lipopolysaccharide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed. RESULTS TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/- mice. This was characterized by enhanced necroptotic cell death, inflammatory responses and biliary expansion. Antibiotic treatment partially abrogated the effects observed in Trem-2-/- mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and dampened inflammatory gene transcription via a TREM-2-dependent mechanism. CONCLUSIONS TREM-2 acts as a negative regulator of inflammation during cholestasis, representing a novel potential therapeutic target. LAY SUMMARY Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (specifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.
Collapse
Affiliation(s)
- Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Paula Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Anne Echebarria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Maider Huici-Izagirre
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Irene Olaizola
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain
| | - Omar Sharif
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Donostia-San Sebastian, Spain
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery of the Medical University of Warsaw, Warsaw, Poland; Translational Medicine Group, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Malgorzata Milkiewicz
- Department of Medical Biology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Francisco González-Romero
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Patricia Aspichueta
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain; Biocruces Health Research Institute, Barakaldo, Spain
| | - Maria J Monte
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, 40225 Duesseldorf, Germany
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4th Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey; Fibrofind Ltd, William Leech Building, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain.
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), Donostia-San Sebastian, Spain; CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, Spain.
| |
Collapse
|
6
|
Ryu JH, Kim Y, Kim MJ, Park J, Kim JW, Park HS, Kim YS, Shin HK, Shin YI. Membrane-Free Stem Cell Extract Enhances Blood–Brain Barrier Integrity by Suppressing NF-κB-Mediated Activation of NLRP3 Inflammasome in Mice with Ischemic Stroke. Life (Basel) 2022; 12:life12040503. [PMID: 35454994 PMCID: PMC9032759 DOI: 10.3390/life12040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/05/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Membrane-free stem cell extract (MFSCE) of human adipose tissues possesses various biological activities. However, the effects of MFSCE on blood–brain barrier dysfunction and brain damage are unknown. In this study, we determined the role of MFSCE in an ischemic stroke mouse model. Mice were treated with MFSCE once daily for 4 days and 1 h before ischemic damage. Experimental ischemia was induced by photothrombosis. Pretreatment with MFSCE reduced infarct volume and edema and improved neurological, as well as motor functions. Evans blue leakage and water content in the brain tissue were reduced by MFSCE pretreatment relative to those in the vehicle group. MFSCE increased the expression of the tight junction proteins zonula occludens 1 and claudin-5, as well as vascular endothelial-cadherin, but decreased that of matrix metalloproteinase 9. Notably, MFSCE treatment decreased cell death and the level of NOD-like receptor protein 3 inflammasome, consistent with the downregulated expression of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 in the ischemic brain. These effects might have occurred via the suppression of the expression of Toll-like receptor 4 and activation of nuclear factor-κB. The results highlighted the potential of MFSCE treatment as a novel and preventive strategy for patients at a high risk of ischemic stroke.
Collapse
Affiliation(s)
- Ji Hyeon Ryu
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Yeonye Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Min Jae Kim
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (M.J.K.); (H.K.S.)
| | - Jisu Park
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Ji Won Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
| | - Hye Sook Park
- T-Stem Co., Ltd., Changwon 51573, Gyeongnam, Korea; (H.S.P.); (Y.S.K.)
| | - Young Sil Kim
- T-Stem Co., Ltd., Changwon 51573, Gyeongnam, Korea; (H.S.P.); (Y.S.K.)
| | - Hwa Kyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea; (M.J.K.); (H.K.S.)
| | - Yong-Il Shin
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Korea; (J.H.R.); (Y.K.); (J.P.); (J.W.K.)
- Department of Rehabilitation Medicine, School of Medicine, Pusan National University, Yangsan 50612, Gyeongnam, Korea
- Correspondence:
| |
Collapse
|
7
|
Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: Implications for liver tumour therapies. World J Clin Oncol 2021; 12:1101-1156. [PMID: 35070734 PMCID: PMC8716989 DOI: 10.5306/wjco.v12.i12.1101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023] Open
Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent models, enabling it to meet the challenge of diverse injury types, including physical trauma, infection, inflammatory processes, direct toxicity, and immunological insults. Current understanding of liver regeneration is based largely on animal research, historically in large animals, and more recently in rodents and zebrafish, which provide powerful genetic manipulation experimental tools. Whilst immensely valuable, these models have limitations in extrapolation to the human situation. In vitro models have evolved from 2-dimensional culture to complex 3 dimensional organoids, but also have shortcomings in replicating the complex hepatic micro-anatomical and physiological milieu. The process of liver regeneration is only partially understood and characterized by layers of complexity. Liver regeneration is triggered and controlled by a multitude of mitogens acting in autocrine, paracrine, and endocrine ways, with much redundancy and cross-talk between biochemical pathways. The regenerative response is variable, involving both hypertrophy and true proliferative hyperplasia, which is itself variable, including both cellular phenotypic fidelity and cellular trans-differentiation, according to the type of injury. Complex interactions occur between parenchymal and non-parenchymal cells, and regeneration is affected by the status of the liver parenchyma, with differences between healthy and diseased liver. Finally, the process of termination of liver regeneration is even less well understood than its triggers. The complexity of liver regeneration biology combined with limited understanding has restricted specific clinical interventions to enhance liver regeneration. Moreover, manipulating the fundamental biochemical pathways involved would require cautious assessment, for fear of unintended consequences. Nevertheless, current knowledge provides guiding principles for strategies to optimise liver regeneration potential.
Collapse
Affiliation(s)
- Christopher Hadjittofi
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Michael Feretis
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Jack Martin
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Simon Harper
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel Huguet
- University Department of Surgery, Addenbrookes Hospital, NIHR Comprehensive Biomedical Research and Academic Health Sciences Center, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
8
|
Esparza-Baquer A, Labiano I, Sharif O, Agirre-Lizaso A, Oakley F, Rodrigues PM, Zhuravleva E, O'Rourke CJ, Hijona E, Jimenez-Agüero R, Riaño I, Landa A, La Casta A, Zaki MYW, Munoz-Garrido P, Azkargorta M, Elortza F, Vogel A, Schabbauer G, Aspichueta P, Andersen JB, Knapp S, Mann DA, Bujanda L, Banales JM, Perugorria MJ. TREM-2 defends the liver against hepatocellular carcinoma through multifactorial protective mechanisms. Gut 2021; 70:1345-1361. [PMID: 32907830 PMCID: PMC8223629 DOI: 10.1136/gutjnl-2019-319227] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer usually arising on a background of chronic liver injury involving inflammatory and hepatic regenerative processes. The triggering receptor expressed on myeloid cells 2 (TREM-2) is predominantly expressed in hepatic non-parenchymal cells and inhibits Toll-like receptor signalling, protecting the liver from various hepatotoxic injuries, yet its role in liver cancer is poorly defined. Here, we investigated the impact of TREM-2 on liver regeneration and hepatocarcinogenesis. DESIGN TREM-2 expression was analysed in liver tissues of two independent cohorts of patients with HCC and compared with control liver samples. Experimental HCC and liver regeneration models in wild type and Trem-2-/- mice, and in vitro studies with hepatic stellate cells (HSCs) and HCC spheroids were conducted. RESULTS TREM-2 expression was upregulated in human HCC tissue, in mouse models of liver regeneration and HCC. Trem-2-/- mice developed more liver tumours irrespective of size after diethylnitrosamine (DEN) administration, displayed exacerbated liver damage, inflammation, oxidative stress and hepatocyte proliferation. Administering an antioxidant diet blocked DEN-induced hepatocarcinogenesis in both genotypes. Similarly, Trem-2-/- animals developed more and larger tumours in fibrosis-associated HCC models. Trem-2-/- livers showed increased hepatocyte proliferation and inflammation after partial hepatectomy. Conditioned media from human HSCs overexpressing TREM-2 inhibited human HCC spheroid growth in vitro through attenuated Wnt ligand secretion. CONCLUSION TREM-2 plays a protective role in hepatocarcinogenesis via different pleiotropic effects, suggesting that TREM-2 agonism should be investigated as it might beneficially impact HCC pathogenesis in a multifactorial manner.
Collapse
Affiliation(s)
- Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Omar Sharif
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ekaterina Zhuravleva
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ioana Riaño
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Ana Landa
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Adelaida La Casta
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biochemistry Department, Faculty of Pharmacy, Minia University, Minya, Egypt
| | - Patricia Munoz-Garrido
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Mikel Azkargorta
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Proteomics Platform, CIC bioGUNE, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Andrea Vogel
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University Vienna, Vienna, Austria
- Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, Vienna, Austria
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesper B Andersen
- Department of Health and Medical Sciences, Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Sylvia Knapp
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
| | - Jesus Maria Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Maria Jesus Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Lejona, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
9
|
Zhang W, Wang L, Sun XH, Liu X, Xiao Y, Zhang J, Wang T, Chen H, Zhan YQ, Yu M, Ge CH, Li CY, Ren GM, Yin RH, Yang XM. Toll-like receptor 5-mediated signaling enhances liver regeneration in mice. Mil Med Res 2021; 8:16. [PMID: 33622404 PMCID: PMC7901072 DOI: 10.1186/s40779-021-00309-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration. METHODS We performed 2/3 PHx in wild-type (WT) mice, TLR5 knockout mice, or TLR5 agonist CBLB502 treated mice, as a model of liver regeneration. Bacterial flagellin content was measured with ELISA, and hepatic TLR5 expression was determined with quantitative PCR analyses and flow cytometry. To study the effects of TLR5 on hepatocyte proliferation, we analyzed bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression with immunohistochemistry (IHC) staining. The effects of TLR5 during the priming phase of liver regeneration were examined with quantitative PCR analyses of immediate early gene mRNA levels, and with Western blotting analysis of hepatic NF-κB and STAT3 activation. Cytokine and growth factor production after PHx were detected with real-time PCR and cytometric bead array (CBA) assays. Oil Red O staining and hepatic lipid concentrations were analyzed to examine the effect of TLR5 on hepatic lipid accumulation after PHx. RESULTS The bacterial flagellin content in the serum and liver increased, and the hepatic TLR5 expression was significantly up-regulated in WT mice after PHx. TLR5-deficient mice exhibited diminished numbers of BrdU- and PCNA-positive cells, suppressed immediate early gene expression, and decreased cytokine and growth factor production. Moreover, PHx-induced hepatic NF-κB and STAT3 activation was inhibited in Tlr5-/- mice, as compared with WT mice. Consistently, the administration of CBLB502 significantly promoted PHx-mediated hepatocyte proliferation, which was correlated with enhanced production of proinflammatory cytokines and the recruitment of macrophages and neutrophils in the liver. Furthermore, Tlr5-/- mice displayed significantly lower hepatic lipid concentrations and smaller Oil Red O positive areas than those in control mice after PHx. CONCLUSION We reveal that TLR5 activation contributes to the initial events of liver regeneration after PHx. Our findings demonstrate that TLR5 signaling positively regulates liver regeneration and suggest the potential of TLR5 agonist to promote liver regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xue-Hua Sun
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yang Xiao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Jie Zhang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ting Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui Province, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guang-Ming Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Xiao-Ming Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
10
|
Yagi S, Hirata M, Miyachi Y, Uemoto S. Liver Regeneration after Hepatectomy and Partial Liver Transplantation. Int J Mol Sci 2020; 21:ijms21218414. [PMID: 33182515 PMCID: PMC7665117 DOI: 10.3390/ijms21218414] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
The liver is a unique organ with an abundant regenerative capacity. Therefore, partial hepatectomy (PHx) or partial liver transplantation (PLTx) can be safely performed. Liver regeneration involves a complex network of numerous hepatotropic factors, cytokines, pathways, and transcriptional factors. Compared with liver regeneration after a viral- or drug-induced liver injury, that of post-PHx or -PLTx has several distinct features, such as hemodynamic changes in portal venous flow or pressure, tissue ischemia/hypoxia, and hemostasis/platelet activation. Although some of these changes also occur during liver regeneration after a viral- or drug-induced liver injury, they are more abrupt and drastic following PHx or PLTx, and can thus be the main trigger and driving force of liver regeneration. In this review, we first provide an overview of the molecular biology of liver regeneration post-PHx and -PLTx. Subsequently, we summarize some clinical conditions that negatively, or sometimes positively, interfere with liver regeneration after PHx or PLTx, such as marginal livers including aged or fatty liver and the influence of immunosuppression.
Collapse
|
11
|
Stöß C, Laschinger M, Wang B, Lu M, Altmayr F, Hartmann D, Hüser N, Holzmann B. TLR3 promotes hepatocyte proliferation after partial hepatectomy by stimulating uPA expression and the release of tissue-bound HGF. FASEB J 2020; 34:10387-10397. [PMID: 32539223 DOI: 10.1096/fj.202000904r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022]
Abstract
TLR3 is implicated in anti-viral immune responses, but may also act as a sensor of tissue damage in the absence of infection. Here, we provide evidence for an essential role of TLR3 in liver regeneration after an acute loss of tissue due to partial hepatectomy. Mice lacking TLR3 had a severe and sustained defect in the restoration of liver tissue with reduced liver-to-body weight ratios even after an extended recovery period of 2 weeks. Hepatocyte cell cycle progression into S phase was impaired in TLR3-deficient mice. Mechanistic analyses revealed that TLR3-deficient mice had markedly reduced systemic levels of active HGF, but had increased amounts of inactive tissue-bound HGF. Importantly, expression of uPA, which orchestrates the processing and release of HGF from the hepatic extracellular matrix, was reduced in regenerating livers of TLR3-deficient mice. In addition, expression of the HGF maturation factor HGFAC was transiently diminished in TLR3-deficient mice. In vitro, engagement of TLR3 directly stimulated expression of uPA by hepatic stellate cells. Thus, TLR3 supports liver regeneration through upregulation of uPA, which promotes the release of preformed HGF from extracellular matrix stores.
Collapse
Affiliation(s)
- Christian Stöß
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Baocai Wang
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Miao Lu
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Altmayr
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
12
|
Huang X, Lee F, Teng Y, Lingam CB, Chen Z, Sun M, Song Z, Balachander GM, Leo HL, Guo Q, Shah I, Yu H. Sequential drug delivery for liver diseases. Adv Drug Deliv Rev 2019; 149-150:72-84. [PMID: 31734169 DOI: 10.1016/j.addr.2019.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
The liver performs critical physiological functions such as metabolism/detoxification and blood homeostasis/biliary excretion. A high degree of blood access means that a drug's resident time in any cell is relatively short. This short drug exposure to cells requires local sequential delivery of multiple drugs for optimal efficacy, potency, and safety. The high metabolism and excretion of drugs also impose both technical challenges and opportunities to sequential drug delivery. This review provides an overview of the sequential events in liver regeneration and the related liver diseases. Using selected examples of liver cancer, hepatitis B viral infection, fatty liver diseases, and drug-induced liver injury, we highlight efforts made for the sequential delivery of small and macromolecular drugs through different biomaterials, cells, and microdevice-based delivery platforms that allow fast delivery kinetics and rapid drug switching. As this is a nascent area of development, we extrapolate and compare the results with other sequential drug delivery studies to suggest possible application in liver diseases, wherever appropriate.
Collapse
Affiliation(s)
- Xiaozhong Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Fan Lee
- Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Corey Bryen Lingam
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Zijian Chen
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore; Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Min Sun
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Ziwei Song
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore
| | - Gowri M Balachander
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, Engineering Drive 3, Engineering Block 4, #04-08, Singapore 117583, Singapore
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen 518055, China
| | - Imran Shah
- National Center for Computational Toxicology, United States Environmental Protection Agency, 4930 Old Page Rd., Durham, NC 27703, USA
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore; Institute of Bioengineering and Nanotechnology, A*STAR, The Nanos, #06-01, 31 Biopolis Way, Singapore 138669, Singapore; Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Level 4 Enterprise Wing, Singapore 138602, Singapore; Gastroenterology Department, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
13
|
Tan Y, Wei Z, Chen J, An J, Li M, Zhou L, Men Y, Zhao S. Save your gut save your age: The role of the microbiome in stem cell ageing. J Cell Mol Med 2019; 23:4866-4875. [PMID: 31207055 PMCID: PMC6653314 DOI: 10.1111/jcmm.14373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/21/2019] [Indexed: 12/14/2022] Open
Abstract
The tremendous importance of microbiota in microbial homoeostasis, alterations in metabolism and both innate and adaptive immune systems has been well established. A growing body of evidence support that dysbiosis or compositional changes in gut microbiota is linked to the ageing of stem cells in terms of dysregulations of metabolism, aberrant activation of the immune system as well as promoting epigenetic instability of stem cell. In this concise review, we elucidate recent emerging topics on microbiotic alterations and underlying mechanisms in stem cell ageing.
Collapse
Affiliation(s)
- Yi Tan
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Zongke Wei
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| | - Jiaoliu Chen
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Junli An
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Manling Li
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Liuyun Zhou
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Yanhua Men
- Obstetrics and gynecology department, Dongguan nancheng hospital, Dongguan, China
| | - Shan Zhao
- Shenzhen Rekindle Biotech Co., Ltd., Shenzhen, China
| |
Collapse
|
14
|
Khan MGM, Ghosh A, Variya B, Santharam MA, Kandhi R, Ramanathan S, Ilangumaran S. Hepatocyte growth control by SOCS1 and SOCS3. Cytokine 2019; 121:154733. [PMID: 31154249 DOI: 10.1016/j.cyto.2019.154733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The extraordinary capacity of the liver to regenerate following injury is dependent on coordinated and regulated actions of cytokines and growth factors. Whereas hepatocyte growth factor (HGF) and epidermal growth factor (EGF) are direct mitogens to hepatocytes, inflammatory cytokines such as TNFα and IL-6 also play essential roles in the liver regeneration process. These cytokines and growth factors activate different signaling pathways in a sequential manner to elicit hepatocyte proliferation. The kinetics and magnitude of these hepatocyte-activating stimuli are tightly regulated to ensure restoration of a functional liver mass without causing uncontrolled cell proliferation. Hepatocyte proliferation can become deregulated under conditions of chronic inflammation, leading to accumulation of genetic aberrations and eventual neoplastic transformation. Among the control mechanisms that regulate hepatocyte proliferation, negative feedback inhibition by the 'suppressor of cytokine signaling (SOCS)' family proteins SOCS1 and SOCS3 play crucial roles in attenuating cytokine and growth factor signaling. Loss of SOCS1 or SOCS3 in the mouse liver increases the rate of liver regeneration and renders hepatocytes susceptible to neoplastic transformation. The frequent epigenetic repression of the SOCS1 and SOCS3 genes in hepatocellular carcinoma has stimulated research in understanding the growth regulatory mechanisms of SOCS1 and SOCS3 in hepatocytes. Whereas SOCS3 is implicated in regulating JAK-STAT signaling induced by IL-6 and attenuating EGFR signaling, SOCS1 is crucial for the regulation of HGF signaling. These two proteins also module the functions of certain key proteins that control the cell cycle. In this review, we discuss the current understanding of the functions of SOCS1 and SOCS3 in controlling hepatocyte proliferation, and its implications to liver health and disease.
Collapse
Affiliation(s)
- Md Gulam Musawwir Khan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Amit Ghosh
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Bhavesh Variya
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Madanraj Appiya Santharam
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Rajani Kandhi
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada
| | - Subburaj Ilangumaran
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec, Canada.
| |
Collapse
|
15
|
Liang WL, Xiao L, Gu HW, Li XJ, Li YS, Zhang WK, Tang HB. Solid lipid nanoparticle induced apoptosis of macrophages via a mitochondrial-dependent pathway in vitro and in vivo. Int J Nanomedicine 2019; 14:3283-3295. [PMID: 31123400 PMCID: PMC6511261 DOI: 10.2147/ijn.s200395] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
Background and aims: Lipid nanoparticles (LNs) are widely applied in drug delivery systems because they can incorporate and stabilize lipophilic and hydrophilic molecules. LNs are generally considered quite safe and convenient for in vivo applications. However, we previously observed that certain types of LNs could cause a loss of Kupffer cells, a kind of resident macrophage in the liver. As a result, we investigated the details of this phenomenon. Methods: MTT assay, Annexin-V-FITC/PI double staining, JC-1 staining, flow cytometry, Western blot and transmission electron microscopy were used in cell-based experiments. Additionally, serum biochemical analyses, H&E staining and immunofluorescence staining were performed to detect the acute and chronic changes of tissue structure and the number of Kupffer cells in mouse liver tissue samples. Results: Application of LN depolarized and swelled the mitochondria of Raw264.7 cells, and disrupted the balance of Bax/Bcl-2. This led to cleavage and activation of caspase-3 and PARP, and then induced apoptosis of Raw264.7 cells. In addition, either acute or chronic applications of LN were sufficient to disrupt the structure of the hepatic portal vein and reduce the number of Kupffer cells in mice. Conclusions: LNs could induce apoptosis of macrophages through a mitochondrial-dependent pathway.
Collapse
Affiliation(s)
- Wan-Li Liang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, People's Republic of China
| | - Hong-Wei Gu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Xiao-Jun Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Yu-Sang Li
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Wei Kevin Zhang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - He-Bin Tang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, People's Republic of China
| |
Collapse
|
16
|
Dual functions of STAT3 in LPS-induced angiogenesis of hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:566-574. [DOI: 10.1016/j.bbamcr.2018.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022]
|
17
|
Saga K, Iwashita Y, Hidano S, Aso Y, Isaka K, Kido Y, Tada K, Takayama H, Masuda T, Hirashita T, Endo Y, Ohta M, Kobayashi T, Inomata M. Secondary Unconjugated Bile Acids Induce Hepatic Stellate Cell Activation. Int J Mol Sci 2018; 19:ijms19103043. [PMID: 30301191 PMCID: PMC6213941 DOI: 10.3390/ijms19103043] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatic stellate cells (HSCs) are key players in liver fibrosis, cellular senescence, and hepatic carcinogenesis. Bile acids (BAs) are involved in the activation of HSCs, but the detailed mechanism of this process remains unclear. We conducted a comprehensive DNA microarray study of the human HSC line LX-2 treated with deoxycholic acid (DCA), a secondary unconjugated BA. Additionally, LX-2 cells were exposed to nine BAs and studied using immunofluorescence staining, enzyme-linked immunosorbent assay, and flow cytometry to examine the mechanisms of HSC activation. We focused on the tumor necrosis factor (TNF) pathway and revealed upregulation of genes related to nuclear factor kappa B (NF-κB) signaling and senescence-associated secretory phenotype factors. α-Smooth muscle actin (α-SMA) was highly expressed in cells treated with secondary unconjugated BAs, including DCA, and a morphological change associated with radial extension of subendothelial protrusion was observed. Interleukin-6 level in culture supernatant was significantly higher in cells treated with secondary unconjugated BAs. Flow cytometry showed that the proportion of cells highly expressing α-SMA was significantly increased in HSCs cultured with secondary unconjugated BAs. We demonstrated that secondary unconjugated BAs induced the activation of human HSCs.
Collapse
Affiliation(s)
- Kunihiro Saga
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yukio Iwashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Shinya Hidano
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuiko Aso
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kenji Isaka
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Kazuhiro Tada
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Hiroomi Takayama
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Masuda
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Teijiro Hirashita
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Yuichi Endo
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masayuki Ohta
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Takashi Kobayashi
- Department of Infectious Disease Control, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Oita 879-5593, Japan.
| |
Collapse
|
18
|
Schulze S, Stöß C, Lu M, Wang B, Laschinger M, Steiger K, Altmayr F, Friess H, Hartmann D, Holzmann B, Hüser N. Cytosolic nucleic acid sensors of the innate immune system promote liver regeneration after partial hepatectomy. Sci Rep 2018; 8:12271. [PMID: 30115978 PMCID: PMC6095902 DOI: 10.1038/s41598-018-29924-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 07/20/2018] [Indexed: 12/19/2022] Open
Abstract
Stimulation of cytosolic nucleic acid sensors of innate immunity by pathogen-derived nucleic acids is important for antimicrobial defence, but stimulation through self-derived nucleic acids may contribute to autoinflammation and cancer. DNA sensing in the cytosol requires the stimulator of interferon genes (STING), while cytosolic RNA sensors use mitochondrial antiviral-signalling protein (MAVS). In a murine model of two-thirds hepatectomy, combined deficiency of MAVS and STING resulted in strongly impaired hepatocyte proliferation and delayed recovery of liver mass. Whereas lack of MAVS and STING did not influence upregulation of the G1-phase cyclins D1 and E1, it substantially reduced the hyperphosphorylation of retinoblastoma protein, attenuated the activation of cyclin-dependent kinase (CDK)-2, delayed upregulation of CDK1 and cyclins A2 and B1, and impaired S-phase entry of hepatocytes. Mechanistically, lack of cytosolic nucleic acid sensors strongly upregulated the anti-proliferative mediators TGF-β2 and activin A, which was associated with an increased expression of the cell cycle inhibitors p15 and p21. Partial hepatectomy was followed by the release of exosomes with abundant nucleic acid cargo, which may provide ligands for the MAVS and STING pathways. Together, these findings identify a previously unrecognised function of cytosolic nucleic acid sensors of innate immunity for promoting liver regeneration.
Collapse
Affiliation(s)
- Sarah Schulze
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Christian Stöß
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Miao Lu
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Baocai Wang
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Melanie Laschinger
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Katja Steiger
- Technical University of Munich, School of Medicine, Comparative Experimental Pathology, Institute of Pathology, Trogerstr. 18, 81675, Munich, Germany
| | - Felicitas Altmayr
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Daniel Hartmann
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Holzmann
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Norbert Hüser
- Technical University of Munich, School of Medicine, Department of Surgery, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
19
|
Harikrishnan H, Jantan I, Haque MA, Kumolosasi E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:224. [PMID: 30045725 PMCID: PMC6060475 DOI: 10.1186/s12906-018-2289-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
Background Phyllanthus amarus has been used widely in various traditional medicines to treat swelling, sores, jaundice, inflammatory diseases, kidney disorders, diabetes and viral hepatitis, while its pharmacological and biochemical mechanisms underlying its anti-inflammatory properties have not been well investigated. The present study was carried out to investigate the effects of 80% ethanolic extract of P. amarus on pro-inflammatory mediators release in nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling activation in lipopolysaccharide (LPS)-induced U937 human macrophages. Methods The release of prostaglandin E2 (PGE2) and pro-inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β in a culture supernatant was determined by ELISA. Determination of cyclooxygenase-2 (COX-2) protein and the activation of MAPKs molecules (JNK, ERK and p38 MAPK), NF-κB and Akt in LPS-induced U937 human macrophages were investigated by immunoblot technique. The relative gene expression levels of COX-2 and pro-inflammatory cytokines were measured by using qRT-PCR. The major metabolites of P. amarus were qualitatively and quantitatively analyzed in the extract by using validated reversed-phase high performance liquid chromatography (HPLC) methods. Results P. amarus extract significantly inhibited the production of pro-inflammatory mediators (TNF-α, IL-1β, PGE2) and COX-2 protein expression in LPS-induced U937 human macrophages. P. amarus-pretreatment also significantly downregulated the increased mRNA transcription of pro-inflammatory markers (TNF-α, IL-1β, and COX-2) in respective LPS-induced U937 macrophages. It downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β and restored the degradation of IκBα, and attenuated the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a dose-dependent manner. P. amarus extract also downregulated the expression of upstream signaling molecules, TLR4 and MyD88, which play major role in activation of NF-κB, MAPK and PI3K-Akt signaling pathways. The quantitative amounts of lignans, phyllanthin, hypophyllahtin and niranthin, and polyphenols, gallic acid, geraniin, corilagin, and ellagic acid in the extract were determined by HPLC analysis. Conclusion The study revealed that P. amarus targeted the NF-κB, MAPK and PI3K-Akt signaling pathways to exert its anti- inflammatory effects by downregulating the prospective inflammatory signaling mediators. Electronic supplementary material The online version of this article (10.1186/s12906-018-2289-3) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int Immunopharmacol 2018; 59:391-412. [PMID: 29730580 PMCID: PMC7106078 DOI: 10.1016/j.intimp.2018.03.002] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/07/2023]
Abstract
The immune system is a very diverse system of the host that evolved during evolution to cope with various pathogens present in the vicinity of environmental surroundings inhabited by multicellular organisms ranging from achordates to chordates (including humans). For example, cells of immune system express various pattern recognition receptors (PRRs) that detect danger via recognizing specific pathogen-associated molecular patterns (PAMPs) and mount a specific immune response. Toll-like receptors (TLRs) are one of these PRRs expressed by various immune cells. However, they were first discovered in the Drosophila melanogaster (common fruit fly) as genes/proteins important in embryonic development and dorso-ventral body patterning/polarity. Till date, 13 different types of TLRs (TLR1-TLR13) have been discovered and described in mammals since the first discovery of TLR4 in humans in late 1997. This discovery of TLR4 in humans revolutionized the field of innate immunity and thus the immunology and host-pathogen interaction. Since then TLRs are found to be expressed on various immune cells and have been targeted for therapeutic drug development for various infectious and inflammatory diseases including cancer. Even, Single nucleotide polymorphisms (SNPs) among various TLR genes have been identified among the different human population and their association with susceptibility/resistance to certain infections and other inflammatory diseases. Thus, in the present review the current and future importance of TLRs in immunity, their pattern of expression among various immune cells along with TLR based therapeutic approach is reviewed. TLRs are first described PRRs that revolutionized the biology of host-pathogen interaction and immune response The discovery of different TLRs in humans proved milestone in the field of innate immunity and inflammation The pattern of expression of all the TLRs expressed by human immune cells An association of various TLR SNPs with different inflammatory diseases Currently available drugs or vaccines based on TLRs and their future in drug targeting along with the role in reproduction, and regeneration
Collapse
|
21
|
Zhang H, Shi JH, Jiang H, Wang K, Lu JY, Jiang X, Ma X, Chen YX, Ren AJ, Zheng J, Xie Z, Guo S, Xu X, Zhang WJ. ZBTB20 regulates EGFR expression and hepatocyte proliferation in mouse liver regeneration. Cell Death Dis 2018; 9:462. [PMID: 29700307 PMCID: PMC5920068 DOI: 10.1038/s41419-018-0514-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Liver has a unique regenerative capacity, however, its regulatory mechanism is not fully defined. We have established the zinc-finger protein ZBTB20 as a key transcriptional repressor for alpha-fetoprotein (AFP) gene in liver. As a marker of hepatic differentiation, AFP expression is closely associated with hepatocyte proliferation. Unexpectedly, here we showed that ZBTB20 acts as a positive regulator of hepatic replication and is required for efficient liver regeneration. The mice specifically lacking ZBTB20 in hepatocytes exhibited a remarkable defect in liver regeneration after partial hepatectomy, which was characterized by impaired hepatocyte proliferation along with delayed cyclin D1 induction and diminished AKT activation. Furthermore, we found that epithelial growth factor receptor (EGFR) expression was dramatically reduced in the liver in the absence of ZBTB20, thereby substantially attenuating the activation of EGFR signaling pathway in regenerating liver. Adenovirus-mediated EGFR overexpression in ZBTB20-deficient hepatocytes could largely restore AKT activation in response to EGFR ligands in vitro, as well as hepatocyte replication in liver regeneration. Furthermore, ZBTB20 overexpression could significantly restore hepatic EGFR expression and cell proliferation after hepatectomy in ZBTB20-deficient liver. Taken together, our data point to ZBTB20 as a critical regulator of EGFR expression and hepatocyte proliferation in mouse liver regeneration, and may serve as a potential therapeutic target in clinical settings of liver regeneration.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jian-Hui Shi
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Kejia Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jun-Yu Lu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xuchao Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - An-Jing Ren
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Shanghai, 200433, China
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Shaodong Guo
- Department of Nutrition and Metabolism, Texas University of Agriculture and Mechanics, College Station, TX, 77843, USA
| | - Xiongfei Xu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
22
|
Abstract
Liver regeneration after simple resection represents a unique process in which the organ returns to its original size and histologic structure. Over the past 30 years, there has been significant progress in elucidating the mechanisms associated with regeneration after loss of hepatic mass. Liver regeneration after acute liver failure shares several of these classical pathways. It differs, however, in key processes, including the role of both differentiated and stemlike cells. This article outlines these differences in addition to new molecular mechanisms, including immunomodulation, microRNAs, and the gut-liver axis. In addition, applications to the patient population, including prognostication and stem cell therapies, are explored.
Collapse
Affiliation(s)
- Keith M Wirth
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA.
| | - Scott Kizy
- Department of Surgery, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 195, Minneapolis, MN 55455, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, 420 Delaware Street SouthEast, MMC 36, Minneapolis, MN 55455, USA
| |
Collapse
|
23
|
Marlini M, Mabuchi A, Mallard BL, Hairulhisyam N, Akashi-Takamura S, Harper JL, Wheatley AM. Delayed liver regeneration in C3H/HeJ mice: possible involvement of haemodynamic and structural changes in the hepatic microcirculation. Exp Physiol 2018; 101:1492-1505. [PMID: 27634415 DOI: 10.1113/ep085727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? The liver regenerative process is complex and involves a sequence of signalling events, but the possible involvement of structural and haemodynamic changes in vivo during this process has never been explored. What is the main finding and its importance? Normal sinusoidal blood flow and velocity are crucial for a normal regenerative response, and delays in these haemodynamic events resulted in impaired liver regeneration in lipopolysaccharide-insensitive, C3H/HeJ mice. Toll-like receptor 4 signalling is required for restoration of normal liver architecture during the liver regenerative process. Liver regeneration is delayed in mice with a defective Toll-like receptor 4 (TLR4; C3H/HeJ mice) but is normal in TLR4 knockouts (TLR4-/- ). Here, we investigated the possible involvement of structural and haemodynamic changes in vivo in the underlying mechanism. In lipopolysaccharide-sensitive (C3H/HeN and C57BL/6) and lipopolysaccharide-insensitive (C3H/HeJ and TLR4-/- ) mice, a 70% partial hepatectomy (PH) was performed under inhalational anaesthesia. At days 3 and 7 after PH, the hepatic microcirculation was interrogated using intravital microscopy. Delayed liver regeneration was confirmed in C3H/HeJ, but not in C3H/HeN, C57BL/6 (WT) or TLR4-/- mice by liver weight-to-body-weight ratio, the percentage of proliferating cell nuclear antigen (PCNA)-positive cells and mitotic index data. At day 3 after PH, sinusoidal red blood cell velocity increased by 100% in C3H/HeN mice, but by only 40% in C3H/HeJ mice. Estimated sinusoidal blood flow was significantly higher at day 7 after PH in C3H/HeN than in C3H/HeJ mice. The hepatic cord width was significantly larger in C3H/HeN than in C3H/HeJ mice at day 3 and it was significantly larger in TLR4-/- than in C57BL/6 WT mice at day 7 after PH. Hepatocyte nucleus density and functional sinusoidal density was significantly reduced at days 3 and 7 after PH in all mouse strains compared with their zero-time controls. Functional sinusoidal density was significantly lower in C3H/HeJ compared with C3H/HeN mice at day 7 after PH. The present study indicates that altered sinusoidal blood flow and velocity in C3H/HeJ mice may contribute to the observed delay in the regenerative response in these mice. In addition, restoration of normal liver architecture may be delayed in TLR4-/- mice.
Collapse
Affiliation(s)
- Muhamad Marlini
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Physiology, University of Otago, Dunedin, New Zealand.,Medical Faculty, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | - Ayako Mabuchi
- Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Beth L Mallard
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Ngatiman Hairulhisyam
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Medical Faculty, Universiti Sains Islam Malaysia, Kuala Lumpur, Malaysia
| | | | | | - Antony M Wheatley
- Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland.,Department of Physiology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
24
|
Gan F, Liu Q, Liu Y, Huang D, Pan C, Song S, Huang K. Lycium barbarum polysaccharides improve CCl 4-induced liver fibrosis, inflammatory response and TLRs/NF-kB signaling pathway expression in wistar rats. Life Sci 2017; 192:205-212. [PMID: 29196051 DOI: 10.1016/j.lfs.2017.11.047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/14/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) have multiple biological and pharmacological functions, including antioxidant, anti-inflammatory and anticancer activities. This research was conducted to evaluate whether LBPs could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis and the underlying signaling pathway mechanism. Fifty male wistar rats were randomly allocated to five groups (n=10): control, CCl4 and CCl4 with 400, 800 or 1600mg/kg LBPs, respectively. Each wistar rat from each group was used for blood and tissue collections at the end of experiment. The results showed that CCl4 induced liver fibrosis as demonstrated by increasing histopathological damage, α-smooth muscle actin expression, aspartate transaminase activities, alkaline phosphatase activities and alanine aminotransferase activities. LBPs supplementation alleviated CCl4-induced liver fibrosis as demonstrated by reversing the above parameters. In addition, CCl4 treatment induced the oxidative injury, increased the mRNA levels of tumor necrosis factor-α, monocyte chemoattractant protein-1 and interleukin-1β, and up-regulated the protein expressions of toll-like receptor 4 (TLR4), TLR2, myeloid differentiation factor 88, nuclear factor-kappa B (NF-kB) and p-p65. LBPs supplementation alleviated CCl4-induced oxidative injury, inflammatory response and TLRs/NF-kB signaling pathway expression by reversing the above some parameters. These results suggest that the alleviating effects of LBPs on CCl4-induced liver fibrosis in wistar rats may be through inhibiting the TLRs/NF-kB signaling pathway expression.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Qing Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Cuiling Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
25
|
Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 2017; 120:133-141. [PMID: 28916494 DOI: 10.1016/j.addr.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022]
Abstract
Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" (Lee et al., 2012). Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) (Sayed et al. 2017) trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation (Sayed et al., 2015). Recently, we also identified reactive oxygen species (ROS) (Zhou et al. 2016) and reactive nitrogen species (RNS) (Meng et al., 2016) as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Fig. 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity.
Collapse
|
26
|
Qi B, Zhang S, Guo D, Guo S, Jiang X, Zhu X. Protective effect and mechanism of ginsenoside Rg1 on carbon tetrachloride‑induced acute liver injury. Mol Med Rep 2017; 16:2814-2822. [PMID: 28677756 DOI: 10.3892/mmr.2017.6920] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 03/10/2017] [Indexed: 11/05/2022] Open
Abstract
Liver injury is a common pathological state in various types of liver disease; severe or persistent liver damage is the basis of hepatic failure. Ginsenoside Rg1 (Rg1), one of the primary active ingredients of ginseng, has been reported to reduce concanalin A‑induced hepatitis and protect against lipopolysaccharide‑ and galactosamine‑induced liver injury. However, the underlying protective mechanism of Rg1 in acute liver injury remains unclear. In the present study, a carbon tetrachloride (CCl4)‑induced acute liver injury model was established, and the protective effect of Rg1 on CCl4‑induced acute liver injury was demonstrated in cell culture and animal experimental systems. Further investigation of the mechanisms demonstrated that pretreatment with Rg1 reduced elevated levels of alanine aminotransferase and aspartate aminotransferase, enhanced the antioxidant activity of superoxide dismutase (SOD) and decreased malondialdehyde (MDA) content. Experiments in vitro demonstrated that Rg1 decreased p65 expression and inhibited nuclear factor (NF)‑κB activity. In addition to the effect of Rg1, an NF‑κB inhibitor promoted cell survival, enhanced SOD activity and reduced MDA level. It was observed through in vivo experiments that pretreatment with Rg1 inhibited NF‑κB expression and activity in Kupffer cells and reduced the serum levels of tumor necrosis factor‑α and interleukin‑6. In conclusion, the results of the present study indicated that pretreatment with Rg1 may rescue CCl4‑induced acute liver injury in vivo and in vitro through inhibition of NF‑κB activity, to restore the anti‑oxidative defense system and down‑regulate pro‑inflammatory signaling pathways. The present observations provide a theoretical foundation for the clinical application of Rg1 therapy in acute liver injury.
Collapse
Affiliation(s)
- Benquan Qi
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Suzhi Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Daohua Guo
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Sanxing Guo
- Centre for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of Heidelberg, D‑68167 Mannheim, Germany
| | - Xiaodong Jiang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Xiling Zhu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
27
|
Ando T, Ito H, Kanbe A, Hara A, Seishima M. Deficiency of NALP3 Signaling Impairs Liver Regeneration After Partial Hepatectomy. Inflammation 2017; 40:1717-1725. [DOI: 10.1007/s10753-017-0613-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
28
|
A Donor Age-Based and Graft Volume-Based Analysis for Living Donor Liver Transplantation in Elderly Recipients. Transplant Direct 2017; 3:e168. [PMID: 28706971 PMCID: PMC5498009 DOI: 10.1097/txd.0000000000000688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Given the expected increase in the number of elderly recipients, details regarding how clinical factors influence the outcome in living donor liver transplantation (LDLT) for the elderly remain unclear. We examined the survival outcomes according to the results of donor age-based and graft volume–based analyses and assessed the impact of prognostic factors on the survival after LDLT for elderly recipients. Methods The 198 adult recipients were classified into 2 groups: an elderly group (n = 70, E group; ≥ 60 years of age) and a younger group (n = 128, Y group; <60 years of age). We analyzed the prognostic factors for the survival in the E group and the survival rate for both groups at several follow-up points and conducted subgroup analyses in the E group by combining the donor age (≥50 vs <50 years) and graft weight (GW)/standard liver volume (SLV) (≥40% vs <40%). Results Donor age (hazard ratio [HR], 2.17; P = 0.062) and GW/SLV (HR, 1.80; P = 0.23) tended to have a high HR in the E group. The overall patient survival rates at 1, 3, and 5 years were 78.3%, 73.0%, and 61.0% in the E group, and 82.0%, 75.1%, and 69.2% in the Y group, respectively (P = 0.459). However, the outcomes tended to be worse in recipients of grafts from donors ≥50 years of age than in those with grafts from younger donors with GW/SLV < 40% (P = 0.048). Conclusions A worse outcome might be associated with aging of the donor, which leads to impairment of the graft function and liver regeneration. Both the graft volume and donor age should be considered when choosing grafts for LDLT in elderly patients.
Collapse
|
29
|
Peng J, Zheng H, Wang X, Cheng Z. Upregulation of TLR4 via PKC activation contributes to impaired wound healing in high-glucose-treated kidney proximal tubular cells. PLoS One 2017; 12:e0178147. [PMID: 28542370 PMCID: PMC5443579 DOI: 10.1371/journal.pone.0178147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 05/09/2017] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) leads to a worse prognosis in diabetic patients compared with prognoses in non-diabetic patients, but whether and how diabetes affects kidney repair after AKI remains unknown. Here, we used scratch-wound healing and transwell migration models to examine whether and how wound healing is affected by high glucose levels in cultured kidney proximal tubular cells (RPTC). The results show that scratch-wound healing and transwell migration were significantly slower in high-glucose-treated kidney tubular cells (30 mM glucose) than in low-glucose-treated cells (5.5 mM). Toll-like receptor 4 (TLR4), MyD88, phospho-protein kinase C (PKC), phospho-p38 MAPK and monocyte chemoattractant protein-1 (MCP-1) mRNA levels were upregulated after high glucose treatments. Staurosporine, a selective PKC inhibitor, inhibited TLR4, MyD88 and p-p38 upregulation in the high-glucose-treated cells, indicating the involvement of PKC in high-glucose-induced TLR4 upregulation. The pharmacological inhibition of TLR4 or shRNA-mediated TLR4 knockdown improved wound healing and transwell migration in high-glucose-treated RPTC. In contrast, the overexpression of TLR4 in low-glucose-treated RPTC suppressed wound healing, mimicking the effects of high glucose levels. These results suggest that the upregulation of TLR4 expression via PKC activation contributes to defective wound healing in high-glucose-treated kidney tubular cells.
Collapse
Affiliation(s)
- Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- * E-mail:
| | - Xia Wang
- Department of Internal Medicine, Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhixiang Cheng
- Department of General Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
30
|
Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol 2017; 312:G413-G419. [PMID: 28232456 PMCID: PMC5451561 DOI: 10.1152/ajpgi.00361.2016] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/13/2017] [Accepted: 02/20/2017] [Indexed: 01/31/2023]
Abstract
Liver and intestine are tightly linked through the venous system of the portal circulation. Consequently, the liver is the primary recipient of gut-derived products, most prominently dietary nutrients and microbial components. It functions as a secondary "firewall" and protects the body from intestinal pathogens and other microbial products that have crossed the primary barrier of the intestinal tract. Disruption of the intestinal barrier enhances microbial exposure of the liver, which can have detrimental or beneficial effects in the organ depending on the specific circumstances. Conversely, the liver also exerts influence over intestinal microbial communities via secretion of bile acids and IgA antibodies. This mini-review highlights key findings and concepts in the area of host-microbial interactions as pertinent to the bilateral communication between liver and gut and highlights the concept of the gut-liver axis.
Collapse
Affiliation(s)
- Katharina Brandl
- 1Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, California; and
| | - Vipin Kumar
- 2Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| | - Lars Eckmann
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
31
|
Schuett J, Schuett H, Oberoi R, Koch AK, Pretzer S, Luchtefeld M, Schieffer B, Grote K. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells. FASEB J 2017; 31:2612-2624. [PMID: 28274989 DOI: 10.1096/fj.201600729r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/21/2017] [Indexed: 02/05/2023]
Abstract
NADPH oxidase-generated reactive oxygen species (ROS) from immune cells are well known to be important for pathogen killing in response to TLR ligands. Here, we investigated a new aspect of NADPH oxidase in the TLR2/6-induced release of the immunologically relevant GM-CSF by endothelial cells. Stimulation of human endothelial cells with TLR2/6 agonist, MALP-2 (macrophage-activating lipopeptide of 2 kDa), induced NADPH oxidase activation and ROS formation. Inhibition by ROS scavengers and NADPH oxidase inhibitors blocked MALP-2-induced GM-CSF release. NADPH oxidase activators or ROS donors alone did not result in GM-CSF secretion; however, additional superoxide supply augmented MALP-2-induced GM-CSF secretion and restored GM-CSF levels after NADPH oxidase inhibition. MALP-2-dependent NF-ĸB activation was suppressed by NADPH oxidase inhibition, and inhibition of NF-κB completely blunted MALP-2-induced GM-CSF release. Vascular explants from mice that were deficient for the NADPH oxidase subunit p47 phox showed diminished intimal superoxide production and GM-CSF release after ex vivo stimulation with MALP-2. Moreover, an increase in circulating progenitor cells after MALP-2 injection was completely abolished in p47phox-knockout mice. Finally, MALP-2 stimulation increased mRNA expression of the major subunit NADPH oxidase, (Nox)2, in endothelial cells, and Nox2 inhibition prevented MALP-2-induced GM-CSF release. Our findings identify a Nox2-containing NADPH oxidase as a crucial regulator of the immunologic important growth factor GM-CSF after TLR2/6 stimulation in endothelial cells.-Schuett, J., Schuett, H., Oberoi, R., Koch, A.-K., Pretzer, S., Luchtefeld, M., Schieffer, B., Grote, K. NADPH oxidase NOX2 mediates TLR2/6-dependent release of GM-CSF from endothelial cells.
Collapse
Affiliation(s)
- Jutta Schuett
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Harald Schuett
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Raghav Oberoi
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Ann-Kathrin Koch
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Silke Pretzer
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Maren Luchtefeld
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany
| | - Karsten Grote
- Department of Cardiology and Angiology, Philipps-University, Marburg, Germany;
| |
Collapse
|
32
|
Abstract
After partial hepatectomy, hepatocytes proliferate to restore mass and function of the liver. Macrophages, natural killer (NK) cells, natural killer T (NKT) cells, dendritic cells (DC), eosinophils, gamma delta T (γδT) cells, and conventional T cells, as well as other subsets of the immune cells residing in the liver control liver regeneration, either through direct interactions with hepatocytes or indirectly by releasing inflammatory cytokines. Here, we review recent progress regarding the immune cells in the liver and their functions during liver regeneration.
Collapse
Affiliation(s)
- Na Li
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering & Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
33
|
Kiziltas S. Toll-like receptors in pathophysiology of liver diseases. World J Hepatol 2016; 8:1354-1369. [PMID: 27917262 PMCID: PMC5114472 DOI: 10.4254/wjh.v8.i32.1354] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 08/17/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors that participate in host defense by recognizing pathogen-associated molecular patterns alongside inflammatory processes by recognizing damage associated molecular patterns. Given constant exposure to pathogens from gut, strict control of TLR-associated signaling pathways is essential in the liver, which otherwise may lead to inappropriate production of pro-inflammatory cytokines and interferons and may generate a predisposition to several autoimmune and chronic inflammatory diseases. The liver is considered to be a site of tolerance induction rather than immunity induction, with specificity in hepatic cell functions and distribution of TLR. Recent data emphasize significant contribution of TLR signaling in chronic liver diseases via complex immune responses mediating hepatocyte (i.e., hepatocellular injury and regeneration) or hepatic stellate cell (i.e., fibrosis and cirrhosis) inflammatory or immune pathologies. Herein, we review the available data on TLR signaling, hepatic expression of TLRs and associated ligands, as well as the contribution of TLRs to the pathophysiology of hepatic diseases.
Collapse
Affiliation(s)
- Safak Kiziltas
- Safak Kiziltas, Department of Gastroenterology, Baskent University Istanbul Hospital, 34662 Istanbul, Turkey
| |
Collapse
|
34
|
Guerrero ATG, Pinto LG, Cunha FQ, Ferreira SH, Alves-Filho JC, Verri WA, Cunha TM. Mechanisms underlying the hyperalgesic responses triggered by joint activation of TLR4. Pharmacol Rep 2016; 68:1293-1300. [PMID: 27689757 DOI: 10.1016/j.pharep.2016.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) including TLR4 and their signal pathways contribute to the pathogenesis of arthritis. Herein, we evaluated the mechanisms underlying the hyperalgesic response caused by TLR4 activation in the tibio-tarsal joint in mice. METHODS Joint inflammatory hyperalgesia was induced by intra-articular (ia) injection of LPS (lipopolysaccharide- TLR4 agonist) in C57BL/6, TLR4, TLR2, MyD88, TRIF, TNFR1/2 and IL-1R1 knockout (-/-) mice. Joint hyperalgesia was evaluated using an electronic von Frey. Neutrophil recruitment was assessed by MPO activity. Joint levels of cytokines were measured by ELISA. RESULTS Firstly, it was shown that LPS injected into the joints causes a dose- and time-dependent reduction in the mechanical nociceptive threshold. The TLR4 activation in the joint triggers mechanical hyperalgesia and neutrophil migration, which was abolished in TLR4 -/- and MyD88-/-, but not in TLR2-/- and TRIF-/- mice. Besides, joint administration of LPS increased the release of TNF-α, IL-1β, and KC/CXCL1, which were reduced in TLR4-/- and MyD88-/-, but not in TRIF-/- mice. In agreement, the LPS-induced joint nociceptive effect was decreased in TNFR1/2-/- and IL-1R1-/- mice or in mice pre-treated with a CXCR1/2 selective antagonist (DF2156A). CONCLUSIONS These results suggest that TLR4 activation in the joint produces articular hyperalgesia via MyD88 signaling pathway. Moreover, this pathway is involved in the cascade of events of articular hyperalgesia through mechanisms dependent on cytokines and chemokines production. Thus, TLR4/MyD88 signaling pathway inhibitors might be useful for the treatment of inflammatory joint pain.
Collapse
Affiliation(s)
- Ana T G Guerrero
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil; Fundação Oswaldo Cruz-FIOCRUZ Mato Grosso do Sul, Rua Gabriel Abrão 92, 79081-746 Campo Grande, Mato Grosso do Sul, Brazil.
| | - Larissa G Pinto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | - Sérgio H Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | - Jose C Alves-Filho
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| | - Waldiceu A Verri
- Departamento de Patologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Paraná, Rod. Celso Garcia Cid Km380 PR445, 86057-970 Londrina, Paraná, Brazil.
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
35
|
Wyler SL, D'Ingillo SL, Lamb CL, Mitchell KA. Monocyte chemoattractant protein-1 is not required for liver regeneration after partial hepatectomy. JOURNAL OF INFLAMMATION-LONDON 2016; 13:28. [PMID: 27555804 PMCID: PMC4994209 DOI: 10.1186/s12950-016-0136-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 08/16/2016] [Indexed: 01/12/2023]
Abstract
Background Liver regeneration following 70 % partial hepatectomy (PH) requires the coordinated expression of soluble mediators produced by macrophages. Monocyte chemoattractant protein-1 (MCP-1) is a potent stimulus of monocyte recruitment and macrophage activation. The goal of this study was to determine how MCP-1 contributes to liver regeneration. Methods PH was performed on anesthetized C57Bl/6 (wild type) and MCP-1 knockout mice, and macrophage-produced cytokines and hepatocyte proliferation were measured. Results In wild type mice, hepatic MCP-1 protein levels increased 4–6 h after PH, and elevated plasma MCP-1 levels were detected 12 h after PH. Hepatocyte proliferation was comparable in MCP-1 knockout and wild type mice, as was the expression of macrophage-derived cytokines, TNFα and IL-6, and levels of phosphorylated STAT3. The number of CCR2+ cells in the liver was similar in MCP-1 knockout and wild type mice, which suggests that other chemokines may recruit CCR2+ cells in the absence of MCP-1. Studies with CCR2 knockout mice revealed that hepatocyte proliferation was suppressed ~40 % compared to wild type mice 36 h after PH, but proliferation and liver-body-weight ratios were similar at 48 h. Conclusion These findings suggest that MCP-1 is not required for PH-induced liver regeneration, yet the role of CCR2 warrants further study.
Collapse
Affiliation(s)
- Stephanie L Wyler
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515 USA
| | - Shawna L D'Ingillo
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515 USA
| | - Cheri L Lamb
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725 USA
| | - Kristen A Mitchell
- Department of Biological Sciences, Boise State University, 1910 University Drive, Boise, ID 83725-1515 USA ; Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID 83725 USA
| |
Collapse
|
36
|
The Kupffer Cell Number Affects the Outcome of Living Donor Liver Transplantation from Elderly Donors. Transplant Direct 2016; 2:e94. [PMID: 27819035 PMCID: PMC5082997 DOI: 10.1097/txd.0000000000000608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/03/2016] [Indexed: 01/09/2023] Open
Abstract
Background There have been no previous reports how Kupffer cells affect the outcome of living donor liver transplantation (LDLT) with an elderly donor. The aim of this study was to elucidate the influence of Kupffer cells on LDLT. Methods A total of 161 adult recipients underwent LDLT. The graft survival, prognostic factors for survival, and graft failure after LDLT were examined between cases with a young donor (<50, n = 112) and an elderly donor (≥50, N = 49). The Kupffer cells, represented by CD68-positive cell in the graft, were examined in the young and elderly donors. Results In a multivariable analysis, a donor older than 50 years, sepsis, and diabetes mellitus were significant predictors of graft failure after LDLT. The CD68 in younger donors was significantly more expressed than that in elderly donors. The group with a less number of CD68-positive cells in the graft had a significantly poor survival in the elderly donor group and prognostic factor for graft failure. Conclusions The worse outcome of LDLT with elderly donors might be related to the lower number of Kupffer cells in the graft, which can lead to impaired recovery of the liver function and may predispose patients to infectious diseases after LDLT.
Collapse
|
37
|
Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration. Nature 2016; 529:307-15. [PMID: 26791721 DOI: 10.1038/nature17039] [Citation(s) in RCA: 509] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Inflammation underlies many chronic and degenerative diseases, but it also mitigates infections, clears damaged cells and initiates tissue repair. Many of the mechanisms that link inflammation to damage repair and regeneration in mammals are conserved in lower organisms, indicating that it is an evolutionarily important process. Recent insights have shed light on the cellular and molecular processes through which conventional inflammatory cytokines and Wnt factors control mammalian tissue repair and regeneration. This is particularly important for regeneration in the gastrointestinal system, especially for intestine and liver tissues in which aberrant and deregulated repair results in severe pathologies.
Collapse
Affiliation(s)
- Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, California 92093-0636, USA
| | - Hans Clevers
- Princess Máxima Center and Hubrecht Institute, Uppsalalaan 8, 3584 CR Utrecht, the Netherlands.,University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, the Netherlands
| |
Collapse
|
38
|
Zhang C, Lu Y, Zhou H, Lu H, Qian X, Liu X, Wang X, Ding Z, Zhang F, Lu L. Acquiring Kupffer cells in mice using a MACS-based method. Transplant Proc 2015; 47:553-7. [PMID: 25769606 DOI: 10.1016/j.transproceed.2015.01.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVE This study sought to establish a new method to isolate Kupffer cells (KCs) by magnetic activated cell sorting (MACS). METHODS Nonparenchymal cells were acquired from C57BL/6 mice livers by a perfusion system in vivo and then stained with F4/80(+) fluorescein isothiocyanate and CD11c(-) phycoerythrin antibodies. After incubating with immunomagnetic beads, F4/80(+)CD11c(-) KCs were obtained by MACS selection. The purity was evaluated by flow cytometry, and the morphological features and vitality were analyzed in in vitro cultures. RESULTS Compared with traditional methods, acquiring KCs by MACS was characterized by economy, efficiency, and high purity. The F4/80(+)CD11c(-) KCs cultured in vitro also showed the typical adherent shape and excellent phagocytic ability. CONCLUSIONS With the 2-step method using immunomagnetic beads, we provide a new method by which KCs can be obtained from mouse liver with high purity and distinct phenotype of F4/80(+) CD.
Collapse
Affiliation(s)
- C Zhang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Y Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - H Zhou
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - H Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Qian
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Liu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - X Wang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Z Ding
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - F Zhang
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - L Lu
- Translational Medicine Research Center of Jiangning Hospital and Liver Transplantation Center of First Affiliated Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
39
|
Mullen LM, Chamberlain G, Sacre S. Pattern recognition receptors as potential therapeutic targets in inflammatory rheumatic disease. Arthritis Res Ther 2015; 17:122. [PMID: 25975607 PMCID: PMC4432834 DOI: 10.1186/s13075-015-0645-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The pattern recognition receptors of the innate immune system are part of the first line of defence against pathogens. However, they also have the ability to respond to danger signals that are frequently elevated during tissue damage and at sites of inflammation. Inadvertent activation of pattern recognition receptors has been proposed to contribute to the pathogenesis of many conditions including inflammatory rheumatic diseases. Prolonged inflammation most often results in pain and damage to tissues. In particular, the Toll-like receptors and nucleotide-binding oligomerisation domain-like receptors that form inflammasomes have been postulated as key contributors to the inflammation observed in rheumatoid arthritis, osteoarthritis, gout and systemic lupus erythematosus. As such, there is increasing interest in targeting these receptors for therapeutic treatment in the clinic. Here the role of pattern recognition receptors in the pathogenesis of these diseases is discussed, with an update on the development of interventions to modulate the activity of these potential therapeutic targets.
Collapse
Affiliation(s)
- Lisa M Mullen
- Brighton and Sussex Medical School, Falmer, Brighton, BN1 9RY, UK.
| | | | - Sandra Sacre
- Brighton and Sussex Medical School, Falmer, Brighton, BN1 9RY, UK.
| |
Collapse
|
40
|
Qu K, Yan Z, Wu Y, Chen Y, Qu P, Xu X, Yuan P, Huang X, Xing J, Zhang H, Liu C, Zhang J. Transarterial chemoembolization aggravated peritumoral fibrosis via hypoxia-inducible factor-1α dependent pathway in hepatocellular carcinoma. J Gastroenterol Hepatol 2015; 30:925-32. [PMID: 25641377 DOI: 10.1111/jgh.12873] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIM It was commonly accepted that chemotherapeutic cytotoxicity was the main cause for hepatic failure in hepatocellular carcinoma patients after repeated transarterial chemoembolization (TACE). However, the effect of embolization-induced hypoxia on liver cirrhosis has rarely been concerned. METHODS Serum levels of alanine aminotransferase, aspartate aminotransferase, and albumin were used to detect liver injury. Hepatic artery ligation was performed in carbon tetrachloride-induced rat hepatic fibrosis model to mimic the effect of hepatic hypoxia on liver fibrosis after TACE. Sirius Red staining and immunohistochemical analysis of alpha-smooth muscle actin (α-SMA) were used to detect the activation of hepatic stellate cells. Moreover, the expression of hypoxia and fibrosis-related molecules were analyzed at protein and/or mRNA level. RESULTS Patients showed a significant increase in alanine aminotransferase and aspartate aminotransferase (P = 0.006), accompanied by a decrease in albumin (P = 0.005) after repeated TACE. Hepatic artery ligation significantly promoted carbon tetrachloride-induced rat liver fibrosis progression as indicated by Sirius Red and α-SMA staining, as well as increased expression of hypoxia-inducible factor (HIF)-1α, transforming growth factor (TGF)-β1, and vascular endothelial growth factor (VEGF). Conditioned media of hypoxia-treated L02 cells induced the expression of Collagen I and α-SMA in LX-2 cells, which was inhibited by HIF-1α small interfering RNA. Finally, HIF-1α inhibitor LW6 attenuated the hypoxia-induced fibrosis progression in vivo. CONCLUSION Our data demonstrate that TACE-induced hepatic hypoxia aggravates the fibrosis progression in peritumoral liver tissue, thus leads to the deterioration of liver function. Intervention of HIF-1α might be a valuable strategy to optimize the efficacy and reduce the complication of TACE.
Collapse
Affiliation(s)
- Kai Qu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Xiao Z, Ren P, Chao Y, Wang Q, Kuai J, Lv M, Chen L, Gao C, Sun X. Protective role of isoflurane pretreatment in rats with focal cerebral ischemia and the underlying molecular mechanism. Mol Med Rep 2015; 12:675-83. [PMID: 25738964 DOI: 10.3892/mmr.2015.3408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 11/03/2014] [Indexed: 11/06/2022] Open
Abstract
Inflammation and immunity are important in the pathogenesis of cerebral ischemia. Toll-like receptor 4 (TLR4) is involved in the inflammatory responses of injured brain tissues. Emerging studies have focused on the effect of isoflurane (ISO) pretreatment on cerebral ischemia, however, the association between ISO pretreatment and TLR4 during cerebral ischemia remains to be elucidated. In the present study, the protective role of ISO pretreatment in rats with focal cerebral ischemia reperfusion was investigated and the molecular mechanism was discussed. Using a middle cerebral artery occlusion (MCAO) model, triphenyltetrazolium chloride staining was utilized to measure the infarct volume and brain edema and immunofluorescence staining was used to detect the MCAO-induced TLR4 expression and localization. Western blot analyses were conducted to quantify the protein expression levels of TLR4, myeloid differentiation primary response 88 (MyD88) and nuclear factor (NF)-κB in ischemic brain tissue at different time points. The results demonstrated that, following ISO pretreatment, the neurological deficits, brain edema and cerebral infarct size caused by ischemia/reperfusion were attenuated. The astrocyte and microglial activation in the brain tissue was decreased. In addition, the expression levels of TLR4, MyD88 and NF-κB were decreased. The present study indicated that ISO pretreatment may protect the brain from ischemic damage by downregulating the expression levels of TLR4, MyD88 and NF-κB.
Collapse
Affiliation(s)
- Zhibin Xiao
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Pengcheng Ren
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yang Chao
- Department of Stomatology, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Qianyun Wang
- Department of Medicine, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Jianke Kuai
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Miaomiao Lv
- Department of Anesthesiology, The 323 Hospital of People's Liberation Army, Xi'an, Shaanxi 710054, P.R. China
| | - Lei Chen
- Department of Obstetrics and Gynecology, The Navy General Hospital of People's Liberation Army, Beijing 100059, P.R. China
| | - Changjun Gao
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xude Sun
- Department of Anesthesiology, Tangdou Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
42
|
Tsutsui H, Nishiguchi S. Importance of Kupffer cells in the development of acute liver injuries in mice. Int J Mol Sci 2014; 15:7711-30. [PMID: 24802875 PMCID: PMC4057701 DOI: 10.3390/ijms15057711] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/12/2022] Open
Abstract
Kupffer cells reside within the liver sinusoid and serve as gatekeepers. They produce pro- and anti-inflammatory cytokines and other biologically important molecules upon the engagement of pattern recognition receptors such as Toll-like receptors. Kupffer cell-ablated mice established by in vivo treatment with clodronate liposomes have revealed many important features of Kupffer cells. In this paper, we review the importance of Kupffer cells in murine acute liver injuries and focus on the following two models: lipopolysaccharide (LPS)-induced liver injury, which is induced by priming with Propionibacterium acnes and subsequent challenge with LPS, and hypercoagulability-mediated acute liver failure such as that in concanavalin A (Con A)-induced hepatitis. Kupffer cells are required for LPS sensitization induced by P. acnes and are a major cellular source of interleukin-18, which induces acute liver injury following LPS challenge. Kupffer cells contribute to Con A-induced acute liver failure by initiating pathogenic, intrasinusoidal thrombosis in collaboration with sinusoidal endothelial cells. The mechanisms underlying these models may shed light on human liver injuries induced by various etiologies such as viral infection and/or abnormal metabolism.
Collapse
Affiliation(s)
- Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| | - Shuhei Nishiguchi
- Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan.
| |
Collapse
|
43
|
Liver myofibroblasts up-regulate monocyte CD163 expression via PGE2 during hepatitis B induced liver failure. J Transl Med 2014; 12:60. [PMID: 24597777 PMCID: PMC4015181 DOI: 10.1186/1479-5876-12-60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/27/2014] [Indexed: 02/02/2023] Open
Abstract
Background Although patients with liver failure exhibit a generalized inflammatory-imbalance status, substantial evidence indicates that this immunosuppressive or anti-inflammatory state may be deleterious. Increased expression of CD163 (known to be involved in several anti-inflammatory functions of the immune system) in patients with liver failure is significantly correlated with a fatal outcome. However, little is known of the regulatory mechanisms that influence the expression of CD163. Methods We assessed the expression of CD163 on monocytes from both circulating cells and the liver tissues of patients with hepatitis B induced liver failure using flow cytometry and isolated the myofibroblasts from diseased livers. The ability of human liver myofibroblasts to regulate CD163 expression on monocytes was studied in vitro. Results We showed that CD163+ monocytes were enriched primarily in diseased livers and that they were associated with liver myofibroblasts in the same area. Accordingly, liver myofibroblasts were significantly superior to normal skin fibroblasts in inducing the expression of CD163 on monocytes in vitro. Moreover, we found that liver myofibroblasts triggered the activation of monocytes by secreting PGE2. Inhibition of PGE2 production in liver myofibroblasts using NS-398 markedly reduced CD163 expression in vitro. Conclusion These results suggest that liver myofibroblasts play a direct role in regulating the expression of CD163 on monocytes in human liver tissues and thereby may regulate monocyte function during hepatitis B induced liver failure.
Collapse
|
44
|
Howell J, Gow P, Angus P, Visvanathan K. Role of toll-like receptors in liver transplantation. Liver Transpl 2014; 20:270-80. [PMID: 24243591 DOI: 10.1002/lt.23793] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/07/2013] [Accepted: 11/09/2013] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors that orchestrate the innate immune response and the subsequent adaptive immune response. TLRs can be triggered by exogenous ligands expressed by invading pathogens or by the release of endogenous ligands, such as that occurring through cellular injury during the transplantation process. They are now recognized to play an important role in many facets of transplantation biology, including rejection and tolerance, ischemia/reperfusion injury (IRI), and infections after transplantation. The role of TLRs in liver transplantation is unique with respect to other organ transplants because the portal circulation is a continuous source of TLR2 and TLR4 ligands, and this influences TLR signaling pathways, which have a central role in transplantation immunity. This review provides a critical update on recent data outlining the important role of TLRs in liver transplantation, and there is a particular focus on emerging advances in our understanding of rejection and tolerance, IRI, and infections after transplantation and on the ways in which these events may influence the recurrence of diseases such as hepatitis C infection after liver transplantation.
Collapse
Affiliation(s)
- Jessica Howell
- Liver Transplant Unit, Austin Hospital, Melbourne, Australia; Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
45
|
Famakin BM, Mou Y, Johnson K, Spatz M, Hallenbeck J. A new role for downstream Toll-like receptor signaling in mediating immediate early gene expression during focal cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:258-67. [PMID: 24301291 PMCID: PMC3915199 DOI: 10.1038/jcbfm.2013.182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/16/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022]
Abstract
To better understand the role of downstream Toll-like receptor (TLR) signaling during acute cerebral ischemia, we performed cDNA microarrays, on brain RNA, and cytokine arrays, on serum, from wild type (WT), MyD88-/- and TRIF-mutant mice, at baseline and following permanent middle cerebral artery occlusion (pMCAO). The acute stress response pathway was among the top pathways identified by Ingenuity Pathway Analysis of microarray data. We used real-time polymerase chain reaction to confirm the expression of four immediate early genes; EGR1, EGR2, ARC, Nurr77, in this pathway, and insulin degrading enzyme (IDE). Compared to WT, baseline immediate early gene expression was increased up to10-fold in MyD88-/- and TRIF-mutant mice. However, following pMCAO, immediate early gene expression remained unchanged, from this elevated baseline in these mice, but increased up to 12-fold in WT. Furthermore, expression of IDE, which also degrades β-amyloid, decreased significantly only in TRIF-mutant mice. Finally, sE-Selectin, sICAM, sVCAM-1, and MMP-9 levels were significantly decreased only in MyD88-/- compared with WT mice. We thus report a new role for downstream TLR signaling in immediate early gene expression during acute cerebral ischemia. We also show that the TRIF pathway regulates IDE expression; a major enzyme that clears β-amyloid from the brain.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongshan Mou
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - Kory Johnson
- National Institute of Neurological Disorders & Stroke, Section on Bioinformatics, Information Technology & Bioinformatics Program, National Institutes of Health, Bethesda, Maryland, USA
| | - Maria Spatz
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| | - John Hallenbeck
- National Institute of Neurological Disorders and Stroke, Stroke Branch, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
46
|
Abstract
Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|
47
|
A20-An Omnipotent Protein in the Liver: Prometheus Myth Resolved? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 809:117-39. [DOI: 10.1007/978-1-4939-0398-6_8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
The Yin and Yang of Toll-like receptors in cancer. Oncogene 2013; 33:3485-95. [PMID: 23934186 DOI: 10.1038/onc.2013.302] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 06/10/2013] [Indexed: 02/08/2023]
Abstract
Recognition of non-self molecular patterns by pattern recognition receptors is a cornerstone of innate immunity. Toll-like receptors (TLRs) exert a key role in recognizing pathogen-associated molecular patterns (PAMPs) but have also been implicated in the recognition of damage-associated molecular patterns (DAMPs). As such, TLRs regulate a wide range of biological responses including inflammatory and immune responses during carcinogenesis. The high expression of TLRs by antigen-presenting cells, including dendritic cells, and their ability to induce antitumor mediators such as type I interferon has led to efforts to utilize TLR agonists in tumor therapy in order to convert the often tolerant immune response toward antitumor responses. However, TLRs are also increasingly recognized as regulators of tumor-promoting inflammation and promoters of tumor survival signals. Here, we will review in detail the dichotomous role of TLRs in tumor biology, focusing on relevant TLR-dependent pro- and antitumor pathways, and discuss clinical applications of TLR-targeted therapies for tumor prevention and treatment.
Collapse
|
49
|
Grote K, Sonnenschein K, Kapopara PR, Hillmer A, Grothusen C, Salguero G, Kotlarz D, Schuett H, Bavendiek U, Schieffer B. Toll-like receptor 2/6 agonist macrophage-activating lipopeptide-2 promotes reendothelialization and inhibits neointima formation after vascular injury. Arterioscler Thromb Vasc Biol 2013; 33:2097-104. [PMID: 23868938 DOI: 10.1161/atvbaha.113.301799] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Reendothelialization after vascular injury (ie, balloon angioplasty or stent implantation) is clinically extremely relevant to promote vascular healing. We here investigated the therapeutic potential of the toll-like receptor 2/6 agonist macrophage-activating lipopeptide (MALP)-2 on reendothelialization and neointima formation in a murine model of vascular injury. APPROACH AND RESULTS The left common carotid artery was electrically injured, and reendothelialization was quantified by Evans blue staining after 3 days. A single injection of MALP-2 (1 or 10 µg, IV) after vascular injury accelerated reendothelialization (P<0.001). Proliferation of endothelial cells at the wound margins determined by 5-ethynyl-2'-deoxyuridine incorporation was significantly higher in MALP-2-treated animals (P<0.05). Furthermore, wire injury-induced neointima formation of the left common carotid artery was completely prevented by a single injection of MALP-2 (10 µg, IV). In vitro, MALP-2 induced proliferation (BrdU incorporation) and closure of an artificial wound of endothelial cells (P<0.05) but not of smooth muscle cells. Protein array and ELISA analysis of isolated primary endothelial cells and ex vivo stimulated carotid segments revealed that MALP-2 stimulated the release of multiple growth factors and cytokines predominantly from endothelial cells. MALP-2 induced a strong activation of the mitogen-activated protein kinase cascade in endothelial cells, which was attenuated in smooth muscle cells. Furthermore, MALP-2 significantly enhanced circulating monocytes and hematopoietic progenitor cells. CONCLUSIONS The toll-like receptor 2/6 agonist MALP-2 promotes reendothelialization and inhibits neointima formation after experimental vascular injury via enhanced proliferation and migration of endothelial cells. Thus, MALP-2 represents a novel therapeutic option to accelerate reendothelialization after vascular injury.
Collapse
Affiliation(s)
- Karsten Grote
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
YOON HYUNMIN, JANG KYUNGJUN, HAN MINSEOK, JEONG JINWOO, KIM GIYOUNG, LEE JAIHEON, CHOI YUNGHYUN. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells. Exp Ther Med 2013; 5:957-963. [PMID: 23408713 PMCID: PMC3570243 DOI: 10.3892/etm.2013.895] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/09/2013] [Indexed: 01/25/2023] Open
Abstract
Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE(2) and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia.
Collapse
Affiliation(s)
- HYUN-MIN YOON
- Departments of Acupuncture and Moxibustion, Dongeui University College of Oriental Medicine, Busan 614-052
| | - KYUNG-JUN JANG
- Departments of Acupuncture and Moxibustion, Dongeui University College of Oriental Medicine, Busan 614-052
| | - MIN SEOK HAN
- Departments of Acupuncture and Moxibustion, Dongeui University College of Oriental Medicine, Busan 614-052
| | - JIN-WOO JEONG
- Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714
| | - GI YOUNG KIM
- Faculty of Applied Marine Science, Cheju National University, Jeju 690-756
| | - JAI-HEON LEE
- College of Natural Resources and Life Science, BK21 Center for Silver-Bio Industrialization, Dong-A University, Busan 604-714
| | - YUNG HYUN CHOI
- Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052
- Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan 614-714
- Department of Biomaterial Control (BK21 program), Graduate School, Dongeui University, Busan 614-714,
Republic of Korea
| |
Collapse
|