1
|
Barik S. Suppression of Innate Immunity by the Hepatitis C Virus (HCV): Revisiting the Specificity of Host-Virus Interactive Pathways. Int J Mol Sci 2023; 24:16100. [PMID: 38003289 PMCID: PMC10671098 DOI: 10.3390/ijms242216100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The hepatitis C virus (HCV) is a major causative agent of hepatitis that may also lead to liver cancer and lymphomas. Chronic hepatitis C affects an estimated 2.4 million people in the USA alone. As the sole member of the genus Hepacivirus within the Flaviviridae family, HCV encodes a single-stranded positive-sense RNA genome that is translated into a single large polypeptide, which is then proteolytically processed to yield the individual viral proteins, all of which are necessary for optimal viral infection. However, cellular innate immunity, such as type-I interferon (IFN), promptly thwarts the replication of viruses and other pathogens, which forms the basis of the use of conjugated IFN-alpha in chronic hepatitis C management. As a countermeasure, HCV suppresses this form of immunity by enlisting diverse gene products, such as HCV protease(s), whose primary role is to process the large viral polyprotein into individual proteins of specific function. The exact number of HCV immune suppressors and the specificity and molecular mechanism of their action have remained unclear. Nonetheless, the evasion of host immunity promotes HCV pathogenesis, chronic infection, and carcinogenesis. Here, the known and putative HCV-encoded suppressors of innate immunity have been reviewed and analyzed, with a predominant emphasis on the molecular mechanisms. Clinically, the knowledge should aid in rational interventions and the management of HCV infection, particularly in chronic hepatitis.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
2
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Reghupaty SC, Kanwal S, Mendoza RG, Davis E, Li H, Lai Z, Dozmorov MG, Faison MO, Siddiqui RA, Sarkar D. Dysregulation of Type I Interferon (IFN-I) Signaling: A Potential Contributor to Racial Disparity in Hepatocellular Carcinoma (HCC). Cancers (Basel) 2023; 15:4283. [PMID: 37686559 PMCID: PMC10486472 DOI: 10.3390/cancers15174283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
African-American (AA)/Black hepatocellular carcinoma (HCC) patients have increased incidence and decreased survival rates compared to non-Hispanic (White) patients, the underlying molecular mechanism of which is not clear. Analysis of existing RNA-sequencing (RNA-seq) data in The Cancer Genome Atlas (TCGA) and in-house RNA-sequencing of 14 White and 18 AA/Black HCC patients revealed statistically significant activation of type I interferon (IFN-I) signaling pathway in AA/Black patients. A four-gene signature of IFN-stimulated genes (ISGs) showed increased expression in AA/Black HCC tumors versus White. HCC is a disease of chronic inflammation, and IFN-Is function as pro-inflammatory cytokines. We tested efficacy of ginger extract (GE), a dietary compound known for anti-inflammatory properties, on HCC cell lines derived from White (HepG2), AA/Black (Hep3B and O/20) and Asian (HuH-7) patients. GE exhibited a significantly lower IC50 on Hep3B and O/20 cells than on HepG2 and HuH-7 cells. The GE treatment inhibited the activation of downstream mediators of IFN-I signaling pathways and expression of ISGs in all four HCC cells. Our data suggest that ginger can potentially attenuate IFN-I-mediated signaling pathways in HCC, and cells from AA/Black HCC patients may be more sensitive to ginger. AA/Black HCC patients might benefit from a holistic diet containing ginger.
Collapse
Affiliation(s)
| | - Sadia Kanwal
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Rachel G. Mendoza
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Haiwen Li
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA;
| | - Mikhail G. Dozmorov
- Department of Biostatistics and Pathology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Milton Omar Faison
- Department of Biology, Virginia State University, Petersburg, VA 23806, USA;
| | - Rafat Ali Siddiqui
- Food and Nutrition Science Laboratory, College of Agriculture, Virginia State University, Petersburg, VA 23806, USA; (S.K.); (H.L.)
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Massey Cancer Center, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
4
|
Hackstein CP, Klenerman P. MAITs and their mates: "Innate-like" behaviors in conventional and unconventional T cells. Clin Exp Immunol 2023; 213:1-9. [PMID: 37256718 PMCID: PMC10324555 DOI: 10.1093/cei/uxad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/01/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023] Open
Abstract
Most CD4 and CD8 T cells are restricted by conventional major histocompatibility complex (MHC) molecules and mount TCR-dependent adaptive immune responses. In contrast, MAIT, iNKT, and certain γδ TCR bearing cells are characterized by their abilities to recognize antigens presented by unconventional antigen-presenting molecules and to mount cytokine-mediated TCR-independent responses in an "innate-like" manner. In addition, several more diverse T-cell subsets have been described that in a similar manner are restricted by unconventional antigen-presenting molecules but mainly depend on their TCRs for activation. Vice versa, innate-like behaviour was reported in defined subpopulations of conventional T cells, particularly in barrier sites, showing that these two features are not necessarily linked. The abilities to recognize antigens presented by unconventional antigen-presenting molecules or to mount TCR-independent responses creates unique niches for these T cells and is linked to wide range of functional capabilities. This is especially exemplified by unconventional and innate-like T cells present at barrier sites where they are involved in pathogen defense, tissue homeostasis as well as in pathologic processes.
Collapse
Affiliation(s)
- Carl-Philipp Hackstein
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
6
|
Crites BR, Carr SN, Anderson LH, Matthews JC, Bridges PJ. Form of dietary selenium affects mRNA encoding interferon-stimulated and progesterone-induced genes in the bovine endometrium and conceptus length at maternal recognition of pregnancy. J Anim Sci 2022; 100:skac137. [PMID: 35772751 PMCID: PMC9246668 DOI: 10.1093/jas/skac137] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Widespread regions of the southeast United States have soils, and hence forages, deficient in selenium (Se), necessitating Se supplementation to grazing cattle for optimal immune function, growth, and fertility. We have reported that supplementation with an isomolar 1:1 mix (MIX) of inorganic (ISe) and organic (OSe) forms of Se increases early luteal phase (LP) concentrations of progesterone (P4) above that in cows on ISe or OSe alone. Increased early LP P4 advances embryonic development. Our objective was to determine the effects of the form of Se on the development of the bovine conceptus and the endometrium using targeted real-time PCR (qPCR) on day 17 of gestation, the time of maternal recognition of pregnancy (MRP). Angus-cross yearling heifers underwent 45-d Se-depletion then repletion periods, then at least 90 d of supplementation (TRT) with 35 ppm Se per day as either ISe (n = 10) or MIX (n = 10). Heifers were inseminated to a single sire after detected estrus (day 0). On day 17 of gestation, caruncular (CAR) and intercaruncular (ICAR) endometrial samples and the developing conceptus were recovered from pregnant heifers (ISe, n = 6 and MIX, n = 6). qPCR was performed to determine the relative abundance of targeted transcripts in CAR and ICAR samples, with the expression data subjected to one-way ANOVA to determine TRT effects. The effect of TRT on conceptus development was analyzed using a one-tailed Student's t-test. When compared with ISe-treated heifers, MIX heifers had decreased (P < 0.05) abundance of several P4-induced and interferon-stimulated mRNA transcripts, including IFIT3, ISG15, MX1, OAS2, RSAD2, DGAT2, FGF2 in CAR and DKK1 in ICAR samples and tended (P ≤ 0.10) to have decreased mRNA abundance of IRF1, IRF2, FOXL2, and PGR in CAR samples, and HOXA10 and PAQR7 in ICAR samples. In contrast, MIX-supplemented heifers had increased (P < 0.05) mRNA abundance of MSTN in ICAR samples and an increase in conceptus length (ISe: 17.45 ± 3.08 cm vs. MIX: 25.96 ± 3.95 cm; P = 0.05). Notably, myostatin increases glucose secretion into histotroph and contributes to advanced conceptus development. This advancement in conceptus development occurred in the presence of similar concentrations of serum P4 (P = 0.88) and whole blood Se (P = 0.07) at MRP.
Collapse
Affiliation(s)
- Benjamin R Crites
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Sarah N Carr
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Leslie H Anderson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
7
|
Yuan Y, Miao Y, Ren T, Huang F, Qian L, Chen X, Zuo Y, Zhang H, He J, Qiao C, Du Q, Wu Q, Zhang W, Zhu C, Xu Y, Wu D, Shi W, Jiang J, Xu G, Zheng H. High salt activates p97 to reduce host antiviral immunity by restricting Viperin induction. EMBO Rep 2022; 23:e53466. [PMID: 34779558 PMCID: PMC8728598 DOI: 10.15252/embr.202153466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 01/07/2023] Open
Abstract
High-salt diets have recently been implicated in hypertension, cardiovascular disease, and autoimmune disease. However, whether and how dietary salt affects host antiviral response remain elusive. Here, we report that high salt induces an instant reduction in host antiviral immunity, although this effect is compromised during a long-term high-salt diet. Further studies reveal that high salt stimulates the acetylation at Lys663 of p97, which promotes the recruitment of ubiquitinated proteins for proteasome-dependent degradation. p97-mediated degradation of the deubiquitinase USP33 results in a deficiency of Viperin protein expression during viral infection, which substantially attenuates host antiviral ability. Importantly, switching to a low-salt diet during viral infection significantly enhances Viperin expression and improves host antiviral ability. These findings uncover dietary salt-induced regulation of ubiquitinated cellular proteins and host antiviral immunity, and could offer insight into the daily consumption of salt-containing diets during virus epidemics.
Collapse
Affiliation(s)
- Yukang Yuan
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Ying Miao
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Tengfei Ren
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Fan Huang
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Liping Qian
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Xiangjie Chen
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Yibo Zuo
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Hong‐Guang Zhang
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Jiuyi He
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Caixia Qiao
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Qian Du
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Qiuyu Wu
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| | - Wei Zhang
- Department of Molecular and Cellular BiologyCollege of Biological ScienceUniversity of GuelphGuelphONCanada
| | - Chuanwu Zhu
- The Affiliated Infectious Diseases Hospital of Soochow UniversitySuzhouChina
| | - Yang Xu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematologythe First Affiliated Hospital of Soochow UniversityInstitute of Blood and Marrow TransplantationCollaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Depei Wu
- National Clinical Research Center for Hematologic DiseasesJiangsu Institute of Hematologythe First Affiliated Hospital of Soochow UniversityInstitute of Blood and Marrow TransplantationCollaborative Innovation Center of HematologySoochow UniversitySuzhouChina
| | - Weifeng Shi
- The Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Jingting Jiang
- The Third Affiliated Hospital of Soochow UniversityChangzhouChina
| | - Guoqiang Xu
- College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Hui Zheng
- International Institute of Infection and ImmunityInstitutes of Biology and Medical SciencesSuzhouChina
- Jiangsu Key Laboratory of Infection and ImmunitySoochow UniversitySuzhouChina
| |
Collapse
|
8
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Tseng YY, Gowripalan A, Croft SN, Smith SA, Helbig KJ, Man SM, Tscharke DC. Viperin has species-specific roles in response to herpes simplex virus infection. J Gen Virol 2021; 102. [PMID: 34406117 PMCID: PMC8513645 DOI: 10.1099/jgv.0.001638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Viperin is a gene with a broad spectrum of antiviral functions and various mechanisms of action. The role of viperin in herpes simplex virus type 1 (HSV-1) infection is unclear, with conflicting data in the literature that is derived from a single human cell type. We have addressed this gap by investigating viperin during HSV-1 infection in several cell types, spanning species and including immortalized, non-immortalized and primary cells. We demonstrate that viperin upregulation by HSV-1 infection is cell-type-specific, with mouse cells typically showing greater increases compared with those of human origin. Further, overexpression and knockout of mouse, but not human viperin significantly impedes and increases HSV-1 replication, respectively. In primary mouse fibroblasts, viperin upregulation by infection requires viral gene transcription and occurs in a predominantly IFN-independent manner. Further we identify the N-terminal domain of viperin as being required for the anti-HSV-1 activity. Interestingly, this is the region of viperin that differs most between mouse and human, which may explain the apparent species-specific activity against HSV-1. Finally, we show that HSV-1 virion host shutoff (vhs) protein is a key viral factor that antagonises viperin in mouse cells. We conclude that viperin can be upregulated by HSV-1 in mouse and human cells, and that mouse viperin has anti-HSV-1 activity.
Collapse
Affiliation(s)
- Yeu-Yang Tseng
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anjali Gowripalan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Sarah N. Croft
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Stewart A. Smith
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Si Ming Man
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
- *Correspondence: David C. Tscharke,
| |
Collapse
|
10
|
Sarkar R, Nandi S, Lo M, Gope A, Chawla-Sarkar M. Viperin, an IFN-Stimulated Protein, Delays Rotavirus Release by Inhibiting Non-Structural Protein 4 (NSP4)-Induced Intrinsic Apoptosis. Viruses 2021; 13:1324. [PMID: 34372530 PMCID: PMC8310278 DOI: 10.3390/v13071324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/27/2022] Open
Abstract
Viral infections lead to expeditious activation of the host's innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence of viperin, to mitochondria during infection. Furthermore, mitochondrial translocation of NSP4 was found to be impeded by viperin, leading to abridged cytosolic release of Cyt c and subsequent inhibition of intrinsic apoptosis. Additionally, co-immunoprecipitation studies revealed that viperin associated with NSP4 through regions including both its radical SAM domain and its C-terminal domain. Collectively, the present study demonstrated the role of viperin in restricting rotavirus egress from infected host cells by modulating NSP4 mediated apoptosis, highlighting a novel mechanism behind viperin's antiviral action in addition to the intricacy of viperin-virus interaction.
Collapse
Affiliation(s)
| | | | | | | | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road Scheme-XM, Beliaghata, Kolkata 700010, India; (R.S.); (S.N.); (M.L.); (A.G.)
| |
Collapse
|
11
|
Grunkemeyer TJ, Ghosh S, Patel AM, Sajja K, Windak J, Basrur V, Kim Y, Nesvizhskii AI, Kennedy RT, Marsh ENG. The antiviral enzyme viperin inhibits cholesterol biosynthesis. J Biol Chem 2021; 297:100824. [PMID: 34029588 PMCID: PMC8254119 DOI: 10.1016/j.jbc.2021.100824] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/26/2021] [Accepted: 05/20/2021] [Indexed: 01/02/2023] Open
Abstract
Many enveloped viruses bud from cholesterol-rich lipid rafts on the cell membrane. Depleting cellular cholesterol impedes this process and results in viral particles with reduced viability. Viperin (Virus Inhibitory Protein, Endoplasmic Reticulum-associated, Interferon iNducible) is an endoplasmic reticulum membrane-associated enzyme that exerts broad-ranging antiviral effects, including inhibiting the budding of some enveloped viruses. However, the relationship between viperin expression and the retarded budding of virus particles from lipid rafts on the cell membrane is unclear. Here, we investigated the effect of viperin expression on cholesterol biosynthesis using transiently expressed genes in the human cell line human embryonic kidney 293T (HEK293T). We found that viperin expression reduces cholesterol levels by 20% to 30% in these cells. Following this observation, a proteomic screen of the viperin interactome identified several cholesterol biosynthetic enzymes among the top hits, including lanosterol synthase (LS) and squalene monooxygenase (SM), which are enzymes that catalyze key steps in establishing the sterol carbon skeleton. Coimmunoprecipitation experiments confirmed that viperin, LS, and SM form a complex at the endoplasmic reticulum membrane. While coexpression of viperin was found to significantly inhibit the specific activity of LS in HEK293T cell lysates, coexpression of viperin had no effect on the specific activity of SM, although did reduce SM protein levels by approximately 30%. Despite these inhibitory effects, the coexpression of neither LS nor SM was able to reverse the viperin-induced depletion of cellular cholesterol levels, possibly because viperin is highly expressed in transfected HEK293T cells. Our results establish a link between viperin expression and downregulation of cholesterol biosynthesis that helps explain viperin's antiviral effects against enveloped viruses.
Collapse
Affiliation(s)
| | - Soumi Ghosh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ayesha M Patel
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Keerthi Sajja
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - James Windak
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Youngsoo Kim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Biological Chemisrty, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Abstract
Activation and viral control of the innate immune response are hallmarks of hepatitis C virus (HCV) infection and are major determinants of spontaneous clearance or progression to chronic infection and liver disease. In this review, we provide a contemporary overview of how HCV is sensed by the host cell to trigger innate immune activation and the mechanisms deployed by the virus to evade this response. Type I and III interferons (IFNs) are crucial mediators of antiviral innate immunity against HCV, and we specifically highlight the importance of IFN-λ host genetics for the outcome of HCV infection. Last, we focus on the proinflammatory responses elicited by HCV infection and describe our current understanding of how interleukin (IL)-1β signaling and cross talk between the IL-1β and IFN signaling pathways lead to sustained inflammation and increased risk of liver pathology.
Collapse
Affiliation(s)
- Johannes Schwerk
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Amina Negash
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Ram Savan
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington School of Medicine, Seattle, Washington 98109, USA
| |
Collapse
|
13
|
Pan Y, Cheng A, Zhang X, Wang M, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Huang J, Zhang S, Mao S, Ou X, Gao Q, Yu Y, Liu Y, Zhang L, Yin Z, Jing B, Tian B, Pan L, Rehman MU, Chen X, Jia R. Transcriptome analysis of duck embryo fibroblasts for the dynamic response to duck tembusu virus infection and dual regulation of apoptosis genes. Aging (Albany NY) 2020; 12:17503-17527. [PMID: 32897243 PMCID: PMC7521532 DOI: 10.18632/aging.103759] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023]
Abstract
Duck Tembusu virus (DTMUV) is an emerging pathogenic flavivirus that has caused enormous economic losses in Southeast Asia. However, the pathogenic mechanism and host's responses after DTMUV infection remain poorly understood. During this study, total mRNA sequencing (RNA-Seq) analysis was used to detect the global gene expression in DEFs at various time points after DTMUV infection. We identified 326 genes altered significantly at all time points, and these genes were dynamically enriched in multifarious biological processes, including apoptosis, innate immune response, DNA replication, cell cycle arrest and DNA repair. Next, the results showed that apoptosis was induced and the proportion of apoptosis increased with time, and pro-apoptotic molecules caspases were activated. The RNA-seq data analysis further revealed that most pro-apoptosis and anti-apoptosis genes were early continually responsive, and the genes involved in both intrinsic and extrinsic apoptotic pathways were initiated. Further, the considerably enriched immune-relevant pathways were involved in apoptosis process, and protein-protein interactions (PPIs) analysis showed that IL6, STAT1, TNFAIP3, CFLAR and PTGS2 may be key regulators of DEFs apoptosis. In conclusion, this study not only contributes to understanding the underlying mechanism of DEFs infection with DTMUV, but also provides new insights into targets screening for antiviral therapy.
Collapse
Affiliation(s)
- Yuhong Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xingcui Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yanling Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Yunya Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Leichang Pan
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Mujeeb Ur Rehman
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Xiaoyue Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China
| |
Collapse
|
14
|
Ghosh S, Marsh ENG. Viperin: An ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J Biol Chem 2020; 295:11513-11528. [PMID: 32546482 PMCID: PMC7450102 DOI: 10.1074/jbc.rev120.012784] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Viperin plays an important and multifaceted role in the innate immune response to viral infection. Viperin is also notable as one of very few radical SAM-dependent enzymes present in higher animals; however, the enzyme appears broadly conserved across all kingdoms of life, which suggests that it represents an ancient defense mechanism against viral infections. Although viperin was discovered some 20 years ago, only recently was the enzyme's structure determined and its catalytic activity elucidated. The enzyme converts CTP to 3'-deoxy-3',4'-didehydro-CTP, which functions as novel chain-terminating antiviral nucleotide when misincorporated by viral RNA-dependent RNA polymerases. Moreover, in higher animals, viperin interacts with numerous other host and viral proteins, and it is apparent that this complex network of interactions constitutes another important aspect of the protein's antiviral activity. An emerging theme is that viperin appears to facilitate ubiquitin-dependent proteasomal degradation of some of the proteins it interacts with. Viperin-targeted protein degradation contributes to the antiviral response either by down-regulating various metabolic pathways important for viral replication or by directly targeting viral proteins for degradation. Here, we review recent advances in our understanding of the structure and catalytic activity of viperin, together with studies investigating the interactions between viperin and its target proteins. These studies have provided detailed insights into the biochemical processes underpinning this unusual enzyme's wide-ranging antiviral activity. We also highlight recent intriguing reports that implicate a broader role for viperin in regulating nonpathological cellular processes, including thermogenesis and protein secretion.
Collapse
Affiliation(s)
- Soumi Ghosh
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - E Neil G Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Li W, Li J, Sun M, Yang L, Mao L, Hao F, Liu M, Zhang W. Viperin protein inhibits the replication of caprine parainfluenza virus type 3 (CPIV 3) by interaction with viral N protein. Antiviral Res 2020; 184:104903. [PMID: 32800881 DOI: 10.1016/j.antiviral.2020.104903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022]
Abstract
Caprine parainfluenza virus type3 (CPIV3) is a newly identified member of Paramyxoviridae family. CPIV3 is highly prevalence in China and showed pathogenicity to goats; in addition, CPIV3 infection causes severe clinical disease under stress and/or co-infection conditions. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to systemically explore the anti-CPIV3 activity of ruminants' Viperin. CPIV3 infection up-regulated Viperin transcription but not protein expression in MDBK cells. Bovine and caprine Viperin genes (bVi and gVi) were amplified and analyzed by BLAST and multiple alignment. The obtained bVi/gVi amino acid sequences showed 99.5%-100% identity with previously submitted sequences and has variants at N-terminal domain (1-70aa) between each other. The pcDNA3.1 plasmids containing bVi and gVi genes were constructed to over-express the target proteins. CPIV3 was inoculated in MDBK cells over-expressing bVi/gVi and viral load was detected by qRT-PCR, virus titration and Western blot. Both of the bVi and gVi significantly inhibited CPIV3 genome copy numbers and viral titers at 24 and 48 hpi (P < 0.01); and viral N protein expression was also decreased, comparing with those of mock transfected group. The last 50aa C-terminal region was crucial for its anti-CPIV3 activity. In addition, the over-expression of bVi/gVi did not influence CPIV3 binding, entry and release in the cells. These results indicated the anti-CPIV3 activity occurred in viral RNA/protein synthesis progress of the viral replication cycle. The Viperin also showed similar inhibitory effect on different CPIV3 strains. The potential interaction of Viperin with viral proteins (N, P, C and V) was determined by confocal laser scanning microscopy and Co-IP assay. Co-localization of Viperin with N, P or C, but not V, was observed; while only N protein direct interacted with Viperin in Co-IP test, no matter using viral protein expressing plasmids transfected or CPIV3 infected cell samples. In conclusion, the bVi and gVi Viperin effectively inhibited CPIV3 replication potentially via the interaction of Viperin with viral N protein. The present results gave more information about antiviral activity of ruminants Viperin and provided foundation for further studies of the interaction of Viperin with CPIV3 and other related viruses.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Min Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maojun Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| |
Collapse
|
16
|
Unfried JP, Fortes P. LncRNAs in HCV Infection and HCV-Related Liver Disease. Int J Mol Sci 2020; 21:ijms21062255. [PMID: 32214045 PMCID: PMC7139329 DOI: 10.3390/ijms21062255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are transcripts with poor coding capacity that may interact with proteins, DNA, or other RNAs to perform structural and regulatory functions. The lncRNA transcriptome changes significantly in most diseases, including cancer and viral infections. In this review, we summarize the functional implications of lncRNA-deregulation after infection with hepatitis C virus (HCV). HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC). Most lncRNAs deregulated in infected cells that have been described function to potentiate or block the antiviral response and, therefore, they have a great impact on HCV viral replication. In addition, several lncRNAs upregulated by the infection contribute to viral release. Finally, many lncRNAs have been described as deregulated in HCV-related HCC that function to enhance cell survival, proliferation, and tumor progression by different mechanisms. Interestingly, some HCV-related HCC lncRNAs can be detected in bodily fluids, and there is great hope that they could be used as biomarkers to predict cancer initiation, progression, tumor burden, response to treatment, resistance to therapy, or tumor recurrence. Finally, there is high confidence that lncRNAs could also be used to improve the suboptimal long-term outcomes of current HCC treatment options.
Collapse
Affiliation(s)
| | - P. Fortes
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|
17
|
Abstract
Flaviviruses are a genus of mostly arthropod-borne RNA viruses that cause a range of pathologies in humans. Basic knowledge on flaviviruses is rapidly expanding, partly due to their status as frequent emerging or re-emerging pathogens. Flaviviruses include the dengue, Zika, West Nile, tick-borne encephalitis and yellow fever viruses (DENV, ZIKV, WNV, TBEV and YFV, respectively). As is the case with other families of viruses, the success of productive infection of human cells by flaviviruses depends in part on the antiviral activity of a heterogeneous group of cellular antiviral proteins called restriction factors. Restriction factors are the effector proteins of the cell-autonomous innate response against viruses, an immune pathway that also includes virus sensors as well as intracellular and extracellular signal mediators such as type I interferons (IFN-I). In this review, I summarize recent progress toward the identification and characterization of flavivirus restriction factors. In particular, I focus on IFI6, Schlafen 11, FMRP, OAS-RNase L, RyDEN, members of the TRIM family of proteins (TRIM5α, TRIM19, TRIM56, TRIM69 and TRIM79α) and a new mechanism of action proposed for viperin. Recent and future studies on this topic will lead to a more complete picture of the flavivirus restrictome, defined as the ensemble of cellular factors with demonstrated anti-flaviviral activity.
Collapse
|
18
|
Yuan Y, Miao Y, Qian L, Zhang Y, Liu C, Liu J, Zuo Y, Feng Q, Guo T, Zhang L, Chen X, Jin L, Huang F, Zhang H, Zhang W, Li W, Xu G, Zheng H. Targeting UBE4A Revives Viperin Protein in Epithelium to Enhance Host Antiviral Defense. Mol Cell 2020; 77:734-747.e7. [DOI: 10.1016/j.molcel.2019.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/26/2019] [Accepted: 10/30/2019] [Indexed: 01/26/2023]
|
19
|
Ashley CL, Abendroth A, McSharry BP, Slobedman B. Interferon-Independent Innate Responses to Cytomegalovirus. Front Immunol 2019; 10:2751. [PMID: 31921100 PMCID: PMC6917592 DOI: 10.3389/fimmu.2019.02751] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/28/2022] Open
Abstract
The critical role of interferons (IFNs) in mediating the innate immune response to cytomegalovirus (CMV) infection is well established. However, in recent years the functional importance of the IFN-independent antiviral response has become clearer. IFN-independent, IFN regulatory factor 3 (IRF3)-dependent interferon-stimulated gene (ISG) regulation in the context of CMV infection was first documented 20 years ago. Since then several IFN-independent, IRF3-dependent ISGs have been characterized and found to be among the most influential in the innate response to CMV. These include virus inhibitory protein, endoplasmic reticulum-associated IFN-inducible (viperin), ISG15, members of the interferon inducible protein with tetratricopeptide repeats (IFIT) family, interferon-inducible transmembrane (IFITM) proteins and myxovirus resistance proteins A and B (MxA, MxB). IRF3-independent, IFN-independent activation of canonically IFN-dependent signaling pathways has also been documented, such as IFN-independent biphasic activation of signal transducer and activator of transcription 1 (STAT1) during infection of monocytes, differential roles of mitochondrial and peroxisomal mitochondrial antiviral-signaling protein (MAVS), and the ability of human CMV (HCMV) immediate early protein 1 (IE1) protein to reroute IL-6 signaling and activation of STAT1 and its associated ISGs. This review examines the role of identified IFN-independent ISGs in the antiviral response to CMV and describes pathways of IFN-independent innate immune response induction by CMV.
Collapse
Affiliation(s)
- Caroline L Ashley
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Allison Abendroth
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| | - Brian P McSharry
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia.,School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Barry Slobedman
- Discipline of Infectious Diseases and Immunology, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Li M, Liao Z, Xu Z, Zou X, Wang Y, Peng H, Li Y, Ou X, Deng Y, Guo Y, Gan W, Peng T, Chen D, Cai M. The Interaction Mechanism Between Herpes Simplex Virus 1 Glycoprotein D and Host Antiviral Protein Viperin. Front Immunol 2019; 10:2810. [PMID: 31921110 PMCID: PMC6917645 DOI: 10.3389/fimmu.2019.02810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Viperin is an interferon-inducible protein that responsible for a variety of antiviral responses to different viruses. Our previous study has shown that the ribonuclease UL41 of herpes simplex virus 1 (HSV-1) can degrade the mRNA of viperin to promote HSV-1 replication. However, it is not clear whether other HSV-1 encoded proteins can regulate the function of viperin. Here, one novel viperin associated protein, glycoprotein D (gD), was identified. To verify the interaction between gD and viperin, gD and viperin expression plasmids were firstly co-transfected into COS-7 cells, and fluorescence microscope showed they co-localized at the perinuclear region, then this potential interaction was confirmed by co-immunoprecipitation (Co-IP) assays. Moreover, confocal microscopy demonstrated that gD and viperin co-localized at the Golgi body and lipid droplets. Furthermore, dual-luciferase reporter and Co-IP assays showed gD and viperin interaction leaded to the increase of IRF7-mediated IFN-β expression through promoting viperin and IRAK1 interaction and facilitating K63-linked IRAK1 polyubiquitination. Nevertheless, gD inhibited TRAF6-induced NF-κB activity by decreasing the interaction of viperin and TRAF6. In addition, gD restrained viperin-mediated interaction between IRAK1 and TRAF6. Eventually, gD and viperin interaction was corroborated to significantly inhibit the proliferation of HSV-1. Taken together, this study would open up new avenues toward delineating the function and physiological significance of gD and viperin during HSV-1 replication cycle.
Collapse
Affiliation(s)
- Meili Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Zongmin Liao
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,Department of Scientific Research and Education, Yuebei People's Hospital, Shaoguan, China
| | - Zuo Xu
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xingmei Zou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yuanfang Wang
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hao Peng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yiwen Li
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Ou
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yangxi Deng
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Yingjie Guo
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Weidong Gan
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- State Key Laboratory of Respiratory Diseases, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China.,South China Vaccine Corporation Limited, Guangzhou, China
| | - Daixiong Chen
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Mingsheng Cai
- Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Pathogenic Biology and Immunology, School of Basic Medical Science, Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Helbig KJ, Teh MY, Crosse KM, Monson EA, Smith M, Tran EN, Standish AJ, Morona R, Beard MR. The interferon stimulated gene viperin, restricts Shigella. flexneri in vitro. Sci Rep 2019; 9:15598. [PMID: 31666594 PMCID: PMC6821890 DOI: 10.1038/s41598-019-52130-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/14/2019] [Indexed: 01/08/2023] Open
Abstract
The role of interferon and interferon stimulated genes (ISG) in limiting bacterial infection is controversial, and the role of individual ISGs in the control of the bacterial life-cycle is limited. Viperin, is a broad acting anti-viral ISGs, which restricts multiple viral pathogens with diverse mechanisms. Viperin is upregulated early in some bacterial infections, and using the intracellular bacterial pathogen, S. flexneri, we have shown for the first time that viperin inhibits the intracellular bacterial life cycle. S. flexneri replication in cultured cells induced a predominantly type I interferon response, with an early increase in viperin expression. Ectopic expression of viperin limited S. flexneri cellular numbers by as much as 80% at 5hrs post invasion, with similar results also obtained for the intracellular pathogen, Listeria monocytogenes. Analysis of viperins functional domains required for anti-bacterial activity revealed the importance of both viperin's N-terminal, and its radical SAM enzymatic function. Live imaging of S. flexneri revealed impeded entry into viperin expressing cells, which corresponded to a loss of cellular cholesterol. This data further defines viperin's multi-functional role, to include the ability to limit intracellular bacteria; and highlights the role of ISGs and the type I IFN response in the control of bacterial pathogens.
Collapse
Affiliation(s)
- K J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - M Y Teh
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - K M Crosse
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E A Monson
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - M Smith
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - E N Tran
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - A J Standish
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - R Morona
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| | - M R Beard
- Department of Molecular and Biomedical Science, Research Centre for Infectious Diseases, University of Adelaide, Adelaide, South Australia
| |
Collapse
|
22
|
Xu C, Feng L, Chen P, Li A, Guo S, Jiao X, Zhang C, Zhao Y, Jin X, Zhong K, Guo Y, Zhu H, Han L, Yang G, Li H, Wang Y. Viperin inhibits classical swine fever virus replication by interacting with viral nonstructural 5A protein. J Med Virol 2019; 92:149-160. [PMID: 31517388 DOI: 10.1002/jmv.25595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/09/2019] [Indexed: 01/18/2023]
Abstract
Classical swine fever virus (CSFV) is a single-stranded RNA flavivirus that can cause serious diseases in porcine species, including symptoms of infarction, systemic hemorrhage, high fever, or depression. Viperin is an important interferon-inducible antiviral gene that has been shown to inhibit CSFV, but the exact mechanisms by which it is able to do so remain poorly characterized. In the present study, we determined that CSFV infection led to viperin upregulation in PK-15 cells (porcine kidney cell). When viperin was overexpressed in these cells, this markedly attenuated CSFV replication, with clear reductions in viral copy number after 12 to 48 hours postinfection. Immunofluorescence microscopy revealed that the viral NS5A protein colocalized with viperin in infected cells, and this was confirmed via confocal laser scanning microscopy using labeled versions of these proteins, and by co-immunoprecipitation which confirmed that NS5A directly interacts with viperin. When NS5A was overexpressed, this inhibited the replication of CSFV, and we determined that the radical SAM domain and N-terminal domain of viperin was critical for its ability to bind to NS5A, with the latter being most important for this interaction. Together, our in vitro results highlight a potential mechanism whereby viperin is able to inhibit CSFV replication. These results have the potential to assist future efforts to prevent or treat systemic CSFV-induced disease, and may also offer more general insights into the antiviral role of viperin in innate immunity.
Collapse
Affiliation(s)
- Chunmei Xu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Luping Feng
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Peige Chen
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Anqi Li
- School of literature, Zhengzhou Sias University, Xinzheng, Henan, China
| | - Shuang Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xianqin Jiao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chengyu Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yunze Zhao
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiangyang Jin
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kai Zhong
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yujie Guo
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heshui Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Liqiang Han
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoyu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Heping Li
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yueying Wang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
23
|
Shanaka KASN, Tharuka MDN, Priyathilaka TT, Lee J. Molecular characterization and expression analysis of rockfish (Sebastes schlegelii) viperin, and its ability to enervate RNA virus transcription and replication in vitro. FISH & SHELLFISH IMMUNOLOGY 2019; 92:655-666. [PMID: 31252045 DOI: 10.1016/j.fsi.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/04/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Viperin, also known as RSAD2 (Radical S-adenosyl methionine domain containing 2), is an interferon-induced endoplasmic reticulum-associated antiviral protein. Previous studies have shown that viperin levels are elevated in the presence of viral RNA, but it has rarely been characterized in marine organisms. This study was designed to functionally characterize rockfish viperin (SsVip), to examine the effects of different immune stimulants on its expression, and to determine its subcellular localization. SsVip is a 349 amino acid protein with a predicted molecular mass of 40.24 kDa. It contains an S-adenosyl l-methionine binding conserved domain with a CNYKCGFC sequence. Unchallenged tissue expression analysis using quantitative real time PCR (qPCR) revealed SsVip expression to be the highest in the blood, followed by the spleen. When challenged with poly I:C, SsVip was upregulated by approximately 60-fold in the blood after 24 h, and approximately 50-fold in the spleen after 12 h. Notable upregulation was detected throughout the poly I:C challenge experiment in both tissues. Significant expression of SsVip was detected in the blood following Streptococcus iniae and lipopolysaccharide challenge, and viral hemorrhagic septicemia virus (VHSV) gene transcription was significantly downregulated during SsVip overexpression. Furthermore, cell viability assay and virus titer quantification with the presence of SsVip revealed a significant reduction in virus replication. As with previously identified viperin counterparts, SsVip was localized in the endoplasmic reticulum. Our findings show that SsVip is an antiviral protein crucial to innate immune defense.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
24
|
Honarmand Ebrahimi K. A unifying view of the broad-spectrum antiviral activity of RSAD2 (viperin) based on its radical-SAM chemistry. Metallomics 2019; 10:539-552. [PMID: 29568838 DOI: 10.1039/c7mt00341b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RSAD2 (cig-5), also known as viperin (virus inhibitory protein, endoplasmic reticulum associated, interferon inducible), is a member of the radical S-adenosylmethionine (SAM) superfamily of enzymes. Since the discovery of this enzyme more than a decade ago, numerous studies have shown that it exhibits antiviral activity against a wide range of viruses. However, there is no clear picture demonstrating the mechanism by which RSAD2 restricts the replication process of different viruses, largely because there is no direct evidence describing its in vivo enzymatic activity. As a result, a multifunctionality model has emerged. According to this model the mechanism by which RSAD2 restricts replication of different viruses varies and in many cases is not dependent on the radical-SAM chemistry of RSAD2. If the radical-SAM activity of RSAD2 is not required for its antiviral function, the question worth asking is: why does the cellular defence mechanism induce the expression of the radical-SAM enzyme RSAD2, which is metabolically expensive due to the requirement for a [4Fe-4S] cluster and usage of SAM? Here, in contrast to the multifunctionality view, I put forward a unifying model. I postulate that the radical-SAM activity of RSAD2 modulates cellular metabolic pathways essential for viral replication and/or cell proliferation and survival. As a result, its catalytic activity restricts the replication of a wide range of viruses via a common cellular function. This view is based on recent discoveries hinting towards possible substrates of RSAD2, re-evaluation of previous studies regarding the antiviral activity of RSAD2, and accumulating evidence suggesting a role of human RSAD2 in the metabolic reprogramming of cells.
Collapse
|
25
|
Izumi T, Sakata K, Okuzaki D, Inokuchi S, Tamura T, Motooka D, Nakamura S, Ono C, Shimokawa M, Matsuura Y, Mori M, Fukuhara T, Yoshizumi T. Characterization of human pegivirus infection in liver transplantation recipients. J Med Virol 2019; 91:2093-2100. [PMID: 31350911 DOI: 10.1002/jmv.25555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/24/2019] [Indexed: 12/23/2022]
Abstract
Approximately 2% of healthy persons are infected with human pegivirus (HPgV). HPgV is transmitted via vertical, sexual, and blood-borne routes. Recently, the association of HPgV infection with the risk of lymphoma was reported. Here, we examined the prevalence of chronic HPgV infection in liver transplantation (LT) recipients and patients with hepatectomy and the influence of HPgV infection after LT on clinical and perioperative factors. We enrolled 313 LT recipients and 187 patients with hepatectomy who received care at the Kyusyu University Hospital between May 1997 and September 2017. Of the 313 recipients and 187 patients enrolled in this study, 44 recipients (14.1%) and 2 patients (1.1%) had HPgV viremia, respectively. There was no significant association between HPgV infection and LT outcomes. Interestingly, one recipient was infected with HPgV during the peritransplant period, which was likely transmitted via blood transfusion because HPgV RNA was detected from the blood bag transfused to the recipient during LT. We reviewed the available literature on the prevalence HPgV infections in other organ-transplanted patients and whether they impacted clinical outcomes. They also had the higher prevalence of HPgV infection, while it appears to be of low or no consequences. In addition, HPgV infection induced the upregulation of interferon-stimulated gene (ISG) expression in peripheral blood mononuclear cells. LT recipients had higher HPgV viremia compared to patients with hepatectomy. Although HPgV infection was not associated with LT-related outcomes, it induced ISG expression in recipients.
Collapse
Affiliation(s)
- Takuma Izumi
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Kazuhito Sakata
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shoichi Inokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Tomokazu Tamura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masahiro Shimokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyusyu University, Fukuoka, Japan
| |
Collapse
|
26
|
Virus Genotype-Dependent Transcriptional Alterations in Lipid Metabolism and Inflammation Pathways in the Hepatitis C Virus-infected Liver. Sci Rep 2019; 9:10596. [PMID: 31332246 PMCID: PMC6646375 DOI: 10.1038/s41598-019-46664-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Despite advances in antiviral therapy, molecular drivers of Hepatitis C Virus (HCV)-related liver disease remain poorly characterised. Chronic infection with HCV genotypes (1 and 3) differ in presentation of liver steatosis and virological response to therapies, both to interferon and direct acting antivirals. To understand what drives these clinically important differences, liver expression profiles of patients with HCV Genotype 1 or 3 infection (n = 26 and 33), alcoholic liver disease (n = 8), and no liver disease (n = 10) were analysed using transcriptome-wide microarrays. In progressive liver disease, HCV genotype was the major contributor to altered liver gene expression with 2151 genes differentially expressed >1.5-fold between HCV Genotype 1 and 3. In contrast, only 6 genes were altered between the HCV genotypes in advanced liver disease. Induction of lipogenic, lipolytic, and interferon stimulated gene pathways were enriched in Genotype 1 injury whilst a broad range of immune-associated pathways were associated with Genotype 3 injury. The results are consistent with greater lipid turnover in HCV Genotype 1 patients. Moreover, the lower activity in inflammatory pathways associated with HCV genotype 1 is consistent with relative resistance to interferon-based therapy. This data provides a molecular framework to explain the clinical manifestations of HCV-associated liver disease.
Collapse
|
27
|
Wong CP, Xu Z, Hou S, Limonta D, Kumar A, Power C, Hobman TC. Interplay between Zika Virus and Peroxisomes during Infection. Cells 2019; 8:cells8070725. [PMID: 31311201 PMCID: PMC6678468 DOI: 10.3390/cells8070725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) has emerged as an important human pathogen that can cause congenital defects in the fetus and neurological conditions in adults. The interferon (IFN) system has proven crucial in restricting ZIKV replication and pathogenesis. The canonical IFN response is triggered by the detection of viral RNA through RIG-I like receptors followed by activation of the adaptor protein MAVS on mitochondrial membranes. Recent studies have shown that a second organelle, peroxisomes, also function as a signaling platforms for the IFN response. Here, we investigated how ZIKV infection affects peroxisome biogenesis and antiviral signaling. We show that ZIKV infection depletes peroxisomes in human fetal astrocytes, a brain cell type that can support persistent infection. The peroxisome biogenesis factor PEX11B was shown to inhibit ZIKV replication, likely by increasing peroxisome numbers and enhancing downstream IFN-dependent antiviral signaling. Given that peroxisomes play critical roles in brain development and nerve function, our studies provide important insights into the roles of peroxisomes in regulating ZIKV infection and potentially neuropathogenesis.
Collapse
Affiliation(s)
- Cheung Pang Wong
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shangmei Hou
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Daniel Limonta
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Anil Kumar
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Women & Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Tom C Hobman
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
- Women & Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
28
|
Pereira-Dutra FS, Teixeira L, de Souza Costa MF, Bozza PT. Fat, fight, and beyond: The multiple roles of lipid droplets in infections and inflammation. J Leukoc Biol 2019; 106:563-580. [PMID: 31121077 DOI: 10.1002/jlb.4mr0119-035r] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/16/2019] [Accepted: 04/26/2019] [Indexed: 12/12/2022] Open
Abstract
Increased accumulation of cytoplasmic lipid droplets (LDs) in host nonadipose cells is commonly observed in response to numerous infectious diseases, including bacterial, parasite, and fungal infections. LDs are lipid-enriched, dynamic organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell and stimulus regulated. Far beyond being simply a deposit of neutral lipids, LDs have come to be seen as an essential platform for various cellular processes, including metabolic regulation, cell signaling, and the immune response. LD participation in the immune response occurs as sites for compartmentalization of several immunometabolic signaling pathways, production of inflammatory lipid mediators, and regulation of antigen presentation. Infection-driven LD biogenesis is a complexly regulated process that involves innate immune receptors, transcriptional and posttranscriptional regulation, increased lipid uptake, and new lipid synthesis. Accumulating evidence demonstrates that intracellular pathogens are able to exploit LDs as an energy source, a replication site, and/or a mechanism of immune response evasion. Nevertheless, LDs can also act in favor of the host as part of the immune and inflammatory response to pathogens. Here, we review recent findings that explored the new roles of LDs in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Livia Teixeira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Shah M, Bharadwaj MSK, Gupta A, Kumar R, Kumar S. Chicken viperin inhibits Newcastle disease virus infection in vitro: A possible interaction with the viral matrix protein. Cytokine 2019; 120:28-40. [PMID: 31003187 DOI: 10.1016/j.cyto.2019.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023]
Abstract
Viperin is an interferon-inducible protein that helps in protecting mammals against various virus infections. Viperin is a highly conserved member of the interferon-stimulated genes (ISG) family in many species. Viperin has been shown to play a pivotal role in the innate immunity of chicken; however, its role has not been explored in its antiviral potential. Newcastle disease virus (NDV) is the causative agent of an infectious disease in poultry. In the present study, we have shown the anti-NDV effect of chicken viperin (cViperin). The impact of cViperin upon NDV infection was investigated in chicken embryo fibroblast. The modeling of the cViperin protein was done using I-TASSER and ZDOCK is used to predict the possible interaction with the matrix protein of NDV. The interaction was further confirmed by co-immunoprecipitation assay using recombinant matrix protein of NDV with the recombinant cViperin. The recombinant NDV expressing cViperin showed reduced replication of the virus upon its growth kinetics. Our results suggest downregulation of NDV replication in the presence of cViperin. The study will be critical to elaborate our understanding of the chicken innate immune system which could help develop antiviral strategies against NDV infection.
Collapse
Affiliation(s)
- Manisha Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - M S K Bharadwaj
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
30
|
Lindqvist R, Överby AK. The Role of Viperin in Antiflavivirus Responses. DNA Cell Biol 2018; 37:725-730. [DOI: 10.1089/dna.2018.4328] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå Univeristy, Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research, Umeå Univeristy, Umeå, Sweden
| |
Collapse
|
31
|
Feng Q, Yao J, Zhou G, Xia W, Lyu J, Li X, Zhao T, Zhang G, Zhao N, Yang J. Quantitative Proteomic Analysis Reveals That Arctigenin Alleviates Concanavalin A-Induced Hepatitis Through Suppressing Immune System and Regulating Autophagy. Front Immunol 2018; 9:1881. [PMID: 30177931 PMCID: PMC6109684 DOI: 10.3389/fimmu.2018.01881] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
Concanavalin A-induced autoimmune hepatitis is a well-established experimental model for immune-mediated liver injury. It has been widely used in the therapeutic studies of immune hepatitis. The in-depth analysis of dysregulated proteins from comparative proteomic results indicated that the activation of immune system resulted in the deregulation of autophagy. Follow-up studies validated that some immune related proteins, including Stat1, Pkr, Atg7, and Adrm1, were indeed upregulated. The accumulations of LC3B-II and p62 were confirmed by immunohistochemistry and Western blot analyses. Arctigenin pretreatment significantly alleviated the liver injury, as evidenced by biochemical and histopathological investigations, whose protective effects were comparable with Prednisone acetate and Cyclosporin A. Arctigenin pretreatment decreased the levels of IL-6 and IFN-γ, but increased the ones of IL-10. Next, the quantitative proteomic analysis demonstrated that ARC pretreatment suppressed the activation of immune system through the inhibition of IFN-γ signaling, when it downregulated the protein expressions of Stat1, P-Stat1, Pkr, P-Pkr, Bnip3, Beclin1, Atg7, LC3B, Adrm1, and p62. Meanwhile, Arctigenin pretreatment also reduced the gene expressions of Stat1, Pkr, and Atg7. These results suggested that Arctigenin alleviated autophagy as well as apoptosis through inhibiting IFN-γ/IL-6/Stat1 pathway and IL-6/Bnip3 pathway. In summary, the comparative proteomic analysis revealed that the activation of immune system led to Concanavalin A-induced hepatitis. Both autophagy and apoptosis had important clinical implications for the treatment of immune hepatitis. Arctigenin might exert great therapeutic potential in immune-mediated liver injury.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ge Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingang Lyu
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xin Li
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Tao Zhao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Guimin Zhang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China.,School of Pharmacy, Linyi University, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
32
|
Sabino M, Cappelli K, Capomaccio S, Pascucci L, Biasato I, Verini-Supplizi A, Valiani A, Trabalza-Marinucci M. Dietary supplementation with olive mill wastewaters induces modifications on chicken jejunum epithelial cell transcriptome and modulates jejunum morphology. BMC Genomics 2018; 19:576. [PMID: 30068314 PMCID: PMC6090849 DOI: 10.1186/s12864-018-4962-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/26/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The Mediterranean diet is considered one of the healthier food habits and olive oil is one of its key components. Olive oil polyphenols are known to induce beneficial effects in several pathological conditions, such as inflammatory bowel disease, and to contrast the proliferation of cancer cells or hypercholesterolemia. Polyphenols are also present in waste products derived from the olive industry: olive mill wastewaters (OMWW) are rich in polyphenols and there is an increasing interest in using OMWW in animal nutrition. OMWW are attributed with positive effects in promoting chicken performance and the quality of food-derived products. However, a tissue-specific transcriptome target analysis of chickens fed with OMWW has never been attempted. RESULTS We explored the effect of dietary OMWW on the intestinal function in broilers. A morphological analysis of the jejunum revealed that OMWW reduced crypt depth, whereas no significant modifications were observed for villus height and the villus height/crypt depth ratio. An RNA Sequencing analysis was performed on isolated, intestinal, epithelial cells and 280 differentially expressed genes were found using a count-based approach. An enrichment analysis revealed that the majority of up regulated genes in the OMWW group were over-represented by the regulation of viral genome replication-related GO-Terms, whereas down regulated genes were mainly involved in cholesterol and lipid metabolism. CONCLUSIONS Our study showed how an industrial waste product can be recycled as a feed additive with a positive relapse. OMWW dietary supplementation can be a nutritional strategy to improve chicken performance and health, prevent intestinal damage, enhance innate immunity and regulate cholesterol metabolism and fat deposition.
Collapse
Affiliation(s)
- Marcella Sabino
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Katia Cappelli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Stefano Capomaccio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Luisa Pascucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Ilaria Biasato
- Department of Veterinary Sciences, University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Andrea Verini-Supplizi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Valiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche, Via Gaetano Salvemini 1, 06126 Perugia, Italy
| | | |
Collapse
|
33
|
Chakravarti A, Selvadurai K, Shahoei R, Lee H, Fatma S, Tajkhorshid E, Huang RH. Reconstitution and substrate specificity for isopentenyl pyrophosphate of the antiviral radical SAM enzyme viperin. J Biol Chem 2018; 293:14122-14133. [PMID: 30030381 DOI: 10.1074/jbc.ra118.003998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/11/2018] [Indexed: 01/09/2023] Open
Abstract
Viperin is a radical SAM enzyme that has been shown to possess antiviral activity against a broad spectrum of viruses; however, its molecular mechanism is unknown. We report here that recombinant fungal and archaeal viperin enzymes catalyze the addition of the 5'-deoxyadenosyl radical (5'-dA•) to the double bond of isopentenyl pyrophosphate (IPP), producing a new compound we named adenylated isopentyl pyrophosphate (AIPP). The reaction is specific for IPP, as other pyrophosphate compounds involved in the mevalonate biosynthetic pathway did not react with 5'-dA• Enzymatic reactions employing IPP derivatives as substrates revealed that any chemical change in IPP diminishes its ability to be an effective substrate of fungal viperin. Mutational studies disclosed that the hydroxyl group on the side chain of Tyr-245 in fungal viperin is the likely source of hydrogen in the last step of the radical addition, providing mechanistic insight into the radical reaction catalyzed by fungal viperin. Structure-based molecular dynamics (MD) simulations of viperin interacting with IPP revealed a good fit of the isopentenyl motif of IPP to the active site cavity of viperin, unraveling the molecular basis of substrate specificity of viperin for IPP. Collectively, our findings indicate that IPP is an effective substrate of fungal and archaeal viperin enzymes and provide critical insights into the reaction mechanism.
Collapse
Affiliation(s)
| | | | - Rezvan Shahoei
- Physics.,the Beckman Institute for Advanced Science and Technology, and
| | - Hugo Lee
- From the Departments of Biochemistry and
| | | | - Emad Tajkhorshid
- From the Departments of Biochemistry and.,the Beckman Institute for Advanced Science and Technology, and.,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Raven H Huang
- From the Departments of Biochemistry and .,the Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
34
|
Dukhovny A, Shlomai A, Sklan EH. The antiviral protein Viperin suppresses T7 promoter dependent RNA synthesis-possible implications for its antiviral activity. Sci Rep 2018; 8:8100. [PMID: 29802323 PMCID: PMC5970183 DOI: 10.1038/s41598-018-26516-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Viperin is a multifunctional interferon-inducible broad-spectrum antiviral protein. Viperin belongs to the S-Adenosylmethionine (SAM) superfamily of enzymes known to catalyze a wide variety of radical-mediated reactions. However, the exact mechanism by which viperin exerts its functions is still unclear. Interestingly, for many RNA viruses viperin was shown to inhibit viral RNA accumulation by interacting with different viral non-structural proteins. Here, we show that viperin inhibits RNA synthesis by bacteriophage T7 polymerase in mammalian cells. This inhibition is specific and occurs at the RNA level. Viperin expression significantly reduced T7-mediated cytoplasmic RNA levels. The data showing that viperin inhibits the bacteriophage T7 polymerase supports the conservation of viperin’s antiviral activity between species. These results highlight the possibility that viperin might utilize a broader mechanism of inhibition. Accordingly, our results suggest a novel mechanism involving polymerase inhibition and provides a tractable system for future mechanistic studies of viperin.
Collapse
Affiliation(s)
- Anna Dukhovny
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amir Shlomai
- Department of Medicine D and the Liver Institute, Rabin Medical Center, Beilinson Hospital, Petach-Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
35
|
Valadkhan S, Fortes P. Regulation of the Interferon Response by lncRNAs in HCV Infection. Front Microbiol 2018; 9:181. [PMID: 29503633 PMCID: PMC5820368 DOI: 10.3389/fmicb.2018.00181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/26/2018] [Indexed: 12/24/2022] Open
Affiliation(s)
- Saba Valadkhan
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Saba Valadkhan, Puri Fortes,
| | - Puri Fortes
- Center for Applied Medical Research, Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), University of Navarra, Pamplona, Spain
- *Correspondence: Saba Valadkhan, Puri Fortes,
| |
Collapse
|
36
|
Zhang J, Liu C, Zhao S, Guo S, Shen B. Molecular characterization and expression analyses of the Viperin gene in Larimichthys crocea (Family: Sciaenidae). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:59-66. [PMID: 29066399 DOI: 10.1016/j.dci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
In this study, we sequenced and characterized an interferon-stimulated gene Viperin homologue, LcViperin, from large yellow croaker (Larimichthys crocea). The LcViperin encodes 354 amino acids and contains an N-terminal amphipathic α-helix domain, a radical S-adenosyl-l-methionine (SAM) domain and a highly conserved C-terminal domain. The analyses of LcViperin promoter region revealed nine kinds of putative transcriptional factor binding sites, including five putative ICSBP (IRF-8) binding sites and one putative IRF-1 binding site, indicating that the expression of LcViperin might be induced by the type I IFN response. Phylogenetic analyses based on amino acid sequences showed that the Viperin of large yellow croaker is clustered together with its counterparts from other teleost fishes. The Real-time PCR analyses showed that the LcViperin was found to be ubiquitously expressed in ten examined tissues in large yellow croaker, with predominant expression in peripheral blood, followed by heart and gill. Expression analyses showed that the LcViperin was rapidly and significantly upregulated in vivo after poly (I:C) challenge in peripheral blood, head kidney, spleen and liver tissues. The results indicate that the LcViperin might play a pivotal role in antiviral immune responses.
Collapse
Affiliation(s)
- Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Cheng Liu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shujiang Zhao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Shaoyu Guo
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science, Zhejiang Ocean University, Zhoushan 316004, China.
| |
Collapse
|
37
|
Viperin Targets Flavivirus Virulence by Inducing Assembly of Noninfectious Capsid Particles. J Virol 2017; 92:JVI.01751-17. [PMID: 29046456 PMCID: PMC5730767 DOI: 10.1128/jvi.01751-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. We describe here a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly and involves release of malfunctioning membrane-associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad-spectrum antiviral interferon-stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1) as the cellular protein targeted by viperin. Viperin-induced antiviral activity, as well as C-particle release, was stimulated by GBF1 inhibition and knockdown and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive noninfectious virus particles via a GBF1-dependent mechanism. This as-yet-undescribed antiviral mechanism allows potential therapeutic intervention. IMPORTANCE The interferon response can target viral infection on almost every level; however, very little is known about the interference of flavivirus assembly. We show here that interferon, through the action of viperin, can disturb the assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appears to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study, we show that viperin induces capsid particle release by interacting and inhibiting the function of the cellular protein Golgi brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and is essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target.
Collapse
|
38
|
Li W, Mao L, Cao Y, Zhou B, Yang L, Han L, Hao F, Lin T, Zhang W, Jiang J. Porcine Viperin protein inhibits the replication of classical swine fever virus (CSFV) in vitro. Virol J 2017; 14:202. [PMID: 29061156 PMCID: PMC5654138 DOI: 10.1186/s12985-017-0868-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background Classical swine fever virus (CSFV) is the causative pathogen of Classical swine fever (CSF), a highly contagious disease of swine. Viperin is one of the hundreds of interferon-stimulated genes (ISGs), and possesses a wide range of antiviral activities. The aim of this study was to explore whether porcine Viperin has the anti-CSFV activity. Method The influences of CSFV infection on Viperin expression and Newcastle disease virus (NDV)/Pseudorabies virus (PRV)-induced Viperin expression were examined in 3D4/21 cells and porcine peripheral blood mononuclear cells (PBMCs). Porcine Viperin gene was amplified to generate cell line PK-Vi over-expressing Viperin. CSFV was inoculated in the cell lines and viral load was detected by qRT-PCR, virus titration and Western blot. The influence of Viperin expression on CSFV binding, entry and release in the cells was also examined. The co-localization of Viperin with CSFV and its proteins (E2, NS5B) was determined by confocal laser scanning microscopy test. Co-IP assay was performed to check the interaction of Viperin with CSFV proteins. Results CSFV infection could not induce Viperin expression in vitro while significantly inhibiting NDV/PRV-induced Viperin expression at 12, 24 and 48 h post infection (hpi; P < 0.05). The proliferation of CSFV in PK-Vi was significantly inhibited at 24, 48 and 72 hpi (P < 0.05), comparing with control cells (PK-C1 expressing EGFP). Virus in both cell culture supernatants and cell pellets were reduced equally. CSFV binding and entry in the cells were not interfered by Viperin expression. These results indicated its anti-CSFV function occurred during the genome and/or protein synthesis step. Confocal laser scanning microscopy test showed the Viperin-EGFP protein co-localized with CSFV E2 protein in CSFV infected PK-Vi cells. Further experiments indicated that Viperin protein co-localized with E2 and NS5B proteins of CSFV in the transfected 293 T cells. Furthermore, Co-IP assay confirmed the interaction of Viperin with E2 protein, but not NS5B. Conclusion Porcine Viperin effectively inhibited CSFV replication in vitro, potentially via the interaction of Viperin with CSFV E2 protein in cytoplasm. The results provided foundation for further studies of the interaction of Viperin with CSFV and other viruses.
Collapse
Affiliation(s)
- Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| | - Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Leilei Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Linxiao Han
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Hao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Tao Lin
- Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Wenwen Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Jieyuan Jiang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
39
|
Barriocanal M, Fortes P. Long Non-coding RNAs in Hepatitis C Virus-Infected Cells. Front Microbiol 2017; 8:1833. [PMID: 29033906 PMCID: PMC5625025 DOI: 10.3389/fmicb.2017.01833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) often leads to a chronic infection in the liver that may progress to steatosis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Several viral and cellular factors are required for a productive infection and for the development of liver disease. Some of these are long non-coding RNAs (lncRNAs) deregulated in infected cells. After HCV infection, the sequence and the structure of the viral RNA genome are sensed to activate interferon (IFN) synthesis and signaling pathways. These antiviral pathways regulate transcription of several cellular lncRNAs. Some of these are also deregulated in response to viral replication. Certain viral proteins and/or viral replication can activate transcription factors such as MYC, SP1, NRF2, or HIF1α that modulate the expression of additional cellular lncRNAs. Interestingly, several lncRNAs deregulated in HCV-infected cells described so far play proviral or antiviral functions by acting as positive or negative regulators of the IFN system, while others help in the development of liver cirrhosis and HCC. The study of the structure and mechanism of action of these lncRNAs may aid in the development of novel strategies to treat infectious and immune pathologies and liver diseases such as cirrhosis and HCC.
Collapse
Affiliation(s)
| | - Puri Fortes
- Department of Gene Therapy and Hepatology, Navarra Institute for Health Research (IdiSNA), Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, Spain
| |
Collapse
|
40
|
Van der Hoek KH, Eyre NS, Shue B, Khantisitthiporn O, Glab-Ampi K, Carr JM, Gartner MJ, Jolly LA, Thomas PQ, Adikusuma F, Jankovic-Karasoulos T, Roberts CT, Helbig KJ, Beard MR. Viperin is an important host restriction factor in control of Zika virus infection. Sci Rep 2017; 7:4475. [PMID: 28667332 PMCID: PMC5493656 DOI: 10.1038/s41598-017-04138-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/24/2017] [Indexed: 01/01/2023] Open
Abstract
Zika virus (ZIKV) infection has emerged as a global health threat and infection of pregnant women causes intrauterine growth restriction, spontaneous abortion and microcephaly in newborns. Here we show using biologically relevant cells of neural and placental origin that following ZIKV infection, there is attenuation of the cellular innate response characterised by reduced expression of IFN-β and associated interferon stimulated genes (ISGs). One such ISG is viperin that has well documented antiviral activity against a wide range of viruses. Expression of viperin in cultured cells resulted in significant impairment of ZIKV replication, while MEFs derived from CRISPR/Cas9 derived viperin-/- mice replicated ZIKV to higher titers compared to their WT counterparts. These results suggest that ZIKV can attenuate ISG expression to avoid the cellular antiviral innate response, thus allowing the virus to replicate unchecked. Moreover, we have identified that the ISG viperin has significant anti-ZIKV activity. Further understanding of how ZIKV perturbs the ISG response and the molecular mechanisms utilised by viperin to suppress ZIKV replication will aid in our understanding of ZIKV biology, pathogenesis and possible design of novel antiviral strategies.
Collapse
Affiliation(s)
- Kylie H Van der Hoek
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicholas S Eyre
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Byron Shue
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Onruedee Khantisitthiporn
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Kittirat Glab-Ampi
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Jillian M Carr
- Microbiology and Infectious Diseases, School of Medicine, Flinders University, Bedford Park, SA, 5042, Australia
| | - Matthew J Gartner
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia
| | - Lachlan A Jolly
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Paul Q Thomas
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Fatwa Adikusuma
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tanja Jankovic-Karasoulos
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Claire T Roberts
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Karla J Helbig
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Vic, 3086, Australia
| | - Michael R Beard
- Molecular and Cellular Biology, Research Centre for Infectious Diseases, The University of Adelaide, Adelaide, SA, 5005, Australia.
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
41
|
Upadhyay AS, Stehling O, Panayiotou C, Rösser R, Lill R, Överby AK. Cellular requirements for iron-sulfur cluster insertion into the antiviral radical SAM protein viperin. J Biol Chem 2017; 292:13879-13889. [PMID: 28615450 DOI: 10.1074/jbc.m117.780122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/05/2017] [Indexed: 01/05/2023] Open
Abstract
Viperin (RSAD2) is an interferon-stimulated antiviral protein that belongs to the radical S-adenosylmethionine (SAM) enzyme family. Viperin's iron-sulfur (Fe/S) cluster is critical for its antiviral activity against many different viruses. CIA1 (CIAO1), an essential component of the cytosolic iron-sulfur protein assembly (CIA) machinery, is crucial for Fe/S cluster insertion into viperin and hence for viperin's antiviral activity. In the CIA pathway, CIA1 cooperates with CIA2A, CIA2B, and MMS19 targeting factors to form various complexes that mediate the dedicated maturation of specific Fe/S recipient proteins. To date, however, the mechanisms of how viperin acquires its radical SAM Fe/S cluster to gain antiviral activity are poorly understood. Using co-immunoprecipitation and 55Fe-radiolabeling experiments, we therefore studied the roles of CIA2A, CIA2B, and MMS19 for Fe/S cluster insertion. CIA2B and MMS19 physically interacted with the C terminus of viperin and used CIA1 as the primary viperin-interacting protein. In contrast, CIA2A bound to viperin's N terminus in a CIA1-, CIA2B-, and MMS19-independent fashion. Of note, the observed interaction of both CIA2 isoforms with a single Fe/S target protein is unprecedented in the CIA pathway. 55Fe-radiolabeling experiments with human cells depleted of CIA1, CIA2A, CIA2B, or MMS19 revealed that CIA1, but none of the other CIA factors, is predominantly required for 55Fe/S cluster incorporation into viperin. Collectively, viperin maturation represents a novel CIA pathway with a minimal requirement of the CIA-targeting factors and represents a new paradigm for the insertion of the Fe/S cofactor into a radical SAM protein.
Collapse
Affiliation(s)
- Arunkumar S Upadhyay
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Oliver Stehling
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Christakis Panayiotou
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden.,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Ralf Rösser
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and
| | - Roland Lill
- the Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch-strasse 6, 35032 Marburg, Germany, and .,LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Hans-Meerwein-Strasse, 35043 Marburg, Germany
| | - Anna K Överby
- From the Department of Clinical Microbiology, Virology, Umeå University, 90185 Umeå, Sweden, .,the Laboratory for Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
42
|
Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein. Proc Natl Acad Sci U S A 2017; 114:2018-2023. [PMID: 28159892 DOI: 10.1073/pnas.1614623114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.
Collapse
|
43
|
Long noncoding RNA #32 contributes to antiviral responses by controlling interferon-stimulated gene expression. Proc Natl Acad Sci U S A 2016; 113:10388-93. [PMID: 27582466 DOI: 10.1073/pnas.1525022113] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the breadth of knowledge that exists regarding the function of long noncoding RNAs (lncRNAs) in biological phenomena, the role of lncRNAs in host antiviral responses is poorly understood. Here, we report that lncRNA#32 is associated with type I IFN signaling. The silencing of lncRNA#32 dramatically reduced the level of IFN-stimulated gene (ISG) expression, resulting in sensitivity to encephalomyocarditis virus (EMCV) infection. In contrast, the ectopic expression of lncRNA#32 significantly suppressed EMCV replication, suggesting that lncRNA#32 positively regulates the host antiviral response. We further demonstrated the suppressive function of lncRNA#32 in hepatitis B virus and hepatitis C virus infection. lncRNA#32 bound to activating transcription factor 2 (ATF2) and regulated ISG expression. Our results reveal a role for lncRNA#32 in host antiviral responses.
Collapse
|
44
|
Viperin inhibits rabies virus replication via reduced cholesterol and sphingomyelin and is regulated upstream by TLR4. Sci Rep 2016; 6:30529. [PMID: 27456665 PMCID: PMC4960569 DOI: 10.1038/srep30529] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
Abstract
Viperin (virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an interferon-inducible protein that mediates antiviral activity. Generally, rabies virus (RABV) multiplies extremely well in susceptible cells, leading to high virus titres. In this study, we found that viperin was significantly up-regulated in macrophage RAW264.7 cells but not in NA, BHK-21 or BSR cells. Transient viperin overexpression in BSR cells and stable expression in BHK-21 cells could inhibit RABV replication, including both attenuated and street RABV. Furthermore, the inhibitory function of viperin was related to reduce cholesterol/sphingomyelin on the membranes of RAW264.7 cells. We explored the up-stream regulation pathway of viperin in macrophage RAW264.7 cells in the context of RABV infection. An experiment confirmed that a specific Toll-like receptor 4 (TLR4) inhibitor, TAK-242, could inhibit viperin expression in RABV-infected RAW264.7 cells. These results support a regulatory role for TLR4. Geldanamycin, a specific inhibitor of interferon regulatory factor 3 (IRF3) (by inhibiting heat-shock protein 90 (Hsp90) of the IRF3 phosphorylation chaperone), significantly delayed and reduced viperin expression, indicating that IRF3 is involved in viperin induction in RAW264.7 cells. Taken together, our data support the therapeutic potential for viperin to inhibit RABV replication, which appears to involve upstream regulation by TLR4.
Collapse
|
45
|
Innate immunity against hepatitis C virus. Curr Opin Immunol 2016; 42:98-104. [PMID: 27366996 DOI: 10.1016/j.coi.2016.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 12/24/2022]
Abstract
Hepatitis C virus (HCV) infection tends persistent and causes chronic liver diseases, including inflammation, cirrhosis and hepatocellular carcinoma. Innate immune responses triggered by HCV infection, particularly the production of interferons and pro-inflammatory cytokines, shape the early host antiviral defense, and orchestrate subsequent HCV-specific adaptive immunity. Host has evolved multifaceted means to sense HCV infection to induce innate immune responses, whereas HCV has also developed elaborate strategies to evade immune attack. Recent studies in the field have provided many new insights into the interplay of HCV and innate immunity. In this review, we summarized these recent advances, focusing on pathogen recognition by innate sensors, newly discovered anti-HCV innate effectors and new viral strategies to evade innate immunity.
Collapse
|
46
|
Green TJ, Speck P, Geng L, Raftos D, Beard MR, Helbig KJ. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein. J Gen Virol 2016; 96:3587-3597. [PMID: 26407968 DOI: 10.1099/jgv.0.000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.,Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Lu Geng
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - David Raftos
- Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Michael R Beard
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - Karla J Helbig
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| |
Collapse
|
47
|
Fang J, Wang H, Bai J, Zhang Q, Li Y, Liu F, Jiang P. Monkey Viperin Restricts Porcine Reproductive and Respiratory Syndrome Virus Replication. PLoS One 2016; 11:e0156513. [PMID: 27232627 PMCID: PMC4883763 DOI: 10.1371/journal.pone.0156513] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/16/2016] [Indexed: 01/12/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is an important pathogen which causes huge economic damage globally in the swine industry. Current vaccination strategies provide only limited protection against PRRSV infection. Viperin is an interferon (IFN) stimulated protein that inhibits some virus infections via IFN-dependent or IFN-independent pathways. However, the role of viperin in PRRSV infection is not well understood. In this study, we cloned the full-length monkey viperin (mViperin) complementary DNA (cDNA) from IFN-α-treated African green monkey Marc-145 cells. It was found that the mViperin is up-regulated following PRRSV infection in Marc-145 cells along with elevated IRF-1 gene levels. IFN-α induced mViperin expression in a dose- and time-dependent manner and strongly inhibits PRRSV replication in Marc-145 cells. Overexpression of mViperin suppresses PRRSV replication by blocking the early steps of PRRSV entry and genome replication and translation but not inhibiting assembly and release. And mViperin co-localized with PRRSV GP5 and N protein, but only interacted with N protein in distinct cytoplasmic loci. Furthermore, it was found that the 13–16 amino acids of mViperin were essential for inhibiting PRRSV replication, by disrupting the distribution of mViperin protein from the granular distribution to a homogeneous distribution in the cytoplasm. These results could be helpful in the future development of novel antiviral therapies against PRRSV infection.
Collapse
Affiliation(s)
- Jianyu Fang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Bai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qiaoya Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yufeng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
- * E-mail:
| |
Collapse
|
48
|
Hussain KM, Lee RCH, Ng MML, Chu JJH. Establishment of a Novel Primary Human Skeletal Myoblast Cellular Model for Chikungunya Virus Infection and Pathogenesis. Sci Rep 2016; 6:21406. [PMID: 26892458 PMCID: PMC4759813 DOI: 10.1038/srep21406] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/22/2016] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging arbovirus known to cause chronic myalgia and arthralgia and is now considered endemic in countries across Asia and Africa. The tissue tropism of CHIKV infection in humans remains, however, ill-defined. Due to the fact that myositis is commonly observed in most patients infected with CHIKV, we sought to develop a clinically relevant cellular model to better understand the pathogenesis of CHIKV infection. In this study, primary human skeletal muscle myoblasts (HSMM) were established as a novel human primary cell line that is highly permissive to CHIKV infection, with maximal amounts of infectious virions observed at 16 hours post infection. Genome-wide microarray profiling analyses were subsequently performed to identify and map genes that are differentially expressed upon CHIKV infection. Infection of HSMM cells with CHIKV resulted in altered expressions of host genes involved in skeletal- and muscular-associated disorders, innate immune responses, cellular growth and death, host metabolism and virus replication. Together, this study has shown the establishment of a clinically relevant primary human cell model that paves the way for the further analysis of host factors and their involvement in the various stages of CHIKV replication cycle and viral pathogenesis.
Collapse
Affiliation(s)
- Khairunnisa' Mohamed Hussain
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Mary Mah-Lee Ng
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
49
|
RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus. Antiviral Res 2016; 128:49-56. [PMID: 26868874 DOI: 10.1016/j.antiviral.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs.
Collapse
|
50
|
Zhou LY, Zhang LL. Host restriction factors for hepatitis C virus. World J Gastroenterol 2016; 22:1477-86. [PMID: 26819515 PMCID: PMC4721981 DOI: 10.3748/wjg.v22.i4.1477] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/30/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Host-hepatitis C virus (HCV) interactions have both informed fundamental concepts of viral replication and pathogenesis and provided novel insights into host cell biology. These findings are illustrated by the recent discovery of host-encoded factors that restrict HCV infection. In this review, we briefly discuss these restriction factors in different steps of HCV infection. In each case, we discuss how these restriction factors were identified, the mechanisms by which they inhibit HCV infection and their potential contribution to viral pathogenesis.
Collapse
|