1
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
2
|
Oh JH, Jun DW, Kim HY, Lee SM, Yoon EL, Hwang J, Park JH, Lee H, Kim W, Kim H. Discovery of dipeptidyl peptidase-4 inhibitor specific biomarker in NAFLD mouse models using modified basket trial. Clin Mol Hepatol 2022; 28:497-509. [PMID: 35484644 PMCID: PMC9293604 DOI: 10.3350/cmh.2022.0019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background/Aims We aimed to define an optimal target population and drug-specific biomarkers that may predict dipeptidyl peptidase (DPP)-4 inhibitor responses in non-alcoholic fatty liver disease (NAFLD). Methods An exploration study (study I) was performed using three different NAFLD models (basket study design; high-fat diet [HFD], methionine choline-deficient diet [MCD], and high-cholesterol Western diet [WD] models). RNA transcriptome analysis was performed on pre-studied liver tissues to identify biomarkers that could predict the response to DPP-4 inhibitors. In the validation study (study II), the HFD-induced NAFLD model was divided into high and low hepatic insulin-like growth factor binding protein 1 (Igfbp-1) groups based on the pre-study liver biopsy. Results DPP-4 inhibitor attenuated the NAFLD activity score and fibrosis stage in the HFD model but not in the WD and MCD models. The overall response rate was 19% across the modified basket NAFLD trial and 42%, 25%, and 0% in the HFD, WD, and MCD models. Hepatic Igfbp-1 expression was higher in the responder group than in the non-responder group in pre-study biopsy samples. In contrast, hepatic Igfbp-1 expression was lower in the responder group than in the non-responder group in the end-study biopsy samples. DPP-4 inhibitor response rates were 83% and 17% in the baseline hepatic high Igfbp-1 and low Igfbp-1 groups, respectively. Hepatic messenger RNA Igfbp-1 expression was positively correlated with serum IGFBP-1 levels. Conclusions The DPP-4 inhibitor response was higher in the HFD phenotype and pre-treatment levels of hepatic or serum IGFBP-1 were high.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Eileen L Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jungwook Hwang
- Department of Medical genetic, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Park
- Department of Endocrinology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hanbi Lee
- Department of Life Sciences, College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Wankyu Kim
- Department of Life Sciences, College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
González-González L, Gallego-Gutiérrez H, Martin-Tapia D, Avelino-Cruz JE, Hernández-Guzmán C, Rangel-Guerrero SI, Alvarez-Salas LM, Garay E, Chávez-Munguía B, Gutiérrez-Ruiz MC, Hernández-Melchor D, López-Bayghen E, González-Mariscal L. ZO-2 favors Hippo signaling, and its re-expression in the steatotic liver by AMPK restores junctional sealing. Tissue Barriers 2021; 10:1994351. [PMID: 34689705 DOI: 10.1080/21688370.2021.1994351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ZO-2 is a peripheral tight junction (TJ) protein whose silencing in renal epithelia induces cell hypertrophy. Here, we found that in ZO-2 KD MDCK cells, in compensatory renal hypertrophy triggered in rats by a unilateral nephrectomy and in liver steatosis of obese Zucker (OZ) rats, ZO-2 silencing is accompanied by the diminished activity of LATS, a kinase of the Hippo pathway, and the nuclear concentration of YAP, the final effector of this signaling route. ZO-2 appears to function as a scaffold for the Hippo pathway as it associates to LATS1. ZO-2 silencing in hypertrophic tissue is due to a diminished abundance of ZO-2 mRNA, and the Sp1 transcription factor is critical for ZO-2 transcription in renal cells. Treatment of OZ rats with metformin, an activator of AMPK that blocks JNK activity, augments ZO-2 and claudin-1 expression in the liver, reduces the paracellular permeability of hepatocytes, and serum bile acid content. Our results suggest that ZO-2 silencing is a common feature of hypertrophy, and that ZO-2 is a positive regulator of the Hippo pathway that regulates cell size. Moreover, our observations highlight the importance of AMPK, JNK, and ZO-2 as therapeutic targets for blood-bile barrier dysfunction.
Collapse
Affiliation(s)
- Laura González-González
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Helios Gallego-Gutiérrez
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Dolores Martin-Tapia
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - José Everardo Avelino-Cruz
- Laboratory of Molecular Cardiology, Institute of Physiology, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Christian Hernández-Guzmán
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Sergio Israel Rangel-Guerrero
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Luis Marat Alvarez-Salas
- Department of Genetics and Molecular Biology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Erika Garay
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Bibiana Chávez-Munguía
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Department of Health Sciences, Autonomous Metropolitan University- Iztapalapa (UAM-I), Mexico City, Mexico; Laboratory of Experimental Medicine, Unit of Translational Medicine, Institute of Biomedical Research, Unam, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | | | - Esther López-Bayghen
- Department of Toxicology, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
4
|
Alrashood ST, Al-Asmari AK, Alotaibi AK, Manthiri RA, Rafatullah S, Hasanato RM, Khan HA, Ibrahim KE, Wali AF. Protective effect of lyophilized sapodilla ( Manilkara zapota) fruit extract against CCl 4-induced liver damage in rats. Saudi J Biol Sci 2020; 27:2373-2379. [PMID: 32884419 PMCID: PMC7451601 DOI: 10.1016/j.sjbs.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 05/03/2020] [Indexed: 02/08/2023] Open
Abstract
The tropical fruit sapodilla (Manilkara zapota syn. Achras zapota) is a rich source of nutrients, minerals and a myriad of bioactive phytochemicals such as flavonoids and catechins. Pharmacologically, sapodilla has been shown to exhibit anti-bacterial, anti-parasitic, anti-fungal, antiglycative, hypocholesterolemic and anti-cancer effects. However, its influence on hepatic tissue and serum lipids remains obscure. To address this, we used an in vivo model of liver damage to elucidate the effect of lyophilized sapodilla extract (LSE) treatment in carbon tetra chloride (CCl4) intoxicated rats. Exposure of CCl4 resulted in elevation of serum biomarkers of liver damage (aspartate transaminase, alanine aminotransferase, γ-glutamyl transferase and alkaline phosphatase), bilirubin and dysregulation of serum lipid profile (cholesterol and triglycerides). These effects were significantly and dose-dependently reversed by LSE treatment (250 and 500 mg/kg). Administration of LSE also reduced the structural damage caused by CCl4 in the liver. Furthermore, determination of oxidative stress parameters (malondialdehyde and non-protein sulfhydryls) revealed that LSE treatment mitigated CCl4-triggered modulation of both molecules. LSE also showed a strong antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. In conclusion, the present study discloses the hepatoprotective and lipid-lowering effects of lyophilized sapodilla extract against CCl4-induced liver damage, an effect, at least in part, mediated by its antioxidant activity.
Collapse
Affiliation(s)
- Sara T. Alrashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrahman K. Al-Asmari
- Scientific Research Center, Medical Service Department (MSD), Ministry of Defence, Riyadh, Saudi Arabia
| | - Abdullah K. Alotaibi
- Scientific Research Center, Medical Service Department (MSD), Ministry of Defence, Riyadh, Saudi Arabia
| | - Rajamohamed A. Manthiri
- Scientific Research Center, Medical Service Department (MSD), Ministry of Defence, Riyadh, Saudi Arabia
| | - Syed Rafatullah
- Scientific Research Center, Medical Service Department (MSD), Ministry of Defence, Riyadh, Saudi Arabia
| | - Rana M. Hasanato
- Department of Pathology, College of Medicine, King Saud University Medical City, Riyadh 11472, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid E. Ibrahim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Adil F. Wali
- Department of Pharmaceutical Chemistry, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
- Corresponding author at: Department of Pharmaceutical Chemistry, RAKCOPS, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates.
| |
Collapse
|
5
|
Li W, Wang L, Yin S, Lai H, Yuan L, Zhang X. Engineering a highly selective probe for ratiometric imaging of H 2S n and revealing its signaling pathway in fatty liver disease. Chem Sci 2020; 11:7991-7999. [PMID: 34094167 PMCID: PMC8163144 DOI: 10.1039/d0sc03336g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022] Open
Abstract
Hydrogen polysulfides (H2S n , n > 1) have continuously been proved to act as important signal mediators in many physiological processes. However, the physiological role of H2S n and their signaling pathways in complex diseases, such as the most common liver disease, nonalcoholic fatty liver disease (NAFLD), have not been elucidated due to lack of suitable tools for selective detection of intracellular H2S n . Herein, we adopted a general and practical strategy including recognition site screening, construction of a ratiometric probe and self-assembly of nanoparticles, to significantly improve the probes' selectivity, photostability and biocompatibility. The ratiometric probe PPG-Np-RhPhCO selectively responds to H2S n , avoiding interaction with biothiol and persulfide. Moreover, this probe was applied to image H2S n in NAFLD for the first time and reveal the H2S n generation pathways in the cell model of drug-treated NAFLD. The pathway of H2S n revealed by PPG-Np-RhPhCO provides significant insights into the roles of H2S n in NAFLD and future drug development.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Lu Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 Heidelberg 69120 Germany
| | - Shulu Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Huanhua Lai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Xiaobing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
6
|
Cichocki JA, Luo YS, Furuya S, Venkatratnam A, Konganti K, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Modulation of Tetrachloroethylene-Associated Kidney Effects by Nonalcoholic Fatty Liver or Steatohepatitis in Male C57BL/6J Mice. Toxicol Sci 2019; 167:126-137. [PMID: 30202895 DOI: 10.1093/toxsci/kfy223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accounting for genetic and other (eg, underlying disease states) factors that may lead to inter-individual variability in susceptibility to xenobiotic-induced injury is a challenge in human health assessments. A previous study demonstrated that nonalcoholic fatty liver disease (NAFLD), one of the common underlying disease states, enhances tetrachloroethylene (PERC)-associated hepatotoxicity in mice. Interestingly, NAFLD resulted in a decrease in metabolism of PERC to nephrotoxic glutathione conjugates; we therefore hypothesized that NAFLD would protect against PERC-associated nephrotoxicity. Male C57BL/6J mice were fed a low-fat (LFD), high-fat (31% fat, HFD), or high-fat methionine/choline/folate-deficient (31% fat, MCD) diets. After 8 weeks mice were administered either a single dose of PERC (300 mg/kg i.g.) and euthanized at 1-36 h post dose, or five daily doses of PERC (300 mg/kg/d i.g.) and euthanized 4 h after last dose. Relative to LFD-fed mice, HFD- or MCD-fed mice exhibited decreased PERC concentrations and increased trichloroacetate (TCA) in kidneys. S-(1,2,2-trichlorovinyl)glutathione (TCVG), S-(1,2,2-trichlorovinyl)-l-cysteine (TCVC), and N-acetyl-S-(1,2,2,-trichlorovinyl)-l-cysteine (NAcTCVC) were also significantly lower in kidney and urine of HFD- or MCD-fed mice compared with LFD-fed mice. Despite differences in levels of nephrotoxic PERC metabolites in kidney, LFD- and MCD-fed mice demonstrated similar degree of nephrotoxicity. However, HFD-fed mice were less sensitive to PERC-induced nephrotoxicity. Thus, whereas both MCD- and HFD-induced fatty liver reduced the delivered dose of nephrotoxic PERC metabolites to the kidney, only HFD was protective against PERC-induced nephrotoxicity, possibly due to greater toxicodynamic sensitivity induced by methyl and choline deficiency. These results therefore demonstrate that pre-existing disease conditions can lead to a complex interplay of toxicokinetic and toxicodynamic changes that modulate susceptibility to the toxicity of xenobiotics.
Collapse
Affiliation(s)
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences
| | | | | | | | | | - David W Threadgill
- Texas A&M Institute for Genome Sciences and Society.,Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Igor P Pogribny
- National Center for Toxicological Research, US FDA, Jefferson, Arkansas 72079
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences
| |
Collapse
|
7
|
Yang L, Zhou Y, Song H, Zheng P. Jiang-Zhi granules decrease sensitivity to low-dose CCl 4 induced liver injury in NAFLD rats through reducing endoplasmic reticulum stress. Altern Ther Health Med 2019; 19:228. [PMID: 31438932 PMCID: PMC6704726 DOI: 10.1186/s12906-019-2641-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) may increase the sensitivity to liver injury caused by stimulants such as drugs and poisons. The traditional Chinese medicine (TCM) Jiang-Zhi Granule (JZG) has been proven effective for improving liver function, reducing hepatic fat accumulation and inflammation in NAFLD. The purpose of this study is to evaluate the effect of JZG on the susceptibility of NAFLD rats to liver injury and to identify the relevant mechanism. Methods Forty wistar rats were randomly divided into five groups, normal group, normal+CCl4 group, high-fat diet (HFD) group, HFD + CCl4 group, and HFD + CCl4 + JZG group. NAFLD were established with HFD for 8 weeks. Then Low-dose CCl4 was given intraperitoneally to induce liver injury in NAFLD rats for 48 h. From the 5th week of HFD, intragastric administration of JZG was simultaneously given to the rats in the HFD + CCl4 + JZG group. At the end of the experiment, liver histological pathology, serum transaminase, lipid in liver and blood, as well as hepatic expression levels of endoplasmic reticulum stress (ERS) related molecules were evaluated. Results NAFLD rat model was established by eight-week HFD feeding, exhibiting elevated levels of hepatic lipid, blood lipid, serum transaminase and significantly increased expression of ERS related molecules including glucose regulating protein 78 (GRP78), protein kinase RNA-like endoplasmic reticulum kinase (PERK), eukaryotic translation initiation factor 2α (EIF2α), and nuclear factor-kappa B (NFκB) in liver tissues. After injection of CCl4 in NAFLD rats, elevated serum transaminases, severe inflammation and focal necrosis were observed in liver tissue, but no obvious change was found in the rats of normal group. JZG reduced hepatic inflammation, hepatic necrosis, hepatic lipid, blood transaminases and blood lipids in HFD + CCl4 rats. ERS related molecules were significantly elevated by low-dose CCl4 in NAFLD rats, and were down-regulated by JZG. Conclusion The sensitivity to CCl4-induced liver injury is increased in NAFLD rats, which could be improved by JZG. The pharmacological mechanism may involve the regulation of ERS signaling pathway by JZG.
Collapse
|
8
|
Fan J, Chen CJ, Wang YC, Quan W, Wang JW, Zhang WG. Hemodynamic changes in hepatic sinusoids of hepatic steatosis mice. World J Gastroenterol 2019; 25:1355-1365. [PMID: 30918428 PMCID: PMC6429340 DOI: 10.3748/wjg.v25.i11.1355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fatty liver (FL) is now a worldwide disease. For decades, researchers have been kept trying to elucidate the mechanism of FL at the molecular level, but rarely involve the study of morphology and medical physics. Traditionally, it was believed that hemodynamic changes occur only when fibrosis occurs, but it has been proved that these changes already show in steatosis stage, which may help to reveal the pathogenesis and its progress. Because the pseudolobules are not formed during the steatosis stage, this phenomenon may be caused by the compression of the liver microcirculation and changes in the hemodynamics.
AIM To understand the pathogenesis of hepatic steatosis and to study the hemodynamic changes associated with hepatic steatosis.
METHODS Eight-week-old male C57BL/6 mice were divided into three groups randomly (control group, 2-wk group, and 4-wk group), with 16 mice per group. A hepatic steatosis model was established by subcutaneous injection of carbon tetrachloride in mice. After establishing the model, liver tissue from mice was stained with hematoxylin and eosin (HE), and oil red O stains. Blood was collected from the angular vein, and hemorheological parameters were estimated. A two-photon fluorescence microscope was used to examine the flow properties of red blood cells in the hepatic sinusoids.
RESULTS Oil red O staining indicated lipid accumulation in the liver after CCl4 treatment. HE staining indicated narrowing of the hepatic sinusoidal vessels. No significant difference was observed between the 2-wk and 4-wk groups of mice on morphological examination. Hemorheological tests included whole blood viscosity (mPas, γ = 10 s-1/γ = 100 s-1) (8.83 ± 2.22/4.69 ± 1.16, 7.73 ± 2.46/4.22 ± 1.32, and 8.06 ± 2.88/4.22 ± 1.50), red blood cell volume (%) (51.00 ± 4.00, 42.00 ± 5.00, and 40.00 ± 3.00), the content of plasma fibrinase (g/L) (3.80 ± 0.50, 2.90 ± 0.80, and 2.30 ± 0.70), erythrocyte deformation index (%) (44.49 ± 5.81, 48.00 ± 15.29, and 44.36 ± 15.01), erythrocyte electrophoresis rate (mm/s per V/m) (0.55 ± 0.11, 0.50 ± 0.11, and 0.60 ± 0.20), revealing pathological changes in plasma components and red blood cells of hepatic steatosis. Assessment of blood flow velocity in the hepatic sinusoids with a laser Doppler flowmeter (mL/min per 100 g) (94.43 ± 14.64, 80.00 ± 12.12, and 67.26 ± 5.92) and two-photon laser scanning microscope (μm/s) (325.68 ± 112.66, 213.53 ± 65.33, and 173.26 ± 44.02) revealed that as the modeling time increased, the blood flow velocity in the hepatic sinusoids decreased gradually, and the diameter of the hepatic sinusoids became smaller (μm) (10.28 ± 1.40, 6.84 ± 0.93, and 5.82 ± 0.79).
CONCLUSION The inner diameter of the hepatic sinusoids decreases along with the decrease in the blood flow velocity within the sinusoids and the changes in the systemic hemorheology.
Collapse
Affiliation(s)
- Jing Fan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chong-Jiu Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu-Chen Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei Quan
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jian-Wei Wang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guang Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
9
|
Perugorria MJ, Esparza-Baquer A, Oakley F, Labiano I, Korosec A, Jais A, Mann J, Tiniakos D, Santos-Laso A, Arbelaiz A, Gawish R, Sampedro A, Fontanellas A, Hijona E, Jimenez-Agüero R, Esterbauer H, Stoiber D, Bujanda L, Banales JM, Knapp S, Sharif O, Mann DA. Non-parenchymal TREM-2 protects the liver from immune-mediated hepatocellular damage. Gut 2019; 68:533-546. [PMID: 29374630 PMCID: PMC6580759 DOI: 10.1136/gutjnl-2017-314107] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 12/26/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Liver injury impacts hepatic inflammation in part via Toll-like receptor (TLR) signalling. Triggering receptor expressed on myeloid cells 2 (TREM-2) modulates TLR4-mediated inflammation in bone marrow (BM)-derived macrophages but its function in liver injury is unknown. Here we hypothesised that the anti-inflammatory effects of TREM-2 on TLR signalling may limit hepatic injury. DESIGN TREM-2 expression was analysed in livers of humans with various forms of liver injury compared with control individuals. Acute and chronic liver injury models were performed in wild type and Trem-2-/- mice. Primary liver cells from both genotypes of mice were isolated for in vitro experiments. RESULTS TREM-2 was expressed on non-parenchymal hepatic cells and induced during liver injury in mice and man. Mice lacking TREM-2 exhibited heightened liver damage and inflammation during acute and repetitive carbon tetrachloride and acetaminophen (APAP) intoxication, the latter of which TREM-2 deficiency was remarkably associated with worsened survival. Liver damage in Trem-2-/- mice following chronic injury and APAP challenge was associated with elevated hepatic lipid peroxidation and macrophage content. BM transplantation experiments and cellular reactive oxygen species assays revealed effects of TREM-2 in the context of chronic injury depended on both immune and resident TREM-2 expression. Consistent with effects of TREM-2 on inflammation-associated injury, primary hepatic macrophages and hepatic stellate cells lacking TREM-2 exhibited augmented TLR4-driven proinflammatory responses. CONCLUSION Our data indicate that by acting as a natural brake on inflammation during hepatocellular injury, TREM-2 is a critical regulator of diverse types of hepatotoxic injury.
Collapse
Affiliation(s)
- Maria J Perugorria
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIBERehd, Instituto de Salud Carlos III, San Sebastián, Spain
| | - Aitor Esparza-Baquer
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ibone Labiano
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Ana Korosec
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Alexander Jais
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Dina Tiniakos
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Alvaro Santos-Laso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Riem Gawish
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Ana Sampedro
- Hepatology Programme, CIMA, University of Navarra, Pamplona, Spain
| | | | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III, San Sebastián, Spain
| | - Raul Jimenez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Dagmar Stoiber
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
- CIBERehd, Instituto de Salud Carlos III, San Sebastián, Spain
| | - Jesus María Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- CIBERehd, Instituto de Salud Carlos III, San Sebastián, Spain
| | - Sylvia Knapp
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
| | - Omar Sharif
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
|
11
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Kim TH, Choi D, Kim JY, Lee JH, Koo SH. Fast food diet-induced non-alcoholic fatty liver disease exerts early protective effect against acetaminophen intoxication in mice. BMC Gastroenterol 2017; 17:124. [PMID: 29179698 PMCID: PMC5704433 DOI: 10.1186/s12876-017-0680-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/15/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Acetaminophen (APAP) is a readily available and safe painkiller. However, its overdose is the most common cause of acute liver injury (ALI). Many predisposing factors contribute to susceptibility to APAP-induced ALI. Non-alcoholic fatty liver disease (NAFLD), the major cause of chronic liver disease, is considered an important predictor of APAP-induced ALI, although the exact mechanism controversial. In this study, we aimed to elucidate the effects of NAFLD on APAP-induced ALI. METHODS Two groups of mice, normal chow (NC) diet-fed and fast food (FF) diet-fed mice for 14 weeks, were further divided into two subgroups: intraperitoneally injected with either saline (NC-S and FF-S groups) or APAP (NC-A and FF-A groups). Biochemical tests, histological analysis, quantitative PCR, and western blotting were conducted. RESULTS Alanine aminotransferase (ALT) level (199.0 ± 39.0 vs. 63.8 ± 7.4 IU/L, p < 0.05) and NAFLD activity score (0 vs. 4.5 ± 0.22) were significantly higher in mice in FF-S group than those in NC-S group. ALI features such as ALT level (8447.8 ± 1185.3 vs. 836.6 ± 185.1 IU/L, p < 0.001) and centrizonal necrosis were prominent and mRNA levels of Trib3 (RR, 1.81) was high in mice in the NC-A group. Levels of CYP2E1 and anti-inflammatory molecules such as PPAR-γ, p62, and NRF2 were high in mice in the FF-A group. CONCLUSIONS Our results showed that while the FF diet clearly induced non-alcoholic steatohepatitis and metabolic syndrome, NAFLD also attenuates APAP-induced ALI by inducing anti-inflammatory molecules such as PPAR-γ.
Collapse
Affiliation(s)
- Tae Hyung Kim
- Department of Internal Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Dahee Choi
- Division of Life Sciences, Korea University College of Life Sciences & Biotechnology, 145 Anam-Ro Seongbuk-Gu, Seoul, 02841, South Korea
| | - Joo Young Kim
- Department of Pathology, Korea University College of Medicine, Seoul, South Korea
| | - Jeong Hyeon Lee
- Department of Pathology, Korea University College of Medicine, Seoul, South Korea
| | - Seung-Hoi Koo
- Division of Life Sciences, Korea University College of Life Sciences & Biotechnology, 145 Anam-Ro Seongbuk-Gu, Seoul, 02841, South Korea.
| |
Collapse
|
13
|
Al-Rasheed NM, El-Orabi NF, Fadda LM, Ali HM, Al-Rasheed NM, Bassiouni Y, Aldbass AM. Role of Different Natural Antioxidants in the Modulation of mRNA-expression of Apoptotic Molecules in the Livers of Carbon Tetrachloride-Intoxicated Rats. Anim Biotechnol 2017; 28:253-259. [PMID: 28103144 DOI: 10.1080/10495398.2016.1268621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Overexpression of nuclear factor (NF-κB) or activation of Smad3 by transforming growth factor β (TGF-β1) induced by oncogenes results in overexpression of fibrotic processes and hence cell death. The objective of this study is to examine whether Silymarin (Sil) alone or in combination with Vitamin E (Vit E) and/or Curcumin (Cur) plays a modulatory role against the overexpression of NF-κB, and TGF-β that induced in response to carbon tetrachloride (CCl4) administration. The present work revealed that CCl4 induced elevation of in serum alanine aminotransferase (ALT), Apoptosis regulator (Bax), Smad3, TGF-β, and NF-kB hepatic mRNA expression (using Real-time PCR), administration of Sil alone downregulated these expressions. Treatment with Vit E acid and/ or Cur along with Sil produced best results in this concern. B-cell lymphoma 2 (Bcl-2) expressions were downregulated by CCl4; whereas concurrent treatment of Vit E and/or Cur along with Sil increased its expression. On conclusion, the use of Vit E and/or Cur could potentiate the antiapoptotic action of Sil.
Collapse
Affiliation(s)
- Nouf M Al-Rasheed
- a Pharmacology Department, Faculty of Pharmacy , King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Naglaa F El-Orabi
- a Pharmacology Department, Faculty of Pharmacy , King Saud University , Riyadh , Kingdom of Saudi Arabia.,b Department of Pharmacology and Toxicology, Faculty of Pharmacy , Suez Canal University , Ismailia , Egypt
| | - Laila Mohamed Fadda
- a Pharmacology Department, Faculty of Pharmacy , King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Hanaa Mahmoud Ali
- c Department of Genetics and Cytology , National Research Center , Dokki , Egypt.,d Preparatory Year Deanship , King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Nawal M Al-Rasheed
- a Pharmacology Department, Faculty of Pharmacy , King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Yieldez Bassiouni
- a Pharmacology Department, Faculty of Pharmacy , King Saud University , Riyadh , Kingdom of Saudi Arabia
| | - Abeer Mohammad Aldbass
- e Biochemistry Department, Faculty of Science , King Saud University , Riyadh , Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Cichocki JA, Furuya S, Luo YS, Iwata Y, Konganti K, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Nonalcoholic Fatty Liver Disease Is a Susceptibility Factor for Perchloroethylene-Induced Liver Effects in Mice. Toxicol Sci 2017; 159:102-113. [PMID: 28903486 PMCID: PMC5837635 DOI: 10.1093/toxsci/kfx120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent pathological liver condition in developed countries. NAFLD results in severe alterations in liver function, including xenobiotic metabolism. Perchloroethylene (PERC) is a ubiquitous environmental pollutant, a known hepatotoxicant in rodents, and a probable human carcinogen. It is known that PERC disposition and metabolism are affected by NAFLD in mice; here, we examined how NAFLD changes PERC-associated liver effects. Male C57Bl6/J mice were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, or mild and severe forms of NAFLD, respectively. After 8 weeks on diets, mice were orally administered PERC (300 mg/kg/day) or vehicle (5% aqueous Alkamuls-EL620) for 5 days. PERC-induced liver effects were exacerbated in both NAFLD groups. PERC exposure was associated with up-regulation of genes involved in xenobiotic, lipid, and glutathione metabolism, and down-regulation of the complement and coagulation cascades, regardless of the diet. Interestingly, HFD-fed mice, not MCD-fed mice, were generally more sensitive to PERC-induced liver effects. This was indicated by histopathology and transcriptional responses, where induction of genes associated with cell cycle and inflammation were prominent. Liver effects positively correlated with diet-specific differences in liver concentrations of PERC. We conclude that NAFLD alters the toxicodynamics of PERC and that NAFLD is a susceptibility factor that should be considered in future risk management decisions for PERC and other chlorinated solvents.
Collapse
Affiliation(s)
- Joseph A. Cichocki
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas 77843
| | - Weihsueh A. Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| | - David W. Threadgill
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas 77843
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77843
| | - Igor P. Pogribny
- National Center for Toxicological Research, US FDA, Jefferson, Arkansas 72079
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843
| |
Collapse
|
15
|
Acute liver injury induced by levetiracetam and temozolomide co-treatment. Dig Liver Dis 2017; 49:297-300. [PMID: 28034663 DOI: 10.1016/j.dld.2016.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 11/23/2016] [Accepted: 11/28/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Temozolomide (TMZ) is an alkylating agent used for treatment of brain neoplasms and levetiracetam (LEV) is a commonly used antiepileptic. When administered separately each medication has few negative side effects impacting the liver. AIMS We sought to determine the risk of liver injury associated with the co-administration of TMZ and LEV. METHODS A case-control study was performed comparing patients who received combination therapy of TMZ and LEV (group A) with matched controls (group B) who received monotherapy with one of either TMZ or LEV. We assessed patient demographics, laboratory results including presence of liver injury, and mortality. RESULTS Twenty-six patients were included in group A and 68 patients were included in group B. Both groups were similar with respect to demographics and baseline liver function tests (P>0.05). There was a significant elevation in liver enzymes in 73%, 46%, 19%, 31% and 27% of ALT, AST, ALK-P, GGT and bilirubin, respectively, in group A, as compared to elevations of 10.3%, 19%, 1.5%, 7% and 1.5%, respectively in group B (P<0.05). One patient in group A died as a result of acute liver failure while no deaths from acute liver failure occurred in group B (P=0.05). Univariate analysis identified combination therapy as a risk factor for liver injury. Multivariate regression showed that only co-treatment with TMZ and LEV was an independent risk factor for liver injury with an odds ratio of 19.1 (95 CI, 2.16-160). CONCLUSIONS Combination therapy with TMZ and LEV may precipitate acute liver injury and even death.
Collapse
|
16
|
Cichocki JA, Furuya S, Konganti K, Luo YS, McDonald TJ, Iwata Y, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Impact of Nonalcoholic Fatty Liver Disease on Toxicokinetics of Tetrachloroethylene in Mice. J Pharmacol Exp Ther 2017; 361:17-28. [PMID: 28148637 DOI: 10.1124/jpet.116.238790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lifestyle factors and chronic pathologic states are important contributors to interindividual variability in susceptibility to xenobiotic-induced toxicity. Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that can dramatically affect chemical metabolism. We examined the effect of NAFLD on toxicokinetics of tetrachloroethylene (PERC), a ubiquitous environmental contaminant that requires metabolic activation to induce adverse health effects. Mice (C57Bl/6J, male) were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, steatosis, or nonalcoholic steatohepatitis (NASH), respectively. After 8 weeks, mice were orally administered a single dose of PERC (300 mg/kg) or vehicle (aqueous Alkamuls-EL620) and euthanized at various time points (1-36 hours). Levels of PERC and its metabolites were measured in blood/serum, liver, and fat. Effects of diets on liver gene expression and tissue:air partition coefficients were evaluated. We found that hepatic levels of PERC were 6- and 7.6-fold higher in HFD- and MCD-fed mice compared with LFD-fed mice; this was associated with an increased PERC liver:blood partition coefficient. Liver and serum Cmax for trichloroacetate (TCA) was lower in MCD-fed mice; however, hepatic clearance of TCA was profoundly reduced by HFD or MCD feeding, leading to TCA accumulation. Hepatic mRNA/protein expression and ex vivo activity assays revealed decreased xenobiotic metabolism in HFD- and MCD-, compared with LFD-fed, groups. In conclusion, experimental NAFLD was associated with modulation of xenobiotic disposition and metabolism and increased hepatic exposure to PERC and TCA. Underlying NAFLD may be an important susceptibility factor for PERC-associated hepatotoxicity.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Kranti Konganti
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Thomas J McDonald
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - David W Threadgill
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Igor P Pogribny
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| |
Collapse
|
17
|
Simple steatosis sensitizes cholestatic rats to liver injury and dysregulates bile salt synthesis and transport. Sci Rep 2016; 6:31829. [PMID: 27535001 PMCID: PMC4989137 DOI: 10.1038/srep31829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/26/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. It is uncertain if simple steatosis, the initial and prevailing form of NAFLD, sensitizes the liver to cholestasis. Here, we compared the effects of obstructive cholestasis in rats with a normal liver versus rats with simple steatosis induced by a methionine/choline-deficient diet. We found that plasma liver enzymes were higher and hepatic neutrophil influx, inflammation, and fibrosis were more pronounced in animals with combined steatosis and cholestasis compared to cholestasis alone. Circulating bile salt levels were markedly increased and hepatic bile salt composition shifted from hydrophilic tauro-β-muricholate to hydrophobic taurocholate. This shift was cytotoxic for HepG2 hepatoma cells. Gene expression analysis revealed induction of the rate-limiting enzyme in bile salt synthesis, cytochrome P450 7a1 (CYP7A1), and modulation of the hepatic bile salt transport system. In conclusion, simple steatosis sensitizes the liver to cholestatic injury, inflammation, and fibrosis in part due to a cytotoxic shift in bile salt composition. Plasma bile salt levels were elevated, linked to dysregulation of bile salt synthesis and enhanced trafficking of bile salts from the liver to the systemic circulation.
Collapse
|
18
|
Therapeutic Effect of Losartan, an Angiotensin II Type 1 Receptor Antagonist, on CCl₄-Induced Skeletal Muscle Injury. Int J Mol Sci 2016; 17:227. [PMID: 26867195 PMCID: PMC4783959 DOI: 10.3390/ijms17020227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
TGF-β1 is known to inhibit muscle regeneration after muscle injury. However, it is unknown if high systemic levels of TGF-β can affect the muscle regeneration process. In the present study, we demonstrated the effect of a CCl₄ intra-peritoneal injection and losartan (an angiotensin II type 1 receptor antagonist) on skeletal muscle (gastrocnemius muscle) injury and regeneration. Male C57BL/6 mice were grouped randomly as follows: control (n = 7), CCl₄-treatment group (n = 7), and CCl₄ + losartan treatment group (n = 7). After CCl₄ treatment for a 16-week period, the animals were sacrificed and analyzed. The expression of dystrophin significantly decreased in the muscle tissues of the control group, as compared with that of the CCl₄ + losartan group (p < 0.01). p(phospho)-Smad2/3 expression significantly increased in the muscles of the control group compared to that in the CCl₄ + losartan group (p < 0.01). The expressions of Pax7, MyoD, and myogenin increased in skeletal muscles of the CCl₄ + losartan group compared to the corresponding levels in the control group (p < 0.01). We hypothesize that systemically elevated TGF-β1 as a result of CCl₄-induced liver injury causes skeletal muscle injury, while losartan promotes muscle repair from injury via blockade of TGF-β1 signaling.
Collapse
|
19
|
Michaut A, Le Guillou D, Moreau C, Bucher S, McGill MR, Martinais S, Gicquel T, Morel I, Robin MA, Jaeschke H, Fromenty B. A cellular model to study drug-induced liver injury in nonalcoholic fatty liver disease: Application to acetaminophen. Toxicol Appl Pharmacol 2015; 292:40-55. [PMID: 26739624 DOI: 10.1016/j.taap.2015.12.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/18/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022]
Abstract
Obesity and nonalcoholic fatty liver disease (NAFLD) can increase susceptibility to hepatotoxicity induced by some xenobiotics including drugs, but the involved mechanisms are poorly understood. For acetaminophen (APAP), a role of hepatic cytochrome P450 2E1 (CYP2E1) is suspected since the activity of this enzyme is consistently enhanced during NAFLD. The first aim of our study was to set up a cellular model of NAFLD characterized not only by triglyceride accumulation but also by higher CYP2E1 activity. To this end, human HepaRG cells were incubated for one week with stearic acid or oleic acid, in the presence of different concentrations of insulin. Although cellular triglycerides and the expression of lipid-responsive genes were similar with both fatty acids, CYP2E1 activity was significantly increased only by stearic acid. CYP2E1 activity was reduced by insulin and this effect was reproduced in cultured primary human hepatocytes. Next, APAP cytotoxicity was assessed in HepaRG cells with or without lipid accretion and CYP2E1 induction. Experiments with a large range of APAP concentrations showed that the loss of ATP and glutathione was almost always greater in the presence of stearic acid. In cells pretreated with the CYP2E1 inhibitor chlormethiazole, recovery of ATP was significantly higher in the presence of stearate with low (2.5mM) or high (20mM) concentrations of APAP. Levels of APAP-glucuronide were significantly enhanced by insulin. Hence, HepaRG cells can be used as a valuable model of NAFLD to unveil important metabolic and hormonal factors which can increase susceptibility to drug-induced hepatotoxicity.
Collapse
Affiliation(s)
- Anaïs Michaut
- INSERM, U991, Université de Rennes 1, Rennes, France
| | | | - Caroline Moreau
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | - Simon Bucher
- INSERM, U991, Université de Rennes 1, Rennes, France
| | - Mitchell R McGill
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Thomas Gicquel
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | - Isabelle Morel
- INSERM, U991, Université de Rennes 1, Rennes, France; Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | | | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
20
|
Khoury T, Rmeileh AA, Yosha L, Benson AA, Daher S, Mizrahi M. Drug Induced Liver Injury: Review with a Focus on Genetic Factors, Tissue Diagnosis, and Treatment Options. J Clin Transl Hepatol 2015; 3:99-108. [PMID: 26356634 PMCID: PMC4548351 DOI: 10.14218/jcth.2015.00007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially life threatening adverse drug reaction. DILI may mimic any morphologic characteristic of acute or chronic liver disease, and the histopathologic features of DILI may be indistinguishable from those of other causes of liver injury, such as acute viral hepatitis. In this review article, we provide an update on causative agents, clinical features, pathogenesis, diagnosis modalities, and outcomes of DILI. In addition, we review results of recently reported genetic studies and updates on pharmacological and invasive treatments.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Ayman Abu Rmeileh
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Liron Yosha
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel A. Benson
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Saleh Daher
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Mizrahi
- Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Correspondence to: Meir Mizrahi, Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA. Tel: +1-617-6672135, Fax: +1-617-6671728, E-mail:
| |
Collapse
|
21
|
Collin de l'Hortet A, Zerrad-Saadi A, Prip-Buus C, Fauveau V, Helmy N, Ziol M, Vons C, Billot K, Baud V, Gilgenkrantz H, Guidotti JE. GH administration rescues fatty liver regeneration impairment by restoring GH/EGFR pathway deficiency. Endocrinology 2014; 155:2545-54. [PMID: 24708244 DOI: 10.1210/en.2014-1010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
GH pathway has been shown to play a major role in liver regeneration through the control of epidermal growth factor receptor (EGFR) activation. This pathway is down-regulated in nonalcoholic fatty liver disease. Because regeneration is known to be impaired in fatty livers, we wondered whether a deregulation of the GH/EGFR pathway could explain this deficiency. Hepatic EGFR expression and triglyceride levels were quantified in liver biopsies of 32 obese patients with different degrees of steatosis. We showed a significant inverse correlation between liver EGFR expression and the level of hepatic steatosis. GH/EGFR down-regulation was also demonstrated in 2 steatosis mouse models, a genetic (ob/ob) and a methionine and choline-deficient diet mouse model, in correlation with liver regeneration defect. ob/ob mice exhibited a more severe liver regeneration defect after partial hepatectomy (PH) than methionine and choline-deficient diet-fed mice, a difference that could be explained by a decrease in signal transducer and activator of transcription 3 phosphorylation 32 hours after PH. Having checked that GH deficiency accounted for the GH signaling pathway down-regulation in the liver of ob/ob mice, we showed that GH administration in these mice led to a partial rescue in hepatocyte proliferation after PH associated with a concomitant restoration of liver EGFR expression and signal transducer and activator of trnascription 3 activation. In conclusion, we propose that the GH/EGFR pathway down-regulation is a general mechanism responsible for liver regeneration deficiency associated with steatosis, which could be partially rescued by GH administration.
Collapse
Affiliation(s)
- A Collin de l'Hortet
- Inserm (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), U1016, Institut Cochin, 75014, Paris, France; CNRS (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), UMR8104, 75014, Paris, France; Université Paris Descartes (A.C.H., A.Z.-S., C.P.-B., V.F., N.H., C.V., K.B., V.B., H.G., J.-E.G.), Sorbonne Paris Cité, Faculté de Médecine 75006, Paris, France; and Service de Chirurgie Digestive et Métabolique (N.H., M.Z., C.V.), Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris-Seine-St-Denis, Hôpital Jean Verdier, 93140, Bondy, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Liu T, Yang LL, Zhang L, Song HY, Li DF, Ji G. [Comparative study on the effects of different therapeutic methods in preventing and treating nonalcoholic fatty liver in rats]. ACTA ACUST UNITED AC 2013; 10:1120-6. [PMID: 23073195 DOI: 10.3736/jcim20121008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the pathogenesis of nonalcoholic fatty liver (NAFL) in traditional Chinese medicine (TCM) by comparing the therapeutic efficacy of methods for fortifying the spleen and replenishing qi, warming yang and fortifying the spleen and warming yang to move water. METHODS Male Wistar rats were randomly divided into normal, model, Sijunzi Tang (SJZ), Lizhong Tang (LZ), Linggui Zhugan Tang (LGZG) and Shenzhuo Tang (SZ) groups. Rats in the normal group were fed with ordinary diet, while the rats in the other groups were fed with high fat diet including 88% ordinary food, 10% lard oil and 2% cholesterol. After four weeks of treatment, the weight of liver and epididymal fat was recorded respectively for calculating the indexes of liver (liver weight/body weight) and epididymal fat (weight of epididymal fat pads/body weight); the pathological changes in liver tissues were observed by hematoxylin and eosin (HE) staining; the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triacylglycerol (TAG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and very-low-density lipoprotein cholesterol (VLDL-C) and liver TAG concentration were analyzed by biochemical test. RESULTS Body weight, liver and epididymal fat indexes and liver TAG level of rats all significantly increased in the model group as compared with the normal group (P<0.05). Hepatic fatty infiltration, TAG concentration and the levels of serum TAG and ALT were significantly decreased in the LGZG and SZ groups when compared to those in the model group (P<0.05). In addition, epididymal fat index and serum TC level also significantly decreased in the LGZG group as compared with the model group (P<0.05). However, there was no significant change in liver TAG concentration in LZ and model groups. CONCLUSION Method of warming yang or moving water can promote the lipid metabolism. It may be an effective strategy in preventing and treating NAFL by treating with warming yang and moving water together.
Collapse
Affiliation(s)
- Tao Liu
- Institute of Digestive Diseases, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | |
Collapse
|
24
|
Three-dimensional imaging of hepatic sinusoids in mice using synchrotron radiation micro-computed tomography. PLoS One 2013; 8:e68600. [PMID: 23861925 PMCID: PMC3702620 DOI: 10.1371/journal.pone.0068600] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/31/2013] [Indexed: 12/20/2022] Open
Abstract
Hepatic sinusoid, the smallest vessel in the liver, plays important roles in hepatic microcirculation. Although the structure of the hepatic sinusoids affects diverse functions of the liver, little is known about morphological alterations in the sinusoids under pathological conditions. In this study, we show that the structure of hepatic sinusoids can be identified three-dimensionally in normal and carbon tetrachloride-injured mouse liver, using the absorption mode of synchrotron radiation micro-computed tomography. We observed that the hepatic sinusoidal structure on tomographic slice images was similar to that on histological images of normal and acutely injured mice. Moreover, centrilobular necrosis and structural alterations of the sinusoids in the necrotic region were detectable on tomographic slice and volume-rendered images of the acutely injured mice. Furthermore, quantitative analyses on 3D volume-rendered images of the injured sinusoid revealed decrease in the volume of the sinusoid and connectivity of the sinusoidal network. Our results suggest that the use of synchrotron radiation micro-computed tomography may improve our understanding of the pathogenesis of hepatic diseases by detecting the hepatic sinusoids and their alterations in three-dimensional structures of the damaged liver.
Collapse
|
25
|
Corsini A, Bortolini M. Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol 2013; 53:463-74. [PMID: 23436293 DOI: 10.1002/jcph.23] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/17/2012] [Indexed: 12/11/2022]
Abstract
Many studies have pinpointed the significant contribution of liver-mediated drug metabolism and transport to the complexity of drug-induced liver injury (DILI). Phase I cytochrome P450 (CYP450) enzymes can lead to altered drug metabolism and formation of toxic metabolites, whilst Phase II enzymes are also associated with DILI. The emerging role of hepatic transporters in regulating the movement of endogenous and exogenous chemicals (e.g., bile acids and drugs) across cellular and tissue membranes is critical in determining the pathophysiology of liver disease as well as drug toxicity and efficacy. Genetic and environmental factors can have a significant impact on drug metabolism and transporter proteins, consequently increasing the risk of DILI in susceptible individuals. The assessment of these factors therefore represents an important approach for predicting and preventing DILI, by better understanding the pharmacological profile of a specific drug. This review focuses on the mechanisms of DILI associated with drug metabolism and hepatic transport, and how they can be influenced by underlying factors.
Collapse
Affiliation(s)
- Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| | | |
Collapse
|
26
|
Aubert J, Begriche K, Delannoy M, Morel I, Pajaud J, Ribault C, Lepage S, McGill MR, Lucas-Clerc C, Turlin B, Robin MA, Jaeschke H, Fromenty B. Differences in early acetaminophen hepatotoxicity between obese ob/ob and db/db mice. J Pharmacol Exp Ther 2012; 342:676-87. [PMID: 22647274 DOI: 10.1124/jpet.112.193813] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and β-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Jacinthe Aubert
- Institut National de la Santé et de la Recherche Médicale, U991, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Song HY, Mao ZM, Yang LL, Liu T, Li DF, Zhang L, Ge YL, Zheng PY, Liu P, Zhang XQ, Ji G. Dangfei liganning capsules attenuate the susceptibility of rat nonalcoholic fatty liver to carbon tetrachloride toxicity. J TRADIT CHIN MED 2012; 31:327-33. [PMID: 22462240 DOI: 10.1016/s0254-6272(12)60013-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To test whether nonalcoholic hepatic steatosis sensitizes carbon tetrachloride (CCl4)-induced liver injury, and to assess the therapeutic effect of Chinese medicine extracts of Dangfei Liganning capsules and their potential underlying mechanisms. METHODS Male Wistar rats were fed a high-fat diet to induce nonalcoholic fatty liver disease (NAFLD) or a normal diet (N). Eight weeks later, a nonlethal dose of CCl4 was applied intraperitoneally. From the start, HF-CCl4 rats were administered daily Dangyao extracts (D), Dangfei Liganning capsules (DF), or Diammonium Glycyrrhizinate (G) intragastrically. Rats were sacrificed 48 h after CCl4 administration. In addition to serum biochemistry, liver histopathology was observed using hematoxylin-eosin (HE) and oil red O staining, and hepatic levels of triglyceride (TG), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), caspase-3 activation and cytochrome P450 (CYP2E1) expression were assessed. RESULTS There was almost no response to the nonlethal dose of CCl4 in the N control group. However, the HF group demonstrated massive steatosis, and elevated levels of serum ALT and AST, liver MDA, CYP2E1, and caspase-3 activation, whereas the levels of GSH and SOD were significantly decreased. All indexes assessed were dramatically worse in the HF-CCl4 group compared to the HF group, in addition to the more severe steatosis, hepatocyte ballooning, and inflammatory infiltration apparent in the centrilobular area. The medicines we tested affected the pathological changes in HF-CCl4 rats to differing degrees: DF and G led to improvements in all of the above examined indexes, including an obvious improvement in histopathology, and DF improved serum ALT and MDA levels more markedly than G, whereas D extracts produced only mild liver injury attenuation. CONCLUSION Liver with NAFLD is more sensitive to hepatotoxicity; furthermore, the disrupted balance of oxidative stress and anti-oxidant defense contributes to the underlying mechanisms. Dangfei Liganning capsules potentially decrease this toxic susceptibility and alleviate liver injury in non-alcoholic fatty liver.
Collapse
Affiliation(s)
- Hai-Yan Song
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 2012; 52:1666-79. [PMID: 22343416 PMCID: PMC3341527 DOI: 10.1016/j.freeradbiomed.2012.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/21/2023]
Abstract
While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Mao ZM, Song HY, Yang LL, Liu T, Li DF, Zheng PY, Liu P, Ji G. [Effects of the mixture of Swertia pseudochinensis Hara and Silybum marianum Gaertn extracts on CCl(4)-induced liver injury in rats with non-alcoholic fatty liver disease]. ZHONG XI YI JIE HE XUE BAO = JOURNAL OF CHINESE INTEGRATIVE MEDICINE 2012; 10:193-9. [PMID: 22313887 DOI: 10.3736/jcim20120210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To study the mechanism of liver injury induced by carbon tetrachloride (CCl(4)) in rats with non-alcoholic fatty liver disease (NAFLD), and the therapeutic effects of the extract mixture of Dangyao (Swertia pseudochinensis Hara) and Shuifeiji (Silybum marianum Gaertn) on NAFLD rats with liver injury. METHODS Male Wistar rats were randomized into normal control group, CCl(4) group, high-fat diet group, high-fat diet plus CCl(4) injection group (model group), diammonium glycyrrhizinate group and extract mixture group. Except the normal control and CCl(4) groups, rats were fed with high-fat diet (88% normal chow, 10% lard and 2% cholesterol) to induce NAFLD. Diammonium glycyrrhizinate and extracts were given by gavage. After eight weeks, a nonlethal dose of CCl(4) was injected intraperitoneally to all rats except the normal and high-fat diet groups. And 48 h later, all rats were sacrificed, and serum and liver tissues were collected for further study. Paraffin-processed liver tissue was stained with hematoxylin-eosin (HE) to observe the pathological changes. Serum alamine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured. The levels of triacylglycerol (TAG), malondialdehyde (MDA) and glutathione (GSH) in liver tissues were also examined. Expression of uncoupling protein 2 (UCP2) was determined by reverse transcription-polymerase chain reaction and Western blotting. RESULTS Liver sections stained with HE showed that the histopathological changes in the normal control group and the CCl(4) group were mild; massive hepatosteatosis diffusing in lobules was shown in the high-fat diet groups; steatosis, hepatocellular ballooning degeneration and inflammatory infiltration were severe around the central vein in sections of the model group. Compared with the model group, hepatosteatosis and ballooning were significantly attenuated in the treatment groups. Levels of serum ALT and AST, contents of TAG and MDA and the UCP2 expression in liver tissues of the model group increased obviously, while the level of liver GSH decreased. Compared with rats in the model group, the above biomarkers in the treatment groups were improved significantly. CONCLUSION The mixture of Dangyao and Shuifeiji extracts can decrease the susceptibility and degree of liver injury induced by hepatotoxin in rats with NAFLD. Regulation of the balance of pro- and anti-oxidative stress factors is involved in the mechanism.
Collapse
Affiliation(s)
- Zhi-min Mao
- Institute of Digestive Disease, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Functional Relationships between Lipid Metabolism and Liver Regeneration. Int J Hepatol 2012; 2012:549241. [PMID: 22319652 PMCID: PMC3272806 DOI: 10.1155/2012/549241] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/30/2022] Open
Abstract
The regenerative capacity of the liver is well known, and the mechanisms that regulate this process have been extensively studied using experimental model systems including surgical resection and hepatotoxin exposure. The response to primary mitogens has also been used to investigate the regulation of hepatocellular proliferation. Such analyses have identified many specific cytokines and growth factors, intracellular signaling events, and transcription factors that are regulated during and necessary for normal liver regeneration. Nevertheless, the nature and identities of the most proximal events that initiate hepatic regeneration as well as those distal signals that terminate this process remain unknown. Here, we review the data implicating acute alterations in lipid metabolism as important determinants of experimental liver regeneration and propose a novel metabolic model of regeneration based on these data. We also discuss the association between chronic hepatic steatosis and impaired regeneration in animal models and humans and consider important areas for future research.
Collapse
|
31
|
Serviddio G, Bellanti F, Vendemiale G, Altomare E. Mitochondrial dysfunction in nonalcoholic steatohepatitis. Expert Rev Gastroenterol Hepatol 2011; 5:233-44. [PMID: 21476918 DOI: 10.1586/egh.11.11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The pathogenesis of nonalcoholic steatohepatitis (NASH) is poorly understood and the mechanisms are still being elucidated. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of free radicals that in turn trigger lipid peroxidation and cell death. In this article, we review the role of mitochondria in fat metabolism, energy homeostasis and reactive oxygen species production, with a focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. The potential effects of some molecules targeted to mitochondria are also discussed.
Collapse
Affiliation(s)
- Gaetano Serviddio
- CURE (Centre for Liver Disease Research and Treatment), Department of Medical and Occupational Sciences, University of Foggia, 70124 Foggia, Italy.
| | | | | | | |
Collapse
|
32
|
Amacher DE. Strategies for the early detection of drug-induced hepatic steatosis in preclinical drug safety evaluation studies. Toxicology 2010; 279:10-8. [PMID: 20974209 DOI: 10.1016/j.tox.2010.10.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 09/21/2010] [Accepted: 10/18/2010] [Indexed: 12/14/2022]
Abstract
Hepatic steatosis is characterized by the accumulation of lipid droplets in the liver. Although relatively benign, simple steatosis can eventually lead to the development of steatohepatitis, a more serious condition characterized by fibrosis, cirrhosis, and eventual liver failure if the underlying cause is not eliminated. According to the "two hit" theory of steatohepatitis, the initial hit involves fat accumulation in the liver, and a second hit leads to inflammation and subsequent tissue injury. Because some xenobiotics target liver fatty acid metabolism, especially mitochondrial β-oxidation, it is important to avoid potential drug candidates that can contribute to either the initiation of liver steatosis or progression to the more injurious steatohepatitis. The gold standard for the detection of these types of hepatic effects is histopathological examination of liver tissue. In animal studies, these examinations are slow, restricted to a single sampling time, and limited tissue sections. Recent literature suggests that rapid in vitro screening methods can be used early in the drug R&D process to identify compounds with steatotic potential. Further, progress in the identification of potential serum or plasma protein biomarkers for these liver changes may provide additional in vivo tools to the preclinical study toxicologist. This review summarizes recent developments for in vitro screening and in vivo biomarker detection for steatotic drug candidates.
Collapse
Affiliation(s)
- David E Amacher
- Sciadvisor Toxicology Consulting, P.O. Box 254, Hadlyme, CT 06439, USA.
| |
Collapse
|
33
|
Sánchez-Garrido MA, Chico Y, González R, Ranchal I, González-Rubio S, Hidalgo AB, Díaz-López C, Costán G, Padillo FJ, De la Mata M, Ochoa B, Muntané J. Interleukin-6 is associated with liver lipid homeostasis but not with cell death in experimental hepatic steatosis. Innate Immun 2010; 15:337-49. [PMID: 19710104 DOI: 10.1177/1753425909104900] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatic steatosis is a risk factor for the progression of non-alcoholic fatty liver disease. The role of pro-inflammatory interleukin (IL)-6 in hepatic steatosis etiology is controversial. We investigated in vivo and in primary hepatocyte cultures whether IL-6 has a modulator role in liver and mitochondria lipid composition and cell death in a choline-deficient (CD) diet rat model of hepatic steatosis. Dietary choline deficiency increased triglycerides and cholesterol, and reduced phosphatidylcholine (PC), phosphatidylethanolamine (PE) and the membrane integrity marker PC:PE ratio in liver. Choline-deficient diet enhanced systemic IL-6, and IL-6 receptor expression and cell death vulnerability in hepatocytes. Derangement of the mitochondrial electron transport chain and of its phospholipid environment was found in CD rat liver mitochondria, which exhibited elevated concentrations of triglycerides, cardiolipin and PC and elevated PC:PE ratio. The cell treatment with IL-6, but not PC, eliminated much of the CD-promoted lipid imbalance in mitochondria but not tumor-necrosis factor (TNF)-alpha-induced cell death. However, PC supplementation prevented the TNF-alpha-induced DNA fragmentation, cytochrome-c release and caspase-3 activity in control and CD hepatocytes. In conclusion, IL-6 ameliorated the mitochondria lipid disturbance in hepatocytes isolated from steatotic animals. Furthermore, PC is identified as a new survival agent that reverses several TNFalpha-inducible responses that are likely to promote steatosis and necrosis.
Collapse
|
34
|
Ji G, Zhang L. Prevention and treatment of insulin resistance in nonalcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2010; 18:1469-1473. [DOI: 10.11569/wcjd.v18.i14.1469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is significantly associated with nonalcoholic fatty liver disease (NAFLD) and represents a key pathogenic parameter in the natural history of NAFLD. Insulin resistance not only participates in the progression of NAFLD but also affects the therapeutic effects of drugs against NAFLD by enhancing the sensitivity of hepatocytes to factors that can induce liver injury. Prevention and treatment of insulin resistance will enhance the therapeutic effects of drugs against NAFLD and improve the prognosis of the disease. Chinese medicine has displayed its characteristics and advantages in treating insulin resistance. Further exploration of the mechanisms responsible for the syndromes of insulin resistance and scientific evaluation of the effective prescriptions for insulin resistance will be able to improve the prevention and treatment of NAFLD by Chinese medicine.
Collapse
|
35
|
Boqué N, Campión J, Milagro FI, Moreno-Aliaga MJ, Martinez JA. Some cyclin-dependent kinase inhibitors-related genes are regulated by vitamin C in a model of diet-induced obesity. Biol Pharm Bull 2010; 32:1462-8. [PMID: 19652391 DOI: 10.1248/bpb.32.1462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this research was to investigate differential gene expression of cyclin-dependent kinase inhibitors (CKIs) in white adipose tissue (WAT) and liver from high-fat fed male Wistar rats with or without vitamin C (VC) supplementation (750 mg/kg of body weight). After 56 d of experimentation, animals fed on a cafeteria diet increased significantly body weights and total body fat. Reverse transcription-polymerase chain reaction (RT-PCR) studies showed that cafeteria diet decreased p21 and p57 mRNA expression in subcutaneous WAT and increased p21 mRNA in liver. Overall, these data provide new information about the role of high fat intake on mRNA levels of several CKIs with implications in adipogenesis, cell metabolism and weight homeostasis. Interestingly, VC supplementation partially prevented diet-induced adiposity and increased p27 mRNA in liver without any changes in the other tissues and genes analyzed. Thus, hepatic mRNA changes induced by ascorbic acid indicate a possible role of these genes in diet-induced oxidative stress processes.
Collapse
Affiliation(s)
- Noemí Boqué
- Institute of Nutrition and Food Science, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Russmann S, Kullak-Ublick GA, Grattagliano I. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem 2009; 16:3041-53. [PMID: 19689281 PMCID: PMC2765083 DOI: 10.2174/092986709788803097] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) has become a leading cause of severe liver disease in Western countries and therefore poses a major clinical and regulatory challenge. Whereas previously drug-specific pathways leading to initial injury of liver cells were the main focus of mechanistic research and classifications, current concepts see these as initial upstream events and appreciate that subsequent common downstream pathways and their attenuation by drugs and other environmental and genetic factors also have a profound impact on the risk of an individual patient to develop overt liver disease. This review summarizes current mechanistic concepts of DILI in a 3-step model that limits its principle mechanisms to three main ways of initial injury, i.e. direct cell stress, direct mitochondrial impairment, and specific immune reactions. Subsequently, initial injury initiates further downstream events, i.e. direct and death receptor-mediated pathways leading to mitochondrial permeability transition, which then results in apoptotic or necrotic cell death. For all mechanisms, mitochondria play a central role in events leading to apoptotic vs. necrotic cell death. New treatment targets consequently focus on interference with downstream pathways that mediate injury and therefore determine the ultimate outcome of DILI. Genome wide and targeted pharmacogenetic as well as metabonomic approaches are now used in order to reach the key goals of a better understanding of mechanisms in hepatotoxicity, and to develop new strategies for its prediction and treatment. However, the complexity of interactions between genetic and environmental risk factors is considerable, and DILI therefore currently remains unpredictable for most hepatotoxins.
Collapse
Affiliation(s)
- Stefan Russmann
- Division of Clinical Pharmacology and Toxicology, University Hospital Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
38
|
Grattagliano I, Bonfrate L, Diogo CV, Wang HH, Wang DQH, Portincasa P. Biochemical mechanisms in drug-induced liver injury: Certainties and doubts. World J Gastroenterol 2009; 15:4865-76. [PMID: 19842215 PMCID: PMC2764962 DOI: 10.3748/wjg.15.4865] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury is a significant and still unresolved clinical problem. Limitations to knowledge about the mechanisms of toxicity render incomplete the detection of hepatotoxic potential during preclinical development. Several xenobiotics are lipophilic substances and their transformation into hydrophilic compounds by the cytochrome P-450 system results in production of toxic metabolites. Aging, preexisting liver disease, enzyme induction or inhibition, genetic variances, local O2 supply and, above all, the intrinsic molecular properties of the drug may affect this process. Necrotic death follows antioxidant consumption and oxidation of intracellular proteins, which determine increased permeability of mitochondrial membranes, loss of potential, decreased ATP synthesis, inhibition of Ca2+-dependent ATPase, reduced capability to sequester Ca2+ within mitochondria, and membrane bleb formation. Conversely, activation of nucleases and energetic participation of mitochondria are the main intracellular mechanisms that lead to apoptosis. Non-parenchymal hepatic cells are inducers of hepatocellular injury and targets for damage. Activation of the immune system promotes idiosyncratic reactions that result in hepatic necrosis or cholestasis, in which different HLA genotypes might play a major role. This review focuses on current knowledge of the mechanisms of drug-induced liver injury and recent advances on newly discovered mechanisms of liver damage. Future perspectives including new frontiers for research are discussed.
Collapse
|
39
|
Schumann A, Bauer A, Hermes M, Gilbert M, Hengstler JG, Wilhelm C. A rapid and easy to handle thermoluminescence based technique for evaluation of carbon tetrachloride-induced oxidative stress on rat hepatocytes. Arch Toxicol 2009; 83:709-20. [PMID: 19214477 DOI: 10.1007/s00204-009-0404-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 01/15/2009] [Indexed: 02/02/2023]
Abstract
Oxidative stress has become one of the most intensively studied topics in biomedical research and is an often observed mechanism of non-genotoxic carcinogens like carbon tetrachloride. To monitor the oxidative stress status in in vitro hepatocytes, we compared thermoluminescence (TL) measurements with biochemical standard methods for oxidative stress markers. In contrast to biochemical analysis, TL measurements can be performed without any time-consuming extraction procedures by using directly collected cell material. After incubation with CCl(4) (24 h), thermo-induced light emission increased with rising concentration of CCl(4) up to eightfold at 10 mM CCl(4). Simultaneously, we determined the content of different secondary oxidative stress products, like thiobarbituric acid reactive substances and malondialdehyde. The rise of all biochemical markers complied with the increasing concentration of CCl(4). Finally, we could show that the CCl(4)-induced increase of oxidative stress markers determined by time-consuming biochemical methods perfectly correlates with the increase of high temperature bands in rapid TL measurements.
Collapse
Affiliation(s)
- Anika Schumann
- Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Chen P, Li C, Pang W, Zhao Y, Dong W, Wang S, Zhang J. The protective role of Per2 against carbon tetrachloride-induced hepatotoxicity. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 174:63-70. [PMID: 19056852 DOI: 10.2353/ajpath.2009.080430] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Period 2 (Per2) is a key component of the core clock oscillator and is involved in regulating a number of different biological processes and pathways. Here we report that Per2 plays a protective role in carbon tetrachloride (CCl(4))-induced hepatotoxicity via the modulation of uncoupling protein-2 (Ucp2) gene expression in mice. Hepatic injury after acute CCl(4) injection was monitored in both wild-type and Per2-null mice. At the 12-hour time point after CCl(4) treatment, many more vacuolations were observed in the liver tissues of Per2-null mice whereas fatty tissue degeneration primarily occurred in the liver tissues of wide-type mice. Serum alanine and aspartate aminotransferase activities were elevated in Per2-null mice compared with wide-type mice at 24 hours after CCl(4) treatment, which was in agreement with the observation of significantly larger areas of centrilobular necrosis in the livers of Per2-null mice. A deficit of the Per2 gene enhanced Ucp2 gene expression levels in the liver. As a consequence, intracellular levels of ATP markedly decreased in the liver, allowing increased production of toxic CCl(4) derivatives. The absence of Per2 expression caused a dramatic elevation of Clock expression and influenced Ucp2 through a mechanism that involved a Clock-controlled PPAR-alpha signal transduction pathway. Our studies suggest that the Per2 gene functions in hepatocyte protection from chemical toxicants via the regulation of hepatic Ucp2 gene expression levels.
Collapse
Affiliation(s)
- Peng Chen
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Teodoro JS, Rolo AP, Duarte FV, Simões AM, Palmeira CM. Differential alterations in mitochondrial function induced by a choline-deficient diet: understanding fatty liver disease progression. Mitochondrion 2008; 8:367-76. [PMID: 18765303 DOI: 10.1016/j.mito.2008.07.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/03/2008] [Accepted: 07/30/2008] [Indexed: 12/16/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly reported pathology, characterized by fat accumulation within the hepatocyte. Growing evidences suggest specific effects on mitochondrial metabolism, but it is still unclear the relationship between fatty liver progression and mitochondrial function. In the present work we have investigated the impact of fatty liver on mitochondrial bioenergetic functions and susceptibility to mitochondrial permeability transition (MPT) induction in animals fed a choline-deficient diet (CDD) for 4, 8, 12 or 16 weeks. Mitochondria isolated from CDD animals always exhibited higher state 4 respiration. Mitochondrial membrane potential was decreased in CDD animals at 4 and 16 weeks. At 12 weeks, oxidative phosphorylation was more efficient in CDD animals, suggesting a possible early response trying to revert the deleterious effect of increased triglyceride storage in the liver. However, mitochondrial dysfunction was evident in CDD animals at 16 weeks as indicated by decreased RCR and ADP/O, with a corresponding decrease in respiratory chain enzymes activities. Such loss of respiratory efficiency was associated with accumulation of protein oxidation products, in tissue and mitochondrial fraction. Additionally, although no differences in ATPase activity, the lag phase was increased in mitochondria from CDD animals at 16 weeks, associated with decreased content of the adenine nucleotide translocator. Increased susceptibility to calcium-induced MPT was evident in CDD animals at all time points. These results suggest a dynamic mechanism for the development of NALFD associated with altered mitochondrial function.
Collapse
Affiliation(s)
- João S Teodoro
- Center for Neurosciences and Cell Biology, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | |
Collapse
|
42
|
Demori I, Burlando B, Gerdoni E, Lanni A, Fugassa E, Voci A. Uncoupling protein-2 induction in rat hepatocytes after acute carbon tetrachloride liver injury. J Cell Physiol 2008; 216:413-8. [PMID: 18314881 DOI: 10.1002/jcp.21415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study is focused on the role of UCP-2 in hepatic oxidative metabolism following acute CCl(4) administration to rats. UCP-2 mRNA, almost undetectable in the liver of controls, was significantly increased 24 h after CCl(4) administration, peaked at 72 h and then tended to disappear. UCP-2 protein, undetectable in controls, increased 48-72 h after CCl(4) treatment. Experiments with isolated liver cells indicated that in control rats UCP-2 was expressed in non-parenchymal cells and not in hepatocytes, whereas in CCl(4)-treated rats UCP-2 expression was induced in hepatocytes and was not affected in non-parenchymal cells. Addition of CCl(4) to the culture medium of hepatocytes from control rats failed to induce UCP-2 expression. Liver mitochondria from CCl(4)-treated rats showed an increase of H(2)O(2) release at 12-24 h, followed by a rise of TBARS. Vitamin E protected liver from CCl(4) injury and reduced the expression of UCP-2. Treatment with GdCl(3) prior to CCl(4), in order to inhibit Kupffer cells, reduced TBARS and UCP-2 mRNA increase in hepatic mitochondria. Our data indicate that CCl(4) induces the expression of UCP-2 in hepatocytes with a redox-dependent mechanism involving Kupffer cells. A role of UCP-2 in moderating CCl(4)-induced oxidative stress during tissue regeneration after injury is suggested.
Collapse
Affiliation(s)
- Ilaria Demori
- Dipartimento di Biologia, Università di Genova, Genova, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Syn WK, Nightingale P, Bateman JM. Nonalcoholic fatty liver disease in a district general hospital: clinical presentation and risk factors. Hepatol Int 2008; 2:190-5. [PMID: 19669303 PMCID: PMC2716851 DOI: 10.1007/s12072-008-9044-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 01/16/2008] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) affects one-fifth of the adult population and is currently the commonest liver problem in the western world. The prevalence of NAFLD is likely to rise over the coming decades in parallel to the obesity and diabetes epidemics. A retrospective study was undertaken in a UK. district general hospital (DGH) to determine the clinical and laboratory features of patients with NAFLD. METHODS AND FINDINGS A total of 48 patients with NAFLD were identified. Most (54%) were asymptomatic on presentation and 90% had an echogenic liver on ultrasonography (USS). Liver tests were elevated in the majority, but did not distinguish between simple steatosis and steatohepatitis. Having features of the metabolic syndrome and a low platelet count (P = 0.028) may help identify patients with advanced hepatic fibrosis. CONCLUSIONS NAFLD is common in the DGH and should be considered in all patients with metabolic risk factors. A liver biopsy should be considered in those with low platelets, type II diabetes mellitus, and the metabolic syndrome.
Collapse
Affiliation(s)
- Wing-Kin Syn
- Princess Royal Hospital, Apley Castle, Telford, Shropshire, TF1 6TF UK
- Liver Unit and Hepatobiliary Unit, Queen Elizabeth Hospital, 3rd Floor Nuffield House, Birmingham, B15 2TH UK
| | | | | |
Collapse
|
44
|
Oz HS, Chen TS, Neuman M. Methionine deficiency and hepatic injury in a dietary steatohepatitis model. Dig Dis Sci 2008; 53:767-76. [PMID: 17710550 PMCID: PMC2271115 DOI: 10.1007/s10620-007-9900-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/04/2007] [Indexed: 02/06/2023]
Abstract
Methionine (Meth) is an essential amino acid involved in DNA methylation and glutathione biosynthesis. We examined the effect of Meth on the development of steatohepatitis. Rats were fed (five weeks) amino acid-based Meth-choline-sufficient (A-MCS) or total deficient (MCD) diets and gavaged daily (two weeks) with vehicle (B-vehicle/MCD), or Meth replacement (C-Meth/MCD). To assess the effect of short-term deficiency, after three weeks one MCS group was fed a deficient diet (D-MCS/MCD). Animals fed the deficient diet for two weeks lost (29%) weight and after five weeks weighed one third as much as those on the sufficient diet, and also developed anemia (P < 0.01). Hepatic transaminases progressively increased from two to five weeks (P < 0.01), leading to severe hepatic pathology. Meth administration normalized hematocrit, improved weight (P < 0.05), and suppressed abnormal enzymes activities (P < 0.01). Meth administration improved blood and hepatic glutathione (GSH), S-adenosylmethionine (SAMe), and hepatic lesions (P < 0.01). The deficient diet significantly upregulated proinflammatory and fibrotic genes, which was ameliorated by Meth administration. These data support a pivotal role for methionine in the pathogenesis of the dietary model of Meth-choline-deficient (MCD) steatohepatitis (NASH).
Collapse
Affiliation(s)
- Helieh S Oz
- Center for the Oral Health Research, Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
45
|
Serviddio G, Sastre J, Bellanti F, Viña J, Vendemiale G, Altomare E. Mitochondrial involvement in non-alcoholic steatohepatitis. Mol Aspects Med 2008; 29:22-35. [PMID: 18061659 DOI: 10.1016/j.mam.2007.09.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 09/28/2007] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is an increasing recognized condition that may progress to end-stage liver disease. There are consistent evidences that mitochondrial dysfunction plays a central role in NASH whatever its origin. Mitochondria are the key controller of fatty acids removal and this is part of an intensive gene program that modifies hepatocytes to counteract the excessive fat storage. Mitochondrial dysfunction participates at different levels in NASH pathogenesis since it impairs fatty liver homeostasis and induces overproduction of ROS that in turn trigger lipid peroxidation, cytokines release and cell death. In this review we briefly recall the role of mitochondria in fat metabolism and energy homeostasis and focus on the role of mitochondrial impairment and uncoupling proteins in the pathophysiology of NASH progression. We suggest that mitochondrial respiratory chain, UCP2 and redox balance cooperate in a common pathway that permits to set down the mitochondrial redox pressure, limits the risk of oxidative damage, and allows the maximal rate of fat removal. When the environmental conditions change and high energy supply occurs, hepatocytes are unable to replace their ATP store and steatosis progress to NASH and cirrhosis. The beneficial effects of some drugs on mitochondrial function are also discussed.
Collapse
Affiliation(s)
- Gaetano Serviddio
- Department of Medical and Occupational Sciences, University of Foggia, v.le Pinto 1, 71100 Foggia, Italy.
| | | | | | | | | | | |
Collapse
|
46
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
47
|
Sawant SP, Dnyanmote AV, Mehendale HM. Mechanisms of inhibited liver tissue repair in toxicant challenged type 2 diabetic rats. Toxicology 2007; 232:200-15. [PMID: 17298859 DOI: 10.1016/j.tox.2007.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 01/01/2007] [Accepted: 01/05/2007] [Indexed: 01/08/2023]
Abstract
Liver injury initiated by non-lethal doses of CCl(4) and thioacetamide (TA) progresses to hepatic failure and death of type 2 diabetic (DB) rats due to failed advance of liver cells from G(0)/G(1) to S-phase and inhibited tissue repair. Objective of the present study was to investigate cellular signaling mechanisms of failed cell division in DB rats upon hepatotoxicant challenge. In CCl(4)-treated non-diabetic (non-DB) rats, increased IL-6 levels, sustained activation of extracellular regulated kinases 1/2 (ERK1/2) MAPK, and sustained phosphorylation of retinoblastoma protein (p-pRB) via cyclin D1/cyclin-dependent kinase (cdk) 4 and cyclin D1/cdk6 complexes stimulated G(0)/G(1) to S-phase transition of liver cells. In contrast to the non-DB rats, CCl(4) administration led to lower plasma IL-6, decreased ERK1/2 activation, lower cyclin D1, and cdk 4/6 expression resulting in decreased p-pRB and inhibition of liver cell division in the DB rats. Furthermore, higher TGFbeta1 expression and p21 activation may also contribute to decreased p-pRB in DB rats compared to non-DB rats. Similarly, after TA administration to DB rats, down-regulation of cyclin D1 and p-pRB leads to markedly decreased advance of liver cells from G(0)/G(1) to S-phase and tissue repair compared to the non-DB rats. Hepatic ATP levels did not differ between the DB and non-DB rats obviating its role in failed tissue repair in the DB rats. In conclusion, decreased p-pRB may contribute to blocked advance of cells from G(0)/G(1) to S-phase and failed cell division in DB rats exposed to CCl(4) or TA, leading to progression of liver injury and hepatic failure.
Collapse
Affiliation(s)
- Sharmilee P Sawant
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, 700 University Avenue, Sugar Hall #306, Monroe, LA 71209-0470, USA
| | | | | |
Collapse
|