1
|
Lichtenstein L, Cheng CW, Bajarwan M, Evans EL, Gaunt HJ, Bartoli F, Chuntharpursat-Bon E, Patel S, Konstantinou C, Futers TS, Reay M, Parsonage G, Moore JB, Bertrand-Michel J, Sukumar P, Roberts LD, Beech DJ. Endothelial force sensing signals to parenchymal cells to regulate bile and plasma lipids. SCIENCE ADVANCES 2024; 10:eadq3075. [PMID: 39331703 PMCID: PMC11430402 DOI: 10.1126/sciadv.adq3075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/21/2024] [Indexed: 09/29/2024]
Abstract
How cardiovascular activity interacts with lipid homeostasis is incompletely understood. We postulated a role for blood flow acting at endothelium in lipid regulatory organs. Transcriptome analysis was performed on livers from mice engineered for deletion of the flow-sensing PIEZO1 channel in endothelium. This revealed unique up-regulation of Cyp7a1, which encodes the rate-limiting enzyme for bile synthesis from cholesterol in hepatocytes. Consistent with this effect were increased gallbladder and plasma bile acids and lowered hepatic and plasma cholesterol. Elevated portal fluid flow acting via endothelial PIEZO1 and genetically enhanced PIEZO1 conversely suppressed Cyp7a1. Activation of hepatic endothelial PIEZO1 channels promoted phosphorylation of nitric oxide synthase 3, and portal flow-mediated suppression of Cyp7a1 depended on nitric oxide synthesis, suggesting endothelium-to-hepatocyte coupling via nitric oxide. PIEZO1 variants in people were associated with hepatobiliary disease and dyslipidemia. The data suggest an endothelial force sensing mechanism that controls lipid regulation in parenchymal cells to modulate whole-body lipid homeostasis.
Collapse
Affiliation(s)
- Laeticia Lichtenstein
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Chew W. Cheng
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Muath Bajarwan
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | | | - Fiona Bartoli
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - Shaili Patel
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | - Charalampos Konstantinou
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
- Department of Hepatobiliary and Transplant Surgery, St James's University Hospital, Leeds LS9 7TF, UK
| | | | - Melanie Reay
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | | | - J. Bernadette Moore
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Justine Bertrand-Michel
- MetaToul-Lipidomics Facility, INSERM UMR1048, Toulouse, France
- Institut des Maladies Métaboliques et Cardiovasculaires, UMR 1297/I2MC, INSERM, Toulouse, France
| | | | - Lee D. Roberts
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - David J. Beech
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
2
|
Fondevila MF, Novoa E, Fernandez U, Dorta V, Parracho T, Kreimeyer H, Garcia-Vence M, Chantada-Vazquez MP, Bravo SB, Porteiro B, Cabaleiro A, Koning M, Senra A, Souto Y, Verheij J, Guallar D, Fidalgo M, Meijnikman AS, da Silva Lima N, Dieguez C, Gonzalez-Rellan MJ, Nogueiras R. Inhibition of hepatic p63 ameliorates steatohepatitis with fibrosis in mice. Mol Metab 2024; 85:101962. [PMID: 38815625 PMCID: PMC11180345 DOI: 10.1016/j.molmet.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.
Collapse
Affiliation(s)
- Marcos F Fondevila
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Eva Novoa
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Uxia Fernandez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain
| | - Valentina Dorta
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Tamara Parracho
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Henriette Kreimeyer
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Maria Garcia-Vence
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Maria P Chantada-Vazquez
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Susana B Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15705, Spain
| | - Begoña Porteiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Alba Cabaleiro
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Mijra Koning
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ana Senra
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Yara Souto
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Diana Guallar
- Department of Biochemistry and Molecular Biology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Miguel Fidalgo
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Abraham S Meijnikman
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Natalia da Silva Lima
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Carlos Dieguez
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria J Gonzalez-Rellan
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, M5T 3H7, Canada
| | - Ruben Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), Santiago de Compostela, 15782, Spain; Galicia Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, 15702, Spain.
| |
Collapse
|
3
|
McConnell MJ, Kostallari E, Ibrahim SH, Iwakiri Y. The evolving role of liver sinusoidal endothelial cells in liver health and disease. Hepatology 2023; 78:649-669. [PMID: 36626620 PMCID: PMC10315420 DOI: 10.1097/hep.0000000000000207] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/25/2022] [Indexed: 01/12/2023]
Abstract
LSECs are a unique population of endothelial cells within the liver and are recognized as key regulators of liver homeostasis. LSECs also play a key role in liver disease, as dysregulation of their quiescent phenotype promotes pathological processes within the liver including inflammation, microvascular thrombosis, fibrosis, and portal hypertension. Recent technical advances in single-cell analysis have characterized distinct subpopulations of the LSECs themselves with a high resolution and defined their gene expression profile and phenotype, broadening our understanding of their mechanistic role in liver biology. This article will review 4 broad advances in our understanding of LSEC biology in general: (1) LSEC heterogeneity, (2) LSEC aging and senescence, (3) LSEC role in liver regeneration, and (4) LSEC role in liver inflammation and will then review the role of LSECs in various liver pathologies including fibrosis, DILI, alcohol-associated liver disease, NASH, viral hepatitis, liver transplant rejection, and ischemia reperfusion injury. The review will conclude with a discussion of gaps in knowledge and areas for future research.
Collapse
Affiliation(s)
- Matthew J. McConnell
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | | | - Samar H. Ibrahim
- Division of Gastroenterology, Mayo Clinic, Rochester, MN
- Division of Pediatric Gastroenterology, Mayo Clinic, Rochester, MN
| | - Yasuko Iwakiri
- Section of Digestive Disease, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
4
|
Cooper SA, Kostallari E, Shah VH. Angiocrine Signaling in Sinusoidal Health and Disease. Semin Liver Dis 2023; 43:245-257. [PMID: 37442155 PMCID: PMC10798369 DOI: 10.1055/a-2128-5907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key players in maintaining hepatic homeostasis. They also play crucial roles during liver injury by communicating with liver cell types as well as immune cells and promoting portal hypertension, fibrosis, and inflammation. Cutting-edge technology, such as single cell and spatial transcriptomics, have revealed the existence of distinct LSEC subpopulations with a clear zonation in the liver. The signals released by LSECs are commonly called "angiocrine signaling." In this review, we summarize the role of angiocrine signaling in health and disease, including zonation in healthy liver, regeneration, fibrosis, portal hypertension, nonalcoholic fatty liver disease, alcohol-associated liver disease, aging, drug-induced liver injury, and ischemia/reperfusion, as well as potential therapeutic advances. In conclusion, sinusoidal endotheliopathy is recognized in liver disease and promising preclinical studies are paving the path toward LSEC-specific pharmacotherapies.
Collapse
Affiliation(s)
- Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Konieczny P, Adamus T, Sułkowski M, Skrzypek K, Majka M. Impact of AMPK on cervical carcinoma progression and metastasis. Cell Death Dis 2023; 14:43. [PMID: 36658117 PMCID: PMC9852279 DOI: 10.1038/s41419-023-05583-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023]
Abstract
Cervical cancer (CC) is the fourth most common malignant neoplasm among women. Late diagnosis is directly associated with the incidence of metastatic disease and remarkably limits the effectiveness of conventional anticancer therapies at the advanced tumor stage. In this study, we investigated the role of 5'AMP-activated kinase (AMPK) in the metastatic progression of cervical cancer. Since the epithelial mesenchymal transition (EMT) is known as major mechanism enabling cancer cell metastasis, cell lines, which accurately represent this process, have been used as a research model. We used C-4I and HTB-35 cervical cancer cell lines representing distant stages of the disease, in which we genetically modified the expression of the AMPK catalytic subunit α. We have shown that tumor progression leads to metabolic deregulation which results in reduced expression and activity of AMPK. We also demonstrated that AMPK is related to the ability of cells to acquire invasive phenotype and potential for in vivo metastases, and its activity may inhibit these processes. Our findings support the hypothesis that AMPK is a promising therapeutic target and modulation of its expression and activity may improve the efficacy of cervical cancer treatment.
Collapse
Affiliation(s)
- Paweł Konieczny
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Tomasz Adamus
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Maciej Sułkowski
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Klaudia Skrzypek
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland
| | - Marcin Majka
- Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Department of Transplantation, Krakow, Poland.
| |
Collapse
|
6
|
Robinson AE, Binek A, Ramani K, Sundararaman N, Barbier-Torres L, Murray B, Venkatraman V, Kreimer S, Ardle AM, Noureddin M, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Millet O, Mato JM, Lu SC, Van Eyk JE. Hyperphosphorylation of hepatic proteome characterizes nonalcoholic fatty liver disease in S-adenosylmethionine deficiency. iScience 2023; 26:105987. [PMID: 36756374 PMCID: PMC9900401 DOI: 10.1016/j.isci.2023.105987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/15/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Methionine adenosyltransferase 1a (MAT1A) is responsible for hepatic S-adenosyl-L-methionine (SAMe) biosynthesis. Mat1a -/- mice have hepatic SAMe depletion, develop nonalcoholic steatohepatitis (NASH) which is reversed with SAMe administration. We examined temporal alterations in the proteome/phosphoproteome in pre-disease and NASH Mat1a -/- mice, effects of SAMe administration, and compared to human nonalcoholic fatty liver disease (NAFLD). Mitochondrial and peroxisomal lipid metabolism proteins were altered in pre-disease mice and persisted in NASH Mat1a -/- mice, which exhibited more progressive alterations in cytoplasmic ribosomes, ER, and nuclear proteins. A common mechanism found in both pre-disease and NASH livers was a hyperphosphorylation signature consistent with casein kinase 2α (CK2α) and AKT1 activation, which was normalized by SAMe administration. This was mimicked in human NAFLD with a metabolomic signature (M-subtype) resembling Mat1a -/- mice. In conclusion, we have identified a common proteome/phosphoproteome signature between Mat1a -/- mice and human NAFLD M-subtype that may have pathophysiological and therapeutic implications.
Collapse
Affiliation(s)
- Aaron E. Robinson
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Aleksandra Binek
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Ben Murray
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - Vidya Venkatraman
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Simion Kreimer
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Angela Mc Ardle
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez de Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Oscar Millet
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Davis Building, Room 2097, Los Angeles, CA 90048, USA
- Corresponding author
| | - Jennifer E. Van Eyk
- Advanced Clinical Biosystems Research Institute, The Smidt Heart Institute, Cedars Sinai Medical Center, Advanced Health Sciences Pavilion, 127 S. San Vicente Blvd, Room 9302, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
7
|
Vazquez JH, Kennon-McGill S, Byrum SD, Mackintosh SG, Jaeschke H, Williams DK, Lee WM, Dranoff JA, McGill MR. Proteomics Indicates Lactate Dehydrogenase Is Prognostic in Acetaminophen-Induced Acute Liver Failure Patients and Reveals Altered Signaling Pathways. Toxicol Sci 2022; 187:25-34. [PMID: 35172013 PMCID: PMC9216044 DOI: 10.1093/toxsci/kfac015] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Better biomarkers to predict death early in acute liver failure (ALF) are needed. To that end, we obtained early (study day 1) and later (day 3) serum samples from transplant-free survivors (n = 28) and nonsurvivors (n = 30) of acetaminophen-induced ALF from the NIH-sponsored Acute Liver Failure Study Group and from control volunteers (n = 10). To identify proteins that increase early in serum during ALF, we selected individuals from this cohort for whom alanine aminotransferase was lower on day 1 than day 3, indicating a time point before peak injury (n = 10/group). We then performed untargeted proteomics on their day 1 samples. Out of 1682 quantifiable proteins, 361 were ≥ 4-fold elevated or decreased in ALF patients versus controls and 16 of those were further elevated or decreased ≥ 4-fold in nonsurvivors versus survivors, indicating potential to predict death. Interestingly, 1 of the biomarkers was lactate dehydrogenase (LDH), which is already measured in most clinical laboratories. To validate our proteomics results and to confirm the prognostic potential of LDH, we measured LDH activity in all day 1 and 3 samples from all 58 ALF patients. LDH was elevated in the nonsurvivors versus survivors on both days. In addition, it had prognostic value similar to the model for end-stage liver disease and outperformed the King's College Criteria, while a combination of model for end-stage liver disease and LDH together outperformed either alone. Finally, bioinformatics analysis of our proteomics data revealed alteration of numerous signaling pathways that may be important in liver regeneration. Overall, we conclude LDH can predict death in APAP-induced ALF.
Collapse
Affiliation(s)
- Joel H Vazquez
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Stefanie Kennon-McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - D Keith Williams
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - William M Lee
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Med School, Dallas, Texas 75390, USA
| | - Jonathan A Dranoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | - Mitchell R McGill
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | |
Collapse
|
8
|
Niu W, Miao J, Li X, Guo Q, Deng Z, Wu L. Metabolomics combined with systematic pharmacology reveals the therapeutic effects of Salvia miltiorrhiza and Radix Pueraria lobata herb pair on type 2 diabetes rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
9
|
Ramani K, Robinson AE, Berlind J, Fan W, Abeynayake A, Binek A, Barbier-Torres L, Noureddin M, Nissen NN, Yildirim Z, Erbay E, Mato JM, Van Eyk JE, Lu SC. S-adenosylmethionine inhibits la ribonucleoprotein domain family member 1 in murine liver and human liver cancer cells. Hepatology 2022; 75:280-296. [PMID: 34449924 PMCID: PMC8766892 DOI: 10.1002/hep.32130] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 08/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIMS Methionine adenosyltransferase 1A (MAT1A) is responsible for S-adenosylmethionine (SAMe) biosynthesis in the liver. Mice lacking Mat1a have hepatic SAMe depletion and develop NASH and HCC spontaneously. Several kinases are activated in Mat1a knockout (KO) mice livers. However, characterizing the phospho-proteome and determining whether they contribute to liver pathology remain open for study. Our study aimed to provide this knowledge. APPROACH AND RESULTS We performed phospho-proteomics in Mat1a KO mice livers with and without SAMe treatment to identify SAMe-dependent changes that may contribute to liver pathology. Our studies used Mat1a KO mice at different ages treated with and without SAMe, cell lines, in vitro translation and kinase assays, and human liver specimens. We found that the most striking change was hyperphosphorylation and increased content of La-related protein 1 (LARP1), which, in the unphosphorylated form, negatively regulates translation of 5'-terminal oligopyrimidine (TOP)-containing mRNAs. Consistently, multiple TOP proteins are induced in KO livers. Translation of TOP mRNAs ribosomal protein S3 and ribosomal protein L18 was enhanced by LARP1 overexpression in liver cancer cells. We identified LARP1-T449 as a SAMe-sensitive phospho-site of cyclin-dependent kinase 2 (CDK2). Knocking down CDK2 lowered LARP1 phosphorylation and prevented LARP1-overexpression-mediated increase in translation. LARP1-T449 phosphorylation induced global translation, cell growth, migration, invasion, and expression of oncogenic TOP-ribosomal proteins in HCC cells. LARP1 expression is increased in human NASH and HCC. CONCLUSIONS Our results reveal a SAMe-sensitive mechanism of LARP1 phosphorylation that may be involved in the progression of NASH to HCC.
Collapse
Affiliation(s)
- Komal Ramani
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aaron E. Robinson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Joshua Berlind
- Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033
| | - Wei Fan
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aushinie Abeynayake
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aleksandra Binek
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Nicholas N. Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Zehra Yildirim
- Department of Cardiology, Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ebru Erbay
- Department of Cardiology, Department of Biomedical Sciences and Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Jennifer E. Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
10
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
11
|
Solhi R, Lotfinia M, Gramignoli R, Najimi M, Vosough M. Metabolic hallmarks of liver regeneration. Trends Endocrinol Metab 2021; 32:731-745. [PMID: 34304970 DOI: 10.1016/j.tem.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/29/2022]
Abstract
Despite the crucial role of cell metabolism in biological processes, particularly cell division, metabolic aspects of liver regeneration are not well defined. Better understanding of the metabolic activity governing division of liver cells will provide powerful insights into mechanisms of physiological and pathological liver regeneration. Recent studies have provided evidence that metabolic response to liver failure might be a proximal signal to initiate cell proliferation in liver regeneration. In this review, we highlight how lipids, carbohydrates, and proteins dynamically change and orchestrate liver regeneration. In addition, we discuss translational studies in which metabolic intervention has been used to treat chronic liver diseases (CLDs).
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Roberto Gramignoli
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
12
|
Yang M, Tan W, Yang X, Zhuo J, Lin Z, Cen B, Lian Z, Li H, Lu D, Wei X, Zheng S, Xu X. Homocysteine: A novel prognostic biomarker in liver transplantation for alpha-fetoprotein- negative hepatocellular carcinoma. Cancer Biomark 2020; 29:197-206. [PMID: 32623388 DOI: 10.3233/cbm-201545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Precise recipient selection optimizes the prognosis of liver transplantation (LT) for hepatocellular carcinoma (HCC). Alpha-fetoprotein (AFP) is the most commonly used biomarker for diagnosis and prognosis of HCC in the clinical context. As a crucial molecule in methionine cycle, homocysteine (Hcy) level has been proved to be related to HCC progression and metastasis. OBJECTIVE We aimed to explore the prognostic capacity of pre-transplant serum Hcy level in LT for HCC. METHODS This study retrospectively enrolled 161 HCC patients who had underwent LT from donation after cardiac death (DCD) in the First Affiliated Hospital of Zhejiang University from 2015.01.01 to 2018.09.01. Pre-transplant serum Hcy level was incorporated into statistical analysis together with other clinical parameters and pathological features. RESULTS From an overall perspective, significant difference was observed in Hcy level between recurrence (n= 61) and non-recurrence group (n= 100) though subsequent analysis showed unsatisfactory predicting performance. In the whole cohort, multivariate analysis showed that lnAFP (p= 0.010) and Milan criteria (MC, p< 0.001) were independent risk factors of HCC recurrence after LT. MA score based on MC and lnAFP performed well in predicting post-LT tumor recurrence with the AUROC at 0.836 (p< 0.001) and 3-year recurrence-free survival rate at 96.8% (p< 0.001) in the low risk group (n= 69). According to the clinical practice, serum concentration lower than 20 μg/L is considered as normal range of AFP. Elevated pre-transplant serum AFP (> 20 μg/L) predicts high HCC recurrence after LT. We further divided the 161 recipients into AFP- group (n= 77, AFP ⩽ 20 μg/L) and AFP+ group (n= 84, AFP > 20 μg/L). MA score was still well presented in the AFP+ group and the AUROC for tumor recurrence was 0.823 (p< 0.001), whereas the predicting accuracy was reduced in AFP- group (AUROC: 0.754, P< 0.001). After subsequent analysis, we found that elevated pre-transplant Hcy level (> 12.75 μmol/L) predicted increased tumor recurrence risk in AFP- group. The 3-year recurrence-free survival rates were 92.0% and 53.7% (p< 0.001) in low Hcy subgroup (n= 40) and high Hcy subgroup (n= 37) respectively. Multivariate analysis showed that Hcy (p= 0.040) and Milan criteria (p= 0.003) were independent risk factors for post-transplant tumor recurrence in AFP- group. Further combination of Hcy level and Milan criteria identified a subgroup of AFP- recipients with acceptable outcomes even though beyond Milan criteria (3-year recurrence-free survival rate: 77.7%, p< 0.001). CONCLUSION As a classic predictor in HCC prognosis, AFP performed well in our study cohort when combined with Milan criteria. Homocysteine was an effective prognostic biomarker in LT for AFP- hepatocellular carcinoma. In recipients exceeding Milan criteria, acceptable post-transplant outcome could be seen in those with low Hcy and AFP level.
Collapse
Affiliation(s)
- Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Winyen Tan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Beini Cen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Zhengxing Lian
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Huihui Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China.,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019; 25:4300-4319. [PMID: 31496615 PMCID: PMC6710175 DOI: 10.3748/wjg.v25.i31.4300] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Methionine adenosyltransferases (MATs) are essential enzymes for life as they produce S-adenosylmethionine (SAMe), the biological methyl donor required for a plethora of reactions within the cell. Mammalian systems express two genes, MAT1A and MAT2A, which encode for MATα1 and MATα2, the catalytic subunits of the MAT isoenzymes, respectively. A third gene MAT2B, encodes a regulatory subunit known as MATβ which controls the activity of MATα2. MAT1A, which is mainly expressed in hepatocytes, maintains the differentiated state of these cells, whilst MAT2A and MAT2B are expressed in extrahepatic tissues as well as non-parenchymal cells of the liver (e.g., hepatic stellate and Kupffer cells). The biosynthesis of SAMe is impaired in patients with chronic liver disease and liver cancer due to decreased expression and inactivation of MATα1. A switch from MAT1A to MAT2A/MAT2B occurs in multiple liver diseases and during liver growth and dedifferentiation, but this change in the expression pattern of MATs results in reduced hepatic SAMe level. Decades of study have utilized the Mat1a-knockout (KO) mouse that spontaneously develops non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) to elucidate a variety of mechanisms by which MAT proteins dysregulation contributes to liver carcinogenesis. An increasing volume of work indicates that MATs have SAMe-independent functions, distinct interactomes and multiple subcellular localizations. Here we aim to provide an overview of MAT biology including genes, isoenzymes and their regulation to provide the context for understanding consequences of their dysregulation. We will highlight recent breakthroughs in the field and underscore the importance of MAT’s in liver tumorigenesis as well as their potential as targets for cancer therapy.
Collapse
Affiliation(s)
- Ben Murray
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Lucia Barbier-Torres
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Wei Fan
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Park of Bizkaia, Derio 48160, Bizkaia, Spain
| | - Shelly C Lu
- Division of Digestive and Liver diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| |
Collapse
|
14
|
Choi W, Lee J, Lee J, Lee SH, Kim S. Hepatocyte Growth Factor Regulates Macrophage Transition to the M2 Phenotype and Promotes Murine Skeletal Muscle Regeneration. Front Physiol 2019; 10:914. [PMID: 31404148 PMCID: PMC6672745 DOI: 10.3389/fphys.2019.00914] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/04/2019] [Indexed: 01/10/2023] Open
Abstract
Hepatocyte growth factor (HGF) is well known for its role in the migration of embryonic muscle progenitors and the activation of adult muscle stem cells, yet its functions during the adult muscle regeneration process remain to be elucidated. In this study, we showed that HGF/c-met signaling was activated during muscle regeneration, and that among various infiltrated cells, the macrophage is the major cell type affected by HGF. Pharmacological inhibition of the c-met receptor by PHA-665752 increased the expression levels of pro-inflammatory (M1) macrophage markers such as IL-1β and iNOS while lowering those of pro-regenerative (M2) macrophage markers like IL-10 and TGF-β, resulting in compromised muscle repair. In Raw 264.7 cells, HGF decreased the RNA level of LPS-induced TNF-α, IL-1β, and iNOS while enhancing that of IL-10. HGF was also shown to increase the phosphorylation of AMPKα through CaMKKβ, thereby overcoming the effects of the LPS-induced deactivation of AMPKα. Transfection with specific siRNA to AMPKα diminished the effects of HGF on the LPS-induced gene expressions of M1 and M2 markers. Exogenous delivery of HGF through intramuscular injection of the HGF-expressing plasmid vector promoted the transition to M2 macrophage and facilitated muscle regeneration. Taken together, our findings suggested that HGF/c-met might play an important role in the transition of the macrophage during muscle repair, indicating the potential use of HGF as a basis for developing therapeutics for muscle degenerative diseases.
Collapse
Affiliation(s)
- Wooshik Choi
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Jaeman Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Junghun Lee
- R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| | - Sang Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Sunyoung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, South Korea.,R&D Center for Innovative Medicines, ViroMed Co., Ltd, Seoul, South Korea
| |
Collapse
|
15
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
16
|
Maillet V, Boussetta N, Leclerc J, Fauveau V, Foretz M, Viollet B, Couty JP, Celton-Morizur S, Perret C, Desdouets C. LKB1 as a Gatekeeper of Hepatocyte Proliferation and Genomic Integrity during Liver Regeneration. Cell Rep 2019; 22:1994-2005. [PMID: 29466728 DOI: 10.1016/j.celrep.2018.01.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
Liver kinase B1 (LKB1) is involved in several biological processes and is a key regulator of hepatic metabolism and polarity. Here, we demonstrate that the master kinase LKB1 plays a dual role in liver regeneration, independently of its major target, AMP-activated protein kinase (AMPK). We found that the loss of hepatic Lkb1 expression promoted hepatocyte proliferation acceleration independently of metabolic/energetic balance. LKB1 regulates G0/G1 progression, specifically by controlling epidermal growth factor receptor (EGFR) signaling. Furthermore, later in regeneration, LKB1 controls mitotic fidelity. The deletion of Lkb1 results in major alterations to mitotic spindle formation along the polarity axis. Thus, LKB1 deficiency alters ploidy profile at late stages of regeneration. Our findings highlight the dual role of LKB1 in liver regeneration, as a guardian of hepatocyte proliferation and genomic integrity.
Collapse
Affiliation(s)
- Vanessa Maillet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nadia Boussetta
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jean-Pierre Couty
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christine Perret
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- INSERM, U1016, Institut Cochin, Paris, France; CNRS, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
17
|
Hepatic accumulation of S-adenosylmethionine in hamsters with non-alcoholic fatty liver disease associated with metabolic syndrome under selenium and vitamin E deficiency. Clin Sci (Lond) 2019; 133:409-423. [PMID: 29122967 DOI: 10.1042/cs20171039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Progression of non-alcoholic fatty liver disease (NAFLD) in the context of metabolic syndrome (MetS) is only partially explored due to the lack of preclinical models. In order to study the alterations in hepatic metabolism that accompany this condition, we developed a model of MetS accompanied by the onset of steatohepatitis (NASH) by challenging golden hamsters with a high-fat diet low in vitamin E and selenium (HFD), since combined deficiency results in hepatic necroinflammation in rodents. Metabolomics and transcriptomics integrated analyses of livers revealed an unexpected accumulation of hepatic S-Adenosylmethionine (SAM) when compared with healthy livers likely due to diminished methylation reactions and repression of GNMT. SAM plays a key role in the maintenance of cellular homeostasis and cell cycle control. In agreement, analysis of over-represented transcription factors revealed a central role of c-myc and c-Jun pathways accompanied by negative correlations between SAM concentration, MYC expression and AMPK phosphorylation. These findings point to a drift of cell cycle control toward senescence in livers of HFD animals, which could explain the onset of NASH in this model. In contrast, hamsters with NAFLD induced by a conventional high-fat diet did not show SAM accumulation, suggesting a key role of selenium and vitamin E in SAM homeostasis. In conclusion, our results suggest that progression of NAFLD in the context of MetS can take place even in a situation of hepatic SAM excess and that selenium and vitamin E status might be considered in current therapies against NASH based on SAM supplementation.
Collapse
|
18
|
Zubiete-Franco I, García-Rodríguez JL, Lopitz-Otsoa F, Serrano-Macia M, Simon J, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gutiérrez-de-Juan V, López de Davalillo S, Carlevaris O, Beguiristain Gómez A, Villa E, Calvisi D, Martín C, Berra E, Aspichueta P, Beraza N, Varela-Rey M, Ávila M, Rodríguez MS, Mato JM, Díaz-Moreno I, Díaz-Quintana A, Delgado TC, Martínez-Chantar ML. SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. EBioMedicine 2018; 40:406-421. [PMID: 30594553 PMCID: PMC6412020 DOI: 10.1016/j.ebiom.2018.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Background Even though liver kinase B1 (LKB1) is usually described as a tumor suppressor in a wide variety of tissues, it has been shown that LKB1 aberrant expression is associated with bad prognosis in Hepatocellular Carcinoma (HCC). Methods Herein we have overexpressed LKB1 in human hepatoma cells and by using histidine pull-down assay we have investigated the role of the hypoxia-related post-translational modification of Small Ubiquitin-related Modifier (SUMO)ylation in the regulation of LKB1 oncogenic role. Molecular modelling between LKB1 and its interactors, involved in regulation of LKB1 nucleocytoplasmic shuttling and LKB1 activity, was performed. Finally, high affinity SUMO binding entities-based technology were used to validate our findings in a pre-clinical mouse model and in clinical HCC. Findings We found that in human hepatoma cells under hypoxic stress, LKB1 overexpression increases cell viability and aggressiveness in association with changes in LKB1 cellular localization. Moreover, by using site-directed mutagenesis, we have shown that LKB1 is SUMOylated by SUMO-2 at Lys178 hampering LKB1 nucleocytoplasmic shuttling and fueling hepatoma cell growth. Molecular modelling of SUMO modified LKB1 further confirmed steric impedance between SUMOylated LKB1 and the STe20-Related ADaptor cofactor (STRADα), involved in LKB1 export from the nucleus. Finally, we provide evidence that endogenous LKB1 is modified by SUMO in pre-clinical mouse models of HCC and clinical HCC, where LKB1 SUMOylation is higher in fast growing tumors. Interpretation Overall, SUMO-2 modification of LKB1 at Lys178 mediates LKB1 cellular localization and its oncogenic role in liver cancer. Fund This work was supported by grants from NIH (US Department of Health and Human services)-R01AR001576-11A1 (J.M.M and M.L.M-C.), Gobierno Vasco-Departamento de Salud 2013111114 (to M.L.M.-C), ELKARTEK 2016, Departamento de Industria del Gobierno Vasco (to M.L.M.-C), MINECO: SAF2017–87301-R and SAF2014–52097-R integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovación 2013–2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M., respectively), BFU2015–71017/BMC MINECO/FEDER, EU (to A.D.Q. and I.D.M.), BIOEF (Basque Foundation for Innovation and Health Research): EITB Maratoia BIO15/CA/014; Instituto de Salud Carlos III:PIE14/00031, integrado en el Plan Estatal de Investigación Cientifica y Técnica y Innovacion 2013–2016 cofinanciado con Fondos FEDER (to M.L.M.-C and J.M.M), Asociación Española contra el Cáncer (T.C.D, P·F-T and M.L.M-C), Daniel Alagille award from EASL (to T.C.D), Fundación Científica de la Asociación Española Contra el Cancer (AECC Scientific Foundation) Rare Tumor Calls 2017 (to M.L.M and M.A), La Caixa Foundation Program (to M.L.M), Programma di Ricerca Regione-Università 2007–2009 and 2011–2012, Regione Emilia-Romagna (to E.V.), Ramón Areces Foundation and the Andalusian Government (BIO-198) (A.D.Q. and I.D.M.), ayudas para apoyar grupos de investigación del sistema Universitario Vasco IT971–16 (P.A.), MINECO:SAF2015–64352-R (P.A.), Institut National du Cancer, FRANCE, INCa grant PLBIO16–251 (M.S.R.), MINECO - BFU2016–76872-R to (E.B.). Work produced with the support of a 2017 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation (M.V-R). Finally, Ciberehd_ISCIII_MINECO is funded by the Instituto de Salud Carlos III. We thank MINECO for the Severo Ochoa Excellence Accreditation to CIC bioGUNE (SEV-2016-0644). Funding sources had no involvement in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. Overexpression of LKB1 in human hepatoma cells during hypoxic stress induces deregulated cell growth and survival. SUMO-2 modifications of LKB1 at Lys178 occur in human hepatoma cells hampering its nucleocytoplasmic shuttling. LKB1 SUMOylation is augmented in pre-clinical mouse models and clinical HCC, being a hallmark of more aggressive HCC tumors.
Collapse
Affiliation(s)
- Imanol Zubiete-Franco
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Juan L García-Rodríguez
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marina Serrano-Macia
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Jorge Simon
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Pablo Fernández-Tussy
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de-Juan
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Sergio López de Davalillo
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Onintza Carlevaris
- Physiopathology of the Hypoxia-Signalling Pathway Lab, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
| | | | - Erica Villa
- Department of Gastroenterology, Azienda Ospedaliero-Universitaria & University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Diego Calvisi
- Institute of Pathology, University Klinic of Regensburg, 93053 Regensburg, Germany
| | - César Martín
- Instituto Biofisika (CSIC, UPV/EHU) and Departamento de Bioquímica y Biología Molecular, UPV/EHU, 48940 Leioa, Spain
| | - Edurne Berra
- Physiopathology of the Hypoxia-Signalling Pathway Lab, CIC bioGUNE, 48160 Derio, Bizkaia, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, 48940 Leioa, Bizkaia, Spain; Biocruces Health Research Institute, 48093 Barakaldo, Bizkaia, Spain
| | - Naiara Beraza
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Marta Varela-Rey
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Matias Ávila
- Hepatology Department, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Manuel S Rodríguez
- UbiCARE, Advanced Technology Institute in Life Sciences (ITAV)-CNRS-IPBS, 31106 Toulouse, France
| | - José M Mato
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain
| | - Irene Díaz-Moreno
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Antonio Díaz-Quintana
- Instituto de Investigaciones Químicas (IIQ) - Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla - Consejo Superior de Investigaciones Científicas (CSIC), 41092 Sevilla, Spain
| | - Teresa C Delgado
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - María L Martínez-Chantar
- Liver Disease and Liver Metabolism Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
19
|
Berasain C, Ávila MA. LKB1: Controlling Quiescence and Genomic Integrity at Home. Trends Endocrinol Metab 2018; 29:668-670. [PMID: 29628399 DOI: 10.1016/j.tem.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
The pleiotropic liver kinase B1 (LKB1) controls metabolism, cell polarity, and proliferation in an apparently cell- and context-specific manner. A recent study in Cell Reports has demonstrated that LKB1 is essential to maintain the characteristic quiescence of the liver and to secure genomic integrity during liver regeneration independently of AMPK.
Collapse
Affiliation(s)
- Carmen Berasain
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain.
| | - Matías A Ávila
- Hepatology Program, Cima-University of Navarra, Pamplona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
20
|
Fang CC, Wu CF, Liao YJ, Huang SF, Chen M, Chen YMA. AAV serotype 8-mediated liver specific GNMT expression delays progression of hepatocellular carcinoma and prevents carbon tetrachloride-induced liver damage. Sci Rep 2018; 8:13802. [PMID: 30217986 PMCID: PMC6138656 DOI: 10.1038/s41598-018-30800-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/24/2018] [Indexed: 02/08/2023] Open
Abstract
Glycine N-methyltransferase (GNMT) is abundantly expressed in normal livers and plays a protective role against tumor formation. GNMT depletion leads to progression of hepatocellular carcinoma (HCC). In this study, we investigated the activity of ectopic GNMT delivered using recombinant adeno-associated virus (AAV) gene therapy in mouse models of liver cirrhosis and HCC. Injection of AAV serotype 8 (AAV8) vector carrying the GNMT gene (AAV8-GNMT) in Gnmt−/− mice increased GNMT expression and downregulated pro-inflammatory responses, resulting in reduced liver damage and incidence of liver tumors. Moreover, AAV8-GNMT resulted in the amelioration of carbon tetrachloride (CCl4)-induced liver fibrosis in BALB/c mice. We showed that AAV8-GNMT protected hepatocytes from CCl4-induced liver damage. AAV8-GNMT significantly attenuated the levels of pro-fibrotic markers and increased efficiency of hepatocyte proliferation. These results suggest that correction of hepatic GNMT by gene therapy of AAV8-mediated gene enhancement may provide a potential strategy for preventing and delaying development of liver diseases.
Collapse
Affiliation(s)
- Cheng-Chieh Fang
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fen Wu
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan.,National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Marcelo Chen
- Department of Urology, Mackay Memorial Hospital, Taipei, Taiwan.,School of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Yi-Ming Arthur Chen
- Center for Infectious Disease and Cancer Research (CICAR), Kaohsiung Medical University, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan. .,Department of Microbiology and Immunology, Institute of Medical Research and Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Romier B, Ivaldi C, Sartelet H, Heinz A, Schmelzer CEH, Garnotel R, Guillot A, Jonquet J, Bertin E, Guéant JL, Alberto JM, Bronowicki JP, Amoyel J, Hocine T, Duca L, Maurice P, Bennasroune A, Martiny L, Debelle L, Durlach V, Blaise S. Production of Elastin-Derived Peptides Contributes to the Development of Nonalcoholic Steatohepatitis. Diabetes 2018; 67:1604-1615. [PMID: 29802129 DOI: 10.2337/db17-0490] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/14/2018] [Indexed: 11/13/2022]
Abstract
Affecting more than 30% of the Western population, nonalcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including nonalcoholic steatohepatitis (NASH), cancer, hypertension, and atherosclerosis. Insulin resistance and obesity are described as potential causes of NAFLD. However, we surmised that factors such as extracellular matrix remodeling of large blood vessels, skin, or lungs may also participate in the progression of liver diseases. We studied the effects of elastin-derived peptides (EDPs), biomarkers of aging, on NAFLD progression. We evaluated the consequences of EDP accumulation in mice and of elastin receptor complex (ERC) activation on lipid storage in hepatocytes, inflammation, and fibrosis development. The accumulation of EDPs induces hepatic lipogenesis (i.e., SREBP1c and ACC), inflammation (i.e., Kupffer cells, IL-1β, and TGF-β), and fibrosis (collagen and elastin expression). These effects are induced by inhibition of the LKB1-AMPK pathway by ERC activation. In addition, pharmacological inhibitors of EDPs demonstrate that this EDP-driven lipogenesis and fibrosis relies on engagement of the ERC. Our data reveal a major role of EDPs in the development of NASH, and they provide new clues for understanding the relationship between NAFLD and vascular aging.
Collapse
Affiliation(s)
- Béatrice Romier
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Corinne Ivaldi
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Hervé Sartelet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Andrea Heinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Roselyne Garnotel
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Alexandre Guillot
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Jessica Jonquet
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Eric Bertin
- Champagne Ardenne Specialized Center in Obesity, University Hospital Center, Reims, France
| | - Jean-Louis Guéant
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Molecular Medicine and Personalized Therapeutics and Department of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Marc Alberto
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Jean-Pierre Bronowicki
- Institut National de la Santé et de la Recherche Médicale, U954, and University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Johanne Amoyel
- Department of Gastroenterology and Hepatology, University Hospital Center, Nancy University, Vandoeuvre lès Nancy, France
| | - Thinhinane Hocine
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Duca
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Pascal Maurice
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Amar Bennasroune
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Martiny
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Laurent Debelle
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Vincent Durlach
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| | - Sébastien Blaise
- UMR CNRS 7369 MEDyC, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
22
|
Huang J, Zhang D, Lin L, Jiang R, Dai J, Tang L, Yang Y, Ge P, Wang B, Zhang L. Potential roles of AMP-activated protein kinase in liver regeneration in mice with acute liver injury. Mol Med Rep 2018; 17:5390-5395. [PMID: 29393448 DOI: 10.3892/mmr.2018.8522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/19/2018] [Indexed: 11/05/2022] Open
Abstract
Liver regeneration post severe liver injury is crucial for the recovery of hepatic structure and function. The energy sensor AMP‑activated protein kinase (AMPK) has a crucial role in the regulation of nutrition metabolism in addition to other energy‑intensive physiological and pathophysiological processes. Cellular proliferation requires intensive energy and nutrition support, therefore the present study investigated whether AMPK is involved in liver regeneration post carbon tetrachloride (CCl4)‑induced acute hepatic injury. The experimental data indicated that phosphorylation level of AMPK increased 48 h post‑CCl4 exposure, which was accompanied with upregulation of proliferating cell nuclear antigen (PCNA) and recovery of alanine aminotransferase (ALT) level. Pretreatment with the AMPK inhibitor compound C had no obvious effects on ALT elevation in plasma and histological abnormalities in liver 24 h post CCl4 exposure. However, treatment with compound C 24 h post CCl4 exposure significantly suppressed CCl4‑induced AMPK phosphorylation, PCNA expression and ALT recovery. These data suggest that endogenous AMPK was primarily activated at the regeneration stage in mice with CCl4‑induced acute liver injury and may function as a positive regulator in liver regeneration.
Collapse
Affiliation(s)
- Jing Huang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Daijuan Zhang
- Department of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Ling Lin
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong Jiang
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Jie Dai
- Hospital of Chongqing University of Arts and Sciences, Chongqing 402160, P.R. China
| | - Li Tang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yongqiang Yang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Pu Ge
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bin Wang
- Department of Anesthesiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Li Zhang
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
23
|
Pajic M, Froio D, Daly S, Doculara L, Millar E, Graham PH, Drury A, Steinmann A, de Bock CE, Boulghourjian A, Zaratzian A, Carroll S, Toohey J, O'Toole SA, Harris AL, Buffa FM, Gee HE, Hollway GE, Molloy TJ. miR-139-5p Modulates Radiotherapy Resistance in Breast Cancer by Repressing Multiple Gene Networks of DNA Repair and ROS Defense. Cancer Res 2018; 78:501-515. [PMID: 29180477 DOI: 10.1158/0008-5472.can-16-3105] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
Abstract
Radiotherapy is essential to the treatment of most solid tumors and acquired or innate resistance to this therapeutic modality is a major clinical problem. Here we show that miR-139-5p is a potent modulator of radiotherapy response in breast cancer via its regulation of genes involved in multiple DNA repair and reactive oxygen species defense pathways. Treatment of breast cancer cells with a miR-139-5p mimic strongly synergized with radiation both in vitro and in vivo, resulting in significantly increased oxidative stress, accumulation of unrepaired DNA damage, and induction of apoptosis. Several miR-139-5p target genes were also strongly predictive of outcome in radiotherapy-treated patients across multiple independent breast cancer cohorts. These prognostically relevant miR-139-5p target genes were used as companion biomarkers to identify radioresistant breast cancer xenografts highly amenable to sensitization by cotreatment with a miR-139-5p mimetic.Significance: The microRNA described in this study offers a potentially useful predictive biomarker of radiosensitivity in solid tumors and a generally applicable druggable target for tumor radiosensitization. Cancer Res; 78(2); 501-15. ©2017 AACR.
Collapse
Affiliation(s)
- Marina Pajic
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Danielle Froio
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sheridan Daly
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Louise Doculara
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ewan Millar
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Anatomical Pathology, South Eastern Area Laboratory Service (SEALS), St George Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter H Graham
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Alison Drury
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Angela Steinmann
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Charles E de Bock
- Laboratory for the Molecular Biology of Leukemia, Center for Human Genetics, KU Leuven and Center for the Biology of Disease, VIB, Leuven, Belgium
| | - Alice Boulghourjian
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anaiis Zaratzian
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Susan Carroll
- The Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Joanne Toohey
- The Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
| | - Sandra A O'Toole
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Adrian L Harris
- Growth Factor Group, Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Francesca M Buffa
- Growth Factor Group, Cancer Research UK, Molecular Oncology Laboratories, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | - Harriet E Gee
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- The Chris O'Brien Lifehouse, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Georgina E Hollway
- Cancer Research Division, The Kinghorn Cancer Centre/Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Timothy J Molloy
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
- St Vincent's Centre for Applied Medical Research, Darlinghurst, New South Wales, Australia
| |
Collapse
|
24
|
Maldonado LY, Arsene D, Mato JM, Lu SC. Methionine adenosyltransferases in cancers: Mechanisms of dysregulation and implications for therapy. Exp Biol Med (Maywood) 2017; 243:107-117. [PMID: 29141455 DOI: 10.1177/1535370217740860] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Methionine adenosyltransferase genes encode enzymes responsible for the biosynthesis of S-adenosylmethionine, the principal biological methyl donor and precursor of polyamines and glutathione. Mammalian cells express three genes - MAT1A, MAT2A, and MAT2B - with distinct expression and functions. MAT1A is mainly expressed in the liver and maintains the differentiated states of both hepatocytes and bile duct epithelial cells. Conversely, MAT2A and MAT2B are widely distributed in non-parenchymal cells of the liver and extrahepatic tissues. Increasing evidence suggests that methionine adenosyltransferases play significant roles in the development of cancers. Liver cancers, namely hepatocellular carcinoma and cholangiocarcinoma, involve dysregulation of all three methionine adenosyltransferase genes. MAT1A reduction is associated with increased oxidative stress, progenitor cell expansion, genomic instability, and other mechanisms implicated in tumorigenesis. MAT2A/MAT2B induction confers growth and survival advantage to cancerous cells, enhancing tumor migration. Highlighted examples from colon, gastric, breast, pancreas and prostate cancer studies further underscore methionine adenosyltransferase genes' role beyond the liver in cancer development. In this subset of extra-hepatic cancers, MAT2A and MAT2B are induced via different regulatory mechanisms. Understanding the role of methionine adenosyltransferase genes in tumorigenesis helps identify attributes of these genes that may serve as valuable targets for therapy. While S-adenosylmethionine, and its metabolite, methylthioadenosine, have been largely explored as therapeutic interventions, targets aimed at regulation of MAT gene expression and methionine adenosyltransferase protein-protein interactions are now surfacing as potential effective strategies for treatment and chemoprevention of cancers. Impact statement This review examines the role of methionine adenosyltransferases (MATs) in human cancer development, with a particular focus on liver cancers in which all three MAT genes are implicated in tumorigenesis. An overview of MAT genes, isoenzymes and their regulation provide context for understanding consequences of dysregulation. Highlighting examples from liver, colon, gastric, breast, pancreas and prostate cancers underscore the importance of understanding MAT's tumorigenic role in identifying future targets for cancer therapy.
Collapse
Affiliation(s)
- Lauren Y Maldonado
- 1 Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Diana Arsene
- 2 Division of Gastroenterology and Hepatology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - José M Mato
- 3 CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology, Derio, Bizkaia 48160, Spain
| | - Shelly C Lu
- 4 Division of Digestive and Liver Diseases, 22494 Cedars-Sinai Medical Center , Cedars-Sinai Medical Center, LA, CA 90048, USA
| |
Collapse
|
25
|
Liu M, Chen P. Proliferation‑inhibiting pathways in liver regeneration (Review). Mol Med Rep 2017; 16:23-35. [PMID: 28534998 DOI: 10.3892/mmr.2017.6613] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/13/2017] [Indexed: 12/14/2022] Open
Abstract
Liver regeneration, an orchestrated process, is the primary compensatory mechanism following liver injury caused by various factors. The process of liver regeneration consists of three stages: Initiation, proliferation and termination. Proliferation‑promoting factors, which stimulate the recovery of mitosis in quiescent hepatocytes, are essential in the initiation and proliferation steps of liver regeneration. Proliferation‑promoting factors act as the 'motor' of liver regeneration, whereas proliferation inhibitors arrest cell proliferation when the remnant liver reaches a suitable size. Certain proliferation inhibitors are also expressed and activated in the first two steps of liver regeneration. Anti‑proliferation factors, acting as a 'brake', control the speed of proliferation and determine the terminal point of liver regeneration. Furthermore, anti‑proliferation factors function as a 'steering‑wheel', ensuring that the regeneration process proceeds in the right direction by preventing proliferation in the wrong direction, as occurs in oncogenesis. Therefore, proliferation inhibitors to ensure safe and stable liver regeneration are as important as proliferation‑promoting factors. Cytokines, including transforming growth factor‑β and interleukin‑1, and tumor suppressor genes, including p53 and p21, are important members of the proliferation inhibitor family in liver regeneration. Certain anti‑proliferation factors are involved in the process of gene expression and protein modification. The suppression of liver regeneration led by metabolism, hormone activity and pathological performance have been reviewed previously. However, less is known regarding the proliferation inhibitors of liver regeneration and further investigations are required. Detailed information regarding the majority of known anti‑proliferation signaling pathways also remains fragmented. The present review aimed to understand the signalling pathways that inhbit proliferation in the process of liver regeneration.
Collapse
Affiliation(s)
- Menggang Liu
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Ping Chen
- Department of Hepatobiliary Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
26
|
Influence of Nitric Oxide generated through microwave plasma on L6 skeletal muscle cell myogenesis via oxidative signaling pathways. Sci Rep 2017; 7:542. [PMID: 28373641 PMCID: PMC5427886 DOI: 10.1038/s41598-017-00154-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 02/13/2017] [Indexed: 02/04/2023] Open
Abstract
Myogenic precursors are myoblasts that have a potency to differentiate into muscle fibers on injury and maintain the regenerative power of skeletal muscle. However, the roles of exogenous nitric oxide (NO) in muscle development and myoblast differentiation are largely unknown. Therefore, in this study, we examined the effects of exogenous NO generated by a microwave plasma torch on rat myoblastic L6 cell proliferation and differentiation. We observed that the differentiation of L6 myogenic precursor cells into myotubes was significantly enhanced after NO treatment. The expression of the myogenesis marker proteins and mRNA level, such as myoD, myogenin, and myosin heavy chain (MHC), as well as the cyclic guanosine monophosphate (cGMP) level, were significantly increased after the NO treatment, without creating toxicity. Moreover, we observed that the oxidative stress signaling [extracellular-signal-regulated kinase (Erks), and Adenosine monophosphate-activated protein kinase (AMPK)] phosphorylation was higher in NO treated cells than in the control cells [without NO treatment]. Therefore, these results reveal the exogenous NO role in regulating myoblast differentiation through the oxidative stress signaling pathway. Through this work, we can suggest that exogenous NO can help in cell differentiation and tissue regeneration, which provides new possibilities for plasma medicine.
Collapse
|
27
|
Polyphenols in Regulation of Redox Signaling and Inflammation During Cardiovascular Diseases. Cell Biochem Biophys 2017; 72:485-94. [PMID: 25701407 DOI: 10.1007/s12013-014-0492-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain one of the major health problems worldwide. The worldwide research against cardiovascular diseases as well as genome wide association studies were successful in indentifying the loci associated with this prominent life-threatening disease but still a substantial amount of casualty remains unexplained. Over the last decade, the thorough understanding of molecular and biochemical mechanisms of cardiac disorders lead to the knowledge of various mechanisms of action of polyphenols to target inflammation during cardiac disorders. The present review article summarizes major mechanisms of polyphenols against cardiovascular diseases.
Collapse
|
28
|
Gomez-Quiroz LE, Seo D, Lee YH, Kitade M, Gaiser T, Gillen M, Lee SB, Gutierrez-Ruiz MC, Conner EA, Factor VM, Thorgeirsson SS, Marquardt JU. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress. Toxicology 2016; 361-362:39-48. [PMID: 27394961 DOI: 10.1016/j.tox.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/18/2016] [Accepted: 07/05/2016] [Indexed: 02/08/2023]
Abstract
Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.
Collapse
Affiliation(s)
- Luis E Gomez-Quiroz
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Departamento de Ciencias de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF, Mexico
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yun-Han Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mitsuteru Kitade
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Matthew Gillen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seung-Bum Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Elizabeth A Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Valentina M Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jens U Marquardt
- 1st Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
29
|
Elucidating Metabolic and Epigenetic Mechanisms that Regulate Liver Regeneration. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
31
|
García-Rodríguez JL, Barbier-Torres L, Fernández-Álvarez S, Juan VGD, Monte MJ, Halilbasic E, Herranz D, Álvarez L, Aspichueta P, Marín JJG, Trauner M, Mato JM, Serrano M, Beraza N, Martínez-Chantar ML. SIRT1 controls liver regeneration by regulating bile acid metabolism through farnesoid X receptor and mammalian target of rapamycin signaling. Hepatology 2014; 59:1972-83. [PMID: 24338587 PMCID: PMC3999184 DOI: 10.1002/hep.26971] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/09/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Sirtuin1 (SIRT1) regulates central metabolic functions such as lipogenesis, protein synthesis, gluconeogenesis, and bile acid (BA) homeostasis through deacetylation. Here we describe that SIRT1 tightly controls the regenerative response of the liver. We performed partial hepatectomy (PH) to transgenic mice that overexpress SIRT1 (SIRT). SIRT mice showed increased mortality, impaired hepatocyte proliferation, BA accumulation, and profuse liver injury after surgery. The damaging phenotype in SIRT mice correlated with impaired farnesoid X receptor (FXR) activity due to persistent deacetylation and lower protein expression that led to decreased FXR-target gene expression; small heterodimer partner (SHP), bile salt export pump (BSEP), and increased Cyp7A1. Next, we show that 24-norUrsodeoxycholic acid (NorUDCA) attenuates SIRT protein expression, increases the acetylation of FXR and neighboring histones, restores trimethylation of H3K4 and H3K9, and increases miR34a expression, thus reestablishing BA homeostasis. Consequently, NorUDCA restored liver regeneration in SIRT mice, which showed increased survival and hepatocyte proliferation. Furthermore, a leucine-enriched diet restored mammalian target of rapamycin (mTOR) activation, acetylation of FXR and histones, leading to an overall lower BA production through SHP-inhibition of Cyp7A1 and higher transport (BSEP) and detoxification (Sult2a1) leading to an improved liver regeneration. Finally, we found that human hepatocellular carcinoma (HCC) samples have increased presence of SIRT1, which correlated with the absence of FXR, suggesting its oncogenic potential. CONCLUSION We define SIRT1 as a key regulator of the regenerative response in the liver through posttranscriptional modifications that regulate the activity of FXR, histones, and mTOR. Moreover, our data suggest that SIRT1 contributes to liver tumorigenesis through dysregulation of BA homeostasis by persistent FXR deacetylation.
Collapse
Affiliation(s)
- Juan L. García-Rodríguez
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Lucía Barbier-Torres
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Sara Fernández-Álvarez
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Virginia Gutiérrez-de Juan
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - María J. Monte
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, CIBERehd, University of Salamanca. Salamanca, Spain
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Daniel Herranz
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Luis Álvarez
- Pediatric Liver Service, La Paz University Hospital, Madrid, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Jose J. G. Marín
- Laboratory of Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, CIBERehd, University of Salamanca. Salamanca, Spain
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria
| | - Jose M. Mato
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Manuel Serrano
- Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Naiara Beraza
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain,Corresponding Author: Naiara Beraza, PhD, Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain, , Tel. 0034/944061301; Fax 0034/944061304
| | - María Luz Martínez-Chantar
- Department of Metabolomics, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. BOX 644, E-48080 Bilbao, Spain
| |
Collapse
|
32
|
Merlen G, Gentric G, Celton-Morizur S, Foretz M, Guidotti JE, Fauveau V, Leclerc J, Viollet B, Desdouets C. AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. J Hepatol 2014; 60:152-9. [PMID: 24012615 DOI: 10.1016/j.jhep.2013.08.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular energy status that contributes to restoration of energy homeostasis by slowing down ATP-consuming pathways and activating ATP-producing pathways. Unexpectedly, in different systems, AMPK is also required for proper cell division. In the current study, we evaluated the potential effect of the AMPK catalytic subunit, AMPKα1, on hepatocyte proliferation. METHODS Hepatocyte proliferation was determined in AMPKα1 knockout and wild-type mice in vivo after two thirds partial hepatectomy, and in vitro in primary hepatocyte cultures. The activities of metabolic and cell cycle-related signaling pathways were measured. RESULTS After partial hepatectomy, hepatocytes proliferated rapidly, correlating with increased AMPK phosphorylation. Deletion of AMPKα1 delayed liver regeneration by impacting on G1/S transition phase. The proliferative defect of AMPKα1-deficient hepatocytes was cell autonomous, and independent of energy balance. The priming phase, lipid droplet accumulation, protein anabolic responses and growth factor activation after partial hepatectomy occurred normally in the absence of AMPKα1 activity. By contrast, mRNA and protein expression of cyclin A2, a key driver of S phase progression, were compromised in the absence of AMPK activity. Importantly, AMPKα1 controlled cyclin A2 transcription mainly through the ATF/CREB element. CONCLUSIONS Our study highlights a novel role for AMPKα1 as a positive regulator of hepatocyte division occurring independently of energy balance.
Collapse
Affiliation(s)
- Grégory Merlen
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Géraldine Gentric
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Séverine Celton-Morizur
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Marc Foretz
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques-Emmanuel Guidotti
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Véronique Fauveau
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jocelyne Leclerc
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Benoit Viollet
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Chantal Desdouets
- Inserm, U1016, Institut Cochin, Paris, France; CNRS, UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
33
|
Kim SY, Hong SW, Kim MO, Kim HS, Jang JE, Leem J, Park IS, Lee KU, Koh EH. S-adenosyl methionine prevents endothelial dysfunction by inducing heme oxygenase-1 in vascular endothelial cells. Mol Cells 2013; 36:376-84. [PMID: 24046187 PMCID: PMC3887983 DOI: 10.1007/s10059-013-0210-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 01/12/2023] Open
Abstract
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.
Collapse
Affiliation(s)
- Sun Young Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Seok Woo Hong
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Mi-Ok Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Hyun-Sik Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Korea
| | - Jung Eun Jang
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Jaechan Leem
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - In-Sun Park
- Department of Anatomy, College of Medicine, Inha University, Incheon 401-103, Korea
| | - Ki-Up Lee
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| | - Eun Hee Koh
- Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 138-736, Korea
| |
Collapse
|
34
|
Frau M, Feo F, Pascale RM. Pleiotropic effects of methionine adenosyltransferases deregulation as determinants of liver cancer progression and prognosis. J Hepatol 2013; 59:830-41. [PMID: 23665184 DOI: 10.1016/j.jhep.2013.04.031] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/15/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Downregulation of liver-specific MAT1A gene, encoding S-adenosylmethionine (SAM) synthesizing isozymes MATI/III, and upregulation of widely expressed MAT2A, encoding MATII isozyme, known as MAT1A:MAT2A switch, occurs in hepatocellular carcinoma (HCC). Being inhibited by its reaction product, MATII isoform upregulation cannot compensate for MATI/III decrease. Therefore, MAT1A:MAT2A switch contributes to decrease in SAM level in rodent and human hepatocarcinogenesis. SAM administration to carcinogen-treated rats prevents hepatocarcinogenesis, whereas MAT1A-KO mice, characterized by chronic SAM deficiency, exhibit macrovesicular steatosis, mononuclear cell infiltration in periportal areas, and HCC development. This review focuses upon the pleiotropic changes, induced by MAT1A/MAT2A switch, associated with HCC development. Epigenetic control of MATs expression occurs at transcriptional and post-transcriptional levels. In HCC cells, MAT1A/MAT2A switch is associated with global DNA hypomethylation, decrease in DNA repair, genomic instability, and signaling deregulation including c-MYC overexpression, rise in polyamine synthesis, upregulation of RAS/ERK, IKK/NF-kB, PI3K/AKT, and LKB1/AMPK axis. Furthermore, decrease in MAT1A expression and SAM levels results in increased HCC cell proliferation, cell survival, and microvascularization. All of these changes are reversed by SAM treatment in vivo or forced MAT1A overexpression or MAT2A inhibition in cultured HCC cells. In human HCC, MAT1A:MAT2A and MATI/III:MATII ratios correlate negatively with cell proliferation and genomic instability, and positively with apoptosis and global DNA methylation. This suggests that SAM decrease and MATs deregulation represent potential therapeutic targets for HCC. Finally, MATI/III:MATII ratio strongly predicts patients' survival length suggesting that MAT1A:MAT2A expression ratio is a putative prognostic marker for human HCC.
Collapse
Affiliation(s)
- Maddalena Frau
- Department of Clinical and Experimental Medicine, Laboratory of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | | | | |
Collapse
|
35
|
Nitric oxide induces vascular endothelial growth factor expression in the rat placenta in vivo and in vitro. Biosci Biotechnol Biochem 2013; 77:971-6. [PMID: 23649256 DOI: 10.1271/bbb.120923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the role of nitric oxide (NO) in vascular endothelial growth factor (VEGF) expression in the rat placenta. A nitric oxide synthase (NOS) inhibitor, N(G)-nitro-L-arginine-methyl ester (L-NAME), was constantly infused into pregnant rats 6-24 h before sacrifice on gestational day (GD) 15.5. NO production declined to about 15% of the control level as monitored by NO trapping and electron paramagnetic resonance spectroscopy. VEGF mRNA expression was temporally decreased by L-NAME, but recovered to normal levels after 24 h of treatment, whereas hypoxia inducible factor (HIF)-1α and induced NOS (iNOS) expression increased. VEGF expression decreased significantly in placental explants after 6 h of co-treatment with L-NAME and lipopolysaccharide, an iNOS inducer. Our data indicate that NO induce VEGF expression in vivo and in vitro in the rat placenta, suggesting that peaked NO production was maintained by a reciprocal relationship between NO and VEGF via HIF-1α.
Collapse
|
36
|
Ahn YJ, Kim H, Lim H, Lee M, Kang Y, Moon S, Kim HS, Kim HH. AMP-activated protein kinase: implications on ischemic diseases. BMB Rep 2013; 45:489-95. [PMID: 23010169 DOI: 10.5483/bmbrep.2012.45.9.169] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and CaMKKβ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and CaMKKβ), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.
Collapse
Affiliation(s)
- Yong-Joo Ahn
- Vascular Medicine Research Unit, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sato S, Mukai Y, Saito T. Quercetin intake during lactation modulates the AMP-activated protein kinase pathway in the livers of adult male rat offspring programmed by maternal protein restriction. J Nutr Biochem 2013; 24:118-23. [DOI: 10.1016/j.jnutbio.2012.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 02/10/2012] [Accepted: 03/07/2012] [Indexed: 12/31/2022]
|
38
|
Liu J, Liu W, Ying H, Zhao W, Zhang H. Analysis of microRNA expression profile induced by AICAR in mouse hepatocytes. Gene 2012; 512:364-72. [PMID: 23107762 DOI: 10.1016/j.gene.2012.09.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
Abstract
AMP-activated protein kinase (AMPK) has been proposed to act as a key energy sensor mediating the metabolism of glucose and lipids, and pharmacological activation of AMPK may provide a new strategy for the management of type 2 diabetes. MicroRNAs (miRNAs) are a group of endogenous noncoding RNA that play important roles in many biological processes including energy metabolism. Whether miRNAs mediate AMPK action in regulating metabolic process is not clear. In this study, 0.5mM 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) was added to increase activation of AMPK in 8 week old C57BL/6 mice primary hepatocytes. MiRNA microarray was performed to compare the miRNA expression profiles of hepatocytes treated with or without AICAR. We discovered that 41 miRNAs were significantly altered in AICAR-treated sample (fold change: >2) compared with untreated control sample. Among them, 19 miRNAs were upregulated. MiRNA targets were predicted by TargetScan. Further bioinformatic analysis indicated that these predicted targets might be mainly involved in pathways of cellular metabolism and tumor pathogenesis. FUNDO analysis suggested that these predicted targets were enriched in cancer, diabetes mellitus, hypertension, obesity and heart failure (P<0.01). A series of miRNAs could be regulated by the activation of AMPK and might mediate the action of AMPK during metabolic processes and tumor pathogenesis. Predicted target genes discovered in this study and pathway analysis provide new insights into hepatic metabolism and tumor pathogenesis regulated by AMPK signaling and clues to the possible molecular mechanism underlying the effect of AMPK.
Collapse
Affiliation(s)
- Jia Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | | | | | | | | |
Collapse
|
39
|
Abstract
S-adenosylmethionine (AdoMet, also known as SAM and SAMe) is the principal biological methyl donor synthesized in all mammalian cells but most abundantly in the liver. Biosynthesis of AdoMet requires the enzyme methionine adenosyltransferase (MAT). In mammals, two genes, MAT1A that is largely expressed by normal liver and MAT2A that is expressed by all extrahepatic tissues, encode MAT. Patients with chronic liver disease have reduced MAT activity and AdoMet levels. Mice lacking Mat1a have reduced hepatic AdoMet levels and develop oxidative stress, steatohepatitis, and hepatocellular carcinoma (HCC). In these mice, several signaling pathways are abnormal that can contribute to HCC formation. However, injury and HCC also occur if hepatic AdoMet level is excessive chronically. This can result from inactive mutation of the enzyme glycine N-methyltransferase (GNMT). Children with GNMT mutation have elevated liver transaminases, and Gnmt knockout mice develop liver injury, fibrosis, and HCC. Thus a normal hepatic AdoMet level is necessary to maintain liver health and prevent injury and HCC. AdoMet is effective in cholestasis of pregnancy, and its role in other human liver diseases remains to be better defined. In experimental models, it is effective as a chemopreventive agent in HCC and perhaps other forms of cancer as well.
Collapse
Affiliation(s)
- Shelly C Lu
- Division of Gastroenterology and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for ALPD and Cirrhosis, Keck School of Medicine, Los Angeles, California 90033, USA.
| | | |
Collapse
|
40
|
Martínez-López N, García-Rodríguez JL, Varela-Rey M, Gutiérrez V, Fernández-Ramos D, Beraza N, Aransay AM, Schlangen K, Lozano JJ, Aspichueta P, Luka Z, Wagner C, Evert M, Calvisi DF, Lu SC, Mato JM, Martínez-Chantar ML. Hepatoma cells from mice deficient in glycine N-methyltransferase have increased RAS signaling and activation of liver kinase B1. Gastroenterology 2012; 143:787-798.e13. [PMID: 22687285 PMCID: PMC3429651 DOI: 10.1053/j.gastro.2012.05.050] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/22/2012] [Accepted: 05/26/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for developing hepatocellular carcinoma (HCC), and their liver tissues have abnormal levels of S-adenosylmethionine (SAMe). Glycine N-methyltransferase (GNMT) catabolizes SAMe, but its expression is down-regulated in HCC cells. Mice that lack GNMT develop fibrosis and hepatomas and have alterations in signaling pathways involved in carcinogenesis. We investigated the role of GNMT in human HCC cell lines and in liver carcinogenesis in mice. METHODS We studied hepatoma cells from GNMT knockout mice and analyzed the roles of liver kinase B1 (LKB1, STK11) signaling via 5'-adenosine monophosphate-activated protein kinase (AMPK) and Ras in regulating proliferation and transformation. RESULTS Hepatoma cells from GNMT mice had defects in LKB1 signaling to AMPK, making them resistant to induction of apoptosis by adenosine 3',5'-cyclic monophosphate activation of protein kinase A and calcium/calmodulin-dependent protein kinase kinase 2. Ras-mediated hyperactivation of LKB1 promoted proliferation of GNMT-deficient hepatoma cells and required mitogen-activated protein kinase 2 (ERK) and ribosomal protein S6 kinase polypeptide 2 (p90RSK). Ras activation of LKB1 required expression of RAS guanyl releasing protein 3 (RASGRP3). Reduced levels of GNMT and phosphorylation of AMPKα at Thr172 and increased levels of Ras, LKB1, and RASGRP3 in HCC samples from patients were associated with shorter survival times. CONCLUSIONS Reduced expression of GNMT in mouse hepatoma cells and human HCC cells appears to increase activity of LKB1 and RAS; activation of RAS signaling to LKB1 and RASGRP3, via ERK and p90RSK, might be involved in liver carcinogenesis and be used as a prognostic marker. Reagents that disrupt this pathway might be developed to treat patients with HCC.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Animals
- Apoptosis
- Azacitidine/pharmacology
- Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclic AMP-Dependent Protein Kinases/metabolism
- DNA Methylation
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Glycine N-Methyltransferase/deficiency
- Glycine N-Methyltransferase/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Nude
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Ribosomal Protein S6 Kinases, 90-kDa/metabolism
- Signal Transduction/drug effects
- Time Factors
- Transfection
- Tumor Burden
- ras Guanine Nucleotide Exchange Factors
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Nuria Martínez-López
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain.
| | - Juan L García-Rodríguez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Virginia Gutiérrez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Naiara Beraza
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Ana M Aransay
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Karin Schlangen
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - Juan Jose Lozano
- Centro de Investigación Biomédica en red de Enfermedades Hepáticas y Digestivas, Hospital Clinic, Centre Esther Koplovitz, Barcelona, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Zigmund Luka
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Conrad Wagner
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthias Evert
- Institute of Pathology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Diego F Calvisi
- Institute of Pathology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| | - María L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Technology Park of Bizkaia, Bizkaia, Spain
| |
Collapse
|
41
|
The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. J Neurosci 2012; 32:4944-58. [PMID: 22492050 DOI: 10.1523/jneurosci.5868-11.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFβ, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.
Collapse
|
42
|
Effects of n-3 polyunsaturated fatty acids on rat livers after partial hepatectomy via LKB1-AMPK signaling pathway. Transplant Proc 2012; 43:3604-12. [PMID: 22172813 DOI: 10.1016/j.transproceed.2011.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/19/2011] [Accepted: 10/12/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE n-3 polyunsaturated fatty acid (n-3 PUFA) are considered to be associated with liver regeneration. We investigated the effects of n-3 PUFA on hepatic tight junction (TJs) and liver regeneration after 70% partial hepatectomy (PH) in rats. METHODS Male Sprague-Dawley rats were divided into four groups: sham group; control group, fish oil (FO; 1 mL/kg), and the FO (2 mL/kg) group. We examined changes in expression of hepatic TJs by at confocal microscopy in liver regeneration by routine clinical chemistry methods for hepatic function, and in activation of liver kinase B1-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. Using Western blot analysis. RESULTS After PH survival was higher in the FO than the control group. We observed treatment with n-3 PUFA to activated the LKB1-AMPK signaling pathway as well as to earlier, stronger and prolonged of the expression of Occludin, Claudin-3, zonula occludens-1, and proliferating cell nuclear antigen proteins. In addition, hepatic TJ structures and the level of liver function were protected after n-3 PUFA treatment. CONCLUSIONS After PH in rats, n-3 PUFA enhanced expression and protected the structure of hepatic TJs via the LKB1-AMPK signaling pathway. Moreover, it may promote liver regeneration partly via the LKB1-AMPK signaling pathway. It protected postoperative hepatic function and may be a liver protective agent against liver failure.
Collapse
|
43
|
Schröder PC, Fernández-Irigoyen J, Bigaud E, Serna A, Renández-Alcoceba R, Lu SC, Mato JM, Prieto J, Corrales FJ. Proteomic analysis of human hepatoma cells expressing methionine adenosyltransferase I/III: Characterization of DDX3X as a target of S-adenosylmethionine. J Proteomics 2012; 75:2855-68. [PMID: 22270009 DOI: 10.1016/j.jprot.2012.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 02/07/2023]
Abstract
Methionine adenosyltransferase I/III (MATI/III) synthesizes S-adenosylmethionine (SAM) in quiescent hepatocytes. Its activity is compromised in most liver diseases including liver cancer. Since SAM is a driver of hepatocytes fate we have studied the effect of re-expressing MAT1A in hepatoma Huh7 cells using proteomics. MAT1A expression leads to SAM levels close to those found in quiescent hepatocytes and induced apoptosis. Normalization of intracellular SAM induced alteration of 128 proteins identified by 2D-DIGE and gel-free methods, accounting for deregulation of central cellular functions including apoptosis, cell proliferation and survival. Human Dead-box protein 3 (DDX3X), a RNA helicase regulating RNA splicing, export, transcription and translation was down-regulated upon MAT1A expression. Our data support the regulation of DDX3X levels by SAM in a concentration and time dependent manner. Consistently, DDX3X arises as a primary target of SAM and a principal intermediate of its antitumoral effect. Based on the parallelism between SAM and DDX3X along the progression of liver disorders, and the results reported here, it is tempting to suggest that reduced SAM in the liver may lead to DDX3X up-regulation contributing to the pathogenic process and that replenishment of SAM might prove to have beneficial effects, at least in part by reducing DDX3X levels. This article is part of a Special Issue entitled: Proteomics: The clinical link.
Collapse
Affiliation(s)
- Paul C Schröder
- Division of Hepatology and Gene Therapy, CIMA, University of Navarra, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gomez-Santos L, Vazquez-Chantada M, Mato JM, Martinez-Chantar ML. SAMe and HuR in liver physiology: usefulness of stem cells in hepatic differentiation research. Methods Mol Biol 2012; 826:133-49. [PMID: 22167646 DOI: 10.1007/978-1-61779-468-1_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
S-Adenosylmethionine, abbreviated as SAM, SAMe or AdoMet, is the principal methyl group donor in the mammalian cell and the first step metabolite of the methionine cycle, being synthesized by MAT (methionine adenosyltransferase) from methionine and ATP. About 60 years after its identification, SAMe is admitted as a key hepatic regulator whose level needs to be maintained within a specific range in order to avoid liver damage. Recently, in vitro and in vivo studies have demonstrated the regulatory role of SAMe in HGF (hepatocyte growth factor)-mediated hepatocyte proliferation through a mechanism that implicates the activation of the non-canonical LKB1/AMPK/eNOS cascade and HuR function. Regarding hepatic differentiation, cellular SAMe content varies depending on the status of the cell, being lower in immature than in adult hepatocytes. This finding suggests a SAMe regulatory effect also in this cellular process, which very recently was reported and related to HuR activity. Although in the last years this and other discoveries contributed to throw light into the tangle of regulatory mechanisms that govern this complex process, an overall understanding is still a challenge. For this purpose, the in vitro hepatic differentiation culture systems by using stem cells or fetal hepatoblasts are considered as valuable tools which, in combination with the methods used in current days to elucidate cell signaling pathways, surely will help to clear up this question.
Collapse
Affiliation(s)
- Laura Gomez-Santos
- Metabolomics Unit, CIC bioGUNE, Technology Park of Bizkaia, Bizkaia, Basque Country, Spain.
| | | | | | | |
Collapse
|
45
|
Cano A, Buqué X, Martínez-Uña M, Aurrekoetxea I, Menor A, García-Rodriguez JL, Lu SC, Martínez-Chantar ML, Mato JM, Ochoa B, Aspichueta P. Methionine adenosyltransferase 1A gene deletion disrupts hepatic very low-density lipoprotein assembly in mice. Hepatology 2011; 54:1975-86. [PMID: 21837751 PMCID: PMC3222787 DOI: 10.1002/hep.24607] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Very low-density lipoprotein (VLDL) secretion provides a mechanism to export triglycerides (TG) from the liver to peripheral tissues, maintaining lipid homeostasis. In nonalcoholic fatty liver disease (NAFLD), VLDL secretion disturbances are unclear. Methionine adenosyltransferase (MAT) is responsible for S-adenosylmethionine (SAMe) synthesis and MAT I and III are the products of the MAT1A gene. Deficient MAT I and III activities and SAMe content in the liver have been associated with NAFLD, but whether MAT1A is required for normal VLDL assembly remains unknown. We investigated the role of MAT1A on VLDL assembly in two metabolic contexts: in 3-month-old MAT1A-knockout mice (3-KO), with no signs of liver injury, and in 8-month-old MAT1A-knockout mice (8-KO), harboring nonalcoholic steatohepatitis. In 3-KO mouse liver, there is a potent effect of MAT1A deletion on lipid handling, decreasing mobilization of TG stores, TG secretion in VLDL and phosphatidylcholine synthesis via phosphatidylethanolamine N-methyltransferase. MAT1A deletion also increased VLDL-apolipoprotein B secretion, leading to small, lipid-poor VLDL particles. Administration of SAMe to 3-KO mice for 7 days recovered crucial altered processes in VLDL assembly and features of the secreted lipoproteins. The unfolded protein response was activated in 8-KO mouse liver, in which TG accumulated and the phosphatidylcholine-to-phosphatidylethanolamine ratio was reduced in the endoplasmic reticulum, whereas secretion of TG and apolipoprotein B in VLDL was increased and the VLDL physical characteristics resembled that in 3-KO mice. MAT1A deletion also altered plasma lipid homeostasis, with an increase in lipid transport in low-density lipoprotein subclasses and decrease in high-density lipoprotein subclasses. CONCLUSION MAT1A is required for normal VLDL assembly and plasma lipid homeostasis in mice. Impaired VLDL synthesis, mainly due to SAMe deficiency, contributes to NAFLD development in MAT1A-KO mice.
Collapse
Affiliation(s)
- Ainara Cano
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Xabier Buqué
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Maite Martínez-Uña
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Igor Aurrekoetxea
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Ariane Menor
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Juan L García-Rodriguez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastroenterology and Liver Diseases, University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - M. Luz Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Technology Park of Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain
| | - Patricia Aspichueta
- Department of Physiology, University of the Basque Country Medical School, Bilbao, Spain,Corresponding author: Patricia Aspichueta, Department of Physiology, University of the Basque Country Medical School, Sarriena s/n, 48940 Leioa, Spain. Phone: +34 946012896; Fax: +34 946015662;
| |
Collapse
|
46
|
Mei Y, Thevananther S. Endothelial nitric oxide synthase is a key mediator of hepatocyte proliferation in response to partial hepatectomy in mice. Hepatology 2011; 54:1777-89. [PMID: 21748771 PMCID: PMC3579770 DOI: 10.1002/hep.24560] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/06/2011] [Indexed: 12/20/2022]
Abstract
UNLABELLED Endothelial nitric oxide synthase (eNOS) is a critical modulator of vascular tone and blood flow and plays major roles in liver physiology and pathophysiology. Nitric oxide (NO) is widely recognized as one of the key humoral factors important for the initiation of liver regeneration in response to partial hepatectomy. Liver regeneration in response to partial hepatectomy is dependent on the efficiency of growth factor-mediated cell-cycle progression. Epidermal growth factor receptor (EGFR) is a critical mediator of multiple hepatic mitogens, such as epidermal growth factor (EGF), transforming growth factor alpha, amphiregulin, and heparin-binding EGF in regenerating livers. However, the functional significance of endothelial nitric oxide synthase (eNOS) expressed in hepatocytes, and its potential role in EGFR-mediated hepatocyte proliferation, remains unexplored. We sought to determine whether eNOS is essential for hepatocyte proliferation in response to partial hepatectomy (PH). Our studies with eNOS knockout (eNOS(-/-) ) mice suggest that eNOS activation is essential for the efficient induction of early events and elicitation of a robust hepatocyte proliferative response to PH. Moreover, eNOS expression is essential for the efficient early induction of matrix metalloprotease-9, a known mediator of extracellular matrix remodeling and growth factor activation in regenerating livers. Our in vitro studies suggest that eNOS is a critical mediator of EGF-induced hepatocyte proliferation, potentially via its influence on the induction of early growth response-1 (Egr-1) and phosphorylation of c-Jun--known mediators of cell-cycle progression. EGF-induced eNOS phosphorylation at Ser 1177 is dependent on the phosphorylation and activation of EGFR/PI3 kinase/AKT signaling in hepatocytes. CONCLUSION Collectively, these results highlight a hitherto unrecognized role for eNOS activation in hepatocyte proliferation with implications for targeted therapies to enhance liver regenerative response in chronic disorders.
Collapse
Affiliation(s)
- Yu Mei
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, and Texas Children’s Liver Center, Houston, TX
| | - Sundararajah Thevananther
- Department of Pediatrics, Section of Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, and Texas Children’s Liver Center, Houston, TX.,Address for Correspondence: Sundararajah Thevananther, Ph.D., Associate Professor of Pediatrics-Gastroenterology, Hepatology & Nutrition, Baylor College of Medicine, 1102 Bates Street, Feigin Center-Rm 860B, Houston, TX 77030, Tel: 832-824-3753, Fax: 832-825-3811,
| |
Collapse
|
47
|
Xu J, Lai KK, Verlinsky A, Lugea A, French SW, Cooper MP, Ji C, Tsukamoto H. Synergistic steatohepatitis by moderate obesity and alcohol in mice despite increased adiponectin and p-AMPK. J Hepatol 2011; 55:673-682. [PMID: 21256905 PMCID: PMC3094601 DOI: 10.1016/j.jhep.2010.12.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mechanisms underlying synergistic liver injury caused by alcohol and obesity are not clear. We have produced a mouse model of synergistic steatohepatitis by recapitulating the natural history of the synergism seen in patients for mechanistic studies. METHODS Moderate obesity was induced in mice by 170% overnutrition in calories using intragastric overfeeding of high fat diet. Alcohol (low or high dose) was then co-administrated to determine its effects. RESULTS Moderate obesity plus alcohol intake causes synergistic steatohepatitis in an alcohol dose-dependent manner. A heightened synergism is observed when a high alcohol dose (32g/kg/d) is used, resulting in plasma ALT reaching 392±28U/L, severe steatohepatitis with pericellular fibrosis, marked M1 macrophage activation, a 40-fold induction of iNos, and intensified nitrosative stress in the liver. Hepatic expression of genes for mitochondrial biogenesis and metabolism are significantly downregulated, and hepatic ATP level is decreased. Synergistic ER stress evident by elevated XBP-1, GRP78 and CHOP is accompanied by hyperhomocysteinemia. Despite increased caspase 3/7 cleavage, their activities are decreased in a redox-dependent manner. Neither increased PARP cleavage nor TUNEL positive hepatocytes are found, suggesting a shift of apoptosis to necrosis. Surprisingly, the synergism mice have increased plasma adiponectin and hepatic p-AMPK, but adiponectin resistance is shown downstream of p-AMPK. CONCLUSIONS Nitrosative stress mediated by M1 macrophage activation, adiponectin resistance, and accentuated ER and mitochondrial stress underlie potential mechanisms for synergistic steatohepatitis caused by moderate obesity and alcohol.
Collapse
Affiliation(s)
- Jun Xu
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California, USA.
| | - Keane K.Y. Lai
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California
| | - Alla Verlinsky
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California
| | - Aurelia Lugea
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Samuel W. French
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California,Harbor-UCLA Medical Center, Torrance, California
| | - Marcus P. Cooper
- Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Cheng Ji
- Department of Medicine, Keck School of Medicine of the University of Southern California
| | - Hidekazu Tsukamoto
- Southern California Research Center for ALPD and Cirrhosis, Department of Pathology, Keck School of Medicine of the University of Southern California,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| |
Collapse
|
48
|
Role of methionine adenosyltransferase genes in hepatocarcinogenesis. Cancers (Basel) 2011; 3:1480-97. [PMID: 24212770 PMCID: PMC3757373 DOI: 10.3390/cancers3021480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/27/2011] [Accepted: 01/30/2011] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor of the liver. Detection of HCC can be difficult, as most of the patients who develop this tumor have no symptoms other than those related to their longstanding liver disease. There is an urgent need to understand the molecular mechanisms that are responsible for the development of this disease so that appropriate therapies can be designed. Methionine adenosyltransferase (MAT) is an essential enzyme required for the biosynthesis of S-adenosylmethionine (AdoMet), an important methyl donor in the cell. Alterations in the expression of MAT genes and a decline in AdoMet biosynthesis are known to be associated with liver injury, cirrhosis and HCC. This review focuses on the role of MAT genes in HCC development and the scope for therapeutic strategies using these genes.
Collapse
|
49
|
Varela-Rey M, Beraza N, Lu SC, Mato JM, Martínez-Chantar ML. Role of AMP-activated protein kinase in the control of hepatocyte priming and proliferation during liver regeneration. Exp Biol Med (Maywood) 2011; 236:402-8. [PMID: 21427236 DOI: 10.1258/ebm.2011.010352] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The enzyme AMP-activated protein kinase (AMPK) is the main energy sensor in cells and is responsible for controlling the balance of anabolic/catabolic processes under metabolic stress conditions. This metabolic control exerted by AMPK is critical for energy-demanding situations, such as liver regeneration. Immediately after partial hepatectomy (PH), the liver undergoes the priming phase, mediated by the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6, which promote responsiveness of hepatocytes to growth factors, such as hepatocyte growth factor (HGF) and epidermal growth factor, which lead to proliferation. In addition to its metabolic function, AMPK is likely to be a key mediator in both hepatocyte priming and the proliferative phases, induced by TNF-α and HGF, respectively. TNF-α-induced AMPK activation has been shown to be necessary for nuclear factor κappa B (NF-κB)-induced inducible nitric oxide synthase expression and for blocking TNF-α-induced apoptosis. On the other hand, HGF-induced LKB1/AMPK activation has been found to play a critical role in controlling Hu antigen R cytosolic localization and endothelial nitric oxide synthase activation, and consequently Cyclin D1 and Cyclin A expressions, and nitric oxide generation, respectively. During PH, levels of S-adenosylmethionine (SAMe), the principal methyl donor in the liver, have to decrease to allow liver proliferation. Our studies also show that SAMe inhibits hepatocyte proliferation by controlling the hepatocyte's responsiveness to mitogenic signals such as HGF through the inhibition of AMPK activity. In summary, these data highlight the essential role of AMPK in controlling the balance between hepatocyte metabolic adaptations, cell cycle progression and apoptosis during liver regeneration.
Collapse
Affiliation(s)
- Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain.
| | | | | | | | | |
Collapse
|
50
|
Martínez-López N, Varela-Rey M, Fernández-Ramos D, Woodhoo A, Vázquez-Chantada M, Embade N, Espinosa-Hevia L, Bustamante FJ, Parada LA, Rodriguez MS, Lu SC, Mato JM, Martínez-Chantar ML. Activation of LKB1-Akt pathway independent of phosphoinositide 3-kinase plays a critical role in the proliferation of hepatocellular carcinoma from nonalcoholic steatohepatitis. Hepatology 2010; 52:1621-31. [PMID: 20815019 PMCID: PMC2967637 DOI: 10.1002/hep.23860] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED LKB1, originally considered a tumor suppressor, plays an important role in hepatocyte proliferation and liver regeneration. Mice lacking the methionine adenosyltransferase (MAT) gene MAT1A exhibit a chronic reduction in hepatic S-adenosylmethionine (SAMe) levels, basal activation of LKB1, and spontaneous development of nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC). These results are relevant for human health because patients with liver cirrhosis, who are at risk to develop HCC, have a marked reduction in hepatic MAT1A expression and SAMe synthesis. In this study, we isolated a cell line (SAMe-deficient [SAMe-D]) from MAT1A knockout (MAT1A-KO) mouse HCC to examine the role of LKB1 in the development of liver tumors derived from metabolic disorders. We found that LKB1 is required for cell survival in SAMe-D cells. LKB1 regulates Akt-mediated survival independent of phosphoinositide 3-kinase, adenosine monophosphate protein-activated kinase (AMPK), and mammalian target of rapamycin complex (mTORC2). In addition, LKB1 controls the apoptotic response through phosphorylation and retention of p53 in the cytoplasm and the regulation of herpesvirus-associated ubiquitin-specific protease (HAUSP) and Hu antigen R (HuR) nucleocytoplasmic shuttling. We identified HAUSP as a target of HuR. Finally, we observed cytoplasmic staining of p53 and p-LKB1(Ser428) in a NASH-HCC animal model (from MAT1A-KO mice) and in liver biopsies obtained from human HCC derived from both alcoholic steatohepatitis and NASH. CONCLUSION The SAMe-D cell line is a relevant model of HCC derived from NASH disease in which LKB1 is the principal conductor of a new regulatory mechanism and could be a practical tool for uncovering new therapeutic strategies.
Collapse
Affiliation(s)
- Nuria Martínez-López
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, Bizkaia, Spain.
| | - Marta Varela-Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - David Fernández-Ramos
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Ashwin Woodhoo
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Mercedes Vázquez-Chantada
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Nieves Embade
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Luis Espinosa-Hevia
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | | | - Luis A Parada
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Manuel S Rodriguez
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Shelly C Lu
- Division of Gastrointestinal and Liver Diseases, USC Research Center for Liver Diseases, Southern California Research Center for Alcoholic Liver and Pancreatic Diseases and Cirrhosis, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033
| | - José M Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| | - Maria L Martínez-Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160-Derio, Bizkaia, Spain
| |
Collapse
|