1
|
Gonzalez-Sanchez E, Vaquero J, Caballero-Diaz D, Grzelak J, Fusté NP, Bertran E, Amengual J, Garcia-Saez J, Martín-Mur B, Gut M, Esteve-Codina A, Alay A, Coulouarn C, Calero-Perez S, Valdecantos P, Valverde AM, Sánchez A, Herrera B, Fabregat I. The hepatocyte epidermal growth factor receptor (EGFR) pathway regulates the cellular interactome within the liver fibrotic niche. J Pathol 2024; 263:482-495. [PMID: 38872438 DOI: 10.1002/path.6299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Grants
- EHDG1703 CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases
- CERCA Programme/Generalitat de Catalunya
- CIVP20A6593 Fundacion Ramon Areces
- PID2019-108651RJ-I00 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID2021-122551OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- PID-2021-122766OB-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTC2019-007125-1 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094052-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-094079-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RTI2018-099098-B-100 Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- RYC2021-034121-I Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain
- European Regional Development Fund
- Instituto de Salud Carlos III
Collapse
Affiliation(s)
- Ester Gonzalez-Sanchez
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Department of Physiology and Pharmacology, Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Centro de Investigación del Cancer and Instituto de Biología Molecular y Celular del Cancer, CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Daniel Caballero-Diaz
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Jan Grzelak
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Noel P Fusté
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Esther Bertran
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Josep Amengual
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| | - Juan Garcia-Saez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Beatriz Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain
- Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Cedric Coulouarn
- Inserm, Univ Rennes, OSS (Oncogenesis, Stress, Signaling) UMR_S 1242, Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - Silvia Calero-Perez
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Pilar Valdecantos
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Angela M Valverde
- Biomedical Research Institute Sols-Morreale, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders (CIBERDEM); ISCIII, Madrid, Spain
| | - Aránzazu Sánchez
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Blanca Herrera
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet, Barcelona, Spain
- Biomedical Research Networking Center in CIBER in Hepatic and Digestive Diseases (CIBEREHD), ISCIII, Madrid, Spain
| |
Collapse
|
2
|
Bano S, Copeland MA, Stoops JW, Orr A, Jain S, Paranjpe S, Mooli RGR, Ramakrishnan SK, Locker J, Mars WM, Michalopoulos GK, Bhushan B. Hepatocyte-specific Epidermal Growth Factor Receptor Deletion Promotes Fibrosis but has no Effect on Steatosis in Fast-food Diet Model of Metabolic Dysfunction-associated Steatotic Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 18:101380. [PMID: 39038606 PMCID: PMC11387264 DOI: 10.1016/j.jcmgh.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) has become the most prevalent chronic liver disorder, with no approved treatment. Our previous work demonstrated the efficacy of a pan-ErbB inhibitor, Canertinib, in reducing steatosis and fibrosis in a murine fast-food diet (FFD) model of MASLD. The current study explores the effects of hepatocyte-specific ErbB1 (ie, epidermal growth factor receptor [EGFR]) deletion in the FFD model. METHODS EGFRflox/flox mice, treated with AAV8-TBG-CRE to delete EGFR specifically in hepatocytes (EGFR-KO), were fed either a chow-diet or FFD for 2 or 5 months. RESULTS Hepatocyte-specific EGFR deletion reduced serum triglyceride levels but did not prevent steatosis. Surprisingly, hepatic fibrosis was increased in EGFR-KO mice in the long-term study, which correlated with activation of transforming growth factor-β/fibrosis signaling pathways. Further, nuclear levels of some of the major MASLD regulating transcription factors (SREBP1, PPARγ, PPARα, and HNF4α) were altered in FFD-fed EGFR-KO mice. Transcriptomic analysis revealed significant alteration of lipid metabolism pathways in EGFR-KO mice with changes in several relevant genes, including downregulation of fatty-acid synthase and induction of lipolysis gene, Pnpla2, without impacting overall steatosis. Interestingly, EGFR downstream signaling mediators, including AKT, remain activated in EGFR-KO mice, which correlated with increased activity pattern of other receptor tyrosine kinases, including ErbB3/MET, in transcriptomic analysis. Lastly, Canertinib treatment in EGFR-KO mice, which inhibits all ErbB receptors, successfully reduced steatosis, suggesting the compensatory roles of other ErbB receptors in supporting MASLD without EGFR. CONCLUSIONS Hepatocyte-specific EGFR-KO did not impact steatosis, but enhanced fibrosis in the FFD model of MASLD. Gene networks associated with lipid metabolism were greatly altered in EGFR-KO, but phenotypic effects might be compensated by alternate signaling pathways.
Collapse
Affiliation(s)
- Shehnaz Bano
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Copeland
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John W Stoops
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Siddhi Jain
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shirish Paranjpe
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joseph Locker
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Pathology and Pittsburgh Liver Research Center, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
4
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Cuesta ÁM, Palao N, Bragado P, Gutierrez-Uzquiza A, Herrera B, Sánchez A, Porras A. New and Old Key Players in Liver Cancer. Int J Mol Sci 2023; 24:17152. [PMID: 38138981 PMCID: PMC10742790 DOI: 10.3390/ijms242417152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Liver cancer represents a major health problem worldwide with growing incidence and high mortality, hepatocellular carcinoma (HCC) being the most frequent. Hepatocytes are likely the cellular origin of most HCCs through the accumulation of genetic alterations, although hepatic progenitor cells (HPCs) might also be candidates in specific cases, as discussed here. HCC usually develops in a context of chronic inflammation, fibrosis, and cirrhosis, although the role of fibrosis is controversial. The interplay between hepatocytes, immune cells and hepatic stellate cells is a key issue. This review summarizes critical aspects of the liver tumor microenvironment paying special attention to platelets as new key players, which exert both pro- and anti-tumor effects, determined by specific contexts and a tight regulation of platelet signaling. Additionally, the relevance of specific signaling pathways, mainly HGF/MET, EGFR and TGF-β is discussed. HGF and TGF-β are produced by different liver cells and platelets and regulate not only tumor cell fate but also HPCs, inflammation and fibrosis, these being key players in these processes. The role of C3G/RAPGEF1, required for the proper function of HGF/MET signaling in HCC and HPCs, is highlighted, due to its ability to promote HCC growth and, regulate HPC fate and platelet-mediated actions on liver cancer.
Collapse
Affiliation(s)
- Ángel M. Cuesta
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Nerea Palao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Paloma Bragado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Alvaro Gutierrez-Uzquiza
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Blanca Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Aránzazu Sánchez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD-ISCIII), 28040 Madrid, Spain
| | - Almudena Porras
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (Á.M.C.); (N.P.); (P.B.); (A.G.-U.); (B.H.); (A.S.)
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
6
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
7
|
Lazcanoiturburu N, García-Sáez J, González-Corralejo C, Roncero C, Sanz J, Martín-Rodríguez C, Valdecantos MP, Martínez-Palacián A, Almalé L, Bragado P, Calero-Pérez S, Fernández A, García-Bravo M, Guerra C, Montoliu L, Segovia JC, Valverde ÁM, Fabregat I, Herrera B, Sánchez A. Lack of EGFR catalytic activity in hepatocytes improves liver regeneration following DDC-induced cholestatic injury by promoting a pro-restorative inflammatory response. J Pathol 2022; 258:312-324. [PMID: 36148647 DOI: 10.1002/path.6002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 01/03/2025]
Abstract
Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Nerea Lazcanoiturburu
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Juan García-Sáez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Carlos González-Corralejo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Cesáreo Roncero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Julián Sanz
- Anatomical Pathology Service of the 'Clínica Universidad de Navarra', Madrid, Spain
- Department of Psychiatry, Legal Medicine and Anatomical Pathology, Faculty of Medicine, UCM, Madrid, Spain
| | - Carlos Martín-Rodríguez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - M Pilar Valdecantos
- 'Alberto Sols' Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM-ISCIII), Madrid, Spain
| | - Adoración Martínez-Palacián
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Laura Almalé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Paloma Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Silvia Calero-Pérez
- 'Alberto Sols' Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM-ISCIII), Madrid, Spain
| | - Almudena Fernández
- National Center for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Research Center for Energy, Environment and Technology (CIEMAT), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
- Advanced Therapies Mixed Unit, 'Fundación Jiménez Díaz' University Hospital Health Research Institute (CIEMAT/IIS-FJD), Madrid, Spain
| | - Carmen Guerra
- Molecular Oncology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Lluis Montoliu
- National Center for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
| | - José Carlos Segovia
- Cell Technology Division, Research Center for Energy, Environment and Technology (CIEMAT), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
- Advanced Therapies Mixed Unit, 'Fundación Jiménez Díaz' University Hospital Health Research Institute (CIEMAT/IIS-FJD), Madrid, Spain
| | - Ángela M Valverde
- 'Alberto Sols' Biomedical Research Institute, Spanish National Research Council and Autonomous University of Madrid (IIBM, CSIC-UAM), Madrid, Spain
- Biomedical Research Networking Center in Diabetes and Associated Metabolic Disorders of the Carlos III Health Institute (CIBERDEM-ISCIII), Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
- Oncology Program, Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD-ISCIII), Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the 'Hospital Clínico San Carlos' (IdISSC), Madrid, Spain
| |
Collapse
|
8
|
Lu Y, Li M, Zhou Q, Fang D, Wu R, Li Q, Chen L, Su S. Dynamic network biomarker analysis and system pharmacology methods to explore the therapeutic effects and targets of Xiaoyaosan against liver cirrhosis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 294:115324. [PMID: 35489663 DOI: 10.1016/j.jep.2022.115324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoyaosan is a traditional Chinese herbal formula that has long been used to treat liver cirrhosis, liver failure, and hepatocarcinoma (HCC). However, little is known about its mechanism of action and targets in treating chronic liver disease. AIM OF THE STUDY This study aimed to detect the critical transition of HCC progression and to explore the regulatory mechanism and targets of Xiaoyaosan treating liver cirrhosis (cirrhosis) using integrative medicinal research involving system biology and pharmacology. MATERIALS AND METHODS We recruited chronic liver disease participants to obtain gene expression data and applied the dynamic network biomarker (DNB) method to identify molecular markers and the critical transition. We combined network pharmacology and DNB analysis to locate the potential DNBs (targets). Then we validated the DNBs in the liver cirrhosis rat models using Xiaoyaosan treatment. The expression of genes encoding the four DNBs, including Cebpa, Csf1, Egfr, and Il7r, were further validated in rat liver tissue using Western blot analysis. RESULTS We found EGFR, CEBPA, Csf1, Ccnb1, Rrmm2, C3, Il7r, Ccna2, and Peg10 overlap in the DNB list and Xiaoyaosan-Target-Disease (XTD) network constructed using network pharmacology databases. We investigated the diagnostic ability of each member in the DNB cluster and found EGFR, CEBPA, CSF1, and IL7R had high diagnostic abilities with AUC >0.7 and P-value < 0.05. We validated these findings in rats and found that liver function improved significantly and fibrotic changes were relieved in the Xiaoyaosan treatment group. The expression levels of CSF1 and IL7R in the Xiaoyaosan group were significantly lower than those in the cirrhosis model group. In contrast, CEBPA expression in the Xiaoyaosan group was significantly higher than that in the cirrhosis model group. The expression of EGFR in the Xiaoyaosan group was slightly decreased than in the model group but not significantly. CONCLUSION Using the DNB method and network pharmacology approach, this study revealed that CEBPA, IL7R, EGFR, and CSF1 expression was remarkably altered in chronic liver disease and thus, may play an important role in driving the progression of cirrhosis. Therefore, CEBPA, IL7R, EGFR, and CSF1 may be important targets of Xiaoyaosan in treating cirrhosis and can be considered for developing novel therapeutics.
Collapse
Affiliation(s)
- Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Meiyi Li
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Shenzhen Research Institute, Sha Tin, New Territories, Hong Kong, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Rong Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qingya Li
- Henan University of Chinese Medicine, Henan, 450046, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China; CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Shibing Su
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Goikoetxea‐Usandizaga N, Serrano‐Maciá M, Delgado TC, Simón J, Fernández Ramos D, Barriales D, Cornide M, Jiménez M, Pérez‐Redondo M, Lachiondo‐Ortega S, Rodríguez‐Agudo R, Bizkarguenaga M, Zalamea JD, Pasco ST, Caballero‐Díaz D, Alfano B, Bravo M, González‐Recio I, Mercado‐Gómez M, Gil‐Pitarch C, Mabe J, Gracia‐Sancho J, Abecia L, Lorenzo Ó, Martín‐Sanz P, Abrescia NGA, Sabio G, Rincón M, Anguita J, Miñambres E, Martín C, Berenguer M, Fabregat I, Casado M, Peralta C, Varela‐Rey M, Martínez‐Chantar ML. Mitochondrial bioenergetics boost macrophage activation, promoting liver regeneration in metabolically compromised animals. Hepatology 2022; 75:550-566. [PMID: 34510498 PMCID: PMC9300136 DOI: 10.1002/hep.32149] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.
Collapse
Affiliation(s)
- Naroa Goikoetxea‐Usandizaga
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Marina Serrano‐Maciá
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jorge Simón
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - David Fernández Ramos
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria E. Cornide
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Mónica Jiménez
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | | | - Sofia Lachiondo‐Ortega
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Rubén Rodríguez‐Agudo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maider Bizkarguenaga
- Precision Medicine and Liver Metabolism Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Samuel T. Pasco
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Daniel Caballero‐Díaz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain
| | - Benedetta Alfano
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Miren Bravo
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Irene González‐Recio
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Maria Mercado‐Gómez
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Clàudia Gil‐Pitarch
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain
| | - Jon Mabe
- Electronics and Communications Unit, IK4‐TeknikerEibarSpain
| | - Jordi Gracia‐Sancho
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Liver Vascular Biology Research GroupIDIBAPSBarcelonaSpain
| | - Leticia Abecia
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Immunology, Microbiology and Parasitology Department, Medicine and Nursing FacultyUniversity of the Basque CountryLeioaSpain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular PathologyIIS‐Fundación Jiménez Díaz‐Universidad Autónoma de Madrid, Spanish Biomedical Research Centre on Diabetes and Associated Metabolic Disorders (CIBERDEM) NetworkMadridSpain
| | - Paloma Martín‐Sanz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Cell Signalling and Metabolism DepartmentInstituto de Investigaciones Biomédicas “Alberto Sols,” CSIC‐UAMMadridSpain
| | - Nicola G. A. Abrescia
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Structure and Cell Biology of Viruses Lab Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones CardiovascularesStress Kinases in Diabetes, Cancer and BiochemistryMadridSpain
| | - Mercedes Rincón
- Department of MedicineImmunobiology DivisionUniversity of VermontBurlingtonVermontUSA
| | - Juan Anguita
- Inflammation and Macrophage Plasticity LaboratoryCenter for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,IKERBASQUEBasque Foundation for ScienceBilbaoSpain
| | - Eduardo Miñambres
- Transplant Coordination Unit, Marqués de Valdecilla University Hospital–IDIVAL, Cantabria UniversitySantanderSpain
| | - César Martín
- Biofisika Institute, Centro Superior de Investigaciones Científicas, and Department of Biochemisty, Faculty of Science and TechnologyUniversity of Basque CountryLeioaSpain
| | - Marina Berenguer
- Liver UnitHospital Universitario y Politécnico La FeValenciaSpain
| | - Isabel Fabregat
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,TGF‐β and Cancer GroupOncobell ProgramBellvitge Biomedical Research Institute (IDIBELL)Gran Via de L’HospitaletBarcelonaSpain,Faculty of Medicine and Health SciencesUniversity of BarcelonaL’HospitaletBarcelonaSpain
| | - Marta Casado
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain,Experimental Metabolic Pathology DepartmentInstituto de Biomedicina de ValenciaIBV‐CSICValenciaSpain
| | - Carmen Peralta
- Liver, Digestive System and Metabolism Department, Liver Transplantation and Graft Viability LabInstituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Varela‐Rey
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| | - María Luz Martínez‐Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology AllianceDerioSpain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)Carlos III National Health InstituteMadridSpain
| |
Collapse
|
10
|
Exploring the Gamut of Receptor Tyrosine Kinases for Their Promise in the Management of Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:biomedicines9121776. [PMID: 34944593 PMCID: PMC8698495 DOI: 10.3390/biomedicines9121776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, non-alcoholic fatty liver disease (NAFLD) has emerged as a predominant health concern affecting approximately a quarter of the world’s population. NAFLD is a spectrum of liver ailments arising from nascent lipid accumulation and leading to inflammation, fibrosis or even carcinogenesis. Despite its prevalence and severity, no targeted pharmacological intervention is approved to date. Thus, it is imperative to identify suitable drug targets critical to the development and progression of NAFLD. In this quest, a ray of hope is nestled within a group of proteins, receptor tyrosine kinases (RTKs), as targets to contain or even reverse NAFLD. RTKs control numerous vital biological processes and their selective expression and activity in specific diseases have rendered them useful as drug targets. In this review, we discuss the recent advancements in characterizing the role of RTKs in NAFLD progression and qualify their suitability as pharmacological targets. Available data suggests inhibition of Epidermal Growth Factor Receptor, AXL, Fibroblast Growth Factor Receptor 4 and Vascular Endothelial Growth Factor Receptor, and activation of cellular mesenchymal-epithelial transition factor and Fibroblast Growth Factor Receptor 1 could pave the way for novel NAFLD therapeutics. Thus, it is important to characterize these RTKs for target validation and proof-of-concept through clinical trials.
Collapse
|
11
|
Zhang L, Ma XJN, Fei YY, Han HT, Xu J, Cheng L, Li X. Stem cell therapy in liver regeneration: Focus on mesenchymal stem cells and induced pluripotent stem cells. Pharmacol Ther 2021; 232:108004. [PMID: 34597754 DOI: 10.1016/j.pharmthera.2021.108004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023]
Abstract
The liver has the ability to repair itself after injury; however, a variety of pathological changes in the liver can affect its ability to regenerate, and this could lead to liver failure. Mesenchymal stem cells (MSCs) are considered a good source of cells for regenerative medicine, as they regulate liver regeneration through different mechanisms, and their efficacy has been demonstrated by many animal experiments and clinical studies. Induced pluripotent stem cells, another good source of MSCs, have also made great progress in the establishment of organoids, such as liver disease models, and in drug screening. Owing to the recent developments in MSCs and induced pluripotent stem cells, combined with emerging technologies including graphene, nano-biomaterials, and gene editing, precision medicine and individualized clinical treatment may be realized in the near future.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Xiao-Jing-Nan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Yuan-Yuan Fei
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Heng-Tong Han
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Jun Xu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Cheng
- Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China
| | - Xun Li
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Key Laboratory Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, PR China; Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, PR China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, PR China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
12
|
González L, Díaz ME, Miquet JG, Sotelo AI, Dominici FP. Growth Hormone Modulation of Hepatic Epidermal Growth Factor Receptor Signaling. Trends Endocrinol Metab 2021; 32:403-414. [PMID: 33838976 DOI: 10.1016/j.tem.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/04/2023]
Abstract
Epidermal growth factor receptor (EGFR) signaling has a central role in the regenerative response of the liver upon injury and is involved in cellular transformation linked to chronic damage. Hepatic EGFR expression, trafficking, and signaling are regulated by growth hormone (GH). Chronically elevated GH levels are associated with liver cancer development and progression in mice. Studies in different in vivo experimental models indicate that EGF and GH mutually crossregulate in a complex manner. Several factors, such as the extent of exposure to supraphysiological GH levels and the pattern of GH administration, are important variables to be considered in exploring the interplay between the two hormones in connection with the progression of hepatic tumors.
Collapse
Affiliation(s)
- Lorena González
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - María E Díaz
- Universidad Nacional de Luján, CONICET, Instituto de Ecología y Desarrollo Sustentable (INEDES), Buenos Aires, Argentina
| | - Johanna G Miquet
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Ana I Sotelo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Fernando P Dominici
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
13
|
So J, Kim M, Lee SH, Ko S, Lee DA, Park H, Azuma M, Parsons MJ, Prober D, Shin D. Attenuating the Epidermal Growth Factor Receptor-Extracellular Signal-Regulated Kinase-Sex-Determining Region Y-Box 9 Axis Promotes Liver Progenitor Cell-Mediated Liver Regeneration in Zebrafish. Hepatology 2021; 73:1494-1508. [PMID: 32602149 PMCID: PMC7769917 DOI: 10.1002/hep.31437] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS The liver is a highly regenerative organ, but its regenerative capacity is compromised in severe liver injury settings. In chronic liver diseases, the number of liver progenitor cells (LPCs) correlates proportionally to disease severity, implying that their inefficient differentiation into hepatocytes exacerbates the disease. Moreover, LPCs secrete proinflammatory cytokines; thus, their prolonged presence worsens inflammation and induces fibrosis. Promoting LPC-to-hepatocyte differentiation in patients with advanced liver disease, for whom liver transplantation is currently the only therapeutic option, may be a feasible clinical approach because such promotion generates more functional hepatocytes and concomitantly reduces inflammation and fibrosis. APPROACH AND RESULTS Here, using zebrafish models of LPC-mediated liver regeneration, we present a proof of principle of such therapeutics by demonstrating a role for the epidermal growth factor receptor (EGFR) signaling pathway in differentiation of LPCs into hepatocytes. We found that suppression of EGFR signaling promoted LPC-to-hepatocyte differentiation through the mitogen-activated ERK kinase (MEK)-extracellular signal-regulated kinase (ERK)-sex-determining region Y-box 9 (SOX9) cascade. Pharmacological inhibition of EGFR or MEK/ERK promoted LPC-to-hepatocyte differentiation as well as genetic suppression of the EGFR-ERK-SOX9 axis. Moreover, Sox9b overexpression in LPCs blocked their differentiation into hepatocytes. In the zebrafish liver injury model, both hepatocytes and biliary epithelial cells contributed to LPCs. EGFR inhibition promoted the differentiation of LPCs regardless of their origin. Notably, short-term treatment with EGFR inhibitors resulted in better liver recovery over the long term. CONCLUSIONS The EGFR-ERK-SOX9 axis suppresses LPC-to-hepatocyte differentiation during LPC-mediated liver regeneration. We suggest EGFR inhibitors as a proregenerative therapeutic drug for patients with advanced liver disease.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Minwook Kim
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Seung-Hoon Lee
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sungjin Ko
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Present address: Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel A. Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hyewon Park
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Michael J. Parsons
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - David Prober
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Donghun Shin
- Department of Developmental Biology, McGowan Institute for Regenerative Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
14
|
Compte M, Harwood SL, Erce-Llamazares A, Tapia-Galisteo A, Romero E, Ferrer I, Garrido-Martin EM, Enguita AB, Ochoa MC, Blanco B, Oteo M, Merino N, Nehme-Álvarez D, Hangiu O, Domínguez-Alonso C, Zonca M, Ramírez-Fernández A, Blanco FJ, Morcillo MA, Muñoz IG, Melero I, Rodriguez-Peralto JL, Paz-Ares L, Sanz L, Alvarez-Vallina L. An Fc-free EGFR-specific 4-1BB-agonistic Trimerbody Displays Broad Antitumor Activity in Humanized Murine Cancer Models without Toxicity. Clin Cancer Res 2021; 27:3167-3177. [PMID: 33785484 DOI: 10.1158/1078-0432.ccr-20-4625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/05/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE The induction of 4-1BB signaling by agonistic antibodies can drive the activation and proliferation of effector T cells and thereby enhance a T-cell-mediated antitumor response. Systemic administration of anti-4-1BB-agonistic IgGs, although effective preclinically, has not advanced in clinical development due to their severe hepatotoxicity. EXPERIMENTAL DESIGN Here, we generated a humanized EGFR-specific 4-1BB-agonistic trimerbody, which replaces the IgG Fc region with a human collagen homotrimerization domain. It was characterized by structural analysis and in vitro functional studies. We also assessed pharmacokinetics, antitumor efficacy, and toxicity in vivo. RESULTS In the presence of a T-cell receptor signal, the trimerbody provided potent T-cell costimulation that was strictly dependent on 4-1BB hyperclustering at the point of contact with a tumor antigen-displaying cell surface. It exhibits significant antitumor activity in vivo, without hepatotoxicity, in a wide range of human tumors including colorectal and breast cancer cell-derived xenografts, and non-small cell lung cancer patient-derived xenografts associated with increased tumor-infiltrating CD8+ T cells. The combination of the trimerbody with a PD-L1 blocker led to increased IFNγ secretion in vitro and resulted in tumor regression in humanized mice bearing aggressive triple-negative breast cancer. CONCLUSIONS These results demonstrate the nontoxic broad antitumor activity of humanized Fc-free tumor-specific 4-1BB-agonistic trimerbodies and their synergy with checkpoint blockers, which may provide a way to elicit responses in most patients with cancer while avoiding Fc-mediated adverse reactions.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Seandean L Harwood
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark
| | - Ainhoa Erce-Llamazares
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain.,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Eduardo Romero
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Eva M Garrido-Martin
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain
| | - Ana B Enguita
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain
| | - Maria C Ochoa
- Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Marta Oteo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Nekane Merino
- Structural Biology Unit, CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
| | - Daniel Nehme-Álvarez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Manuela Zonca
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | - Angel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Francisco J Blanco
- Structural and Chemical Biology Department, Centro de Investigaciones Biológicas, CIB-CSIC, Madrid, Spain
| | - Miguel A Morcillo
- Biomedical Applications and Pharmacokinetics Unit, Centro de investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Ines G Muñoz
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Immunology, University Clinic, University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José L Rodriguez-Peralto
- Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Pathology. Universidad Complutense, Madrid, Spain.,Cutaneous Oncology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Sanitaria 12 de Octubre (imas12), and Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain.,Centro de Investigación Biomédica en Red en Oncología (CIBERONC), Madrid, Spain.,Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain
| | - Luis Alvarez-Vallina
- Immunotherapy and Cell Engineering Laboratory, Department of Engineering, Aarhus University, Aarhus, Denmark. .,Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| |
Collapse
|
15
|
Compte M, Harwood SL, Martínez-Torrecuadrada J, Perez-Chacon G, González-García P, Tapia-Galisteo A, Van Bergen En Henegouwen PMP, Sánchez A, Fabregat I, Sanz L, Zapata JM, Alvarez-Vallina L. Case Report: An EGFR-Targeted 4-1BB-agonistic Trimerbody Does Not Induce Hepatotoxicity in Transgenic Mice With Liver Expression of Human EGFR. Front Immunol 2021; 11:614363. [PMID: 33488625 PMCID: PMC7817978 DOI: 10.3389/fimmu.2020.614363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Agonistic monoclonal antibodies (mAbs) targeting the co-stimulatory receptor 4-1BB are among the most effective immunotherapeutic agents across pre-clinical cancer models. However, clinical development of full-length 4-1BB agonistic mAbs, has been hampered by dose-limiting liver toxicity. We have previously developed an EGFR-targeted 4-1BB-agonistic trimerbody (1D8N/CEGa1) that induces potent anti-tumor immunity without systemic toxicity, in immunocompetent mice bearing murine colorectal carcinoma cells expressing human EGFR. Here, we study the impact of human EGFR expression on mouse liver in the toxicity profile of 1D8N/CEGa1. Systemic administration of IgG-based anti-4-1BB agonist resulted in nonspecific immune stimulation and hepatotoxicity in a liver-specific human EGFR-transgenic immunocompetent mouse, whereas in 1D8N/CEGa1-treated mice no such immune-related adverse effects were observed. Collectively, these data support the role of FcγR interactions in the major off-tumor toxicities associated with IgG-based 4-1BB agonists and further validate the safety profile of EGFR-targeted Fc-less 4-1BB-agonistic trimerbodies in systemic cancer immunotherapy protocols.
Collapse
Affiliation(s)
- Marta Compte
- Department of Antibody Engineering, Leadartis SL, Madrid, Spain
| | | | | | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), CSIC-UAM, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | | | - Antonio Tapia-Galisteo
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | | | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Isabel Fabregat
- Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBEREHD and University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Madrid, Spain
| | - Juan M Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols (IIBm), CSIC-UAM, Madrid, Spain.,Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Hospital 12 de Octubre Biomedical Research Institute (imas12), Madrid, Spain
| |
Collapse
|
16
|
Herranz-Itúrbide M, López-Luque J, Gonzalez-Sanchez E, Caballero-Díaz D, Crosas-Molist E, Martín-Mur B, Gut M, Esteve-Codina A, Jaquet V, Jiang JX, Török NJ, Fabregat I. NADPH oxidase 4 (Nox4) deletion accelerates liver regeneration in mice. Redox Biol 2020; 40:101841. [PMID: 33493901 PMCID: PMC7823210 DOI: 10.1016/j.redox.2020.101841] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Liver is a unique organ in displaying a reparative and regenerative response after acute/chronic damage or partial hepatectomy, when all the cell types must proliferate to re-establish the liver mass. The NADPH oxidase NOX4 mediates Transforming Growth Factor-beta (TGF-β) actions, including apoptosis in hepatocytes and activation of stellate cells to myofibroblasts. Aim of this work was to analyze the impact of NOX4 in liver regeneration by using two mouse models where Nox4 was deleted: 1) general deletion of Nox4 (NOX4-/-) and 2) hepatocyte-specific deletion of Nox4 (NOX4hepKO). Liver regeneration was analyzed after 2/3 partial hepatectomy (PH). Results indicated an earlier recovery of the liver-to-body weight ratio in both NOX4-/- and NOX4hepKO mice and an increased survival, when compared to corresponding WT mice. The regenerative hepatocellular fat accumulation and the parenchyma organization recovered faster in NOX4 deleted livers. Hepatocyte proliferation, analyzed by Ki67 and phospho-Histone3 immunohistochemistry, was accelerated and increased in NOX4 deleted mice, coincident with an earlier and increased Myc expression. Primary hepatocytes isolated from NOX4 deleted mice showed higher proliferative capacity and increased expression of Myc and different cyclins in response to serum. Transcriptomic analysis through RNA-seq revealed significant changes after PH in NOX4-/- mice and support a relevant role for Myc in a node of regulation of proliferation-related genes. Interestingly, RNA-seq also revealed changes in the expression of genes related to activation of the TGF-β pathway. In fact, levels of active TGF-β1, phosphorylation of Smads and levels of its target p21 were lower at 24 h in NOX4 deleted mice. Nox4 did not appear to be essential for the termination of liver regeneration in vivo, neither for the in vitro hepatocyte response to TGF-β1 in terms of growth inhibition, which suggest its potential as therapeutic target to improve liver regeneration, without adverse effects.
Collapse
Affiliation(s)
- M Herranz-Itúrbide
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Spain
| | - J López-Luque
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Spain
| | - E Gonzalez-Sanchez
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Spain; Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Spain
| | - D Caballero-Díaz
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Spain
| | - E Crosas-Molist
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - B Martín-Mur
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - M Gut
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - A Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - V Jaquet
- Department of Pathology and Immunology, Medical School, University of Geneva, Geneva, Switzerland; RE.A.D.S Unit, Medical School, University of Geneva, Geneva, Switzerland
| | - J X Jiang
- Gastroenterology and Hepatology, UC Davis, Sacramento, CA, USA
| | - N J Török
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - I Fabregat
- TGF-β and Cancer Group. Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Spain; Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Spain.
| |
Collapse
|
17
|
Gallo JE, Ochoa JE, Warren HR, Misas E, Correa MM, Gallo-Villegas JA, Bedoya G, Aristizábal D, McEwen JG, Caulfield MJ, Parati G, Clay OK. Hypertension and the roles of the 9p21.3 risk locus: Classic findings and new association data. Int J Cardiol Hypertens 2020; 7:100050. [PMID: 33330845 PMCID: PMC7491459 DOI: 10.1016/j.ijchy.2020.100050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/10/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The band 9p21.3 contains an established genomic risk zone for cardiovascular disease (CVD). Since the initial 2007 Wellcome Trust Case Control Consortium study (WTCCC), the increased CVD risk associated with 9p21.3 has been confirmed by multiple studies in different continents. However, many years later there was still no confirmed report of a corresponding association of 9p21.3 with hypertension, a major CV risk factor, nor with blood pressure (BP). THEORY In this contribution, we review the bipartite haplotype structure of the 9p21.3 risk locus: one block is devoid of protein-coding genes but contains the lead CVD risk SNPs, while the other block contains the first exon and regulatory DNA of the gene for the cell cycle inhibitor p15. We consider how findings from molecular biology offer possibilities of an involvement of p15 in hypertension etiology, with expression of the p15 gene modulated by genetic variation from within the 9p21.3 risk locus. RESULTS We present original results from a Colombian study revealing moderate but persistent association signals for BP and hypertension within the classic 9p21.3 CVD risk locus. These SNPs are mostly confined to a 'hypertension island' that spans less than 60 kb and coincides with the p15 haplotype block. We find confirmation in data originating from much larger, recent European BP studies, albeit with opposite effect directions. CONCLUSION Although more work will be needed to elucidate possible mechanisms, previous findings and new data prompt reconsidering the question of how variation in 9p21.3 might influence hypertension components of cardiovascular risk.
Collapse
Key Words
- 1 KG, 1000 Genomes Project
- BP, blood pressure
- Blood pressure levels
- CVD, cardiovascular disease
- DBP, diastolic blood pressure
- EGFR, epidermal growth factor receptor
- GWAS, genome wide association studi(es)
- Genotype-phenotype associations
- Haplotypes
- MAF, minor allele frequency
- RAS, renin angiotensin system
- SBP, systolic blood pressure
- SNP, single nucleotide polymorphism
- TGF-β, transforming growth factor beta
- VSMC, vascular smooth muscle cell(s)
- bp, base pair
- kb, kilobase pair
Collapse
Affiliation(s)
- Juan E. Gallo
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Doctoral Program in Biomedical Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Juan E. Ochoa
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Helen R. Warren
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Elizabeth Misas
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | | | | | - Gabriel Bedoya
- Institute of Biology, Universidad de Antioquia, Medellín, Colombia
| | - Dagnóvar Aristizábal
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- SICOR, Medellín, Colombia
| | - Juan G. McEwen
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Mark J. Caulfield
- Clinical Pharmacology Department, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Queen Mary University of London, London, UK
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Oliver K. Clay
- Cellular & Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- Translational Microbiology and Emerging Diseases (MICROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
18
|
Bhushan B, Michalopoulos GK. Role of epidermal growth factor receptor in liver injury and lipid metabolism: Emerging new roles for an old receptor. Chem Biol Interact 2020; 324:109090. [PMID: 32283070 DOI: 10.1016/j.cbi.2020.109090] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/02/2020] [Indexed: 12/15/2022]
Abstract
Epidermal growth factor receptor (EGFR) is conventionally known to play a crucial role in hepatocyte proliferation, liver regeneration and is also associated with hepatocellular carcinogenesis. In addition to these proliferative roles, EGFR has also implicated in apoptotic cell death signaling in various hepatic cells, mitochondrial dysfunction and acute liver necrosis in a clinically relevant murine model of acetaminophen overdose, warranting further comprehensive exploration of this paradoxical role of EGFR in hepatotoxicity. Apart from ligand dependent activation, EGFR can also be activated in ligand-independent manner, which is mainly associated to liver injury. Recent evidence has also emerged demonstrating important role of EGFR in lipid and fatty acid metabolism in quiescent and regenerating liver. Based on these findings, EGFR has also been shown to play an important role in steatosis in clinically relevant murine NAFLD models via regulating master transcription factors governing fatty acid synthesis and lipolysis. Moreover, several lines of evidences indicate that EGFR is also involved in hepatocellular injury, oxidative stress, inflammation, direct stellate cell activation and fibrosis in chronic liver injury models, including repeated CCl4 exposure, high-fat diet and fast-food diet models. In addition to briefly summarizing role of EGFR in liver regeneration, this review comprehensively discusses all these non-conventional emerging roles of EGFR. Considering evidences of multi-facet role of EGFR at various levels in these pathophysiological process, EGFR can be a promising therapeutic target for various liver diseases, including acute liver failure and NAFLD, requiring further exploration. These roles of EGFR are relevant for alcoholic liver diseases (ALD) as well, thus providing a valid rationale for future investigations exploring a role of EGFR in ALD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Cheng B, Xie H, Jia J, Wu M, Guo J, Zhang Y, Liu Y, Zhou J, He N. Deceleration of Liver Regeneration by Knockdown of Heme Oxygenase-1 is Associated With Impairment of Liver Injury Recovery After Reduced-Size Liver Transplantation in Rats. Transplant Proc 2020; 52:1001-1006. [PMID: 32146020 DOI: 10.1016/j.transproceed.2019.11.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/04/2019] [Accepted: 11/22/2019] [Indexed: 01/10/2023]
Abstract
AIM It has been reported that heme oxygenase-1 (HO-1) is upregulated during hepatocyte proliferation. Herein, we used a half-size liver transplantation (HSLT) model to study the impact of HO-1 on liver grafts proliferation. To the best of our knowledge, this is the first time that HO-1 has been characterized as a regulator of liver graft regeneration. MATERIALS AND METHODS Saline and tin protoporphyrin (SnPP, a HO-1 competitive inhibitor) were separately administered in vehicle and SnPP group before rats HSLT. Plasma samples were collected at 0, 1, 3, and 5 days after HSLT for liver function analysis. Liver tissues were obtained at 0, 1, 3, and 5 days after HSLT for analyses of histologic, apoptosis, and proliferation index by immunohistochemical, enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction, and Western blotting. RESULTS HO-1 level was upregulated by the treatment of HSLT along with accelerated liver proliferation, which was reversed by SnPP. The reduced regeneration by SnPP lead to higher Suzuki's scores, alanine aminotransferase, and aspartate aminotransferase levels. The interleukin-6 levels, p-Stat3/t-Stat3, c-myc, and c-jun were decreased in the SnPP group than the vehicle group. CONCLUSIONS Our findings suggest that inhibition of HO-1 mitigates liver regeneration in part by downregulation of an interleukin-6/Stat3 axis. Targeted specific pharmacologic induction of HO-1 may be applicable in clinical practice.
Collapse
Affiliation(s)
- Bing Cheng
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Hua Xie
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Junjun Jia
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Man Wu
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Junling Guo
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Yuanyuan Zhang
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Yashuang Liu
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Jieping Zhou
- Department of Intensive Care Units, Tangshan People's Hospital, Tangshan, China
| | - Ning He
- Department of Urology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Chromatin dynamics in regeneration epithelia: Lessons from Drosophila imaginal discs. Semin Cell Dev Biol 2020; 97:55-62. [DOI: 10.1016/j.semcdb.2019.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
|
21
|
Caballero-Díaz D, Bertran E, Peñuelas-Haro I, Moreno-Càceres J, Malfettone A, López-Luque J, Addante A, Herrera B, Sánchez A, Alay A, Solé X, Serrano T, Ramos E, Fabregat I. Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer. J Hepatol 2020; 72:125-134. [PMID: 31562907 DOI: 10.1016/j.jhep.2019.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Upon ligand binding, tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR), are recruited into clathrin-coated pits for internalization by endocytosis, which is relevant for signalling and/or receptor degradation. In liver cells, transforming growth factor-β (TGF-β) induces both pro- and anti-apoptotic signals; the latter are mediated by the EGFR pathway. Since EGFR mainly traffics via clathrin-coated vesicles, we aimed to analyse the potential role of clathrin in TGF-β-induced signalling in liver cells and its relevance in liver cancer. METHODS Real-Time PCR and immunohistochemistry were used to analyse clathrin heavy-chain expression in human (CLTC) and mice (Cltc) liver tumours. Transient knockdown (siRNA) or overexpression of CLTC were used to analyse its role on TGF-β and EGFR signalling in vitro. Bioinformatic analysis was used to determine the effect of CLTC and TGFB1 expression on prognosis and overall survival in patients with hepatocellular carcinoma (HCC). RESULTS Clathrin expression increased during liver tumorigenesis in humans and mice. CLTC knockdown cells responded to TGF-β phosphorylating SMADs (canonical signalling) but showed impairment in the anti-apoptotic signals (EGFR transactivation). Experiments of loss or gain of function in HCC cells reveal an essential role for clathrin in inhibiting TGF-β-induced apoptosis and upregulation of its pro-apoptotic target NOX4. Autocrine TGF-β signalling in invasive HCC cells upregulates CLTC expression, switching its role to pro-tumorigenic. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CONCLUSIONS This work describes a novel role for clathrin in liver tumorigenesis, favouring non-canonical pro-tumorigenic TGF-β pathways. CLTC expression in human HCC samples could help select patients that would benefit from TGF-β-targeted therapy. LAY SUMMARY Clathrin heavy-chain expression increases during liver tumorigenesis in humans (CLTC) and mice (Cltc), altering the cellular response to TGF-β in favour of anti-apoptotic/pro-tumorigenic signals. A positive correlation between TGFB1 and CLTC was found in HCC cells and patients. Patients expressing high levels of TGFB1 and CLTC had a worse prognosis and lower overall survival. CLTC expression in HCC human samples could help select patients that would benefit from therapies targeting TGF-β.
Collapse
Affiliation(s)
- Daniel Caballero-Díaz
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain.
| | - Esther Bertran
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Irene Peñuelas-Haro
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Joaquim Moreno-Càceres
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Andrea Malfettone
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Judit López-Luque
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain
| | - Annalisa Addante
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Blanca Herrera
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Aránzazu Sánchez
- Dept. Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Health Research Institute of the Hospital Clínico San Carlos, Madrid, Spain
| | - Ania Alay
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Xavier Solé
- Oncology Data Analytics Program, Bellvitge Biomedical Research Institute (IDIBELL), CIBER Epidemiología y Salud Pública (CIBERESP), L'Hospitalet de Llobregat, Barcelona 08908, Spain
| | - Teresa Serrano
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Emilio Ramos
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain
| | - Isabel Fabregat
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain; TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de L'Hospitalet, 199, 08908 Barcelona, Spain; Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
22
|
Bhushan B, Banerjee S, Paranjpe S, Koral K, Mars WM, Stoops JW, Orr A, Bowen WC, Locker J, Michalopoulos GK. Pharmacologic Inhibition of Epidermal Growth Factor Receptor Suppresses Nonalcoholic Fatty Liver Disease in a Murine Fast-Food Diet Model. Hepatology 2019; 70:1546-1563. [PMID: 31063640 DOI: 10.1002/hep.30696] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a critical regulator of hepatocyte proliferation and liver regeneration. Our recent work indicated that EGFR can also regulate lipid metabolism during liver regeneration after partial hepatectomy. Based on these findings, we investigated the role of EGFR in a mouse model of nonalcoholic fatty liver disease (NAFLD) using a pharmacological inhibition strategy. C57BL6/J mice were fed a chow diet or a fast-food diet (FFD) with or without EGFR inhibitor (canertinib) for 2 months. EGFR inhibition completely prevented development of steatosis and liver injury in this model. In order to study if EGFR inhibition can reverse NAFLD progression, mice were fed the FFD for 5 months, with or without canertinib treatment for the last 5 weeks of the study. EGFR inhibition remarkably decreased steatosis, liver injury, and fibrosis and improved glucose tolerance. Microarray analysis revealed that ~40% of genes altered by the FFD were differentially expressed after EGFR inhibition and, thus, are potentially regulated by EGFR. Several genes and enzymes related to lipid metabolism (particularly fatty acid synthesis and lipolysis), which were disrupted by the FFD, were found to be modulated by EGFR. Several crucial transcription factors that play a central role in regulating these lipid metabolism genes during NAFLD, including peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding transcription factor 1 (SREBF1), carbohydrate-responsive element-binding protein, and hepatocyte nuclear factor 4 alpha, were also found to be modulated by EGFR. In fact, chromatin immunoprecipitation analysis revealed that PPARγ binding to several crucial lipid metabolism genes (fatty acid synthase, stearoyl-coenzyme A desaturase 1, and perilipin 2) was drastically reduced by EGFR inhibition. Further upstream, EGFR inhibition suppressed AKT signaling, which is known to control these transcription factors, including PPARγ and SREBF1, in NAFLD models. Lastly, the effect of EGFR in FFD-induced fatty-liver phenotype was not shared by receptor tyrosine kinase MET, investigated using MET knockout mice. Conclusion: Our study revealed a role of EGFR in NAFLD and the potential of EGFR inhibition as a treatment strategy for NAFLD.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Swati Banerjee
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kelly Koral
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - John W Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Joseph Locker
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | | |
Collapse
|
23
|
Lgr5 + pericentral hepatocytes are self-maintained in normal liver regeneration and susceptible to hepatocarcinogenesis. Proc Natl Acad Sci U S A 2019; 116:19530-19540. [PMID: 31488716 DOI: 10.1073/pnas.1908099116] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests that hepatocytes are primarily maintained by self-renewal during normal liver homeostasis, as well as in response to a wide variety of hepatic injuries. However, how hepatocytes in distinct anatomic locations within the liver lobule are replenished under homeostasis and injury-induced regeneration remains elusive. Using a newly developed bacterial artificial chromosome (BAC)-transgenic mouse model, we demonstrate that Lgr5 expression in the liver is restricted to a unique subset of hepatocytes most adjacent to the central veins. Genetic lineage tracing revealed that pericentral Lgr5+ hepatocytes have a long lifespan and mainly contribute to their own lineage maintenance during postnatal liver development and homeostasis. Remarkably, these hepatocytes also fuel the regeneration of their own lineage during the massive and rapid regeneration process following two-thirds partial hepatectomy. Moreover, Lgr5+ hepatocytes are found to be the main cellular origin of diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) and are highly susceptible to neoplastic transformation triggered by activation of Erbb pathway. Our findings establish an unexpected self-maintaining mode for a defined subset of hepatocytes during liver homeostasis and regeneration, and identify Lgr5+ pericentral hepatocytes as major cells of origin in HCC development.
Collapse
|
24
|
López-Luque J, Bertran E, Crosas-Molist E, Maiques O, Malfettone A, Caja L, Serrano T, Ramos E, Sanz-Moreno V, Fabregat I. Downregulation of Epidermal Growth Factor Receptor in hepatocellular carcinoma facilitates Transforming Growth Factor-β-induced epithelial to amoeboid transition. Cancer Lett 2019; 464:15-24. [PMID: 31465839 PMCID: PMC6853171 DOI: 10.1016/j.canlet.2019.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
The Epidermal Growth Factor Receptor (EGFR) and the Transforming Growth Factor-beta (TGF-β) are key regulators of hepatocarcinogenesis. Targeting EGFR was proposed as a promising therapy; however, poor success was obtained in human hepatocellular carcinoma (HCC) clinical trials. Here, we describe how EGFR is frequently downregulated in HCC patients while TGF-β is upregulated. Using 2D/3D cellular models, we show that after EGFR loss, TGF-β is more efficient in its pro-migratory and invasive effects, inducing epithelial to amoeboid transition. EGFR knock-down promotes loss of cell-cell and cell-to-matrix adhesion, favouring TGF-β-induced actomyosin contractility and acquisition of an amoeboid migratory phenotype. Moreover, TGF-β upregulates RHOC and CDC42 after EGFR silencing, promoting Myosin II in amoeboid cells. Importantly, low EGFR combined with high TGFB1 or RHOC/CDC42 levels confer poor patient prognosis. In conclusion, this work reveals a new tumour suppressor function for EGFR counteracting TGF-β-mediated epithelial to amoeboid transitions in HCC, supporting a rational for targeting the TGF-β pathway in patients with low EGFR expression. Our work also highlights the relevance of epithelial to amoeboid transition in human tumours and the need to better target this process in the clinic. EGFR expression is low and heterogeneous in a great percentage of HCC patients. EGFR loss in HCC cells facilitates TGF-β pro-migratory and invasive functions. EGFR silenced HCC cells respond to TGF-β inducing epithelial-amoeboid transition. TGF-β upregulates RHOC and CDC42 and actomyosin contractility in EGFR silenced cells. Low EGFR combined with high TGFB1 or RHOC/CDC42 levels confer poor HCC prognosis.
Collapse
Affiliation(s)
- Judit López-Luque
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain.
| | - Eva Crosas-Molist
- Barts Cancer Institute- a Cancer Research UK Centre of Excellence Queen Mary University of London, John Vane Science Building Charterhouse Square, London, EC1M 6BQ, UK.
| | - Oscar Maiques
- Barts Cancer Institute- a Cancer Research UK Centre of Excellence Queen Mary University of London, John Vane Science Building Charterhouse Square, London, EC1M 6BQ, UK.
| | - Andrea Malfettone
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Laia Caja
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Teresa Serrano
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain; Pathological Anatomy Service, University Hospital of Bellvitge, Barcelona, Spain.
| | - Emilio Ramos
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge, Barcelona, Spain.
| | - Victoria Sanz-Moreno
- Barts Cancer Institute- a Cancer Research UK Centre of Excellence Queen Mary University of London, John Vane Science Building Charterhouse Square, London, EC1M 6BQ, UK.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Spain.
| |
Collapse
|
25
|
Combined kidney‑liver perfusion enhances the proliferation effects of hypothermic perfusion on liver grafts via upregulation of IL‑6/Stat3 signaling. Mol Med Rep 2019; 20:1663-1671. [PMID: 31257470 PMCID: PMC6625442 DOI: 10.3892/mmr.2019.10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 12/19/2018] [Indexed: 12/02/2022] Open
Abstract
A limited number of studies have revealed that adding kidneys to liver perfusion may maintain an improved physiological balance; however, the underlying mechanism remains to be elucidated. The preset study confirmed the protective role of this new model and investigated the underlying mechanisms. Methods: A total of 12 rats were randomly assigned into two groups (n=6 for each group): The kidney-liver perfusion (KL) group and liver perfusion (LP) group. Perfusate samples were collected during the perfusion process for the analysis of pH, K+ and liver function. Liver tissues were obtained for the evaluation of adenosine triphosphate (ATP), terminal deoxynucleotidyl-transferase-mediated dUTP nick end labelling and immunohistochemistry of Ki67. Cell cycle inhibitors, apoptosis-associated genes and signal transducer and activator of transcription 3 (Stat3) were analyzed using quantitative polymerase chain reaction and western blot analysis. Results: Overall pH and K+ values of the KL group were significantly different from the LP group and more stable; aspartate aminotransferase, alanine transaminase and lactate dehydrogenase levels increased progressively over time in the LP group and were significantly different at different time points compared with pre-perfusion levels and the KL group, which suggested the KL group was superior to the LP group. In addition, KL reduced portal vein resistance and was associated with lower ATP consumption compared with the LP group. Furthermore, liver proliferation was upregulated with the upregulation of the interleukin 6 (IL-6)/Stat3 signaling pathway in KL compared with LP. The present study revealed for the first time that KL and hypothermic machine perfusion demonstrated a more proactive repair capability by maintaining liver regeneration via the upregulation of the IL-6/Stat3 signaling pathway.
Collapse
|
26
|
Santamaría E, Rodríguez-Ortigosa CM, Uriarte I, Latasa MU, Urtasun R, Alvarez-Sola G, Bárcena-Varela M, Colyn L, Arcelus S, Jiménez M, Deutschmann K, Peleteiro-Vigil A, Gómez-Cambronero J, Milkiewicz M, Milkiewicz P, Sangro B, Keitel V, Monte MJ, Marin JJG, Fernández-Barrena MG, Ávila MA, Berasain C. The Epidermal Growth Factor Receptor Ligand Amphiregulin Protects From Cholestatic Liver Injury and Regulates Bile Acids Synthesis. Hepatology 2019; 69:1632-1647. [PMID: 30411380 DOI: 10.1002/hep.30348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Intrahepatic accumulation of bile acids (BAs) causes hepatocellular injury. Upon liver damage, a potent protective response is mounted to restore the organ's function. Epidermal growth factor receptor (EGFR) signaling is essential for regeneration after most types of liver damage, including cholestatic injury. However, EGFR can be activated by a family of growth factors induced during liver injury and regeneration. We evaluated the role of the EGFR ligand, amphiregulin (AREG), during cholestatic liver injury and regulation of AREG expression by BAs. First, we demonstrated increased AREG levels in livers from patients with primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). In two murine models of cholestatic liver injury, bile duct ligation (BDL) and alpha-naphthyl-isothiocyanate (ANIT) gavage, hepatic AREG expression was markedly up-regulated. Importantly, Areg-/- mice showed aggravated liver injury after BDL and ANIT administration compared to Areg+/+ mice. Recombinant AREG protected from ANIT and BDL-induced liver injury and reduced BA-triggered apoptosis in liver cells. Oral BA administration induced ileal and hepatic Areg expression, and, interestingly, cholestyramine feeding reduced postprandial Areg up-regulation in both tissues. Most interestingly, Areg-/- mice displayed high hepatic cholesterol 7 α-hydroxylase (CYP7A1) expression, reduced serum cholesterol, and high BA levels. Postprandial repression of Cyp7a1 was impaired in Areg-/- mice, and recombinant AREG down-regulated Cyp7a1 mRNA in hepatocytes. On the other hand, BAs promoted AREG gene expression and protein shedding in hepatocytes. This effect was mediated through the farnesoid X receptor (FXR), as demonstrated in Fxr-/- mice, and involved EGFR transactivation. Finally, we show that hepatic EGFR expression is indirectly induced by BA-FXR through activation of suppressor of cytokine signaling-3 (SOC3). Conclusion: AREG-EGFR signaling protects from cholestatic injury and participates in the physiological regulation of BA synthesis.
Collapse
Affiliation(s)
- Eva Santamaría
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos M Rodríguez-Ortigosa
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Iker Uriarte
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Maria U Latasa
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain
| | - Raquel Urtasun
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain
| | | | | | - Leticia Colyn
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain
| | - Sara Arcelus
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain
| | - Maddalen Jiménez
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain
| | - Kathleen Deutschmann
- Gastroenterology, Hepatology and Infectious Diseases Clinic, University Hospital Düsseldorf, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany
| | - Ana Peleteiro-Vigil
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Julian Gómez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, Dayton, OH
| | | | - Piotr Milkiewicz
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland.,Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland
| | - Bruno Sangro
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain.,Hepatology Unit, Navarra University Clinic, Pamplona, Spain
| | - Verena Keitel
- Gastroenterology, Hepatology and Infectious Diseases Clinic, University Hospital Düsseldorf, Medical Faculty Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria J Monte
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Maite G Fernández-Barrena
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Matias A Ávila
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| | - Carmen Berasain
- Hepatology Program, University of Navarra, Cima, Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigaciones Sanitarias de Navarra-IdiSNA, Pamplona, Spain
| |
Collapse
|
27
|
Bhushan B, Stoops JW, Mars WM, Orr A, Bowen WC, Paranjpe S, Michalopoulos GK. TCPOBOP-Induced Hepatomegaly and Hepatocyte Proliferation are Attenuated by Combined Disruption of MET and EGFR Signaling. Hepatology 2019; 69:1702-1718. [PMID: 29888801 PMCID: PMC6289897 DOI: 10.1002/hep.30109] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and epidermal growth factor receptor (EGFR), are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved using MET knockout (KO) mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFR inhibitor (EGFRi)], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP-induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in hepatocyte nuclear factor 4 alpha expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed the vast majority (~40%) of TCPOBOP-dependent genes primarily related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John W Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
28
|
Benkheil M, Paeshuyse J, Neyts J, Van Haele M, Roskams T, Liekens S. HCV-induced EGFR-ERK signaling promotes a pro-inflammatory and pro-angiogenic signature contributing to liver cancer pathogenesis. Biochem Pharmacol 2018; 155:305-315. [PMID: 30012461 DOI: 10.1016/j.bcp.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
HCV is a major risk factor for hepatocellular carcinoma (HCC). HCC development in chronically infected HCV patients has until now been attributed to persistent inflammation and interference of viral proteins with host cell signaling. Since activation of the epidermal growth factor receptor (EGFR) presents a crucial step in HCV entry, we aimed at investigating whether EGFR signaling may contribute to the pathogenesis of HCV-related HCC. By applying microarray analysis, we generated a gene expression signature for secreted proteins in HCV-infected hepatoma cells. This gene signature was enriched for inflammatory and angiogenic processes; both crucially involved in HCC development. RT-qPCR analysis, conducted on the entire list of upregulated genes, confirmed induction of 11 genes (AREG, IL8, CCL20, CSF1, GDF15, IGFBP1, VNN3, THBS1 and PAI-1) in a virus titer- and replication-dependent manner. EGFR activation in hepatoma cells largely mimicked the gene signature seen in the infectious HCV model. Further, the EGFR-ERK pathway, but not Akt signaling, was responsible for this gene expression profile. Finally, microarray analysis conducted on clinical data from the GEO database, revealed that our validated gene expression profile is significantly represented in livers of patients with HCV-related liver pathogenesis (cirrhosis and HCC) compared to healthy livers. Taken together, our data indicate that persistent activation of EGFR-ERK signaling in chronically infected HCV patients may induce a specific pro-inflammatory and pro-angiogenic signature that presents a new mechanism by which HCV can promote liver cancer pathogenesis. A better understanding of the key factors in HCV-related oncogenesis, may efficiently direct HCC drug development.
Collapse
Affiliation(s)
- Mohammed Benkheil
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium.
| | - Jan Paeshuyse
- Division Animal and Human Health Engineering, Department of Biosystems (BIOSYST), University of Leuven (KU Leuven), Belgium
| | - Johan Neyts
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| | - Matthias Van Haele
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Department of Imaging & Pathology, University of Leuven (KU Leuven), Belgium
| | - Sandra Liekens
- Laboratory of Virology and Experimental Chemotherapy, Rega Institute for Medical Research, University of Leuven (KU Leuven), Belgium
| |
Collapse
|
29
|
The role of the EGFR signaling pathway in stem cell differentiation during planarian regeneration and homeostasis. Semin Cell Dev Biol 2018; 87:45-57. [PMID: 29775660 DOI: 10.1016/j.semcdb.2018.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/25/2022]
Abstract
Cell signaling is essential for cells to adequately respond to their environment. One of the most evolutionarily conserved signaling pathways is that of the epidermal growth factor receptor (EGFR). Transmembrane receptors with intracellular tyrosine kinase activity are activated by the binding of their corresponding ligands. This in turn activates a wide variety of intracellular cascades and induces the up- or downregulation of target genes, leading to a specific cellular response. Freshwater planarians are an excellent model in which to study the role of cell signaling in the context of stem-cell based regeneration. Owing to the presence of a population of pluripotent stem cells called neoblasts, these animals can regenerate the entire organism from a tiny piece of the body. Here, we review the current state of knowledge of the planarian EGFR pathway. We describe the main components of the pathway and their functions in other animals, and focus in particular on receptors and ligands identified in the planarian Schmidtea mediterranea. Moreover, we summarize current data on the function of some of these components during planarian regeneration and homeostasis. We hypothesize that the EGFR pathway may act as a key regulator of the terminal differentiation of distinct populations of lineage-committed progenitors.
Collapse
|
30
|
Partial Inhibition of HO-1 Attenuates HMP-Induced Hepatic Regeneration against Liver Injury in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9108483. [PMID: 29849924 PMCID: PMC5925174 DOI: 10.1155/2018/9108483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
We found better liver graft regeneration with hypothermic machine perfusion (HMP) compared with static cold storage (SCS) for the first time in our pilot study, but the underlying mechanisms are unknown. Upregulated heme oxygenase- (HO-) 1 expression has been reported to play a pivotal role in promoting hepatocyte proliferation. Here, we evaluated the novel role of HO-1 in liver graft protection by HMP. Rats with a heterozygous knockout of HO-1 (HO-1+/-) were generated and subjected to 3 h of SCS or HMP pre-half-size liver transplantation (HSLT) in vivo or 6 h of SCS or HMP in vitro; control rats were subjected to the same conditions (HO-1+/+). We found that HSLT induced significant elevation of the HO-1 protein level in the regenerated liver and that HO-1 haplodeficiency resulted in decreased proliferation post-HSLT. Compared with SCS, HMP induced significant elevation of the HO-1 protein level along with better liver recovery, both of which were reduced by HO-1 haplodeficiency. HO-1 haplodeficiency-induced decreased proliferation was responsible for the attenuated regenerative ability of HMP. Mechanistically, HO-1 haploinsufficiency resulted in suppression of hepatocyte growth factor (HGF)/Akt activity. Our results suggest that inhibition of HO-1 mitigates HMP-induced liver recovery effects related to proliferation, in part, by downregulating the HGF-Akt axis.
Collapse
|
31
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function, and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2018:1-87. [DOI: 10.1016/b978-0-7020-6697-9.00001-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Herrera B, Addante A, Sánchez A. BMP Signalling at the Crossroad of Liver Fibrosis and Regeneration. Int J Mol Sci 2017; 19:ijms19010039. [PMID: 29295498 PMCID: PMC5795989 DOI: 10.3390/ijms19010039] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022] Open
Abstract
Bone Morphogenetic Proteins (BMPs) belong to the Transforming Growth Factor-β (TGF-β) family. Initially identified due to their ability to induce bone formation, they are now known to have multiple functions in a variety of tissues, being critical not only during development for tissue morphogenesis and organogenesis but also during adult tissue homeostasis. This review focus on the liver as a target tissue for BMPs actions, devoting most efforts to summarize our knowledge on their recently recognized and/or emerging roles on regulation of the liver regenerative response to various insults, either acute or chronic and their effects on development and progression of liver fibrosis in different pathological conditions. In an attempt to provide the basis for guiding research efforts in this field both the more solid and more controversial areas of research were highlighted.
Collapse
Affiliation(s)
- Blanca Herrera
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Annalisa Addante
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid (UCM), Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
| |
Collapse
|
33
|
Rókusz A, Veres D, Szücs A, Bugyik E, Mózes M, Paku S, Nagy P, Dezső K. Ductular reaction correlates with fibrogenesis but does not contribute to liver regeneration in experimental fibrosis models. PLoS One 2017; 12:e0176518. [PMID: 28445529 PMCID: PMC5405957 DOI: 10.1371/journal.pone.0176518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Background and aims Ductular reaction is a standard component of fibrotic liver tissue but its function is largely unknown. It is supposed to interact with the matrix producing myofibroblasts and compensate the declining regenerative capacity of hepatocytes. The relationship between the extent of fibrosis—ductular reaction, proliferative activity of hepatocytes and ductular reaction were studied sequentially in experimental hepatic fibrosis models. Methods Liver fibrosis/cirrhosis was induced in wild type and TGFβ overproducing transgenic mice by carbon tetrachloride and thioacetamide administration. The effect of thioacetamide was modulated by treatment with imatinib and erlotinib. The extent of ductular reaction and fibrosis was measured by morphometry following cytokeratin 19 immunofluorescent labeling and Picro Sirius staining respectively. The proliferative activity of hepatocytes and ductular reaction was evaluated by BrdU incorporation. The temporal distribution of the parameters was followed and compared within and between different experimental groups. Results There was a strong significant correlation between the extent of fibrosis and ductular reaction in each experimental group. Although imatinib and erlotinib temporarily decreased fibrosis this effect later disappeared. We could not observe negative correlation between the proliferation of hepatocytes and ductular reaction in any of the investigated models. Conclusions The stringent connection between ductular reaction and fibrosis, which cannot be influenced by any of our treatment regimens, suggests that there is a close mutual interaction between them instead of a unidirectional causal relationship. Our results confirm a close connection between DR and fibrogenesis. However, since the two parameters changed together we could not establish a causal relationship and were unable to reveal which was the primary event. The lack of inverse correlation between the proliferation of hepatocytes and ductular reaction questions that ductular reaction can compensate for the failing regenerative activity of hepatocytes. No evidences support the persistent antifibrotic property of imatinib or erlotinib.
Collapse
Affiliation(s)
- András Rókusz
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Dániel Veres
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Armanda Szücs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Edina Bugyik
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Miklós Mózes
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.,Tumor Progression Research Group, Joint Research Organization of the Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
34
|
Paranjpe S, Bowen WC, Mars WM, Orr A, Haynes MM, DeFrances MC, Liu S, Tseng GC, Tsagianni A, Michalopoulos GK. Combined systemic elimination of MET and epidermal growth factor receptor signaling completely abolishes liver regeneration and leads to liver decompensation. Hepatology 2016; 64:1711-1724. [PMID: 27397846 PMCID: PMC5074871 DOI: 10.1002/hep.28721] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Receptor tyrosine kinases MET and epidermal growth factor receptor (EGFR) are critically involved in initiation of liver regeneration. Other cytokines and signaling molecules also participate in the early part of the process. Regeneration employs effective redundancy schemes to compensate for the missing signals. Elimination of any single extracellular signaling pathway only delays but does not abolish the process. Our present study, however, shows that combined systemic elimination of MET and EGFR signaling (MET knockout + EGFR-inhibited mice) abolishes liver regeneration, prevents restoration of liver mass, and leads to liver decompensation. MET knockout or simply EGFR-inhibited mice had distinct and signaling-specific alterations in Ser/Thr phosphorylation of mammalian target of rapamycin, AKT, extracellular signal-regulated kinases 1/2, phosphatase and tensin homolog, adenosine monophosphate-activated protein kinase α, etc. In the combined MET and EGFR signaling elimination of MET knockout + EGFR-inhibited mice, however, alterations dependent on either MET or EGFR combined to create shutdown of many programs vital to hepatocytes. These included decrease in expression of enzymes related to fatty acid metabolism, urea cycle, cell replication, and mitochondrial functions and increase in expression of glycolysis enzymes. There was, however, increased expression of genes of plasma proteins. Hepatocyte average volume decreased to 35% of control, with a proportional decrease in the dimensions of the hepatic lobules. Mice died at 15-18 days after hepatectomy with ascites, increased plasma ammonia, and very small livers. CONCLUSION MET and EGFR separately control many nonoverlapping signaling endpoints, allowing for compensation when only one of the signals is blocked, though the combined elimination of the signals is not tolerated; the results provide critical new information on interactive MET and EGFR signaling and the contribution of their combined absence to regeneration arrest and liver decompensation. (Hepatology 2016;64:1711-1724).
Collapse
Affiliation(s)
- Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - William C. Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Wendy M. Mars
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Meagan M. Haynes
- Department of Pathology, School of Medicine, University of Pittsburgh
| | | | - Silvia Liu
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
| | - George C. Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh
| | | | | |
Collapse
|
35
|
Albrecht JH. MET and epidermal growth factor signaling: The pillars of liver regeneration? Hepatology 2016; 64:1427-1429. [PMID: 27632053 DOI: 10.1002/hep.28822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/07/2022]
Affiliation(s)
- Jeffrey H Albrecht
- Minneapolis VA Health Care System and University of Minnesota, Minneapolis, MN.
| |
Collapse
|
36
|
Giraud J, Fatou M, Dellis O. [EGFR, liver regeneration and carcinogenesis: not the only culprit]. Med Sci (Paris) 2016; 32:710-3. [PMID: 27615177 DOI: 10.1051/medsci/20163208016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julia Giraud
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Mathurin Fatou
- M1 Biologie Santé, Université Paris-Saclay, 91405 Orsay, France
| | - Olivier Dellis
- Inserm UMR-S 1174, équipe signalisation calcique, bâtiment 443, rue des Adèles, 91405 Orsay, France
| |
Collapse
|
37
|
Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC. Expression and Function of the Epidermal Growth Factor Receptor in Physiology and Disease. Physiol Rev 2016; 96:1025-1069. [DOI: 10.1152/physrev.00030.2015] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is the prototypical member of a family of membrane-associated intrinsic tyrosine kinase receptors, the ErbB family. EGFR is activated by multiple ligands, including EGF, transforming growth factor (TGF)-α, HB-EGF, betacellulin, amphiregulin, epiregulin, and epigen. EGFR is expressed in multiple organs and plays important roles in proliferation, survival, and differentiation in both development and normal physiology, as well as in pathophysiological conditions. In addition, EGFR transactivation underlies some important biologic consequences in response to many G protein-coupled receptor (GPCR) agonists. Aberrant EGFR activation is a significant factor in development and progression of multiple cancers, which has led to development of mechanism-based therapies with specific receptor antibodies and tyrosine kinase inhibitors. This review highlights the current knowledge about mechanisms and roles of EGFR in physiology and disease.
Collapse
Affiliation(s)
- Jianchun Chen
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Fenghua Zeng
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Steven J. Forrester
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Satoru Eguchi
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ming-Zhi Zhang
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Raymond C. Harris
- Departments of Medicine, Cancer Biology, and Molecular Physiology and Biophysics, Vanderbilt University School of Medicine and Nashville Veterans Affairs Hospital, Nashville, Tennessee; and Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Morales EE, Aggarwal BB, Kamat AM. Natural Compounds Targeting STAT3 Mediated Inflammation. Eur Urol 2016; 69:405-6. [DOI: 10.1016/j.eururo.2015.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/21/2015] [Indexed: 11/26/2022]
|
39
|
Fabregat I, Moreno-Càceres J, Sánchez A, Dooley S, Dewidar B, Giannelli G, ten Dijke P. TGF-β signalling and liver disease. FEBS J 2016; 283:2219-32. [DOI: 10.1111/febs.13665] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/29/2015] [Accepted: 01/20/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL); L'Hospitalet; Barcelona Spain
- Department of Physiological Sciences II; University of Barcelona; Spain
| | | | - Aránzazu Sánchez
- Department of Biochemistry and Molecular Biology II; San Carlos Clinical Hospital Health Research Institute (IdISSC); Madrid Spain
| | - Steven Dooley
- Department of Medicine II; Heidelberg University; Mannheim Germany
| | - Bedair Dewidar
- Department of Medicine II; Heidelberg University; Mannheim Germany
- Department of Pharmacology and Toxicology; Tanta University; Egypt
| | - Gianluigi Giannelli
- Department of Biomedical Sciences and Human Oncology; University of Bari Medical School; Italy
| | - Peter ten Dijke
- Department of Molecular and Cell Biology; Cancer Genomics Centre Netherlands; Leiden The Netherlands
| | | |
Collapse
|
40
|
Berasain C, Avila MA. Further evidence on the janus-faced nature of the epidermal growth factor receptor: From liver regeneration to hepatocarcinogenesis. Hepatology 2016; 63:371-4. [PMID: 26403097 DOI: 10.1002/hep.28246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/20/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD and IDISNA, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain
| | - Matias A Avila
- Division of Hepatology, CIMA, University of Navarra, Pamplona, Spain.,CIBEREHD and IDISNA, University Clinic Navarra, Instituto de Salud Carlos III, Pamplona, Spain
| |
Collapse
|
41
|
Komposch K, Sibilia M. EGFR Signaling in Liver Diseases. Int J Mol Sci 2015; 17:E30. [PMID: 26729094 PMCID: PMC4730276 DOI: 10.3390/ijms17010030] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is a transmembrane receptor tyrosine kinase that is activated by several ligands leading to the activation of diverse signaling pathways controlling mainly proliferation, differentiation, and survival. The EGFR signaling axis has been shown to play a key role during liver regeneration following acute and chronic liver damage, as well as in cirrhosis and hepatocellular carcinoma (HCC) highlighting the importance of the EGFR in the development of liver diseases. Despite the frequent overexpression of EGFR in human HCC, clinical studies with EGFR inhibitors have so far shown only modest results. Interestingly, a recent study has shown that in human HCC and in mouse HCC models the EGFR is upregulated in liver macrophages where it plays a tumor-promoting function. Thus, the role of EGFR in liver diseases appears to be more complex than what anticipated. Further studies are needed to improve the molecular understanding of the cell-specific signaling pathways that control disease development and progression to be able to develop better therapies targeting major components of the EGFR signaling network in selected cell types. In this review, we compiled the current knowledge of EGFR signaling in different models of liver damage and diseases, mainly derived from the analysis of HCC cell lines and genetically engineered mouse models (GEMMs).
Collapse
Affiliation(s)
- Karin Komposch
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria.
| |
Collapse
|