1
|
Enns CA, Zhang RH, Jue S, Zhang AS. Hepcidin expression is associated with increased γ-secretase-mediated cleavage of neogenin in the liver. J Biol Chem 2024:107927. [PMID: 39454953 DOI: 10.1016/j.jbc.2024.107927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Neogenin (NEO1) is a ubiquitously expressed transmembrane protein. It interacts with hemojuvelin (HJV). Both NEO1 and HJV play pivotal roles in iron homeostasis by inducing hepcidin expression in the liver. Our previous studies demonstrated that this process depends on Neo1-Hjv interaction and showed that the Hjv-mediated hepcidin expression is correlated with the accumulation of a truncated and membrane-associated form of Neo1. In this study, we tested whether hepcidin expression is induced by increased γ-secretase-mediated cleavage of Neo1 in the liver. We found that Neo1 underwent cleavage of its ectodomain and intracellular domains by α- and γ-secretases, respectively, in hepatoma cells. Our in vitro studies suggest that γ-secretase is responsible for cleavage and release of the cytoplasmic domain of Neo1 in the Hjv-Neo1 complex. This process was enhanced by inhibition of α-secretase proteolysis and by co-expression with the Neo1-binding partner, Alk3. Further in vivo studies indicated that Neo1 induction of hepcidin expression required γ-secretase cleavage. Interestingly, neither predicted form of γ-secretase-cleaved Neo1 was able to induce hepcidin when separately expressed in hepatocyte-specific Neo1 knockout mice. These results imply that the function of Neo1 requires a de novo γ-secretase proteolysis. Additional studies revealed that in addition to the Hjv-binding domains, the function of Neo1 also required its C-terminal intracellular domain and the N-terminal immunoglobulin-like domains that are involved in Neo1 binding to Alk3. Together, our data support the idea that Neo1 induction of hepcidin is initiated as a full-length form and requires a de novo γ-secretase cleavage of Neo1's cytoplasmic domain.
Collapse
Affiliation(s)
- Caroline A Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Richard H Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - Shall Jue
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239
| | - An-Sheng Zhang
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97239.
| |
Collapse
|
2
|
Sardo U, Perrier P, Cormier K, Sotin M, Personnaz J, Medjbeur T, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, Billoré B, Jung G, Abboud E, Peyssonnaux C, Nemeth E, Ginzburg YZ, Ganz T, Kautz L. The hepatokine FGL1 regulates hepcidin and iron metabolism during anemia in mice by antagonizing BMP signaling. Blood 2024; 143:1282-1292. [PMID: 38232308 PMCID: PMC11103088 DOI: 10.1182/blood.2023022724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/19/2024] Open
Abstract
ABSTRACT As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure the adequate supply of iron to the bone marrow for red blood cell production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine fibrinogen-like 1 (FGL1) as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia, and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo. Deletion of Fgl1 in mice results in higher hepcidin levels at baseline and after bleeding. FGL1 exerts its activity by directly binding to bone morphogenetic protein 6 (BMP6), thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription.
Collapse
Affiliation(s)
- Ugo Sardo
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Prunelle Perrier
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Kevin Cormier
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Manon Sotin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Jean Personnaz
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Thanina Medjbeur
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Aurore Desquesnes
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Lisa Cannizzo
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | | | - Julie Thevenin
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Benjamin Billoré
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Grace Jung
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Elise Abboud
- Institut Cochin, INSERM, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Carole Peyssonnaux
- Institut Cochin, INSERM, Centre National de la Recherche Scientifique, Université de Paris, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Elizabeta Nemeth
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | - Tomas Ganz
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Léon Kautz
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, Université Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
3
|
Rodrigues F, Coman T, Fouquet G, Côté F, Courtois G, Trovati Maciel T, Hermine O. A deep dive into future therapies for microcytic anemias and clinical considerations. Expert Rev Hematol 2023; 16:349-364. [PMID: 37092971 DOI: 10.1080/17474086.2023.2206556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Microcytic anemias (MA) have frequent or rare etiologies. New discoveries in understanding and treatment of microcytic anemias need to be reviewed. AREAS COVERED Microcytic anemias with a focus on most frequent causes and on monogenic diseases that are relevant for understanding biocellular mechanisms of MA. All treatments excepting gene therapy, with a focus on recent advances. Pubmed search with references selected by expert opinion. EXPERT OPINION As the genetic and cellular background of dyserythropoiesis will continue to be clarified, collaboration with bioengineering of treatments acting specifically at the protein domain level will continue to provide new therapies in haematology as well as oncology and neurology.
Collapse
Affiliation(s)
- François Rodrigues
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | - Tereza Coman
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
- Département d'hématologie, Institut Gustave Roussy, Villejuif, France
| | - Guillemette Fouquet
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Hématologie clinique, Centre Hospitalier Sud Francilien, Corbeil Essonnes, France
| | - Francine Côté
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| | | | | | - Olivier Hermine
- Université de Paris, service d'hématologie adultes, Hôpital Necker - Enfants Malades, Asrsistance Publique- Hôpitaux de Paris, France
- Inserm U1163, CNRS ERL8254 Imagine Institute, Paris, France
| |
Collapse
|
4
|
Sardo U, Perrier P, Cormier K, Sotin M, Desquesnes A, Cannizzo L, Ruiz-Martinez M, Thevenin J, Billoré B, Jung G, Abboud E, Peyssonnaux C, Nemeth E, Ginzburg YZ, Ganz T, Kautz L. The hepatokine FGL1 regulates hepcidin and iron metabolism during the recovery from hemorrhage-induced anemia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535920. [PMID: 37066218 PMCID: PMC10104156 DOI: 10.1101/2023.04.06.535920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
As a functional component of erythrocyte hemoglobin, iron is essential for oxygen delivery to all tissues in the body. The liver-derived peptide hepcidin is the master regulator of iron homeostasis. During anemia, the erythroid hormone erythroferrone regulates hepcidin synthesis to ensure adequate supply of iron to the bone marrow for red blood cells production. However, mounting evidence suggested that another factor may exert a similar function. We identified the hepatokine FGL1 as a previously undescribed suppressor of hepcidin that is induced in the liver in response to hypoxia during the recovery from anemia and in thalassemic mice. We demonstrated that FGL1 is a potent suppressor of hepcidin in vitro and in vivo . Deletion of Fgl1 in mice results in a blunted repression of hepcidin after bleeding. FGL1 exerts its activity by direct binding to BMP6, thereby inhibiting the canonical BMP-SMAD signaling cascade that controls hepcidin transcription. Key points 1/ FGL1 regulates iron metabolism during the recovery from anemia. 2/ FGL1 is an antagonist of the BMP/SMAD signaling pathway.
Collapse
|
5
|
Di Modica SM, Tanzi E, Olivari V, Lidonnici MR, Pettinato M, Pagani A, Tiboni F, Furiosi V, Silvestri L, Ferrari G, Rivella S, Nai A. Transferrin receptor 2 (Tfr2) genetic deletion makes transfusion-independent a murine model of transfusion-dependent β-thalassemia. Am J Hematol 2022; 97:1324-1336. [PMID: 36071579 PMCID: PMC9540808 DOI: 10.1002/ajh.26673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 01/24/2023]
Abstract
β-thalassemia is a genetic disorder caused by mutations in the β-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with β-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.
Collapse
Affiliation(s)
- Simona Maria Di Modica
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Emanuele Tanzi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Violante Olivari
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Maria Rosa Lidonnici
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Mariateresa Pettinato
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Alessia Pagani
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Francesca Tiboni
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Valeria Furiosi
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| | - Giuliana Ferrari
- Vita Salute San Raffaele UniversityMilanItaly,San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET)Ospedale San RaffaeleMilanItaly
| | - Stefano Rivella
- Division of Hematology, Department of PediatricsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell BiologyOspedale San RaffaeleMilanItaly,Vita Salute San Raffaele UniversityMilanItaly
| |
Collapse
|
6
|
Sivanathan PC, Ooi KS, Mohammad Haniff MAS, Ahmadipour M, Dee CF, Mokhtar NM, Hamzah AA, Chang EY. Lifting the Veil: Characteristics, Clinical Significance, and Application of β-2-Microglobulin as Biomarkers and Its Detection with Biosensors. ACS Biomater Sci Eng 2022; 8:3142-3161. [PMID: 35848712 DOI: 10.1021/acsbiomaterials.2c00036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Because β-2-microglobulin (β2M) is a surface protein that is present on most nucleated cells, it plays a key role in the human immune system and the kidney glomeruli to regulate homeostasis. The primary clinical significance of β2M is in dialysis-related amyloidosis, a complication of end-stage renal disease caused by a gradual accumulation of β2M in the blood. Therefore, the function of β2M in kidney-related diseases has been extensively studied to evaluate its glomerular and tubular functions. Because increased β2M shedding due to rapid cell turnover may indicate other underlying medical conditions, the possibility to use β2M as a versatile biomarker rose in prominence across multiple disciplines for various applications. Therefore, this work has reviewed the recent use of β2M to detect various diseases and its progress as a biomarker. While the use of state-of-the-art β2M detection requires sophisticated tools, high maintenance, and labor cost, this work also has reported the use of biosensor to quantify β2M over the past decade. It is hoped that a portable and highly efficient β2M biosensor device will soon be incorporated in point-of-care testing to provide safe, rapid, and reliable test results.
Collapse
Affiliation(s)
- P C Sivanathan
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kai Shen Ooi
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia.,Department of Paediatrics, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | | | - Mohsen Ahmadipour
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Chang Fu Dee
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Kuala Lumpur, Malaysia
| | - Azrul Azlan Hamzah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Edward Y Chang
- Department of Material Science and Engineering, International College of Semiconductor Technology, National Yang Ming Chiao Tung University, 30010 Hsinchu, Taiwan
| |
Collapse
|
7
|
Fisher AL, Babitt JL. Coordination of iron homeostasis by bone morphogenetic proteins: Current understanding and unanswered questions. Dev Dyn 2022; 251:26-46. [PMID: 33993583 PMCID: PMC8594283 DOI: 10.1002/dvdy.372] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Iron homeostasis is tightly regulated to balance the iron requirement for erythropoiesis and other vital cellular functions, while preventing cellular injury from iron excess. The liver hormone hepcidin is the master regulator of systemic iron balance by controlling the degradation and function of the sole known mammalian iron exporter ferroportin. Liver hepcidin expression is coordinately regulated by several signals that indicate the need for more or less iron, including plasma and tissue iron levels, inflammation, and erythropoietic drive. Most of these signals regulate hepcidin expression by modulating the activity of the bone morphogenetic protein (BMP)-SMAD pathway, which controls hepcidin transcription. Genetic disorders of iron overload and iron deficiency have identified several hepatocyte membrane proteins that play a critical role in mediating the BMP-SMAD and hepcidin regulatory response to iron. However, the precise molecular mechanisms by which serum and tissue iron levels are sensed to regulate BMP ligand production and promote the physical and/or functional interaction of these proteins to modulate SMAD signaling and hepcidin expression remain uncertain. This critical commentary will focus on the current understanding and key unanswered questions regarding how the liver senses iron levels to regulate BMP-SMAD signaling and thereby hepcidin expression to control systemic iron homeostasis.
Collapse
Affiliation(s)
| | - Jodie L Babitt
- Corresponding author: Jodie L Babitt, Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA. Mailing address: 185 Cambridge St., CPZN-8208, Boston, MA 02114. Telephone: +1 (617) 643-3181.
| |
Collapse
|
8
|
Petrillo S, Manco M, Altruda F, Fagoonee S, Tolosano E. Liver Sinusoidal Endothelial Cells at the Crossroad of Iron Overload and Liver Fibrosis. Antioxid Redox Signal 2021; 35:474-486. [PMID: 32689808 DOI: 10.1089/ars.2020.8168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Significance: Liver fibrosis results from different etiologies and represents one of the most serious health issues worldwide. Fibrosis is the outcome of chronic insults on the liver and is associated with several factors, including abnormal iron metabolism. Recent Advances: Multiple mechanisms underlying the profibrogenic role of iron have been proposed. The pivotal role of liver sinusoidal endothelial cells (LSECs) in iron-level regulation, as well as their morphological and molecular dedifferentiation occurring in liver fibrosis, has encouraged research on LSECs as prime regulators of very early fibrotic events. Importantly, normal differentiated LSECs may act as gatekeepers of fibrogenesis by maintaining the quiescence of hepatic stellate cells, while LSECs capillarization precedes the onset of liver fibrosis. Critical Issues: In the present review, the morphological and molecular alterations occurring in LSECs after liver injury are addressed in an attempt to highlight how vascular dysfunction promotes fibrogenesis. In particular, we discuss in depth how a vicious loop can be established in which iron dysregulation and LSEC dedifferentiation synergize to exacerbate and promote the progression of liver fibrosis. Future Directions: LSECs, due to their pivotal role in early liver fibrosis and iron homeostasis, show great promises as a therapeutic target. In particular, new strategies can be devised for restoring LSECs differentiation and thus their role as regulators of iron homeostasis, hence preventing the progression of liver fibrosis or, even better, promoting its regression. Antioxid. Redox Signal. 35, 474-486.
Collapse
Affiliation(s)
- Sara Petrillo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Marta Manco
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, CNR c/o Molecular Biotechnology Center, Torino, Italy
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Ledesma-Colunga MG, Weidner H, Vujic Spasic M, Hofbauer LC, Baschant U, Rauner M. Shaping the bone through iron and iron-related proteins. Semin Hematol 2021; 58:188-200. [PMID: 34389111 DOI: 10.1053/j.seminhematol.2021.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/18/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023]
Abstract
Well-controlled iron levels are indispensable for health. Iron deficiency is the most common cause of anemia, whereas iron overload, either hereditary or secondary due to disorders of ineffective erythropoiesis, causes widespread organ failure. Bone is particularly sensitive to fluctuations in systemic iron levels as both iron deficiency and overload are associated with low bone mineral density and fragility. Recent studies have shown that not only iron itself, but also iron-regulatory proteins that are mutated in hereditary hemochromatosis can control bone mass. This review will summarize the current knowledge on the effects of iron on bone homeostasis and bone cell activities, and on the role of proteins that regulate iron homeostasis, i.e. hemochromatosis proteins and proteins of the bone morphogenetic protein pathway, on bone remodeling. As disorders of iron homeostasis are closely linked to bone fragility, deeper insights into common regulatory mechanisms may provide new opportunities to concurrently treat disorders affecting iron homeostasis and bone.
Collapse
Affiliation(s)
- Maria G Ledesma-Colunga
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Maja Vujic Spasic
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Lorenz C Hofbauer
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Ulrike Baschant
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healty Aging, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
10
|
Xu Y, Alfaro-Magallanes VM, Babitt JL. Physiological and pathophysiological mechanisms of hepcidin regulation: clinical implications for iron disorders. Br J Haematol 2021; 193:882-893. [PMID: 33316086 PMCID: PMC8164969 DOI: 10.1111/bjh.17252] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
Abstract
The discovery of hepcidin has provided a solid foundation for understanding the mechanisms of systemic iron homeostasis and the aetiologies of iron disorders. Hepcidin assures the balance of circulating and stored iron levels for multiple physiological processes including oxygen transport and erythropoiesis, while limiting the toxicity of excess iron. The liver is the major site where regulatory signals from iron, erythropoietic drive and inflammation are integrated to control hepcidin production. Pathologically, hepcidin dysregulation by genetic inactivation, ineffective erythropoiesis, or inflammation leads to diseases of iron deficiency or overload such as iron-refractory iron-deficiency anaemia, anaemia of inflammation, iron-loading anaemias and hereditary haemochromatosis. In the present review, we discuss recent insights into the molecular mechanisms governing hepcidin regulation, how these pathways are disrupted in iron disorders, and how this knowledge is being used to develop novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yang Xu
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M. Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L. Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Bloomer SA, Brown KE. Hepcidin and Iron Metabolism in Experimental Liver Injury. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1165-1179. [PMID: 33891874 DOI: 10.1016/j.ajpath.2021.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 04/06/2021] [Indexed: 11/18/2022]
Abstract
The liver plays a pivotal role in the regulation of iron metabolism through its ability to sense and respond to iron stores by release of the hormone hepcidin. Under physiologic conditions, regulation of hepcidin expression in response to iron status maintains iron homeostasis. In response to tissue injury, hepcidin expression can be modulated by other factors, such as inflammation and oxidative stress. The resulting dysregulation of hepcidin is proposed to account for alterations in iron homeostasis that are sometimes observed in patients with liver disease. This review describes the effects of experimental forms of liver injury on iron metabolism and hepcidin expression. In general, models of acute liver injury demonstrate increases in hepcidin mRNA and hypoferremia, consistent with hepcidin's role as an acute-phase reactant. Conversely, diverse models of chronic liver injury are associated with decreased hepcidin mRNA but with variable effects on iron status. Elucidating the reasons for the disparate impact of different chronic injuries on iron metabolism is an important research priority, as is a deeper understanding of the interplay among various stimuli, both positive and negative, on hepcidin regulation. Future studies should provide a clearer picture of how dysregulation of hepcidin expression and altered iron homeostasis impact the progression of liver diseases and whether they are a cause or consequence of these pathologies.
Collapse
Affiliation(s)
- Steven A Bloomer
- Division of Science and Engineering, Penn State Abington, Abington, Pennsylvania
| | - Kyle E Brown
- Iowa City Veterans Administration Medical Center, Iowa City, Iowa; Division of Gastroenterology-Hepatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa; Program in Free Radical and Radiation Biology, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, Iowa.
| |
Collapse
|
12
|
Hepatocyte neogenin, another key actor in iron homeostasis. Blood 2021; 138:423-425. [PMID: 34383040 DOI: 10.1182/blood.2021011936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
|
13
|
Pauk M, Kufner V, Rumenovic V, Dumic-Cule I, Farkas V, Milosevic M, Bordukalo-Niksic T, Vukicevic S. Iron overload in aging Bmp6‑/‑ mice induces exocrine pancreatic injury and fibrosis due to acinar cell loss. Int J Mol Med 2021; 47:60. [PMID: 33649802 PMCID: PMC7910010 DOI: 10.3892/ijmm.2021.4893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/19/2021] [Indexed: 11/27/2022] Open
Abstract
The relationship between hemochromatosis and diabetes has been well established, as excessive iron deposition has been reported to result in impaired function of the endocrine and exocrine pancreas. Therefore, the objective of the present study was to analyze the effects of iron accumulation on the pancreata and glucose homeostasis in a bone morphogenetic protein 6-knockout (Bmp6−/−) mouse model of hemochromatosis. The sera and pancreatic tissues of wild-type (WT) and Bmp6−/− mice (age, 3 and 10 months) were subjected to biochemical and histological analyses. In addition, 18F-fluorodeoxyglucose biodistribution was evaluated in the liver, muscle, heart, kidney and adipose tissue of both animal groups. The results demonstrated that 3-month-old Bmp6−/− mice exhibited iron accumulation preferentially in the exocrine pancreas, with no signs of pancreatic injury or fibrosis. No changes were observed in the glucose metabolism, as pancreatic islet diameter, insulin and glucagon secretion, blood glucose levels and glucose uptake in the liver, muscle and adipose tissue remained comparable with those in the WT mice. Aging Bmp6−/− mice presented with progressive iron deposits in the exocrine pancreas, leading to pancreatic degeneration and injury that was characterized by acinar atrophy, fibrosis and the infiltration of inflammatory cells. However, the aging mice exhibited unaltered blood glucose levels and islet structure, normal insulin secretion and moderately increased α-cell mass compared with those in the age-matched WT mice. Additionally, iron overload and pancreatic damage were not observed in the aging WT mice. These results supported a pathogenic role of iron overload in aging Bmp6−/− mice leading to iron-induced exocrine pancreatic deficiency, whereas the endocrine pancreas retained normal function.
Collapse
Affiliation(s)
- Martina Pauk
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vera Kufner
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Viktorija Rumenovic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Ivo Dumic-Cule
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Vladimir Farkas
- Molecular Biology Department, Rudjer Boskovic Institute, HR‑10000 Zagreb, Croatia
| | - Milan Milosevic
- Andrija Stampar School of Public Health, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Tatjana Bordukalo-Niksic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| | - Slobodan Vukicevic
- Laboratory for Mineralized Tissues, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, HR‑10000 Zagreb, Croatia
| |
Collapse
|
14
|
Mleczko‐Sanecka K, Silvestri L. Cell-type-specific insights into iron regulatory processes. Am J Hematol 2021; 96:110-127. [PMID: 32945012 DOI: 10.1002/ajh.26001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/20/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
Despite its essential role in many biological processes, iron is toxic when in excess due to its propensity to generate reactive oxygen species. To prevent diseases associated with iron deficiency or iron loading, iron homeostasis must be tightly controlled. Intracellular iron content is regulated by the Iron Regulatory Element-Iron Regulatory Protein (IRE-IRP) system, whereas systemic iron availability is adjusted to body iron needs chiefly by the hepcidin-ferroportin (FPN) axis. Here, we aimed to review advances in the field that shed light on cell-type-specific regulatory mechanisms that control or modify systemic and local iron balance, and how shifts in cellular iron levels may affect specialized cell functions.
Collapse
Affiliation(s)
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology IRCCS San Raffaele Scientific Institute Milan Italy
- Vita‐Salute San Raffaele University Milan Italy
| |
Collapse
|
15
|
Richard C, Verdier F. Transferrin Receptors in Erythropoiesis. Int J Mol Sci 2020; 21:ijms21249713. [PMID: 33352721 PMCID: PMC7766611 DOI: 10.3390/ijms21249713] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
Erythropoiesis is a highly dynamic process giving rise to red blood cells from hematopoietic stem cells present in the bone marrow. Red blood cells transport oxygen to tissues thanks to the hemoglobin comprised of α- and β-globin chains and of iron-containing hemes. Erythropoiesis is the most iron-consuming process to support hemoglobin production. Iron delivery is mediated via transferrin internalization by the endocytosis of transferrin receptor type 1 (TFR1), one of the most abundant membrane proteins of erythroblasts. A second transferrin receptor—TFR2—associates with the erythropoietin receptor and has been implicated in the regulation of erythropoiesis. In erythroblasts, both transferrin receptors adopt peculiarities such as an erythroid-specific regulation of TFR1 and a trafficking pathway reliant on TFR2 for iron. This review reports both trafficking and signaling functions of these receptors and reassesses the debated role of TFR2 in erythropoiesis in the light of recent findings. Potential therapeutic uses targeting the transferrin-TFR1 axis or TFR2 in hematological disorders are also discussed.
Collapse
Affiliation(s)
- Cyrielle Richard
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
| | - Frédérique Verdier
- Inserm U1016, CNRS UMR8104, Institut Cochin, Université de Paris, 75014 Paris, France;
- Laboratoire d’excellence GR-Ex, Université de Paris, 75014 Paris, France
- Correspondence:
| |
Collapse
|
16
|
Traeger L, Schnittker J, Dogan DY, Oguama D, Kuhlmann T, Muckenthaler MU, Krijt J, Urzica EI, Steinbicker AU. HFE and ALK3 act in the same signaling pathway. Free Radic Biol Med 2020; 160:501-505. [PMID: 32861780 DOI: 10.1016/j.freeradbiomed.2020.08.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
Abstract
Hepcidin deficiency leads to iron overload by increased dietary iron uptake and iron release from storage cells. The most frequent mutation in Hfe leads to reduced hepcidin expression and thereby causes iron overload. Recent findings suggested that HFE activates hepcidin expression predominantly via the BMP type I receptor ALK3. Here, we investigated whether HFE exclusively utilizes ALK3 or other signaling mechanisms also. We generated mice with double deficiency of Hfe and hepatocyte-specific Alk3 and compared the iron overload phenotypes of these double knockout mice to single hepatocyte-specific Alk3 deficient or Hfe knockout mice. Double Hfe-/-/hepatic Alk3fl/fl;Alb-Cre knockouts develop a similar iron overload phenotype compared to single hepatocyte-specific Alk3 deficient mice hallmarked by serum iron levels, tissue iron content and hepcidin levels of similar grades. HFE protein levels were increased in Alk3fl/fl;Alb-Cre mice compared to Alk3fl/fl mice, which was caused by iron overload - and not by Alk3 deficiency. The data provide evidence by genetic means that 1. HFE exclusively uses the BMP type I receptor ALK3 to induce hepcidin expression and 2. HFE protein expression is induced by iron overload, which further emphasizes the iron sensing function of HFE.
Collapse
Affiliation(s)
- L Traeger
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - J Schnittker
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - D Y Dogan
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - D Oguama
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - T Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - M U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, Molecular Medicine Partnership (MMPU), European Molecular Biology Laboratory (EMBL), University of Heidelberg, Heidelberg, Germany.
| | - J Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - E I Urzica
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - A U Steinbicker
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
17
|
Xiao X, Alfaro-Magallanes VM, Babitt JL. Bone morphogenic proteins in iron homeostasis. Bone 2020; 138:115495. [PMID: 32585319 PMCID: PMC7453787 DOI: 10.1016/j.bone.2020.115495] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway plays a central role in regulating hepcidin, which is the master hormone governing systemic iron homeostasis. Hepcidin is produced by the liver and acts on the iron exporter ferroportin to control iron absorption from the diet and iron release from body stores, thereby providing adequate iron for red blood cell production, while limiting the toxic effects of excess iron. BMP6 and BMP2 ligands produced by liver endothelial cells bind to BMP receptors and the coreceptor hemojuvelin (HJV) on hepatocytes to activate SMAD1/5/8 signaling, which directly upregulates hepcidin transcription. Most major signals that influence hepcidin production, including iron, erythropoietic drive, and inflammation, intersect with the BMP-SMAD pathway to regulate hepcidin transcription. Mutation or inactivation of BMP ligands, BMP receptors, HJV, SMADs or other proteins that modulate the BMP-SMAD pathway result in hepcidin dysregulation, leading to iron-related disorders, such as hemochromatosis and iron refractory iron deficiency anemia. Pharmacologic modulators of the BMP-SMAD pathway have shown efficacy in pre-clinical models to regulate hepcidin expression and treat iron-related disorders. This review will discuss recent insights into the role of the BMP-SMAD pathway in regulating hepcidin to control systemic iron homeostasis.
Collapse
Affiliation(s)
- Xia Xiao
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Víctor M Alfaro-Magallanes
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jodie L Babitt
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Xiao X, Dev S, Canali S, Bayer A, Xu Y, Agarwal A, Wang CY, Babitt JL. Endothelial Bone Morphogenetic Protein 2 (Bmp2) Knockout Exacerbates Hemochromatosis in Homeostatic Iron Regulator (Hfe) Knockout Mice but not Bmp6 Knockout Mice. Hepatology 2020; 72:642-655. [PMID: 31778583 PMCID: PMC7253321 DOI: 10.1002/hep.31048] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 11/13/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Bone morphogenetic proteins BMP2 and BMP6 play key roles in systemic iron homeostasis by regulating production of the iron hormone hepcidin. The homeostatic iron regulator (HFE) also regulates hepcidin through a mechanism that intersects with the BMP-mothers against decapentaplegic homolog 1/5/8 (SMAD1/5/8) pathway. However, the relative roles of BMP2 compared with BMP6 and whether HFE regulates hepcidin through a BMP2-dependent mechanism remain uncertain. APPROACH AND RESULTS We therefore examined the iron phenotype of mice deficient for both Bmp2 and Bmp6 or both Bmp2 and Hfe compared with single knockout (KO) mice and littermate controls. Eight-week-old double endothelial Bmp6/Bmp2 KO mice exhibited a similar degree of hepcidin deficiency, serum iron overload, and tissue iron overload compared with single KO mice. Notably, dietary iron loading still induced liver SMAD5 phosphorylation and hepcidin in double Bmp6/endothelial Bmp2 KO mice, although no other BMP ligand mRNAs were increased in the livers of double KO mice, and only Bmp6 and Bmp2 mRNA were induced by dietary iron loading in wild-type mice. In contrast, double Hfe/endothelial Bmp2 KO mice exhibited reduced hepcidin and increased extrahepatic iron loading compared to single Hfe or endothelial Bmp2 KO mice. Liver phosphorylated SMAD5 and the SMAD1/5/8 target inhibitor of DNA binding 1 (Id1) mRNA were also reduced in double Hfe/endothelial Bmp2 KO compared with single endothelial Bmp2 KO female mice. Finally, hepcidin and Id1 mRNA induction by homodimeric BMP2, homodimeric BMP6, and heterodimeric BMP2/6 were blunted in Hfe KO primary hepatocytes. CONCLUSIONS These data suggest that BMP2 and BMP6 work collaboratively to regulate hepcidin expression, that BMP2-independent and BMP6-independent SMAD1/5/8 signaling contributes a nonredundant role to hepcidin regulation by iron, and that HFE regulates hepcidin at least in part through a BMP2-independent but SMAD1/5/8-dependent mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jodie L. Babitt
- Contact Information Jodie L. Babitt MD, Massachusetts General Hospital, 185 Cambridge St., CPZN-8208, Boston, MA 02114, Phone: (617)-643-3181, Fax: (617)-643-3182,
| |
Collapse
|
19
|
Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med 2020; 75:100866. [PMID: 32564977 DOI: 10.1016/j.mam.2020.100866] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 02/06/2023]
Abstract
Iron is a constituent of many metalloproteins involved in vital metabolic functions. While adequate iron supply is critical for health, accumulation of excess iron promotes oxidative stress and causes tissue injury and disease. Therefore, iron homeostasis needs to be tightly controlled. Mammals have developed elegant homeostatic mechanisms at the cellular and systemic level, which serve to satisfy metabolic needs for iron and to minimize the risks posed by iron's toxicity. Cellular iron metabolism is post-transcriptionally controlled by iron regulatory proteins, IRP1 and IRP2, while systemic iron balance is regulated by the iron hormone hepcidin. This review summarizes basic principles of mammalian iron homeostasis at the cellular and systemic level. Particular attention is given on pathways for hepcidin regulation and on crosstalk between cellular and systemic homeostatic mechanisms.
Collapse
|
20
|
Regulation of Iron Homeostasis and Related Diseases. Mediators Inflamm 2020; 2020:6062094. [PMID: 32454791 PMCID: PMC7212278 DOI: 10.1155/2020/6062094] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson's syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration, and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related diseases.
Collapse
|
21
|
Mehta KJ, Busbridge M, Patel VB, Farnaud SJ. Hepcidin secretion was not directly proportional to intracellular iron-loading in recombinant-TfR1 HepG2 cells: short communication. Mol Cell Biochem 2020; 468:121-128. [PMID: 32185675 PMCID: PMC7145775 DOI: 10.1007/s11010-020-03716-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
Abstract
Hepcidin is the master regulator of systemic iron homeostasis and its dysregulation is observed in several chronic liver diseases. Unlike the extracellular iron-sensing mechanisms, the intracellular iron-sensing mechanisms in the hepatocytes that lead to hepcidin induction and secretion are incompletely understood. Here, we aimed to understand the direct role of intracellular iron-loading on hepcidin mRNA and peptide secretion using our previously characterised recombinant HepG2 cells that over-express the cell-surface iron-importer protein transferrin receptor-1. Gene expression of hepcidin (HAMP) was determined by real-time PCR. Intracellular iron levels and secreted hepcidin peptide levels were measured by ferrozine assay and immunoassay, respectively. These measurements were compared in the recombinant and wild-type HepG2 cells under basal conditions at 30 min, 2 h, 4 h and 24 h. Data showed that in the recombinant cells, intracellular iron content was higher than wild-type cells at 30 min (3.1-fold, p < 0.01), 2 h (4.6-fold, p < 0.01), 4 h (4.6-fold, p < 0.01) and 24 h (1.9-fold, p < 0.01). Hepcidin (HAMP) mRNA expression was higher than wild-type cells at 30 min (5.9-fold; p = 0.05) and 24 h (6.1-fold; p < 0.03), but at 4 h, the expression was lower than that in wild-type cells (p < 0.05). However, hepcidin secretion levels in the recombinant cells were similar to those in wild-type cells at all time-points, except at 4 h, when the level was lower than wild-type cells (p < 0.01). High intracellular iron in recombinant HepG2 cells did not proportionally increase hepcidin peptide secretion. This suggests a limited role of elevated intracellular iron in hepcidin secretion.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- School of Life Sciences, University of Westminster, London, UK.
| | - Mark Busbridge
- Department of Clinical Biochemistry, Northwest London Pathology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Vinood B Patel
- School of Life Sciences, University of Westminster, London, UK
| | - Sebastien Je Farnaud
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry, UK
| |
Collapse
|
22
|
Camaschella C, Nai A, Silvestri L. Iron metabolism and iron disorders revisited in the hepcidin era. Haematologica 2020; 105:260-272. [PMID: 31949017 PMCID: PMC7012465 DOI: 10.3324/haematol.2019.232124] [Citation(s) in RCA: 347] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is biologically essential, but also potentially toxic; as such it is tightly controlled at cell and systemic levels to prevent both deficiency and overload. Iron regulatory proteins post-transcriptionally control genes encoding proteins that modulate iron uptake, recycling and storage and are themselves regulated by iron. The master regulator of systemic iron homeostasis is the liver peptide hepcidin, which controls serum iron through degradation of ferroportin in iron-absorptive enterocytes and iron-recycling macrophages. This review emphasizes the most recent findings in iron biology, deregulation of the hepcidin-ferroportin axis in iron disorders and how research results have an impact on clinical disorders. Insufficient hepcidin production is central to iron overload while hepcidin excess leads to iron restriction. Mutations of hemochro-matosis genes result in iron excess by downregulating the liver BMP-SMAD signaling pathway or by causing hepcidin-resistance. In iron-loading anemias, such as β-thalassemia, enhanced albeit ineffective ery-thropoiesis releases erythroferrone, which sequesters BMP receptor ligands, thereby inhibiting hepcidin. In iron-refractory, iron-deficiency ane-mia mutations of the hepcidin inhibitor TMPRSS6 upregulate the BMP-SMAD pathway. Interleukin-6 in acute and chronic inflammation increases hepcidin levels, causing iron-restricted erythropoiesis and ane-mia of inflammation in the presence of iron-replete macrophages. Our improved understanding of iron homeostasis and its regulation is having an impact on the established schedules of oral iron treatment and the choice of oral versus intravenous iron in the management of iron deficiency. Moreover it is leading to the development of targeted therapies for iron overload and inflammation, mainly centered on the manipulation of the hepcidin-ferroportin axis.
Collapse
Affiliation(s)
- Clara Camaschella
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan
| | - Antonella Nai
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan.,Vita Salute San Raffaele University, Milan, Italy
| | - Laura Silvestri
- Regulation of Iron Metabolism Unit, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan.,Vita Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
Mano Y, Yoshio S, Shoji H, Tomonari S, Aoki Y, Aoyanagi N, Okamoto T, Matsuura Y, Osawa Y, Kimura K, Yugawa K, Wang H, Oda Y, Yoshizumi T, Maehara Y, Kanto T. Bone morphogenetic protein 4 provides cancer-supportive phenotypes to liver fibroblasts in patients with hepatocellular carcinoma. J Gastroenterol 2019; 54:1007-1018. [PMID: 30941514 DOI: 10.1007/s00535-019-01579-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/25/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are essential constituents of cancer-supportive microenvironments. The high incidence of hepatocellular carcinoma (HCC) in advanced fibrosis patients implies that fibroblasts have a promoting effect on HCC development. We aimed to explore the regulators of phenotypes and function of CAFs in the liver. METHODS We established primary cancer-associated fibroblasts (CAFs) and non-cancerous liver fibroblasts (NFs) from 15 patients who underwent HCC resection. We compared phenotypes, capacity of cytokine/chemokine production and gene expression profiles between pairs of CAFs and NFs from the same donors. We examined resected tissue from additional 50 patients with HCC for immunohistochemical analyses. RESULTS The CAFs expressed more ACTA2 and COL1A1 than the NFs, suggesting that CAFs are more activated phenotype. The CAFs produced larger amounts of IL-6, IL-8 and CCL2 than the NFs, which led to invasiveness of HuH7 in vitro. We found that Bone Morphogenetic Protein-4 (BMP4) is up-regulated in CAFs compared to NFs. The CAF phenotype and function were gained by BMP4 over-expression or recombinant BMP4 given to fibroblasts, all of which decreased with BMP4 knockdown. In tissues obtained from the patients, BMP4-positive cells are mainly observed in encapsulated fibrous lesions and HCC. Positive expression of BMP4 in HCC in resected tissues, not in fibroblasts, was associated with poorer postoperative overall survival in patients with HCC. CONCLUSION Endogenous and exogenous BMP4 activate liver fibroblasts to gain capacity of secreting cytokines and enhancing invasiveness of cancer cells in the liver. BMP4 is one of the regulatory factors of CAFs functioning in the microenvironment of HCC.
Collapse
Affiliation(s)
- Yohei Mano
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Hirotaka Shoji
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Shimagaki Tomonari
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.,Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Aoki
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Nobuyoshi Aoyanagi
- Department of Surgery, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Kiminori Kimura
- Department of Hepatology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kyohei Yugawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Huanlin Wang
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1, Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| |
Collapse
|
24
|
Abstract
Iron is an essential element that is indispensable for life. The delicate physiological body iron balance is maintained by both systemic and cellular regulatory mechanisms. The iron-regulatory hormone hepcidin assures maintenance of adequate systemic iron levels and is regulated by circulating and stored iron levels, inflammation and erythropoiesis. The kidney has an important role in preventing iron loss from the body by means of reabsorption. Cellular iron levels are dependent on iron import, storage, utilization and export, which are mainly regulated by the iron response element-iron regulatory protein (IRE-IRP) system. In the kidney, iron transport mechanisms independent of the IRE-IRP system have been identified, suggesting additional mechanisms for iron handling in this organ. Yet, knowledge gaps on renal iron handling remain in terms of redundancy in transport mechanisms, the roles of the different tubular segments and related regulatory processes. Disturbances in cellular and systemic iron balance are recognized as causes and consequences of kidney injury. Consequently, iron metabolism has become a focus for novel therapeutic interventions for acute kidney injury and chronic kidney disease, which has fuelled interest in the molecular mechanisms of renal iron handling and renal injury, as well as the complex dynamics between systemic and local cellular iron regulation.
Collapse
|
25
|
Abstract
Hepcidin, the main regulator of iron metabolism, is synthesized and released by hepatocytes in response to increased body iron concentration and inflammation. Deregulation of hepcidin expression is a common feature of genetic and acquired iron disorders: in Hereditary Hemochromatosis (HH) and iron-loading anemias low hepcidin causes iron overload, while in Iron Refractory Iron Deficiency Anemia (IRIDA) and anemia of inflammation (AI), high hepcidin levels induce iron-restricted erythropoiesis. Hepcidin expression in the liver is mainly controlled by the BMP-SMAD pathway, activated in a paracrine manner by BMP2 and BMP6 produced by liver sinusoidal endothelial cells. The BMP type I receptors ALK2 and ALK3 are responsible for iron-dependent hepcidin upregulation and basal hepcidin expression, respectively. Characterization of animal models with genetic inactivation of the key components of the pathway has suggested the existence of two BMP/SMAD pathway branches: the first ALK3 and HH proteins dependent, responsive to BMP2 for basal hepcidin activation, and the second ALK2 dependent, activated by BMP6 in response to increased tissue iron. The erythroid inhibitor of hepcidin Erythroferrone also impacts on the liver BMP-SMAD pathway although its effect is blunted by pathway hyper-activation. The liver BMP-SMAD pathway is required also in inflammation to cooperate with JAK2/STAT3 signaling for full hepcidin activation. Pharmacologic targeting of BMP-SMAD pathway components or regulators may improve the outcome of both genetic and acquired disorders of iron overload and deficiency by increasing or inhibiting hepcidin expression.
Collapse
|
26
|
Abstract
Iron, an essential nutrient, is required for many biological processes but is also toxic in excess. The lack of a mechanism to excrete excess iron makes it crucial for the body to regulate the amount of iron absorbed from the diet. This regulation is mediated by the hepatic hormone hepcidin. Hepcidin also controls iron release from macrophages that recycle iron and from hepatocytes that store iron. Hepcidin binds to the only known iron export protein, ferroportin, inducing its internalization and degradation and thus limiting the amount of iron released into the plasma. Important regulators of hepcidin, and therefore of systemic iron homeostasis, include plasma iron concentrations, body iron stores, infection and inflammation, hypoxia and erythropoiesis, and, to a lesser extent, testosterone. Dysregulation of hepcidin production contributes to the pathogenesis of many iron disorders: hepcidin deficiency causes iron overload in hereditary hemochromatosis and non-transfused β-thalassemia, whereas overproduction of hepcidin is associated with iron-restricted anemias seen in patients with chronic inflammatory diseases and inherited iron-refractory iron-deficiency anemia. The present review summarizes our current understanding of the molecular mechanisms and signaling pathways contributing to hepcidin regulation by these factors and highlights the issues that still need clarification.
Collapse
Affiliation(s)
- Marie-Paule Roth
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Delphine Meynard
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Hélène Coppin
- Institut de Recherche en Santé Digestive (IRSD), Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
27
|
Wang C, Canali S, Bayer A, Dev S, Agarwal A, Babitt JL. Iron, erythropoietin, and inflammation regulate hepcidin in Bmp2-deficient mice, but serum iron fails to induce hepcidin in Bmp6-deficient mice. Am J Hematol 2019; 94:240-248. [PMID: 30478858 DOI: 10.1002/ajh.25366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The bone morphogenetic protein (BMP)-SMAD signaling pathway is a key transcriptional regulator of hepcidin in response to tissue iron stores, serum iron, erythropoietic drive and inflammation to increase the iron supply when needed for erythropoiesis, but to prevent the toxicity of iron excess. Recently, BMP2 was reported to play a non-redundant role in hepcidin regulation in addition to BMP6. Here, we used a newly validated BMP2 ELISA assay and mice with a global or endothelial conditional knockout (CKO) of Bmp2 or Bmp6 to examine how BMP2 is regulated and functionally contributes to hepcidin regulation by its major stimuli. Erythropoietin (EPO) did not influence BMP2 expression in control mice, and still suppressed hepcidin in Bmp2 CKO mice. Lipopolysaccharide (LPS) reduced BMP2 expression in control mice, but still induced hepcidin in Bmp2 CKO mice. Chronic dietary iron loading that increased liver iron induced BMP2 expression, whereas acute oral iron gavage that increased serum iron without influencing liver iron did not impact BMP2. However, hepcidin was still induced by both iron loading methods in Bmp2 CKO mice, although the degree of hepcidin induction was blunted relative to control mice. Conversely, acute oral iron gavage failed to induce hepcidin in Bmp6 -/- or CKO mice. Thus, BMP2 has at least a partially redundant role in hepcidin regulation by serum iron, tissue iron, inflammation and erythropoietic drive. In contrast, BMP6 is absolutely required for hepcidin regulation by serum iron.
Collapse
Affiliation(s)
- Chia‐Yu Wang
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Susanna Canali
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Abraham Bayer
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Som Dev
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Aneesh Agarwal
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| | - Jodie L. Babitt
- Program in Membrane Biology, Division of Nephrology, Center for Systems BiologyMassachusetts General Hospital, Harvard Medical School Boston Massachusetts
| |
Collapse
|
28
|
Traeger L, Gallitz I, Sekhri R, Bäumer N, Kuhlmann T, Kemming C, Holtkamp M, Müller JC, Karst U, Canonne-Hergaux F, Muckenthaler MU, Bloch DB, Olschewski A, Bartnikas TB, Steinbicker AU. ALK3 undergoes ligand-independent homodimerization and BMP-induced heterodimerization with ALK2. Free Radic Biol Med 2018; 129:127-137. [PMID: 30227271 PMCID: PMC6842210 DOI: 10.1016/j.freeradbiomed.2018.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/09/2018] [Accepted: 09/14/2018] [Indexed: 01/09/2023]
Abstract
The bone morphogenetic protein (BMP) type I receptors ALK2 and ALK3 are essential for expression of hepcidin, a key iron regulatory hormone. In mice, hepatocyte-specific Alk2 deficiency leads to moderate iron overload with periportal liver iron accumulation, while hepatocyte-specific Alk3 deficiency leads to severe iron overload with centrilobular liver iron accumulation and a more marked reduction of basal hepcidin levels. The objective of this study was to investigate whether the two receptors have additive roles in hepcidin regulation. Iron overload in mice with hepatocyte-specific Alk2 and Alk3 (Alk2/3) deficiency was characterized and compared to hepatocyte-specific Alk3 deficient mice. Co-immunoprecipitation studies were performed to detect the formation of ALK2 and ALK3 homodimer and heterodimer complexes in vitro in the presence and absence of ligands. The iron overload phenotype of hepatocyte-specific Alk2/3-deficient mice was more severe than that of hepatocyte-specific Alk3-deficient mice. In vitro co-immunoprecipitation studies in Huh7 cells showed that ALK3 can homodimerize in absence of BMP2 or BMP6. In contrast, ALK2 did not homodimerize in either the presence or absence of BMP ligands. However, ALK2 did form heterodimers with ALK3 in the presence of BMP2 or BMP6. ALK3-ALK3 and ALK2-ALK3 receptor complexes induced hepcidin expression in Huh7 cells. Our data indicate that: (I) ALK2 and ALK3 have additive functions in vivo, as Alk2/3 deficiency leads to a greater degree of iron overload than Alk3 deficiency; (II) ALK3, but not ALK2, undergoes ligand-independent homodimerization; (III) the formation of ALK2-ALK3 heterodimers is ligand-dependent and (IV) both receptor complexes functionally induce hepcidin expression in vitro.
Collapse
Affiliation(s)
- Lisa Traeger
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Inka Gallitz
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Rohit Sekhri
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Nicole Bäumer
- Department of Medicine A, Molecular Hematology and Oncology, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Claudia Kemming
- Institute of Neuropathology, University Hospital Muenster, University of Muenster, Muenster, Germany.
| | - Michael Holtkamp
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany.
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany.
| | | | - Martina U Muckenthaler
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Heidelberg, Germany; Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany.
| | - Donald B Bloch
- Anaesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, and the Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Andrea Olschewski
- Institute of Physiology, Medical University of Graz, Graz, Austria; Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.
| | - Thomas B Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Andrea U Steinbicker
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
29
|
Abstract
The liver orchestrates systemic iron balance by producing and secreting hepcidin. Known as the iron hormone, hepcidin induces degradation of the iron exporter ferroportin to control iron entry into the bloodstream from dietary sources, iron recycling macrophages, and body stores. Under physiologic conditions, hepcidin production is reduced by iron deficiency and erythropoietic drive to increase the iron supply when needed to support red blood cell production and other essential functions. Conversely, hepcidin production is induced by iron loading and inflammation to prevent the toxicity of iron excess and limit its availability to pathogens. The inability to appropriately regulate hepcidin production in response to these physiologic cues underlies genetic disorders of iron overload and deficiency, including hereditary hemochromatosis and iron-refractory iron deficiency anemia. Moreover, excess hepcidin suppression in the setting of ineffective erythropoiesis contributes to iron-loading anemias such as β-thalassemia, whereas excess hepcidin induction contributes to iron-restricted erythropoiesis and anemia in chronic inflammatory diseases. These diseases have provided key insights into understanding the mechanisms by which the liver senses plasma and tissue iron levels, the iron demand of erythrocyte precursors, and the presence of potential pathogens and, importantly, how these various signals are integrated to appropriately regulate hepcidin production. This review will focus on recent insights into how the liver senses body iron levels and coordinates this with other signals to regulate hepcidin production and systemic iron homeostasis.
Collapse
|
30
|
The Functional Versatility of Transferrin Receptor 2 and Its Therapeutic Value. Pharmaceuticals (Basel) 2018; 11:ph11040115. [PMID: 30360575 PMCID: PMC6316356 DOI: 10.3390/ph11040115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/11/2022] Open
Abstract
Iron homeostasis is a tightly regulated process in all living organisms because this metal is essential for cellular metabolism, but could be extremely toxic when present in excess. In mammals, there is a complex pathway devoted to iron regulation, whose key protein is hepcidin (Hepc), which is a powerful iron absorption inhibitor mainly produced by the liver. Transferrin receptor 2 (Tfr2) is one of the hepcidin regulators, and mutations in TFR2 gene are responsible for type 3 hereditary hemochromatosis (HFE3), a genetically heterogeneous disease characterized by systemic iron overload. It has been recently pointed out that Hepc production and iron regulation could be exerted also in tissues other than liver, and that Tfr2 has an extrahepatic role in iron metabolism as well. This review summarizes all the most recent data on Tfr2 extrahepatic role, taking into account the putative distinct roles of the two main Tfr2 isoforms, Tfr2α and Tfr2β. Representing Hepc modulation an effective approach to correct iron balance impairment in common human diseases, and with Tfr2 being one of its regulators, it would be worthwhile to envisage Tfr2 as a therapeutic target.
Collapse
|
31
|
Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling. Blood 2018; 132:1829-1841. [PMID: 30213871 DOI: 10.1182/blood-2018-03-841197] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/11/2018] [Indexed: 01/01/2023] Open
Abstract
Systemic iron balance is controlled by hepcidin, a liver hormone that limits iron efflux to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Iron-dependent hepcidin induction requires hemojuvelin (HJV), a bone morphogenetic protein (BMP) coreceptor that is disrupted in juvenile hemochromatosis, causing dramatic hepcidin deficiency and tissue iron overload. Hjv-/- mice recapitulate phenotypic hallmarks of hemochromatosis but exhibit blunted hepcidin induction following lipopolysaccharide (LPS) administration. We show that Hjv-/- mice fail to mount an appropriate hypoferremic response to acute inflammation caused by LPS, the lipopeptide FSL1, or Escherichia coli infection because residual hepcidin does not suffice to drastically decrease macrophage ferroportin levels. Hfe-/- mice, a model of milder hemochromatosis, exhibit almost wild-type inflammatory hepcidin expression and associated effects, whereas double Hjv-/-Hfe-/- mice phenocopy single Hjv-/- counterparts. In primary murine hepatocytes, Hjv deficiency does not affect interleukin-6 (IL-6)/Stat, and only slightly inhibits BMP2/Smad signaling to hepcidin; however, it severely impairs BMP6/Smad signaling and thereby abolishes synergism with the IL-6/Stat pathway. Inflammatory induction of hepcidin is suppressed in iron-deficient wild-type mice and recovers after the animals are provided overnight access to an iron-rich diet. We conclude that Hjv is required for inflammatory induction of hepcidin and controls the acute hypoferremic response by maintaining a threshold of Bmp6/Smad signaling. Our data highlight Hjv as a potential pharmacological target against anemia of inflammation.
Collapse
|
32
|
Camaschella C, Pagani A. Advances in understanding iron metabolism and its crosstalk with erythropoiesis. Br J Haematol 2018; 182:481-494. [PMID: 29938779 DOI: 10.1111/bjh.15403] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed impressive advances in our understanding of iron metabolism. A number of studies of iron disorders and of their animal models have provided landmark insights into the mechanisms of iron trafficking, distribution and homeostatic regulation, the latter essential to prevent both iron deficiency and iron excess. Our perception of iron metabolism has been completely changed by an improved definition of cellular and systemic iron homeostasis, of the molecular pathogenesis of iron disorders, the fine tuning of the iron hormone hepcidin by activators and inhibitors and the dissection of the components of the hepcidin regulatory pathway. Important for haematology, the crosstalk of erythropoiesis, the most important iron consumer, and the hepcidin pathway has been at least partially clarified. Novel potential biomarkers are available and novel therapeutic targets for iron-related disorders have been tested in murine models. These preclinical studies provided proofs of principle and are laying the ground for clinical trials. Understanding iron control in tissues other than erythropoiesis remains a challenge for the future.
Collapse
Affiliation(s)
- Clara Camaschella
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| | - Alessia Pagani
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute and Vita Salute University, Milano, Italy
| |
Collapse
|
33
|
The hemochromatosis protein HFE signals predominantly via the BMP type I receptor ALK3 in vivo. Commun Biol 2018; 1:65. [PMID: 30271947 PMCID: PMC6123693 DOI: 10.1038/s42003-018-0071-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
Mutations in HFE, the most common cause of hereditary hemochromatosis, lead to iron overload. The iron overload is characterized by increased iron uptake due to lower levels of the hepatic, iron regulatory hormone hepcidin. HFE was cloned 21 years ago, but the signaling pathway is still unknown. Because bone morphogenetic protein (BMP) signaling is impaired in patients with hereditary hemochromatosis, and the interaction of HFE and the BMP type I receptor ALK3 was suggested in vitro, in vivo experiments were performed. In vivo, hepatocyte-specific Alk3-deficient and control mice were injected with either AAV2/8-Hfe-Flag or PBS. HFE overexpression in control mice results in increased hepatic hepcidin levels, p-Smad1/5 levels, and iron deficiency anemia, whereas overexpression of HFE in hepatocyte-specific Alk3-deficient mice results in no change in hepcidin, p-Smad1/5 levels, or blood parameters. These results indicate that HFE signals predominantly via ALK3 to induce hepcidin in vivo. Lisa Traeger et al. show that human hereditary hemochromatosis protein (HFE) signals through ALK3 to induce hepcidin in mice in vivo. The results validate and extend previous findings from in vitro studies that suggested a link between HFE and BMP signaling.
Collapse
|
34
|
|
35
|
Friedrisch JR, Friedrisch BK. Prophylactic Iron Supplementation in Pregnancy: A Controversial Issue. BIOCHEMISTRY INSIGHTS 2017; 10:1178626417737738. [PMID: 29123406 PMCID: PMC5661664 DOI: 10.1177/1178626417737738] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Abstract
In our world today, iron deficiency (ID) is the most frequent nutritional deficiency and it is being considered as an epidemic public health crisis. Women of reproductive age and infants are at particular risk of ID, especially in underdeveloped countries. During pregnancy, iron deficiency anemia is a specific risk factor associated with negative maternal and perinatal outcomes. Many countries have iron supplementation (IS) programs-as recommended by the World Health Organization-during pregnancy; however, IS clinical benefits and risks are unclear. This review aims to discuss the threats and benefits of routine IS on maternal and infant outcomes.
Collapse
Affiliation(s)
- João Ricardo Friedrisch
- Hematology and Bone Marrow Transplantation Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil
| | - Bruno Kras Friedrisch
- Departamento de Biologia e Farmácia, Universidade de Santa Cruz do Sul (UNISC), Santa Cruz do Sul, Brazil
| |
Collapse
|
36
|
Deletion of BMP6 worsens the phenotype of HJV-deficient mice and attenuates hepcidin levels reached after LPS challenge. Blood 2017; 130:2339-2343. [PMID: 29021231 DOI: 10.1182/blood-2017-07-795658] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 09/21/2017] [Indexed: 12/20/2022] Open
Abstract
Lack of either bone morphogenetic protein 6 (BMP6) or the BMP coreceptor hemojuvelin (HJV) in mice leads to a similar phenotype with hepcidin insufficiency, hepatic iron loading, and extrahepatic iron accumulation in males. This is consistent with the current views that HJV is a coreceptor for BMP6 in hepatocytes. To determine whether BMP6 and HJV may also signal to hepcidin independently of each other, we intercrossed Hjv-/- and Bmp6-/- mice and compared the phenotype of animals of the F2 progeny. Loss of Bmp6 further repressed Smad signaling and hepcidin expression in the liver of Hjv-/- mice of both sexes, and led to iron accumulation in the pancreas and the heart of females. These data suggest that, in Hjv-/- females, Bmp6 can provide a signal adequate to maintain hepcidin to a level sufficient to avoid extrahepatic iron loading. We also examined the impact of Bmp6 and/or Hjv deletion on the regulation of hepcidin by inflammation. Our data show that lack of 1 or both molecules does not prevent induction of hepcidin by lipopolysaccharide (LPS). However, BMP/Smad signaling in unchallenged animals is determinant for the level of hepcidin reached after stimulation, which is consistent with a synergy between interleukin 6/STAT3 and BMP/SMAD signaling in regulating hepcidin during inflammation.
Collapse
|
37
|
Acidic Polysaccharide from Angelica sinensis Reverses Anemia of Chronic Disease Involving the Suppression of Inflammatory Hepcidin and NF- κB Activation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7601592. [PMID: 29147463 PMCID: PMC5632906 DOI: 10.1155/2017/7601592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022]
Abstract
Anemia of chronic disease (ACD) is the second most prevalent anemia and frequently occurs in patients with acute or chronic immune activation. In the current study, we evaluated the therapeutic efficacy of Angelica sinensis polysaccharide (ASP) against ACD in rats and the potential mechanisms involved. The results showed that ASP inhibited inflammatory hepcidin in both HepG2 cells and ACD rats by blocking the IL-6/STAT3 and BMP/SMAD pathways. In ACD rats, the administration of ASP increased ferroportin expression, mobilized iron from the liver and spleen, increased serum iron levels, caused an elevation of serum EPO, and effectively relieved the anemia. Furthermore, ASP inhibited NF-κB p65 activation via the IκB kinases- (IKKs-) IκBα pathway, thereby reducing the secretion of interleukin-6 (IL-6) and TNF-α, which is known to inhibit erythropoiesis. Our findings indicate that ASP is a potential treatment option for patients suffering from ACD.
Collapse
|
38
|
The immunophilin FKBP12 inhibits hepcidin expression by binding the BMP type I receptor ALK2 in hepatocytes. Blood 2017; 130:2111-2120. [PMID: 28864813 DOI: 10.1182/blood-2017-04-780692] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/31/2017] [Indexed: 02/08/2023] Open
Abstract
The expression of the key regulator of iron homeostasis hepcidin is activated by the BMP-SMAD pathway in response to iron and inflammation and among drugs, by rapamycin, which inhibits mTOR in complex with the immunophilin FKBP12. FKBP12 interacts with BMP type I receptors to avoid uncontrolled signaling. By pharmacologic and genetic studies, we identify FKBP12 as a novel hepcidin regulator. Sequestration of FKBP12 by rapamycin or tacrolimus activates hepcidin both in vitro and in murine hepatocytes. Acute tacrolimus treatment transiently increases hepcidin in wild-type mice. FKBP12 preferentially targets the BMP receptor ALK2. ALK2 mutants defective in binding FKBP12 increase hepcidin expression in a ligand-independent manner, through BMP-SMAD signaling. ALK2 free of FKBP12 becomes responsive to the noncanonical inflammatory ligand Activin A. Our results identify a novel hepcidin regulator and a potential therapeutic target to increase defective BMP signaling in disorders of low hepcidin.
Collapse
|
39
|
Rishi G, Subramaniam VN. The liver in regulation of iron homeostasis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G157-G165. [PMID: 28596277 DOI: 10.1152/ajpgi.00004.2017] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 01/31/2023]
Abstract
The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism.
Collapse
Affiliation(s)
- Gautam Rishi
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - V Nathan Subramaniam
- Liver Disease and Iron Disorders Research Group, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
40
|
Abstract
The regulation of iron metabolism in biological systems centers on providing adequate iron for cellular function while limiting iron toxicity. Because mammals cannot excrete iron, mechanisms have evolved to control iron acquisition, storage, and distribution at both systemic and cellular levels. Hepcidin, the master regulator of iron homeostasis, controls iron flows into plasma through inhibition of the only known mammalian cellular iron exporter ferroportin. Hepcidin is feedback-regulated by iron status and strongly modulated by inflammation and erythropoietic demand. This review highlights recent advances that have changed our understanding of iron metabolism and its regulation.
Collapse
Affiliation(s)
- Richard Coffey
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690
| | - Tomas Ganz
- Departments of Medicine and Pathology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1690.
| |
Collapse
|
41
|
Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov 2017; 16:400-423. [PMID: 28154410 PMCID: PMC5455971 DOI: 10.1038/nrd.2016.248] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Iron fulfils a central role in many essential biochemical processes in human physiology; thus, proper processing of iron is crucial. Although iron metabolism is subject to relatively strict physiological control, numerous disorders, such as cancer and neurodegenerative diseases, have recently been linked to deregulated iron homeostasis. Consequently, iron metabolism constitutes a promising and largely unexploited therapeutic target for the development of new pharmacological treatments for these diseases. Several iron metabolism-targeted therapies are already under clinical evaluation for haematological disorders, and these and newly developed therapeutic agents are likely to have substantial benefit in the clinical management of iron metabolism-associated diseases, for which few efficacious treatments are currently available.
Collapse
Affiliation(s)
- Bart J. Crielaard
- Department of Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences, University of Groningen, Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, Groningen, The Netherlands
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Stefano Rivella
- Children’s Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA, United States of America
| |
Collapse
|
42
|
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A Red Carpet for Iron Metabolism. Cell 2017; 168:344-361. [PMID: 28129536 DOI: 10.1016/j.cell.2016.12.034] [Citation(s) in RCA: 816] [Impact Index Per Article: 116.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 12/21/2016] [Indexed: 02/06/2023]
Abstract
200 billion red blood cells (RBCs) are produced every day, requiring more than 2 × 1015 iron atoms every second to maintain adequate erythropoiesis. These numbers translate into 20 mL of blood being produced each day, containing 6 g of hemoglobin and 20 mg of iron. These impressive numbers illustrate why the making and breaking of RBCs is at the heart of iron physiology, providing an ideal context to discuss recent progress in understanding the systemic and cellular mechanisms that underlie the regulation of iron homeostasis and its disorders.
Collapse
Affiliation(s)
- Martina U Muckenthaler
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; Department of Pediatric Oncology, Hematology and Immunology, Im Neuenheimer Feld 153, 69120 Heidelberg, Germany
| | - Stefano Rivella
- Children's Hospital of Philadelphia, 3615 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and University of Heidelberg, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany; European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | - Bruno Galy
- Division of Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Hollerer I, Bachmann A, Muckenthaler MU. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 2017; 102:809-817. [PMID: 28280078 PMCID: PMC5477599 DOI: 10.3324/haematol.2016.160432] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers.
Collapse
Affiliation(s)
- Ina Hollerer
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| |
Collapse
|
44
|
Papanikolaou G, Pantopoulos K. Systemic iron homeostasis and erythropoiesis. IUBMB Life 2017; 69:399-413. [DOI: 10.1002/iub.1629] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023]
Affiliation(s)
- George Papanikolaou
- Department of Nutrition and DieteticsSchool of Health Science and Education, Harokopion UniversityAthens Greece
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research and Department of MedicineMcGill UniversityMontreal Quebec Canada
| |
Collapse
|
45
|
Gurieva I, Frýdlová J, Rychtarčíková Z, Vokurka M, Truksa J, Krijt J. Erythropoietin administration increases splenic erythroferrone protein content and liver TMPRSS6 protein content in rats. Blood Cells Mol Dis 2017; 64:1-7. [PMID: 28282554 DOI: 10.1016/j.bcmd.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 02/25/2017] [Indexed: 02/09/2023]
Abstract
Erythroferrone (ERFE) and TMPRSS6 are important proteins in the regulation of iron metabolism. The objective of the study was to examine splenic ERFE and liver TMPRSS6 synthesis in rats treated with a combination of iron and erythropoietin (EPO). EPO was administered to female Wistar rats at 600U/day for four days, iron-pretreated rats received 150mg of iron before EPO treatment. Content of ERFE and TMPRSS6 proteins was determined by commercial antibodies. Iron pretreatment prevented the EPO-induced decrease in hepcidin expression. Content of phosphorylated SMAD 1,5,8 proteins was decreased in the liver by both EPO and iron plus EPO treatment. Fam132b expression in the spleen was increased both by EPO and iron plus EPO treatments; these treatments also significantly induced splenic Fam132a expression. ERFE protein content in the spleen was increased both by EPO and iron plus EPO to a similar extent. EPO administration increased TMPRSS6 content in the plasma membrane-enriched fraction of liver homogenate; in iron-pretreated rats, this increase was abolished. The results confirm that iron pretreatment prevents the EPO-induced decrease in liver Hamp expression. This effect probably occurs despite high circulating ERFE levels, since EPO-induced ERFE protein synthesis is not influenced by iron pretreatment.
Collapse
Affiliation(s)
- Iuliia Gurieva
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Frýdlová
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zuzana Rychtarčíková
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology, BIOCEV Research Center, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Krijt
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
46
|
|
47
|
Abstract
PURPOSE OF REVIEW Anemia is prevalent in patients with infections and other inflammatory conditions. Induction of the iron regulatory hormone hepcidin has been implicated in the pathogenesis of anemia of inflammation. This review outlines recent discoveries in understanding how hepcidin and its receptor ferroportin are regulated, how they contribute to anemia of inflammation, and how this knowledge may help guide new diagnostic and therapeutic strategies for this disease. RECENT FINDINGS IL-6 is a primary driver for hepcidin induction in many models of anemia of inflammation, but the SMAD1/5/8 pathway also contributes, likely via Activin B and SMAD-STAT3 interactions at the hepcidin promoter. Hepcidin has an important functional role in many, but not all forms of anemia of inflammation, although hepcidin-independent mechanisms also contribute. In certain populations, hepcidin assays may help target therapy with iron or erythropoiesis-stimulating agents to patients who may benefit most. New therapies targeting the hepcidin-ferroportin axis have shown efficacy in preclinical and early clinical studies. SUMMARY Recent studies confirm an important role for the hepcidin-ferroportin axis in the development of anemia of inflammation, but also highlight the diverse and complex pathogenesis of this disorder depending on the underlying disease. Hepcidin-based diagnostic and therapeutic strategies offer promise to improve anemia treatment, but more work is needed in this area.
Collapse
|
48
|
Lunova M, Schwarz P, Nuraldeen R, Levada K, Kuscuoglu D, Stützle M, Vujić Spasić M, Haybaeck J, Ruchala P, Jirsa M, Deschemin JC, Vaulont S, Trautwein C, Strnad P. Hepcidin knockout mice spontaneously develop chronic pancreatitis owing to cytoplasmic iron overload in acinar cells. J Pathol 2016; 241:104-114. [PMID: 27741349 DOI: 10.1002/path.4822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
Iron is both an essential and a potentially toxic element, and its systemic homeostasis is controlled by the iron hormone hepcidin. Hepcidin binds to the cellular iron exporter ferroportin, causes its degradation, and thereby diminishes iron uptake from the intestine and the release of iron from macrophages. Given that hepcidin-resistant ferroportin mutant mice show exocrine pancreas dysfunction, we analysed pancreata of aging hepcidin knockout (KO) mice. Hepcidin and Hfe KO mice were compared with wild-type (WT) mice kept on standard or iron-rich diets. Twelve-month-old hepcidin KO mice were subjected to daily minihepcidin PR73 treatment for 1 week. Six-month-old hepcidin KO mice showed cytoplasmic acinar iron overload and mild pancreatitis, together with elevated expression of the iron uptake mediators DMT1 and Zip14. Acinar atrophy, massive macrophage infiltration, fatty changes and pancreas fibrosis were noted in 1-year-old hepcidin KO mice. As an underlying mechanism, 6-month-old hepcidin KO mice showed increased pancreatic oxidative stress, with elevated DNA damage, apoptosis and activated nuclear factor-κB (NF-κB) signalling. Neither iron overload nor pancreatic damage was observed in WT mice fed iron-rich diet or in Hfe KO mice. Minihepcidin application to hepcidin KO mice led to an improvement in general health status and to iron redistribution from acinar cells to macrophages. It also resulted in decreased NF-κB activation and reduced DNA damage. In conclusion, loss of hepcidin signalling in mice leads to iron overload-induced chronic pancreatitis that is not seen in situations with less severe iron accumulation. The observed tissue injury can be reversed by hepcidin supplementation. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | - Peggy Schwarz
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Renwar Nuraldeen
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Kateryna Levada
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Deniz Kuscuoglu
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Michael Stützle
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Maja Vujić Spasić
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Piotr Ruchala
- Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| | - Milan Jirsa
- Institute of Clinical and Experimental Medicine (IKEM), Prague, Czech Republic
| | | | | | - Christian Trautwein
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.,Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
49
|
Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis. Blood 2016; 129:415-419. [PMID: 27903529 DOI: 10.1182/blood-2016-07-729822] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 11/23/2016] [Indexed: 01/14/2023] Open
Abstract
Microvascular endothelial cells (ECs) display a high degree of phenotypic and functional heterogeneity among different organs. Organ-specific ECs control their tissue microenvironment by angiocrine factors in health and disease. Liver sinusoidal endothelial cells (LSECs) are uniquely differentiated to fulfill important organ-specific functions in development, under homeostatic conditions, and in regeneration and liver pathology. Recently, Bmp2 has been identified by us as an organ-specific angiokine derived from LSECs. To study angiocrine Bmp2 signaling in the liver, we conditionally deleted Bmp2 in LSECs using EC subtype-specific Stab2-Cre mice. Genetic inactivation of hepatic angiocrine Bmp2 signaling in Stab2-Cre;Bmp2fl/fl (Bmp2LSECKO) mice caused massive iron overload in the liver and increased serum iron levels and iron deposition in several organs similar to classic hereditary hemochromatosis. Iron overload was mediated by decreased hepatic expression of hepcidin, a key regulator of iron homeostasis. Thus, angiocrine Bmp2 signaling within the hepatic vascular niche represents a constitutive pathway indispensable for iron homeostasis in vivo that is nonredundant with Bmp6. Notably, we demonstrate that organ-specific angiocrine signaling is essential not only for the homeostasis of the respective organ but also for the homeostasis of the whole organism.
Collapse
|
50
|
Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood 2016; 129:405-414. [PMID: 27864295 DOI: 10.1182/blood-2016-06-721571] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Bone morphogenetic protein 6 (BMP6) signaling in hepatocytes is a central transcriptional regulator of the iron hormone hepcidin that controls systemic iron balance. How iron levels are sensed to regulate hepcidin production is not known, but local induction of liver BMP6 expression by iron is proposed to have a critical role. To identify the cellular source of BMP6 responsible for hepcidin and iron homeostasis regulation, we generated mice with tissue-specific ablation of Bmp6 in different liver cell populations and evaluated their iron phenotype. Efficiency and specificity of Cre-mediated recombination was assessed by using Cre-reporter mice, polymerase chain reaction of genomic DNA, and quantitation of Bmp6 messenger RNA expression from isolated liver cell populations. Localization of the BMP co-receptor hemojuvelin was visualized by immunofluorescence microscopy. Analysis of the Bmp6 conditional knockout mice revealed that liver endothelial cells (ECs) expressed Bmp6, whereas resident liver macrophages (Kupffer cells) and hepatocytes did not. Loss of Bmp6 in ECs recapitulated the hemochromatosis phenotype of global Bmp6 knockout mice, whereas hepatocyte and macrophage Bmp6 conditional knockout mice exhibited no iron phenotype. Hemojuvelin was localized on the hepatocyte sinusoidal membrane immediately adjacent to Bmp6-producing sinusoidal ECs. Together, these data demonstrate that ECs are the predominant source of BMP6 in the liver and support a model in which EC BMP6 has paracrine actions on hepatocyte hemojuvelin to regulate hepcidin transcription and maintain systemic iron homeostasis.
Collapse
|