1
|
Wang Y, Hong S, Hudson H, Kory N, Kinch LN, Kozlitina J, Cohen JC, Hobbs HH. PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by inhibiting ATGL-mediated triglyceride hydrolysis. J Hepatol 2024:S0168-8278(24)02707-7. [PMID: 39550037 DOI: 10.1016/j.jhep.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND & AIMS PNPLA3(148M) (patatin-like phospholipase domain-containing protein 3) is the most impactful genetic risk factor for steatotic liver disease (SLD). A key unresolved issue is whether PNPLA3(148M) confers a loss- or gain-of-function. Here we test the hypothesis that PNPLA3 causes steatosis by sequestering ABHD5 (α/β hydrolase domain containing protein 5), the cofactor of ATGL (adipose TG lipase), thus limiting mobilization of hepatic triglyceride (TG). METHODS We quantified and compared the physical interactions between ABHD5 and PNPLA3/ATGL in cultured hepatocytes using NanoBiT complementation assays and immunocytochemistry. Recombinant proteins purified from human cells were used to compare TG hydrolytic activities of PNPLA3 and ATGL in the presence or absence of ABHD5. Adenoviruses and adeno-associated viruses were used to express PNPLA3 in liver-specific Atgl-/- mice and to express ABHD5 in livers of Pnpla3M/M mice, respectively. RESULTS ABHD5 interacted preferentially with PNPLA3 relative to ATGL in cultured hepatocytes. No differences were seen in the strength of the interactions between ABHD5 with PNPLA3(WT) and PNPLA3(148M). In contrast to prior findings, we found that PNPLA3, like ATGL, is activated by ABHD5 in in vitro assays using purified proteins. PNPLA3(148M)-associated inhibition of TG hydrolysis required that ATGL be expressed and that PNPLA3 be located on LDs. Finally, overexpression of ABHD5 reversed the hepatic steatosis in Pnpla3M/M mice. CONCLUSIONS These findings support the premise that PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by accumulating on LDs and inhibiting ATGL-mediated lipolysis in an ABHD5-dependent manner. Our results predict that reducing, rather that increasing, PNPLA3 expression will be the best strategy to treat PNPLA3(148M)-associated SLD. IMPACT AND IMPLICATIONS Steatotic liver disease (SLD) is a common complex disorder associated with both environmental and genetic risk factors. PNPLA3(148M) is the most impactful genetic risk factor for SLD and yet its pathogenic mechanism remains controversial. Here we provide evidence that PNPLA3(148M) promotes triglyceride (TG) accumulation by sequestering ABHD5, thus limiting its availability to activate ATGL. Although the substitution of methionine for isoleucine reduces the TG hydrolase activity of PNPLA3, the loss of enzymatic function is not directly related to the steatotic effect of the variant. It is the resulting accumulation of PNPLA3 on LDs that confers a gain-of-function by interfering with ATGL-mediated TG hydrolysis. These findings have implications for the design of potential PNPLA3(148M)-based therapies. Reducing, rather than increasing, PNPLA3 levels is predicted to reverse steatosis in susceptible individuals.
Collapse
Affiliation(s)
- Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA.
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Hannah Hudson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lisa N Kinch
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA
| | - Jonathan C Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Center for Human Nutrition, UTSW, Dallas, TX 75390, USA
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA; The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Pelusi S, Ronzoni L, Rondena J, Rosso C, Pennisi G, Dongiovanni P, Margarita S, Carpani R, Soardo G, Prati D, Cespiati A, Petta S, Bugianesi E, Valenti L. Prevalence and Determinants of Liver Disease in Relatives of Italian Patients With Advanced MASLD. Clin Gastroenterol Hepatol 2024; 22:2231-2239.e4. [PMID: 38216023 DOI: 10.1016/j.cgh.2023.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction associated steatotic liver disease (MASLD) has a strong genetic component. The aim of this study was to examine noninvasively the prevalence of MASLD and of advanced fibrosis in relatives of patients with advanced MASLD and the risk factors for liver involvement, with a focus on the contribution of common genetic risk variants. METHODS We prospectively enrolled 98 consecutive probands with advanced fibrosis and/or hepatocellular carcinoma caused by MASLD and 160 nontwin first-degree relatives noninvasively screened for MASLD and advanced fibrosis at 4 Italian centers. We evaluated common genetic determinants and polygenic risk scores of liver disease. RESULTS Among relatives, prevalence of MASLD was 56.8% overall, whereas advanced fibrosis was observed in 14.4%. At multivariable analysis in relatives, MASLD was associated with body mass index (odds ratio [OR], 1.31 [1.18-1.46]) and tended to be associated with diabetes (OR, 5.21 [0.97-28.10]), alcohol intake (OR, 1.32 [0.98-1.78]), and with female sex (OR, 0.54 [0.23-1.15]), whereas advanced fibrosis was associated with diabetes (OR, 3.13 [1.16-8.45]) and nearly with body mass index (OR, 1.09 [1.00-1.19]). Despite that the PNPLA3 risk variant was enriched in probands (P = .003) and overtransmitted to relatives with MASLD (P = .045), evaluation of genetic risk variants and polygenic risk scores was not useful to guide noninvasive screening of advanced fibrosis in relatives. CONCLUSIONS We confirmed that about 1 in 7 relatives of patients with advanced MASLD has advanced fibrosis, supporting clinical recommendations to perform family screening in this setting. Genetic risk variants contributed to liver disease within families but did not meaningfully improve fibrosis risk stratification.
Collapse
Affiliation(s)
- Serena Pelusi
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luisa Ronzoni
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jessica Rondena
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosso
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Grazia Pennisi
- Department of Health promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Margarita
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Rossana Carpani
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Soardo
- Clinica Medica-Liver Unit, Department of Medicine, University of Udine, Udine, Italy; Italian Liver Foundation, Area Science Park, Basovizza-Trieste, Italy
| | - Daniele Prati
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Salvatore Petta
- Department of Health promotion, Mother and Childcare, Internal Medicine and Medical Specialties (ProMISE), University of Palermo, Palermo, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center - Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
3
|
Kozlitina J, Sookoian S. Global Epidemiological Impact of PNPLA3 I148M on Liver Disease. Liver Int 2024. [PMID: 39373119 DOI: 10.1111/liv.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased exponentially over the past three decades, in parallel with the global rise in obesity and type 2 diabetes. It is currently the most common cause of liver-related morbidity and mortality. Although obesity has been identified as a key factor in the increased prevalence of MASLD, individual differences in susceptibility are significantly influenced by genetic factors. PNPLA3 I148M (rs738409 C>G) is the variant with the greatest impact on the risk of developing progressive MASLD and likely other forms of steatotic liver disease. This variant is prevalent across the globe, with the risk allele (G) frequency exhibiting considerable variation. Here, we review the contribution of PNPLA3 I148M to global burden and regional differences in MASLD prevalence, focusing on recent evidence emerging from population-based sequencing studies and prevalence assessments. We calculated the population attributable fraction (PAF) as a means of quantifying the impact of the variant on MASLD. Furthermore, we employ quantitative trait locus (QTL) analysis to ascertain the associations between rs738409 and a range of phenotypic traits. This analysis suggests that these QTLs may underpin pleiotropic effects on extrahepatic traits. Finally, we outline potential avenues for further research and identify key areas for investigation in future studies.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Silvia Sookoian
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Clinical and Molecular Hepatology, Translational Health Research Center (CENITRES), Maimónides University, Buenos Aires, Argentina
| |
Collapse
|
4
|
Lu K, Cheng X, He L, Li M, Chen Q, Qian C, Zhao R, Yang L, Liu F, Liu S, Zhang T, Feng L, Wu L, Wu X, Xu N, Li Y, Wang J, Han Y, Yuan H, Liu T, Zheng M, Lu S, Li D. LNCHC directly binds and regulates YBX1 stability to ameliorate metabolic dysfunction-associated steatotic liver disease progression. Liver Int 2024; 44:2396-2408. [PMID: 38847599 DOI: 10.1111/liv.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing, China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Chen Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Fangtong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan Xi, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, China
| | - Jun Wang
- Second Department of Infectious Disease, Xi'an Children's Hospital, Xi'an, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyang Yuan
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, School of Life Sciences, Fudan University, Shanghai, China
| | - Minghua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| |
Collapse
|
5
|
Mahmoudi SK, Tarzemani S, Aghajanzadeh T, Kasravi M, Hatami B, Zali MR, Baghaei K. Exploring the role of genetic variations in NAFLD: implications for disease pathogenesis and precision medicine approaches. Eur J Med Res 2024; 29:190. [PMID: 38504356 PMCID: PMC10953212 DOI: 10.1186/s40001-024-01708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 02/01/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases, affecting more than one-quarter of people worldwide. Hepatic steatosis can progress to more severe forms of NAFLD, including NASH and cirrhosis. It also may develop secondary diseases such as diabetes and cardiovascular disease. Genetic and environmental factors regulate NAFLD incidence and progression, making it a complex disease. The contribution of various environmental risk factors, such as type 2 diabetes, obesity, hyperlipidemia, diet, and sedentary lifestyle, to the exacerbation of liver injury is highly understood. Nevertheless, the underlying mechanisms of genetic variations in the NAFLD occurrence or its deterioration still need to be clarified. Hence, understanding the genetic susceptibility to NAFLD is essential for controlling the course of the disease. The current review discusses genetics' role in the pathological pathways of NAFLD, including lipid and glucose metabolism, insulin resistance, cellular stresses, and immune responses. Additionally, it explains the role of the genetic components in the induction and progression of NAFLD in lean individuals. Finally, it highlights the utility of genetic knowledge in precision medicine for the early diagnosis and treatment of NAFLD patients.
Collapse
Affiliation(s)
- Seyedeh Kosar Mahmoudi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Shadi Tarzemani
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Taha Aghajanzadeh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| | - Mohammadreza Kasravi
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, 1985714711, Iran.
| |
Collapse
|
6
|
Pavlova NI, Bochurov AA, Alekseev VA, Sydykova LA, Dodokhov VV, Kurtanov KA, Krylov AV. The variability of PNPLA3 gene as a potential marker of cold adaptation in Yakuts. Int J Circumpolar Health 2023; 82:2246647. [PMID: 37581274 PMCID: PMC10431738 DOI: 10.1080/22423982.2023.2246647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases. It has been reported that specific variants of patatin-like phospholipase domain-containing 3 (PNPLA3) gene, notably SNPs rs738409 and rs2294918 are associated with high risks of liver disease. PNPLA3 rs738409 polymorphism is the main determinant of fatty liver and affects development and progression of NAFLD. rs2294918 is another SNP localised in PNPLA3 gene, it is associated with reduced expression of the PNPLA3 protein, lowering the effect of the rs738409:G variant on predisposition to steatosis and liver damage. The frequencies of alleles, genotypes, haplotypes and diplotypes (combinations of genotypes at two loci) of polymorphic variants of the PNPLA3 gene (rs2294918 and rs738409) were studied in the cohort of Yakuts (n = 150) living in the Republic of Sakha (Yakutia). Genotyping of PNPLA3 (rs738409 and rs2294918) was performed by PCR-PDRF method. The single nucleotide polymorphism rs738409 (I148M) of the PNPLA3 gene in the Yakut population is characterised by a high frequency of the risk allele G (72%). Analysis of the distribution frequency of the rs2294918 polymorphism genotypes showed that the allele G was predominant in 89.3% of individuals of the studied group of Yakuts. In this study, we identified two major diplotypes [GG][GG] and [CG][GG]. The high frequency of the mutant rs738409: G variant in Yakuts may be an adaptation of the organism to low temperatures. The study of the adiponutringene may be an important key to understanding the mechanisms of adaptation to low temperatures and metabolic processes in the indigenous population of the North.
Collapse
Affiliation(s)
- Nadezhda Ivanovna Pavlova
- Laboratory of Heritable Pathology, Federal State Budgetary Scientific Institution “Yakut Science Center of Complex Medical Problems”, Yakutsk, Russia
| | - Alexey Alexeevich Bochurov
- Laboratory of Heritable Pathology, Federal State Budgetary Scientific Institution “Yakut Science Center of Complex Medical Problems”, Yakutsk, Russia
| | - Vladislav Amirovich Alekseev
- The laboratory of Immunological Research, Federal State Budgetary Scientific Institution “Yakut Science Center of Complex Medical Problems”, Yakutsk, Russia
| | - Lyubov Akhmedovna Sydykova
- Candidate of Medical Sciences, Head of the Department “Propaedeutic and Faculty Therapy with Endocrinology and Medical Physical Culture”; North-Eastern Federal University, Yakutsk, Russia
| | - Vladimir Vladimirovich Dodokhov
- Candidate of Biological Sciences, Senior Lecturer Federal State Budgetary Educational Institution of Higher Education Arctic state agrotechnological University, Yakutsk, Russia
| | - Khariton Alekseevich Kurtanov
- Candidate of Medical Sciences, Senior Researcher, Department of Ecology and Medical Biochemistry, Biotechnology, Russia
- Institute for Biological Problems of Cryolithozone of Siberian Branch of Russian Academy of Science, Yakutsk, Russia
| | - Alexey Vasilievich Krylov
- Laboratory of Heritable Pathology, Federal State Budgetary Scientific Institution “Yakut Science Center of Complex Medical Problems”, Yakutsk, Russia
| |
Collapse
|
7
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
8
|
Nysather J, Kaya E, Manka P, Gudsoorkar P, Syn WK. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease Cross Talk. ADVANCES IN KIDNEY DISEASE AND HEALTH 2023; 30:315-335. [PMID: 37657879 DOI: 10.1053/j.akdh.2023.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 09/03/2023]
Abstract
Nonalcoholic fatty liver disease is a multisystem condition with effects beyond the liver. The identification of chronic kidney disease as an independent mediator of nonalcoholic fatty liver disease or associated entity with shared cardiometabolic risk factors remains controversial and continues to draw scientific interest. With increasing prevalence of nonalcoholic fatty liver disease and lack of Food and Drug Administration approved therapies, these shared cardiometabolic risk factors have drawn significant attention. In this article, we review shared pathophysiological mechanisms between nonalcoholic fatty liver disease and chronic kidney disease along with current treatment strategies that might be useful for both disease processes.
Collapse
Affiliation(s)
- Jacob Nysather
- Division of Nephrology and Kidney C.A.R.E. Program, University of Cincinnati, OH
| | - Eda Kaya
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Paul Manka
- Department of Internal Medicine, University Hospital Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Bochum, Germany
| | - Prakash Gudsoorkar
- Division of Nephrology and Kidney C.A.R.E. Program, University of Cincinnati, OH
| | - Wing-Kin Syn
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, St. Louis, MO; Division of Gastroenterology and Hepatology, Medical University of South Carolina, Charleston, SC; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country, Euskal Herriko Unibertsitatea/Universidad del País Vasco, Leioa, Spain.
| |
Collapse
|
9
|
Begg TJA, Schmidt A, Kocher A, Larmuseau MHD, Runfeldt G, Maier PA, Wilson JD, Barquera R, Maj C, Szolek A, Sager M, Clayton S, Peltzer A, Hui R, Ronge J, Reiter E, Freund C, Burri M, Aron F, Tiliakou A, Osborn J, Behar DM, Boecker M, Brandt G, Cleynen I, Strassburg C, Prüfer K, Kühnert D, Meredith WR, Nöthen MM, Attenborough RD, Kivisild T, Krause J. Genomic analyses of hair from Ludwig van Beethoven. Curr Biol 2023; 33:1431-1447.e22. [PMID: 36958333 DOI: 10.1016/j.cub.2023.02.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 02/13/2023] [Indexed: 03/25/2023]
Abstract
Ludwig van Beethoven (1770-1827) remains among the most influential and popular classical music composers. Health problems significantly impacted his career as a composer and pianist, including progressive hearing loss, recurring gastrointestinal complaints, and liver disease. In 1802, Beethoven requested that following his death, his disease be described and made public. Medical biographers have since proposed numerous hypotheses, including many substantially heritable conditions. Here we attempt a genomic analysis of Beethoven in order to elucidate potential underlying genetic and infectious causes of his illnesses. We incorporated improvements in ancient DNA methods into existing protocols for ancient hair samples, enabling the sequencing of high-coverage genomes from small quantities of historical hair. We analyzed eight independently sourced locks of hair attributed to Beethoven, five of which originated from a single European male. We deemed these matching samples to be almost certainly authentic and sequenced Beethoven's genome to 24-fold genomic coverage. Although we could not identify a genetic explanation for Beethoven's hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease. Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven's severe liver disease, which culminated in his death. Unexpectedly, an analysis of Y chromosomes sequenced from five living members of the Van Beethoven patrilineage revealed the occurrence of an extra-pair paternity event in Ludwig van Beethoven's patrilineal ancestry.
Collapse
Affiliation(s)
- Tristan James Alexander Begg
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK; Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany.
| | - Axel Schmidt
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany
| | - Arthur Kocher
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Maarten H D Larmuseau
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Laboratory of Human Genetic Genealogy, Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; ARCHES - Antwerp Cultural Heritage Sciences, Faculty of Design Sciences, University of Antwerp, 2000 Antwerp, Belgium; Histories vzw, 9000 Gent, Belgium
| | | | | | - John D Wilson
- Austrian Academy of Sciences, 1030 Vienna, Austria; University of Vienna, 1010 Vienna, Austria
| | - Rodrigo Barquera
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Carlo Maj
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany; Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Sand 14, 72076 Tübingen, Germany; Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | | | - Stephen Clayton
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Alexander Peltzer
- Quantitative Biology Center (QBiC) University of Tübingen, Tübingen, Germany
| | - Ruoyun Hui
- MacDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK; Alan Turing Institute, 2QR, John Dodson House, London NW1 2DB, UK
| | | | - Ella Reiter
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany
| | - Cäcilia Freund
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Marta Burri
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Franziska Aron
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Anthi Tiliakou
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Joanna Osborn
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK
| | - Doron M Behar
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Guido Brandt
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - Isabelle Cleynen
- Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Christian Strassburg
- Department of Internal Medicine I, University Hospital Bonn, 53127 Bonn, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany
| | - William Rhea Meredith
- American Beethoven Society, San Jose State University, San Jose, CA 95192, USA; Ira F. Brilliant Center for Beethoven Studies, San Jose State University, San Jose, CA 95192, USA; School of Music and Dance, San Jose State University, San Jose, CA 95192, USA
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital of Bonn, Bonn 53127, Germany
| | - Robert David Attenborough
- MacDonald Institute for Archaeological Research, University of Cambridge, Cambridge CB2 3ER, UK; School of Archaeology & Anthropology, Australian National University, Canberra, ACT 0200, Australia
| | - Toomas Kivisild
- Department of Archaeology, University of Cambridge, CB2 3ER Cambridge, UK; Department of Human Genetics, Katholieke Universiteit Leuven, 3000 Leuven, Belgium; Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| | - Johannes Krause
- Institute for Archaeological Sciences, University of Tübingen, 72070 Tübingen, Germany; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany; Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany.
| |
Collapse
|
10
|
Association between Serum Uric Acid and Liver Enzymes in Adults Aged 20 Years and Older in the United States: NHANES 2005-2012. J Clin Med 2023; 12:jcm12020648. [PMID: 36675577 PMCID: PMC9864736 DOI: 10.3390/jcm12020648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Although the relationship between serum uric acid (SUA) and nonalcoholic fatty liver disease has been widely reported, the relationship between SUA and liver enzymes has rarely been reported. The purpose of this study was to evaluate the association of SUA levels with alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in populations aged 20 years and older in the United States. We analyzed 7165 individuals aged 20 years and older from the National Health and Nutrition Examination Survey (NHANES) in the United States. Weighted multiple linear regression models were used to analyze the relationship between SUA and ALT and AST. A generalized additive model and a smooth curve fitting were used to observe the linear relationship. SUA was positively correlated with ALT and AST. In addition, the overall increasing trend of ALT and SUA was observed across the SUA quartile groups. In the stratified analysis by sex and race, the SUA levels in male, female, Mexican American, and Non-Hispanic White individuals, and those of another race, were positively correlated with ALT and AST. However, the SUA levels in Non-Hispanic Black individuals had a nonlinear relationship with ALT and AST. In individuals aged 20 years and older in the United States (excluding Non-Hispanic Black individuals), SUA levels were positively associated with ALT and AST. Therefore, with a rise in SUA levels, liver function should be monitored or intervened with in people aged 20 years and older in the United States.
Collapse
|
11
|
Park J, MacLean MT, Lucas AM, Torigian DA, Schneider CV, Cherlin T, Xiao B, Miller JE, Bradford Y, Judy RL, Verma A, Damrauer SM, Ritchie MD, Witschey WR, Rader DJ. Exome-wide association analysis of CT imaging-derived hepatic fat in a medical biobank. Cell Rep Med 2022; 3:100855. [PMID: 36513072 PMCID: PMC9798024 DOI: 10.1016/j.xcrm.2022.100855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/22/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease is common and highly heritable. Genetic studies of hepatic fat have not sufficiently addressed non-European and rare variants. In a medical biobank, we quantitate hepatic fat from clinical computed tomography (CT) scans via deep learning in 10,283 participants with whole-exome sequences available. We conduct exome-wide associations of single variants and rare predicted loss-of-function (pLOF) variants with CT-based hepatic fat and perform cross-modality replication in the UK Biobank (UKB) by linking whole-exome sequences to MRI-based hepatic fat. We confirm single variants previously associated with hepatic fat and identify several additional variants, including two (FGD5 H600Y and CITED2 S198_G199del) that replicated in UKB. A burden of rare pLOF variants in LMF2 is associated with increased hepatic fat and replicates in UKB. Quantitative phenotypes generated from clinical imaging studies and intersected with genomic data in medical biobanks have the potential to identify molecular pathways associated with human traits and disease.
Collapse
Affiliation(s)
- Joseph Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew T MacLean
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anastasia M Lucas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Drew A Torigian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carolin V Schneider
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tess Cherlin
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brenda Xiao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason E Miller
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuki Bradford
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renae L Judy
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anurag Verma
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Scott M Damrauer
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Marylyn D Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Alsaif F, Al-hamoudi W, Alotaiby M, Alsadoon A, Almayouf M, Almadany H, Abuhaimed J, Ghufran N, Merajuddin A, Ali Khan I. Molecular Screening via Sanger Sequencing of the Genetic Variants in Non-Alcoholic Fatty Liver Disease Subjects in the Saudi Population: A Hospital-Based Study. Metabolites 2022; 12:metabo12121240. [PMID: 36557278 PMCID: PMC9784496 DOI: 10.3390/metabo12121240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, along with steatosis and non-alcoholic steatohepatitis (NASH), and is associated with cirrhosis and hepatocellular carcinoma. Candidate gene and genome-wide association studies have validated the relationships between NAFLD, NASH, PNPLA3, TM6SF2, and HFE. The present study utilized five polymorphisms in three genes: PNPLA3 (I148M and K434E) TM6SF2 (E167K), and HFE (H63D and C282Y), based on undocumented case−control studies in the Saudi Arabian population. A total of 95 patients with NAFLD and 78 non-NAFLD subjects were recruited. Genomic DNA was isolated, and polymerase chain reaction and Sanger sequencing were performed using specific primers for the I148M, K434E, E167K, H63D, and C282Y. NAFLD subjects were older when compared to controls and showed the significant association (p = 0.0001). Non-significant association was found between gender (p = 0.26). However, both weight and BMI were found to be associated. Hardy−Weinberg equilibrium analysis confirmed that H63D, I148M, and K434E polymorphisms were associated. Genotype analysis showed only K434E variant was associated with NAFLD and non-NAFLD (OR-2.16; 95% CI: 1.08−4.31; p = 0.02). However, other polymorphisms performed with NAFLD and NASH were not associated (p > 0.05), and similar analysis was found when ANOVA was performed (p > 0.05). In conclusion, we confirmed that K434E polymorphism showed a positive association in the Saudi population.
Collapse
Affiliation(s)
- Faisal Alsaif
- Surgery Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Waleed Al-hamoudi
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Medicine Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Maram Alotaiby
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Laboratories and Blood Bank Services Ministry of Health, Riyadh 12746, Saudi Arabia
- Correspondence: (M.A.); (I.A.K.)
| | - Amani Alsadoon
- Liver Disease Research Center, King Saud University Medical City, Riyadh 12746, Saudi Arabia
| | - Mohammed Almayouf
- Surgery Department, College of Medicine, Prince Sattam bin Abdulaziz University, Riyadh 11942, Saudi Arabia
| | - Hadeel Almadany
- Surgery Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawahir Abuhaimed
- College of Medicine, Al-Faisal University, Riyadh P.O. Box 400, Saudi Arabia
| | - Noman Ghufran
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
| | - Ahmed Merajuddin
- Molecular Genetic Pathology Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 12372, Saudi Arabia
- Research and Development Unit, Adela Inc. 610, University of Avenue, Toronto, ON M5G 2R5, Canada
| | - Imran Ali Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
- Correspondence: (M.A.); (I.A.K.)
| |
Collapse
|
13
|
Nakajima R, Sekiya M, Furuta Y, Miyamoto T, Sato M, Fukuda K, Hattori K, Suehara Y, Sakata-Yanagimoto M, Chiba S, Okajima Y, Matsuzaka T, Takase S, Takanashi M, Okazaki H, Takashima Y, Yuhara M, Mitani Y, Matsumoto N, Murayama Y, Ohyama Osawa M, Ohuchi N, Yamazaki D, Mori S, Sugano Y, Osaki Y, Iwasaki H, Suzuki H, Shimano H. A case of NASH with genetic predisposition successfully treated with an SGLT2 inhibitor: a possible involvement of mitochondrial dysfunction. Endocrinol Diabetes Metab Case Rep 2022; 2022:22-0368. [PMID: 36571472 PMCID: PMC9874953 DOI: 10.1530/edm-22-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/06/2022] [Indexed: 12/27/2022] Open
Abstract
Summary In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.
Collapse
Affiliation(s)
- Rikako Nakajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yasuhisa Furuta
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Takafumi Miyamoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Masashi Sato
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba
| | - Kuniaki Fukuda
- Department of Gastroenterology, Faculty of Medicine, University of Tsukuba
- Department of Gastroenterology, Kasumigaura Medical Center, 2-7-14 Shimotakatsu, Tsuchiura, Ibaraki, Japan
| | - Keiichiro Hattori
- Department of Hematology, Faculty of Medicine, University of Tsukuba
| | - Yasuhito Suehara
- Department of Hematology, Faculty of Medicine, University of Tsukuba
| | | | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba
| | - Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Satoru Takase
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Mikio Takanashi
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Okazaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yusuke Takashima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Mikiko Yuhara
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yuta Mitani
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Nako Matsumoto
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yuki Murayama
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Mariko Ohyama Osawa
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Nami Ohuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Daichi Yamazaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Sayuri Mori
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoko Sugano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hitoshi Iwasaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Kimura M, Iguchi T, Iwasawa K, Dunn A, Thompson WL, Yoneyama Y, Chaturvedi P, Zorn AM, Wintzinger M, Quattrocelli M, Watanabe-Chailland M, Zhu G, Fujimoto M, Kumbaji M, Kodaka A, Gindin Y, Chung C, Myers RP, Subramanian GM, Hwa V, Takebe T. En masse organoid phenotyping informs metabolic-associated genetic susceptibility to NASH. Cell 2022; 185:4216-4232.e16. [PMID: 36240780 PMCID: PMC9617783 DOI: 10.1016/j.cell.2022.09.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/01/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Genotype-phenotype associations for common diseases are often compounded by pleiotropy and metabolic state. Here, we devised a pooled human organoid-panel of steatohepatitis to investigate the impact of metabolic status on genotype-phenotype association. En masse population-based phenotypic analysis under insulin insensitive conditions predicted key non-alcoholic steatohepatitis (NASH)-genetic factors including the glucokinase regulatory protein (GCKR)-rs1260326:C>T. Analysis of NASH clinical cohorts revealed that GCKR-rs1260326-T allele elevates disease severity only under diabetic state but protects from fibrosis under non-diabetic states. Transcriptomic, metabolomic, and pharmacological analyses indicate significant mitochondrial dysfunction incurred by GCKR-rs1260326, which was not reversed with metformin. Uncoupling oxidative mechanisms mitigated mitochondrial dysfunction and permitted adaptation to increased fatty acid supply while protecting against oxidant stress, forming a basis for future therapeutic approaches for diabetic NASH. Thus, "in-a-dish" genotype-phenotype association strategies disentangle the opposing roles of metabolic-associated gene variant functions and offer a rich mechanistic, diagnostic, and therapeutic inference toolbox toward precision hepatology. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Masaki Kimura
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takuma Iguchi
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrew Dunn
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Wendy L Thompson
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Praneet Chaturvedi
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aaron M Zorn
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michelle Wintzinger
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Mattia Quattrocelli
- Division of Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Miki Watanabe-Chailland
- NMR-Based Metabolomics Core Facility, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Gaohui Zhu
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Masanobu Fujimoto
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Meenasri Kumbaji
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Asuka Kodaka
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan
| | | | | | - Robert P Myers
- Gilead Sciences, Foster City, CA 94404, USA; The Liver Company, Inc., Palo Alto, CA 94303, USA
| | - G Mani Subramanian
- Gilead Sciences, Foster City, CA 94404, USA; The Liver Company, Inc., Palo Alto, CA 94303, USA
| | - Vivian Hwa
- Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
15
|
Kabbani M, Michailidis E, Steensels S, Fulmer CG, Luna JM, Le Pen J, Tardelli M, Razooky B, Ricardo-Lax I, Zou C, Zeck B, Stenzel AF, Quirk C, Foquet L, Ashbrook AW, Schneider WM, Belkaya S, Lalazar G, Liang Y, Pittman M, Devisscher L, Suemizu H, Theise ND, Chiriboga L, Cohen DE, Copenhaver R, Grompe M, Meuleman P, Ersoy BA, Rice CM, de Jong YP. Human hepatocyte PNPLA3-148M exacerbates rapid non-alcoholic fatty liver disease development in chimeric mice. Cell Rep 2022; 40:111321. [PMID: 36103835 DOI: 10.1016/j.celrep.2022.111321] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 05/11/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Advanced non-alcoholic fatty liver disease (NAFLD) is a rapidly emerging global health problem associated with pre-disposing genetic polymorphisms, most strikingly an isoleucine to methionine substitution in patatin-like phospholipase domain-containing protein 3 (PNPLA3-I148M). Here, we study how human hepatocytes with PNPLA3 148I and 148M variants engrafted in the livers of broadly immunodeficient chimeric mice respond to hypercaloric diets. As early as four weeks, mice developed dyslipidemia, impaired glucose tolerance, and steatosis with ballooning degeneration selectively in the human graft, followed by pericellular fibrosis after eight weeks of hypercaloric feeding. Hepatocytes with the PNPLA3-148M variant, either from a homozygous 148M donor or overexpressed in a 148I donor background, developed microvesicular and severe steatosis with frequent ballooning degeneration, resulting in more active steatohepatitis than 148I hepatocytes. We conclude that PNPLA3-148M in human hepatocytes exacerbates NAFLD. These models will facilitate mechanistic studies into human genetic variant contributions to advanced fatty liver diseases.
Collapse
Affiliation(s)
- Mohammad Kabbani
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Sandra Steensels
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Clifton G Fulmer
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA; Robert J. Tomsich Pathology and Laboratory Medicine Institute, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Matteo Tardelli
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Brandon Razooky
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Chenhui Zou
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Briana Zeck
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Corrine Quirk
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Serkan Belkaya
- St. Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Gadi Lalazar
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA; Laboratory of Cellular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Meredith Pittman
- Department of Pathology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, Ghent, Belgium
| | | | - Neil D Theise
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - Luis Chiriboga
- Department of Pathology, NYU Langone, New York, NY 10028, USA
| | - David E Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | | | - Markus Grompe
- Yecuris Corporation, Tualatin, OR 97062, USA; Department of Pediatrics, Oregon Stem Cell Center, Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Ghent University, Ghent, Belgium
| | - Baran A Ersoy
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Ype P de Jong
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, 413 East 69th Street, BB626, New York, NY 10065, USA.
| |
Collapse
|
16
|
Ericson E, Bergenholm L, Andréasson AC, Dix CI, Knöchel J, Hansson SF, Lee R, Schumi J, Antonsson M, Fjellström O, Nasr P, Liljeblad M, Carlsson B, Kechagias S, Lindén D, Ekstedt M. Hepatic patatin-like phospholipase domain-containing 3 levels are increased in I148M risk allele carriers and correlate with NAFLD in humans. Hepatol Commun 2022; 6:2689-2701. [PMID: 35833455 PMCID: PMC9512469 DOI: 10.1002/hep4.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022] Open
Abstract
In nonalcoholic fatty liver disease (NAFLD) the patatin‐like phospholipase domain‐containing 3 (PNPLA3) rs738409 variant is a contributor. In mice, the Pnpla3 148M variant accumulates on lipid droplets and probably leads to sequestration of a lipase cofactor leading to impaired mobilization of triglycerides. To advance our understanding of the localization and abundance of PNPLA3 protein in humans, we used liver biopsies from patients with NAFLD to investigate the link to NAFLD and the PNPLA3 148M genotype. We experimentally qualified an antibody against human PNPLA3. Hepatic PNPLA3 protein fractional area and localization were determined by immunohistochemistry in biopsies from a well‐characterized NAFLD cohort of 67 patients. Potential differences in hepatic PNPLA3 protein levels among patients related to degree of steatosis, lobular inflammation, ballooning, and fibrosis, and PNPLA3 I148M gene variants were assessed. Immunohistochemistry staining in biopsies from patients with NAFLD showed that hepatic PNPLA3 protein was predominantly localized to the membranes of small and large lipid droplets in hepatocytes. PNPLA3 protein levels correlated strongly with steatosis grade (p = 0.000027) and were also significantly higher in patients with lobular inflammation (p = 0.009), ballooning (p = 0.022), and significant fibrosis (stage 2–4, p = 0.014). In addition, PNPLA3 levels were higher in PNPLA3 rs738409 148M (CG, GG) risk allele carriers compared to 148I (CC) nonrisk allele carriers (p = 0.0029). Conclusion: PNPLA3 protein levels were associated with increased hepatic lipid content and disease severity in patients with NAFLD and were higher in PNPLA3 rs738409 (148M) risk allele carriers. Our hypothesis that increased hepatic levels of PNPLA3 may be part of the pathophysiological mechanism of NAFLD is supported.
Collapse
Affiliation(s)
- Elke Ericson
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Linnéa Bergenholm
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne-Christine Andréasson
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Carly I Dix
- Affinity Reagents Generation, Biologics Engineering and Oncology Tumor-Targeted Delivery, AstraZeneca, Cambridge, UK
| | - Jane Knöchel
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara F Hansson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Richard Lee
- Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA.,Preclinical Pharmacology and Translational Medicine, Verve Therapeutics, Cambridge, Massachusetts, USA
| | - Jennifer Schumi
- Early Biometrics and Statistical Innovation, Data Science and Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Madeleine Antonsson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ola Fjellström
- Projects, Cardiovascular, Renal, and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrik Nasr
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Mathias Liljeblad
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Björn Carlsson
- Early Clinical Development, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
17
|
The Role of Insulin Resistance in Fueling NAFLD Pathogenesis: From Molecular Mechanisms to Clinical Implications. J Clin Med 2022; 11:jcm11133649. [PMID: 35806934 PMCID: PMC9267803 DOI: 10.3390/jcm11133649] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a predominant hepatopathy that is rapidly becoming the most common cause of hepatocellular carcinoma worldwide. The close association with metabolic syndrome’s extrahepatic components has suggested the nature of the systemic metabolic-related disorder based on the interplay between genetic, nutritional, and environmental factors, creating a complex network of yet-unclarified pathogenetic mechanisms in which the role of insulin resistance (IR) could be crucial. This review detailed the clinical and pathogenetic evidence involved in the NAFLD–IR relationship, presenting both the classic and more innovative models. In particular, we focused on the reciprocal effects of IR, oxidative stress, and systemic inflammation on insulin-sensitivity disruption in critical regions such as the hepatic and the adipose tissue, while considering the impact of genetics/epigenetics on the regulation of IR mechanisms as well as nutrients on specific insulin-related gene expression (nutrigenetics and nutrigenomics). In addition, we discussed the emerging capability of the gut microbiota to interfere with physiological signaling of the hormonal pathways responsible for maintaining metabolic homeostasis and by inducing an abnormal activation of the immune system. The translation of these novel findings into clinical practice could promote the expansion of accurate diagnostic/prognostic stratification tools and tailored pharmacological approaches.
Collapse
|
18
|
The association between rs1260326 with the risk of NAFLD and the mediation effect of triglyceride on NAFLD in the elderly Chinese Han population. Aging (Albany NY) 2022; 14:2736-2747. [PMID: 35333773 PMCID: PMC9004570 DOI: 10.18632/aging.203970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022]
Abstract
Background: Accumulated studies have pointed out the striking association between variants in or near APOC3, GCKR, PNPLA3, and nonalcoholic fatty liver disease (NAFLD) at various ages from multiple ethnic groups. This association remained unclear in the Chinese Han elderly population, and whether this relationship correlated to any clinical parameters was also unclear. Objectives: This study aims to decipher the complex relevance between gene polymorphisms, clinical parameters, and NAFLD by association study and mediation analysis. Methods: Eight SNPs (rs2854116, rs2854117, rs780093, rs780094, rs1260362, rs738409, rs2294918, and rs2281135) within APOC3, GCKR, and PNPLA3 were genotyped using the MassARRAY® platform in a large Chinese Han sample comprising of 733 elderly NAFLD patients and 824 age- and ethnic-matched controls. Association and mediation analysis were employed by R. Results: The genotypic frequencies of rs1260326 and rs780094 were significantly different between NAFLD and control (rs1260326: P=0.004, Pcorr=0.020, OR [95%CI]= 0.69 [0.54-0.89]; rs780094: P=0.005, Pcorr=0.025, OR [95%CI]= 0.70 [0.55-0.90]). Particularly, an increased triglyceride level was observed in carriers of rs1260326 T allele (1.94±1.19 mmol/L) compared with non-carriers (1.73±1.05 mmol/L).no significant results were observed in rs780094. Notably, triglyceride levels had considerably indirect impacts on association between NAFLD and rs1260326 (β =0.01, 95% CI: 0.01–0.02), indicating that 12.7% of the association of NAFLD with rs1260326 was mediated by triglyceride levels. Conclusions: Our results identified a prominent relationship between GCKR rs1260326 and NAFLD, and highlighted the mediated effect of triglyceride levels on the that association in the Chinese Han elderly.
Collapse
|
19
|
Fassio E, Barreyro FJ, Pérez MS, Dávila D, Landeira G, Gualano G, Ruffillo G. Hepatocellular carcinoma in patients with metabolic dysfunction-associated fatty liver disease: Can we stratify at-risk populations? World J Hepatol 2022; 14:354-371. [PMID: 35317172 PMCID: PMC8891669 DOI: 10.4254/wjh.v14.i2.354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/22/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a new nomenclature recently proposed by a panel of international experts so that the entity is defined based on positive criteria and linked to pathogenesis, replacing the traditional non-alcoholic fatty liver disease (NAFLD), a definition based on exclusion criteria. NAFLD/MAFLD is currently the most common form of chronic liver disease worldwide and is a growing risk factor for development of hepatocellular carcinoma (HCC). It is estimated than 25% of the global population have NAFLD and is projected to increase in the next years. Major Scientific Societies agree that surveillance for HCC should be indicated in patients with NAFLD/ MAFLD and cirrhosis but differ in non-cirrhotic patients (including those with advanced fibrosis). Several studies have shown that the annual incidence rate of HCC in NAFLD-cirrhosis is greater than 1%, thus surveillance for HCC is cost-effective. Risk factors that increase HCC incidence in these patients are male gender, older age, presence of diabetes and any degree of alcohol consumption. In non-cirrhotic patients, the incidence of HCC is much lower and variable, being a great challenge to stratify the risk of HCC in this group. Furthermore, large epidemiological studies based on the general population have shown that diabetes and obesity significantly increase risk of HCC. Some genetic variants may also play a role modifying the HCC occurrence among patients with NAFLD. The purpose of this review is to discuss the epidemiology, clinical and genetic risk factors that may influence the risk of HCC in NAFLD/MAFLD patients and propose screening strategy to translate into better patient care.
Collapse
Affiliation(s)
- Eduardo Fassio
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Fernando J Barreyro
- Biotechnology Institute of Misiones, Faculty of Chemical and Natural Sciences, National University of Misiones, Posadas N3300, Misiones, Argentina
| | - M Soledad Pérez
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Diana Dávila
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Graciela Landeira
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Gisela Gualano
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| | - Gabriela Ruffillo
- Hepatology Section, Gastroenterology Service, Hospital Nacional Prof. Alejandro Posadas, El Palomar 1684, Buenos Aires, Argentina
| |
Collapse
|
20
|
Waitlist mortality and transplant free survival in Hispanic patients listed for liver transplant using the UNOS database. Ann Hepatol 2022; 23:100304. [PMID: 33444852 DOI: 10.1016/j.aohep.2021.100304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES After the implementation of "Share 35", several concerns arose such as the potential to increase travel distance, costs, and decreased liver availability. These elements could have a negative impact on waitlist outcomes among ethnic minorities. We aimed to determine waitlist survival after the implementation of the Share 35 policy in non-Hispanic white and Hispanic patients. MATERIALS AND METHODS We identified non-Hispanic whites and Hispanics who were listed for liver transplantation from June 18th, 2013 to June 18, 2018. We excluded pediatric patients, patients with acute hepatic necrosis, re-transplants, multiorgan transplant, living donor, and exception cases. The primary outcome was death or removal from the waitlist due to clinical deterioration. We used competing risk analysis to compare waitlist survival between the two groups. RESULTS There were 23,340 non-Hispanic whites and 4938 Hispanics listed for transplant. On competing risk analysis, Hispanic patients had a higher risk of being removed from the waitlist for death or clinical deterioration compared to their counterpart (SHR 1.23, 95% CI 1.13-1.34; P < 0.001). CONCLUSION After the implementation of Share 35, disparities are still present and continue to negatively impact outcomes in minority populations especially Hispanic patients.
Collapse
|
21
|
Cherubini A, Casirati E, Tomasi M, Valenti L. PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opin Ther Targets 2021; 25:1033-1043. [PMID: 34904923 DOI: 10.1080/14728222.2021.2018418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. AREAS COVERED The scope of this review is to briefly describe the PNPLA3 gene and protein function before discussing therapeutic approaches for fatty liver aiming at this target. Literature review was carried out searching through PubMed and clinicaltrials.gov website and focusing on the most recent works and reviews. EXPERT OPINION The main therapeutic strategies under development for NAFLD have shown variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease susceptibility.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa Tomasi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
22
|
Metabolic Associated Fatty Liver Disease in Children-From Atomistic to Holistic. Biomedicines 2021; 9:biomedicines9121866. [PMID: 34944682 PMCID: PMC8698557 DOI: 10.3390/biomedicines9121866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease has become the most common chronic liver disease in children due to the alarmingly increasing incidence of pediatric obesity. It is well-documented that MAFLD prevalence is directly related to an incremental increase in BMI. The multiple hits theory was designed for providing insights regarding the pathogenesis of steatohepatitis and fibrosis in MAFLD. Recent evidence suggested that the microbiome is a crucial contributor in the pathogenesis of MAFLD. Aside from obesity, the most common risk factors for pediatric MAFLD include male gender, low-birth weight, family history of obesity, MAFLD, insulin resistance, type 2 diabetes mellitus, obstructive sleep apnea, and polycystic ovarium syndrome. Usually, pediatric patients with MAFLD have nonspecific symptoms consisting of fatigue, malaise, or diffuse abdominal pain. A wide spectrum of biomarkers was proposed for the diagnosis of MAFLD and NASH, as well as for quantifying the degree of fibrosis, but liver biopsy remains the key diagnostic and staging tool. Nevertheless, elastography-based methods present promising results in this age group as potential non-invasive replacers for liver biopsy. Despite the lack of current guidelines regarding MAFLD treatment in children, lifestyle intervention was proven to be crucial in the management of these patients.
Collapse
|
23
|
Pirola CJ, Sookoian S. PNPLA3 and COVID-19 outcomes: Thinking outside the box might explain the biology behind pleiotropic effects of rs738409 on the immune system. Liver Int 2021; 41:2801-2804. [PMID: 34455682 PMCID: PMC8662082 DOI: 10.1111/liv.15043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/21/2022]
Affiliation(s)
- Carlos J. Pirola
- School of MedicineInstitute of Medical Research A LanariUniversity of Buenos AiresCiudad Autónoma de Buenos AiresBuenos AiresArgentina,Department of Molecular Genetics and Biology of Complex DiseasesNational Scientific and Technical Research Council (CONICET)University of Buenos AiresInstitute of Medical Research (IDIM)Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
| | - Silvia Sookoian
- School of MedicineInstitute of Medical Research A LanariUniversity of Buenos AiresCiudad Autónoma de Buenos AiresBuenos AiresArgentina,Department of Clinical and Molecular HepatologyNational Scientific and Technical Research Council (CONICET)University of Buenos AiresInstitute of Medical Research (IDIM)Ciudad Autónoma de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
24
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
25
|
Pafili K, Roden M. Nonalcoholic fatty liver disease (NAFLD) from pathogenesis to treatment concepts in humans. Mol Metab 2021; 50:101122. [PMID: 33220492 PMCID: PMC8324683 DOI: 10.1016/j.molmet.2020.101122] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) comprises hepatic alterations with increased lipid accumulation (steatosis) without or with inflammation (nonalcoholic steatohepatitis, NASH) and/or fibrosis in the absence of other causes of liver disease. NAFLD is developing as a burgeoning health challenge, mainly due to the worldwide obesity and diabetes epidemics. SCOPE OF REVIEW This review summarizes the knowledge on the pathogenesis underlying NAFLD by focusing on studies in humans and on hypercaloric nutrition, including effects of saturated fat and fructose, as well as adipose tissue dysfunction, leading to hepatic lipotoxicity, abnormal mitochondrial function, and oxidative stress, and highlights intestinal dysbiosis. These mechanisms are discussed in the context of current treatments targeting metabolic pathways and the results of related clinical trials. MAJOR CONCLUSIONS Recent studies have provided evidence that certain conditions, for example, the severe insulin-resistant diabetes (SIRD) subgroup (cluster) and the presence of an increasing number of gene variants, seem to predispose for excessive risk of NAFLD and its accelerated progression. Recent clinical trials have been frequently unsuccessful in halting or preventing NAFLD progression, perhaps partly due to including unselected cohorts in later stages of NAFLD. On the basis of this literature review, this study proposed screening in individuals with the highest genetic or acquired risk of disease progression, for example, the SIRD subgroup, and developing treatment concepts targeting the earliest pathophysiolgical alterations, namely, adipocyte dysfunction and insulin resistance.
Collapse
Affiliation(s)
- Kalliopi Pafili
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute of Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Düsseldorf, Germany; German Center for Diabetes Research, München-Neuherberg, Germany; Division of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
26
|
Juanola O, Martínez-López S, Francés R, Gómez-Hurtado I. Non-Alcoholic Fatty Liver Disease: Metabolic, Genetic, Epigenetic and Environmental Risk Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105227. [PMID: 34069012 PMCID: PMC8155932 DOI: 10.3390/ijerph18105227] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/09/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of chronic liver disease in the Western world, probably due to the growing prevalence of obesity, metabolic diseases, and exposure to some environmental agents. In certain patients, simple hepatic steatosis can progress to non-alcoholic steatohepatitis (NASH), which can sometimes lead to liver cirrhosis and its complications including hepatocellular carcinoma. Understanding the mechanisms that cause the progression of NAFLD to NASH is crucial to be able to control the advancement of the disease. The main hypothesis considers that it is due to multiple factors that act together on genetically predisposed subjects to suffer from NAFLD including insulin resistance, nutritional factors, gut microbiota, and genetic and epigenetic factors. In this article, we will discuss the epidemiology of NAFLD, and we overview several topics that influence the development of the disease from simple steatosis to liver cirrhosis and its possible complications.
Collapse
Affiliation(s)
- Oriol Juanola
- Gastroenterology and Hepatology, Translational Research Laboratory, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Sebastián Martínez-López
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
| | - Rubén Francés
- Clinical Medicine Department, Miguel Hernández University, 03550 San Juan de Alicante, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Isabel Gómez-Hurtado
- Alicante Institute for Health and Biomedical Research (ISABIAL), Hospital General Universitario de Alicante, 03010 Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
27
|
Bianco C, Casirati E, Malvestiti F, Valenti L. Genetic predisposition similarities between NASH and ASH: Identification of new therapeutic targets. JHEP Rep 2021; 3:100284. [PMID: 34027340 PMCID: PMC8122117 DOI: 10.1016/j.jhepr.2021.100284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Fatty liver disease can be triggered by a combination of excess alcohol, dysmetabolism and other environmental cues, which can lead to steatohepatitis and can evolve to acute/chronic liver failure and hepatocellular carcinoma, especially in the presence of shared inherited determinants. The recent identification of the genetic causes of steatohepatitis is revealing new avenues for more effective risk stratification. Discovery of the mechanisms underpinning the detrimental effect of causal mutations has led to some breakthroughs in the comprehension of the pathophysiology of steatohepatitis. Thanks to this approach, hepatocellular fat accumulation, altered lipid droplet remodelling and lipotoxicity have now taken centre stage, while the role of adiposity and gut-liver axis alterations have been independently validated. This process could ignite a virtuous research cycle that, starting from human genomics, through omics approaches, molecular genetics and disease models, may lead to the development of new therapeutics targeted to patients at higher risk. Herein, we also review how this knowledge has been applied to: a) the study of the main PNPLA3 I148M risk variant, up to the stage of the first in-human therapeutic trials; b) highlight a role of MBOAT7 downregulation and lysophosphatidyl-inositol in steatohepatitis; c) identify IL-32 as a candidate mediator linking lipotoxicity to inflammation and liver disease. Although this precision medicine drug discovery pipeline is mainly being applied to non-alcoholic steatohepatitis, there is hope that successful products could be repurposed to treat alcohol-related liver disease as well.
Collapse
Key Words
- AA, arachidonic acid
- ASH, alcoholic steatohepatitis
- DAG, diacylglycerol
- DNL, de novo lipogenesis
- ER, endoplasmic reticulum
- FFAs, free fatty acids
- FGF19, fibroblast growth factor 19
- FLD, fatty liver disease
- FXR, farnesoid X receptor
- GCKR, glucokinase regulator
- GPR55, G protein-coupled receptor 55
- HCC, hepatocellular carcinoma
- HFE, homeostatic iron regulator
- HSC, hepatic stellate cells
- HSD17B13, hydroxysteroid 17-beta dehydrogenase 13
- IL-, interleukin-
- IL32
- LDs, lipid droplets
- LPI, lysophosphatidyl-inositol
- MARC1, mitochondrial amidoxime reducing component 1
- MBOAT7
- MBOAT7, membrane bound O-acyltransferase domain-containing 7
- NASH, non-alcoholic steatohepatitis
- PNPLA3
- PNPLA3, patatin like phospholipase domain containing 3
- PPAR, peroxisome proliferator-activated receptor
- PRS, polygenic risk score
- PUFAs, polyunsaturated fatty acids
- SREBP, sterol response element binding protein
- TAG, triacylglycerol
- TNF-α, tumour necrosis factor-α
- alcoholic liver disease
- cirrhosis
- fatty liver disease
- genetics
- interleukin-32
- non-alcoholic fatty liver disease
- precision medicine
- steatohepatitis
- therapy
Collapse
Affiliation(s)
- Cristiana Bianco
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Malvestiti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
28
|
Han YH, Kim HJ, Lee MO. RORα regulates hepatic lipolysis by inducing transcriptional expression of PNPLA3 in mice. Mol Cell Endocrinol 2021; 522:111122. [PMID: 33347955 DOI: 10.1016/j.mce.2020.111122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver diseases (NAFLDs) are characterized by excessive triacylglycerol (TAG) accumulation in the liver which contributes to hepatocyte dysfunction, inflammation, and fibrosis. Patatin-like phospholipase domain-containing 3 (PNPLA3; also known as adiponutrin) has emerged as an important enzyme leading to hepatic TAG hydrolysis. Because the I148M substitution in the PNPLA3 gene markedly reduces hepatic TAG hydrolase activity, this genetic variation is strongly associated with increased hepatic TAG in the full spectrum of NAFLDs. The Retinoic acid-related orphan receptor α (RORα) regulates various target genes related to lipid metabolism. Here, we investigated the role of RORα on PNPLA3-mediated hepatic lipid hydrolysis. With blockade of lipid esterification and β-oxidation, RORα enhanced TAG hydrolysis, resulting in increased free glycerol levels. We found a putative RORα response element on the upstream of PNPLA3 gene that was activated by RORα. Furthermore, the inhibitory action of cJUN on the RORα/PNPLA3 axis was enhanced under lipid stress and contributed to hepatic lipid accumulation. In summary, we showed for the first time that RORα activates the transcription of PNPLA3, which suggests that RORα and its ligands represent potential precision therapeutic approaches for NAFLDs.
Collapse
Affiliation(s)
- Yong-Hyun Han
- College of Pharmacy, Seoul National University, Seoul, South Korea; Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyeon-Ji Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Mi-Ock Lee
- College of Pharmacy, Seoul National University, Seoul, South Korea; Bio-MAX Institute, Seoul National University, Seoul, South Korea; Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
29
|
Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C, Giordano M, Salvatore T, Sasso FC. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel) 2021; 10:270. [PMID: 33578702 PMCID: PMC7916383 DOI: 10.3390/antiox10020270] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MS) are two different entities sharing common clinical and physio-pathological features, with insulin resistance (IR) as the most relevant. Large evidence leads to consider it as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS. Therapeutic strategies remain still unclear, but lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS, and both clinical and histologic liver picture. NAFLD and IR are bidirectionally correlated and, consequently, the development of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. In turn, type 2 diabetes is a well-known risk factor for multiorgan damage, including an involvement of cardiovascular system, kidney and peripheral nervous system. The increased MS incidence worldwide, above all due to changes in diet and lifestyle, is associated with an equally significant increase in NAFLD, with a subsequent rise in both morbidity and mortality due to both metabolic, hepatic and cardiovascular diseases. Therefore, the slowdown in the increase of the "bad company" constituted by MS and NAFLD, with all the consequent direct and indirect costs, represents one of the main challenges for the National Health Systems.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Chiara Silvestri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| |
Collapse
|
30
|
Martin K, Hatab A, Athwal VS, Jokl E, Piper Hanley K. Genetic Contribution to Non-alcoholic Fatty Liver Disease and Prognostic Implications. Curr Diab Rep 2021; 21:8. [PMID: 33544287 PMCID: PMC7864835 DOI: 10.1007/s11892-021-01377-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Non-alcoholic fatty liver disease (NAFLD) is a major and increasing health burden, with the potential to overwhelm hepatology services. However, only a minority of patients develop advanced liver disease. The challenge is early identification of patients at risk of progression. This review aims to summarize current knowledge on the genetic predisposition to NAFLD, and its implications for prognostication and risk stratification. RECENT FINDINGS PNPLA3-I148M is the most robustly associated genetic variant with NAFLD. Recently, variants in TM6SF2, MBOAT7, GCKR and HSD17B13 have also been implicated. NAFLD is a complex disease, and any one genetic variant alone is insufficient for risk stratification, but combining multiple genetic variants with other parameters is a promising strategy. It is anticipated that, in the near future, analysis of data from large-scale prospective cohorts will reveal NAFLD subtypes and enable the development of prognostic models. This will facilitate risk stratification of patients, enabling optimisation of resources to effectively manage the NAFLD epidemic.
Collapse
Affiliation(s)
- Katherine Martin
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road M13 9PT, Manchester, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
- Manchester University NHS Foundation Trust, Oxford Road M13 9PT, Manchester, UK.
| | - Anas Hatab
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road M13 9PT, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road M13 9PT, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road M13 9PT, Manchester, UK
| | - Elliot Jokl
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road M13 9PT, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road M13 9PT, Manchester, UK.
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
31
|
Choudhary NS, Duseja A. Genetic and epigenetic disease modifiers: non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD). Transl Gastroenterol Hepatol 2021; 6:2. [PMID: 33409397 DOI: 10.21037/tgh.2019.09.06] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022] Open
Abstract
Inter-individual and inter-ethnic differences and difference in the severity and progression of liver disease among patients with non-alcoholic fatty liver disease (NAFLD) and alcoholic liver disease (ALD) suggests the involvement of genetic and epigenetic factors in their pathogenesis. This article reviews the genetic and epigenetic modifiers in patients with NAFLD and ALD. Evidence regarding the genetic and epigenetic disease modifiers of NAFLD and ALD was reviewed by searching the available literature. Both genome wide association studies (GWAS) and candidate gene studies pertaining to the pathogenesis in both diseases were included. Clinical implications of the available information are also discussed. Several studies have shown association of both NAFLD and ALD with I148M PNPLA3 variant. In addition to the higher prevalence of hepatic steatosis, the I148M PNPLA3 variant is also associated with severity of liver disease and risk of hepatocellular carcinoma (HCC). TM6SF2 is the other genetic variant shown to be significantly associated with hepatic steatosis and cirrhosis in patients with NAFLD and ALD. The Membrane bound O-acyltransferase domain-containing 7 (MBOAT7) genetic variant is also associated with both NAFLD and ALD. In addition to these mutations, several variants related to the genes involved in glucose metabolism, insulin resistance, lipid metabolism, oxidative stress, inflammatory pathways, fibrosis have also been shown to be the disease modifiers in patients with NAFLD and ALD. Epigenetics involving several micro RNAs and DNA methylation could also modify the disease course in NAFLD and ALD. In conclusion the available literature suggests that genetics and epigenetics are involved in the pathogenesis of NAFLD and ALD which may affect the disease prevalence, severity and response to treatment in these patients.
Collapse
Affiliation(s)
- Narendra Singh Choudhary
- Institute of Liver Transplantation and Regenerative Medicine, Medanta, The Medicity, Gurgaon, Delhi (NCR), India
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
32
|
Albhaisi S, Sanyal AJ. Gene-Environmental Interactions as Metabolic Drivers of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:665987. [PMID: 34040583 PMCID: PMC8142267 DOI: 10.3389/fendo.2021.665987] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a leading cause of chronic liver disease worldwide in the past few decades as a consequence of the global obesity epidemic and is associated with significant morbidity and mortality. NAFLD is closely associated with components of the metabolic syndrome, type 2 diabetes mellitus and cardiovascular disease, suggesting a plausible metabolic mechanistic basis. Metabolic inflexibility is considered a nidus for NAFLD pathogenesis, causing lipotoxicity, mitochondrial dysfunction and cellular stress leading to inflammation, apoptosis and fibrogenesis, thus mediating disease progression into nonalcoholic steatohepatitis (NASH) and ultimately cirrhosis. In this review, we describe they key metabolic drivers that contribute to development of NAFLD and NASH, and we explain how NASH is a metabolic disease. Understanding the metabolic basis of NASH is crucial for the prevention and treatment of this disease.
Collapse
Affiliation(s)
- Somaya Albhaisi
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Arun J. Sanyal,
| |
Collapse
|
33
|
Schwartz BE, Rajagopal V, Smith C, Cohick E, Whissell G, Gamboa M, Pai R, Sigova A, Grossman I, Bumcrot D, Sasidharan K, Romeo S, Sehgal A, Pingitore P. Discovery and Targeting of the Signaling Controls of PNPLA3 to Effectively Reduce Transcription, Expression, and Function in Pre-Clinical NAFLD/NASH Settings. Cells 2020; 9:cells9102247. [PMID: 33036387 PMCID: PMC7600576 DOI: 10.3390/cells9102247] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging worldwide epidemics, projected to become the leading cause of liver transplants. The strongest genetic risk factor for NAFLD/NASH susceptibility and progression is a single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 gene (PNPLA3), rs738409, encoding the missense mutation I148M. This aminoacidic substitution interferes with the normal remodeling of lipid droplets in hepatocytes. It is also thought to play a key role in promoting liver fibrosis by inhibiting the release of retinol from hepatic stellate cells. Reducing PNPLA3 levels in individuals homozygous for 148M may be an effective treatment for the entire spectrum of NAFLD, based on gene dosage analysis in the human population, as well as the protective effect of another naturally occurring SNP (rs2294918) in PNPLA3 which, when co-inherited, reduces PNPLA3 mRNA levels to 50% and counteracts disease risk. By screening a clinical compound library targeting specific signaling pathways active in primary human hepatocytes, we identified momelotinib, a drug evaluated in clinical trials to treat myelofibrosis, as a potent down-regulator of PNPLA3 expression, across all genotypes. We found that momelotinib treatment yielded >80% reduction in PNPLA3 mRNA in human primary hepatocytes and stellate cells, as well as in vivo via acute and chronic treatment of WT mice. Using a human multilineage 3D spheroid model of NASH homozygous for the PNPLA3 mutant protein, we additionally show that it decreases PNPLA3 mRNA as well as intracellular lipid content. Furthermore, we show that the effects on PNPLA3 coincide with changes in chromatin accessibility within regulatory regions of the PNPLA3 locus, consistent with inhibition occurring at the level of transcription. In addition to its primary reported targets, the JAK kinases, momelotinib inhibits several non-JAK kinases, including ACVR1. Using a combination of targeted siRNA knockdowns and signaling pathway perturbations, we show that momelotinib reduces the expression of the PNPLA3 gene largely through the inhibition of BMP signaling rather than the JAK/STAT pathway. Overall, our work identified momelotinib as a potential NASH therapeutic and uncovered previously unrecognized connections between signaling pathways and PNPLA3. These pathways may be exploited by drug modalities to “tune down” the level of gene expression, and therefore offer a potential therapeutic benefit to a high at-risk subset of NAFLD/NASH patients.
Collapse
Affiliation(s)
- Brian E. Schwartz
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
- Correspondence: (B.E.S.); (P.P.); Tel.: +1-617-651-8867 (B.E.S.)
| | - Vaishnavi Rajagopal
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Cynthia Smith
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Evan Cohick
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Gavin Whissell
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Mario Gamboa
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Rutuja Pai
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Alla Sigova
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Iris Grossman
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - David Bumcrot
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Kavitha Sasidharan
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden; (K.S.); (S.R.)
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden; (K.S.); (S.R.)
| | - Alfica Sehgal
- CAMP4 Therapeutics, Cambridge, MA 02139, USA; (V.R.); (C.S.); (E.C.); (G.W.); (M.G.); (R.P.); (A.S.); (I.G.); (D.B.); (A.S.)
| | - Piero Pingitore
- Department of Molecular and Clinical Medicine, University of Gothenburg, SE-413 45 Gothenburg, Sweden; (K.S.); (S.R.)
- Correspondence: (B.E.S.); (P.P.); Tel.: +1-617-651-8867 (B.E.S.)
| |
Collapse
|
34
|
Acierno C, Caturano A, Pafundi PC, Nevola R, Adinolfi LE, Sasso FC. Nonalcoholic fatty liver disease and type 2 diabetes: pathophysiological mechanisms shared between the two faces of the same coin. EXPLORATION OF MEDICINE 2020. [DOI: 10.37349/emed.2020.00019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pathophysiological mechanisms underlying the close relationship between nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are multiple, complex and only partially known. The purpose of this paper was to review the current knowledge of these mechanisms in a unified manner. Subjects with NAFLD and T2DM have established insulin resistance (IR), which exacerbates the two comorbidities. IR worsens NAFLD by increasing the accumulation of free fatty acids (FFAs) in the liver. This occurs due to an increase in the influx of FFAs from peripheral adipose tissue by the activation of hormone-sensitive lipase. In addition, there is de novo increased lipogenesis, a transcription factor, the sterols regulatory element-binding transcription factor 1c (SREBP-1c), which activates the expression of several genes strongly promotes lipogenesis by the liver and facilitate storage of triglycerides. Lipids accumulation in the liver induces a chronic stress in the endoplasmic reticulum of the hepatocytes. Genome-wide association studies have identified genetic variants associated with NAFLD severity, but unrelated to IR. In particular, the alteration of patatin-like phospholipase domain-containing protein 3 contributes to the susceptibility to NAFLD. Furthermore, the lipotoxicity of ceramides and diacylglycerol, well known in T2DM, triggers a chronic inflammatory process favoring the progression from hepatic steatosis to steatohepatitis. Reactive oxygen species produced by mitochondrial dysfunction trigger both liver inflammation and beta-cells damage, promoting the progression of both NAFLD and T2DM. The close association between NAFLD and T2DM is bidirectional, as T2DM may trigger both NAFLD onset and its progression, but NAFLD itself may contribute to the development of IR and T2DM. Future studies on the mechanisms will have to deepen the knowledge of the interaction between the two pathologies and should allow the identification of new therapeutic targets for the treatment of NAFLD, currently substantially absent.
Collapse
Affiliation(s)
- Carlo Acierno
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Riccardo Nevola
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, I-80138 Naples, Ital
| |
Collapse
|
35
|
Anisonyan AV, Sandler YG, Khaimenova TY, Keyan VA, Saliev KG, Sbikina ES, Vinnitskaya EV. [Non-alcoholic fatty liver disease and type 2 diabetes mellitus: issues of the liver fibrosis diagnostics]. TERAPEVT ARKH 2020; 92:73-78. [PMID: 33346465 DOI: 10.26442/00403660.2020.08.000770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 12/20/2022]
Abstract
AIM To evaluate the frequency of liver fibrosis progression to stage 34 among patients with non-alcoholic fatty liver disease (NAFLD), type 2 diabetes and obesity, to identify predictors of severe liver fibrosis, to propose an algorithm for diagnosing fibrosis in this category of patients. MATERIALS AND METHODS 160 patients with NAFLD, type 2 diabetes mellitus (DM) and obesity and 50 patients with NAFLD without diabetes were comprehensively examined. Patients underwent laboratory examination (clinical blood test, biochemical analysis, immunoglobulins G, M, autoantibody assay, coagulogram), liver ultrasound. All patients underwent determination of the liver fibrosis stage by two methods: the serological test FibroMax and indirect ultrasound elastometry of the liver; 40 patients underwent a liver biopsy. Statistical data processing was performed using the programming language and statistical calculations R: we used correlation analysis, multiple logistic regression method, one-way analysis of variance, multi-factor analysis, the Kruskal-Wallis method, and comparison of the number of patients using the Fisher test. RESULTS DM is a risk factor for the liver fibrosis progression in patients with NAFLD. Significant markers of severe fibrosis in this category of patients are increased levels of GGTP, haptoglobin and alpha-2-macroglobulin, lower platelet and prothrombin levels. Obesity and isolated steatosis without steatohepatitis are not markers of severe liver fibrosis at present, but obesity can be considered a risk factor for the progression of fibrosis in the future. CONCLUSION All patients with NAFLD in combination with diabetes need screening to detect advanced liver fibrosis: it is advisable to determine the levels of GGTP, haptoglobin and alpha-2-macroglobulin.
Collapse
Affiliation(s)
- A V Anisonyan
- Loginov Moscow Clinical Scientific and Practical Center
| | - Y G Sandler
- Loginov Moscow Clinical Scientific and Practical Center
| | | | - V A Keyan
- Loginov Moscow Clinical Scientific and Practical Center
| | - K G Saliev
- Loginov Moscow Clinical Scientific and Practical Center
| | - E S Sbikina
- Loginov Moscow Clinical Scientific and Practical Center
| | | |
Collapse
|
36
|
Li BT, Sun M, Li YF, Wang JQ, Zhou ZM, Song BL, Luo J. Disruption of the ERLIN-TM6SF2-APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genet 2020; 16:e1008955. [PMID: 32776921 PMCID: PMC7462549 DOI: 10.1371/journal.pgen.1008955] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/01/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by excess lipid accumulation in the liver without significant consumption of alcohol. The transmembrane 6 superfamily member 2 (TM6SF2) E167K missense variant strongly associates with NAFLD in humans. The E167K mutation destabilizes TM6SF2, resulting in hepatic lipid accumulation and low serum lipid levels. However, the molecular mechanism by which TM6SF2 regulates lipid metabolism remains unclear. By using tandem affinity purification in combination with mass spectrometry, we found that apolipoprotein B (APOB), ER lipid raft protein (ERLIN) 1 and 2 were TM6SF2-interacting proteins. ERLINs and TM6SF2 mutually bound and stabilized each other. TM6SF2 bound and stabilized APOB via two luminal loops. ERLINs did not interact with APOB directly but still increased APOB stability through stabilizing TM6SF2. This APOB stabilization was hampered by the E167K mutation that reduced the protein expression of TM6SF2. In mice, knockout of Tm6sf2 and knockdown of Tm6sf2 or Erlins decreased hepatic APOB protein level, causing lipid accumulation in the liver and lowering lipid levels in the serum. We conclude that defective APOB stabilization, as a result of ERLINs or TM6SF2 deficiency or E167K mutation, is a key factor contributing to NAFLD. Non-alcoholic fatty liver disease (NAFLD) is a very common liver disorder that occurs in people who do not drink too much alcohol. It initiates from extra fat storage in the liver and can advance to hepatitis, fibrosis, liver failure and liver cancer. NAFLD is often associated with other health problems such as obesity, diabetes, and hyperlipidemia. The TM6SF2 gene variant is a strong risk factor for NAFLD in humans. However, the mechanism by which loss of TM6SF2 protein causes NAFLD is unclear. Here, we demonstrate that TM6SF2 forms a complex with ERLINs and APOB. ERLINs and TM6SF2 stabilize each other, and TM6SF2 stabilizes APOB. In mice, ablating the expression of ERLINs or TM6SF2 lowers APOB protein level, causing lipid accumulation in the liver while decreasing lipid levels in the blood. These phenotypes resemble the symptoms of NAFLD patients carrying TM6SF2 mutations. We conclude that TM6SF2 promotes APOB stability via complex formation and that defective APOB stabilization is one of the underlying causes of NAFLD.
Collapse
Affiliation(s)
- Bo-Tao Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yun-Feng Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ju-Qiong Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zi-Mu Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
37
|
Sookoian S, Pirola CJ, Valenti L, Davidson NO. Genetic Pathways in Nonalcoholic Fatty Liver Disease: Insights From Systems Biology. Hepatology 2020; 72:330-346. [PMID: 32170962 PMCID: PMC7363530 DOI: 10.1002/hep.31229] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/12/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a burgeoning worldwide epidemic whose etiology reflects multiple interactions between environmental and genetic factors. Here, we review the major pathways and dominant genetic modifiers known to be relevant players in human NAFLD and which may determine key components of the heritability of distinctive disease traits including steatosis and fibrosis. In addition, we have employed general assumptions which are based on known genetic factors in NAFLD to build a systems biology prediction model that includes functional enrichment. This prediction model highlights additional complementary pathways that represent plausible intersecting signaling networks that we define here as an NAFLD-Reactome. We review the evidence connecting variants in each of the major known genetic modifiers (variants in patatin-like phospholipase domain containing 3, transmembrane 6 superfamily member 2, membrane-bound O-acyltransferase domain containing 7, glucokinase regulator, and hydroxysteroid 17-beta dehydrogenase 13) to NAFLD and expand the associated underlying mechanisms using functional enrichment predictions, based on both preclinical and cell-based experimental findings. These major candidate gene variants function in distinct pathways, including substrate delivery for de novo lipogenesis; mitochondrial energy use; lipid droplet assembly, lipolytic catabolism, and fatty acid compartmentalization; and very low-density lipoprotein assembly and secretion. The NAFLD-Reactome model expands these pathways and allows for hypothesis testing, as well as serving as a discovery platform for druggable targets across multiple pathways that promote NAFLD development and influence several progressive outcomes. In conclusion, we summarize the strengths and weaknesses of studies implicating selected variants in the pathophysiology of NAFLD and highlight opportunities for future clinical research and pharmacologic intervention, as well as the implications for clinical practice.
Collapse
Affiliation(s)
- Silvia Sookoian
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Clinical and Molecular Hepatology, Ciudad Autónoma de Buenos Aires, Argentina
| | - Carlos J. Pirola
- University of Buenos Aires, School of Medicine, Institute of Medical Research ALanari, Ciudad Autónoma de Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET)−University of Buenos Aires, Institute of Medical Research (IDIM), Department of Molecular Genetics and Biology of Complex Diseases, Ciudad Autónoma de Buenos Aires, Argentina
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca Granda OspedalePoliclinico Milano, Department of Pathophysiology and Transplantation, Universita degli Studi di Milano, Milan, Italy
| | - Nicholas O. Davidson
- Departments of Medicine and Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
38
|
Trépo E, Valenti L. Update on NAFLD genetics: From new variants to the clinic. J Hepatol 2020; 72:1196-1209. [PMID: 32145256 DOI: 10.1016/j.jhep.2020.02.020] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver diseases in high-income countries and the burden of NAFLD is increasing at an alarming rate. The risk of developing NAFLD and related complications is highly variable among individuals and is determined by environmental and genetic factors. Genome-wide association studies have uncovered robust and reproducible associations between variations in genes such as PNPLA3, TM6SF2, MBOAT7, GCKR, HSD17B13 and the natural history of NAFLD. These findings have provided compelling new insights into the biology of NAFLD and highlighted potentially attractive pharmaceutical targets. More recently the development of polygenic risk scores, which have shown promising results for the clinical risk prediction of other complex traits (such as cardiovascular disease and breast cancer), have provided new impetus for the clinical validation of genetic variants in NAFLD risk stratification. Herein, we review current knowledge on the genetic architecture of NAFLD, including gene-environment interactions, and discuss the implications for disease pathobiology, drug discovery and risk prediction. We particularly focus on the potential clinical translation of recent genetic advances, discussing methodological hurdles that must be overcome before these discoveries can be implemented in everyday practice.
Collapse
Affiliation(s)
- Eric Trépo
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, C.U.B. Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Translational Medicine - Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
39
|
Li J, Hua W, Ji C, Rui J, Zhao Y, Xie C, Shi B, Yang X. Effect of the patatin-like phospholipase domain containing 3 gene (PNPLA3) I148M polymorphism on the risk and severity of nonalcoholic fatty liver disease and metabolic syndromes: A meta-analysis of paediatric and adolescent individuals. Pediatr Obes 2020; 15:e12615. [PMID: 32020770 DOI: 10.1111/ijpo.12615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The effect of the patatin-like phospholipase domain containing 3 gene (PNPLA3) I148M polymorphism on the risk and severity of paediatric and adolescent nonalcoholic fatty liver disease (NAFLD) remains inconclusive. OBJECTIVES We aimed to estimate the effect of this polymorphism not only on early-onset NAFLD risk and severity but also on metabolic syndromes susceptibility. METHODS A systematic literature search was performed to identify relevant datasets. The odds ratio of the dichotomic variables and the standardized mean difference of quantitative variables with corresponding 95% confidence intervals were calculated to assess the strength of the associations. RESULTS Twenty-seven studies comprising 10 070 subjects were eligible. The summary effect showed that this polymorphism increased susceptibility to NAFLD development. Furthermore, it also indicated that nonalcoholic steatohepatitis (NASH) was more frequently observed in G allele carriers among paediatric and adolescent NAFLD patients. Moreover, the meta-analysis suggested that the variant was significantly associated with elevated liver damage indexes, including serum alanine transaminase, aspartate transaminase, gamma-glutamyltransferase concentrations, and liver fat content. However, the summary estimates for insulin resistance, lipid metabolism, and adiposity showed no significant associations. CONCLUSIONS The PNPLA3 I148M polymorphism is associated with elevated early-onset NAFLD risk, severity, and liver damage but not with related metabolic syndromes.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China.,Medical College, Soochow University, Suzhou, China
| | - Wenxi Hua
- Medical College, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jingwen Rui
- Medical College, Soochow University, Suzhou, China
| | - Yuening Zhao
- Medical College, Soochow University, Suzhou, China
| | - Chenyao Xie
- Medical College, Soochow University, Suzhou, China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoqin Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
40
|
Carlsson B, Lindén D, Brolén G, Liljeblad M, Bjursell M, Romeo S, Loomba R. Review article: the emerging role of genetics in precision medicine for patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2020; 51:1305-1320. [PMID: 32383295 PMCID: PMC7318322 DOI: 10.1111/apt.15738] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/13/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD) characterised by liver fat accumulation, inflammation and progressive fibrosis. Emerging data indicate that genetic susceptibility increases risks of NAFLD, NASH and NASH-related cirrhosis. AIMS To review NASH genetics and discuss the potential for precision medicine approaches to treatment. METHOD PubMed search and inclusion of relevant literature. RESULTS Single-nucleotide polymorphisms in PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13 are clearly associated with NASH development or progression. These genetic variants are common and have moderate-to-large effect sizes for development of NAFLD, NASH and hepatocellular carcinoma (HCC). The genes play roles in lipid remodelling in lipid droplets, hepatic very low-density lipoprotein (VLDL) secretion and de novo lipogenesis. The PNPLA3 I148M variant (rs738409) has large effects, with approximately twofold increased odds of NAFLD and threefold increased odds of NASH and HCC per allele. Obesity interacts with PNPLA3 I148M to elevate liver fat content and increase rates of NASH. Although the isoleucine-to-methionine substitution at amino acid position 148 of the PNPLA3 enzyme inactivates its lipid remodelling activity, the effect of PNPLA3 I148M results from trans-repression of another lipase (ATGL/PNPLA2) by sequestration of a shared cofactor (CGI-58/ABHD5), leading to decreased hepatic lipolysis and VLDL secretion. In homozygous Pnpla3 I148M knock-in rodent models of NAFLD, targeted PNPLA3 mRNA knockdown reduces hepatic steatosis, inflammation and fibrosis. CONCLUSION The emerging genetic and molecular understanding of NASH paves the way for novel interventions, including precision medicines that can modulate the activity of specific genes associated with NASH.
Collapse
Affiliation(s)
- Björn Carlsson
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Daniel Lindén
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden,Division of EndocrinologyDepartment of Neuroscience and PhysiologySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Gabriella Brolén
- Precision MedicineCardiovascular, Renal and MetabolismR&DAstraZenecaGothenburgSweden
| | - Mathias Liljeblad
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Mikael Bjursell
- Research and Early DevelopmentCardiovascular, Renal and MetabolismBioPharmaceuticals R&DAstraZenecaGothenburgSweden
| | - Stefano Romeo
- Department of Molecular and Clinical MedicineUniversity of GothenburgGothenburgSweden,Clinical Nutrition UnitDepartment of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly,Cardiology DepartmentSahlgrenska University HospitalGothenburgSweden
| | - Rohit Loomba
- NAFLD Research CenterDivision of GastroenterologyUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
41
|
Validation of PNPLA3 polymorphisms as risk factor for NAFLD and liver fibrosis in an admixed population. Ann Hepatol 2020; 18:466-471. [PMID: 31054980 DOI: 10.1016/j.aohep.2018.10.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/12/2018] [Accepted: 10/04/2018] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND AIM Studies have shown that two polymorphisms were associated with steatosis and progression of non-alcoholic fatty liver disease (NAFLD) in different populations: the Patatin-like Phospholipase Domain Containing 3 (PNPLA3) and Transmembrane 6 Superfamily Member 2 (TM6SF2). However, the frequency and significance of these polymorphisms in an admixed population, i.e., Brazilian, is unknown. Therefore, we aimed to evaluate them in healthy subjects in comparison to patients with NAFLD. MATERIAL AND METHODS This was a multicenter cross-sectional study in 248 patients with biopsy-proven NAFLD and in 134 healthy controls from two tertiary centers in Brazil. PNPLA3 (rs738409 c.444C>G) and TM6SF2 (rs58542926 c.449C>T) polymorphisms were evaluated. RESULTS In controls, the frequencies of PNPLA3 CC and CG+GG were 49.25% and 50.74%, respectively; in NAFLD patients, this was 31.05% and 68.88% (p=0.0044, 95% CI 1.037-2.977). PNPLA3 GG subjects had an increased risk (3.29-fold) of having NAFLD when compared to CC subjects (p=0.0044, 95% CI 1.504-7.225). In patients with nonalcoholic steatohepatitis (NASH), PNPLA3 GG compared to CC was associated with higher AST levels [38.4±25.3 versus 36.7±40.1IU/L, p=0.0395)] and with the presence of liver fibrosis (≥F2 fibrosis, p=0.0272). TM6SF2 polymorphisms were not in Hardy-Weinberg equilibrium in our NAFLD group precluding further analysis. CONCLUSION We demonstrated for the first time that PNPLA3 CG+GG increase the risk of NAFLD among Brazilian subjects. Moreover, PNPLA3 GG was associated with liver enzyme elevation and fibrosis in NASH patients.
Collapse
|
42
|
Mantovani A, Taliento A, Zusi C, Baselli G, Prati D, Granata S, Zaza G, Colecchia A, Maffeis C, Byrne CD, Valenti L, Targher G. PNPLA3 I148M gene variant and chronic kidney disease in type 2 diabetic patients with NAFLD: Clinical and experimental findings. Liver Int 2020; 40:1130-1141. [PMID: 32125756 DOI: 10.1111/liv.14419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Emerging evidence suggests an association between patatin-like phospholipase domain-containing protein-3 (PNPLA3) rs738409 (I148M protein variant) and risk of chronic kidney disease (CKD), but the mechanisms underpinning this association are poorly understood. METHODS We studied 157 patients with type 2 diabetes (T2DM) who underwent ultrasonography and vibration-controlled transient elastography for diagnosing nonalcoholic fatty liver disease (NAFLD). CKD was defined as estimated glomerular filtration rate (e-GFR) <60 mL/min/1.73 m2 and/or abnormal albuminuria. We surveyed PNPLA3 mRNA expression in human tissues, using the liver as a positive control, and also measured PNPLA3 mRNA and protein expression levels in human cell lines represented in the kidney and the liver. RESULTS In all, 112 patients had NAFLD and 43 had CKD. Patients homozygous for the I148M variant (n = 11) had lower e-GFR levels (60.6 ± 11.7 vs 77.8 ± 15.9 vs 83.5 ± 16.5 mL/min/1.73 m2 , P = .0001) and higher prevalence of CKD (63.6% vs 24.2% vs 25.0%, P = .028), compared to those with I/M (n = 66) and I/I (n = 80) PNPLA3 genotype. The association of I148M homozygosity with lower e-GFR levels (P < .0001) and higher risk of CKD (adjusted-odds ratio 6.65; 95% CI 1.65-26.8, P = .008) was independent of liver disease severity (as detected by liver stiffness ≥7kPa) and other risk factors. PNPLA3 mRNA expression was greatest in liver and renal cortex, and podocytes showed high PNPLA3 mRNA and protein levels, comparable to that of hepatocytes and hepatic stellate cells respectively. CONCLUSIONS The PNPLA3 I148M variant was associated with CKD, independently of common renal risk factors and severity of NAFLD PNPLA3 expression levels were particularly high in renal podocytes.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Alice Taliento
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Zusi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy.,Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgical Sciences, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - Guido Baselli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Antonio Colecchia
- Gastroenterology Unit, Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Claudio Maffeis
- Pediatric Diabetes and Metabolic Disorders Unit, Department of Surgical Sciences, Dentistry, Pediatrics and Gynaecology, University Hospital of Verona, Verona, Italy
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Luca Valenti
- Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University Hospital of Verona, Verona, Italy
| |
Collapse
|
43
|
Mantovani A, Zusi C, Dalbeni A, Grani G, Buzzetti E. Risk of Kidney Dysfunction IN Nafld. Curr Pharm Des 2020; 26:1045-1061. [DOI: 10.2174/1381612825666191026113119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
Background:
The timely identification of traditional and non-traditional precursors and risk factors for
chronic kidney disease (CKD) (a common systemic disease defined as a decreased kidney function documented
by reduced glomerular filtration rate, or markers of kidney damage, or both) is relevant in clinical practice, as
CKD increases the risk of end-stage renal disease and other serious comorbidities. A possible relationship between
non-alcoholic fatty liver disease (NAFLD) (which is to date the most common chronic disease worldwide)
and CKD has recently gained significant attention of researchers.
Methods :
A systematic literature search using appropriate keywords was made in order to identify relevant articles
that have investigated the association between NAFLD and CKD.
Results:
Several observational studies and meta-analyses have reported the existence of an independent association
between NAFLD and risk of CKD in patients with and without diabetes. However, whilst the association
between NAFLD and risk of prevalent CKD is strong across various patient populations, whether NAFLD is
independently associated with the development and progression of CKD is still debatable. Moreover, emerging
evidence now suggests a potential association between patatin-like phospholipase domain-containing protein-3
(PNPLA3) rs738409 genotype (the most important genetic variant associated to NAFLD) and decreasing kidney
function, independent of NAFLD.
Conclusions :
Convincing evidence now indicates that CKD is increased among patients with NAFLD. For this
reason, patients with NAFLD should be regularly monitored for renal function and, on the other hand , NAFLD
should be considered in all patients with CKD, especially if they are obese or have type 2 diabetes.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Chiara Zusi
- Section of Endocrinology, Diabetes and Metabolism, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Andrea Dalbeni
- Section of General Medicine, Hypertension and Liver Unit, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Elena Buzzetti
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
44
|
Meroni M, Longo M, Rustichelli A, Dongiovanni P. Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci 2020; 21:ijms21082986. [PMID: 32340286 PMCID: PMC7215858 DOI: 10.3390/ijms21082986] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a global healthcare burden since it is epidemiologically related to obesity, type 2 diabetes (T2D) and Metabolic Syndrome (MetS). It embraces a wide spectrum of hepatic injuries, which include simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The susceptibility to develop NAFLD is highly variable and it is influenced by several cues including environmental (i.e., dietary habits and physical activity) and inherited (i.e., genetic/epigenetic) risk factors. Nonetheless, even intestinal microbiota and its by-products play a crucial role in NAFLD pathophysiology. The interaction of dietary exposure with the genome is referred to as 'nutritional genomics,' which encompasses both 'nutrigenetics' and 'nutriepigenomics.' It is focused on revealing the biological mechanisms that entail both the acute and persistent genome-nutrient interactions that influence health and it may represent a promising field of study to improve both clinical and health nutrition practices. Thus, the premise of this review is to discuss the relevance of personalized nutritional advices as a novel therapeutic approach in NAFLD tailored management.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Alice Rustichelli
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (A.R.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
45
|
Saki S, Saki N, Poustchi H, Malekzadeh R. Assessment of Genetic Aspects of Non-alcoholic Fatty Liver and Premature Cardiovascular Events. Middle East J Dig Dis 2020; 12:65-88. [PMID: 32626560 PMCID: PMC7320986 DOI: 10.34172/mejdd.2020.166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has demonstrated a strong interplay and multifaceted relationship between non-alcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). CVD is the major cause of death in patients with NAFLD. NAFLD also has strong associations with diabetes and metabolic syndrome. In this comprehensive review, we aimed to overview the primary environmental and genetic risk factors of NAFLD, and CVD and also focus on the genetic aspects of these two disorders. NAFLD and CVD are both heterogeneous diseases with common genetic and molecular pathways. We have searched for the latest published articles regarding this matter and tried to provide an overview of recent insights into the genetic aspects of NAFLD and CVD. The common genetic and molecular pathways involved in NAFLD and CVD are insulin resistance (IR), subclinical inflammation, oxidative stress, and atherogenic dyslipidemia. According to an investigation, the exact associations between genomic characteristics of NAFLD and CVD and casual relationships are not fully determined. Different gene polymorphisms have been identified as the genetic components of the NAFLDCVD association. Some of the most documented ones of these gene polymorphisms are patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13), adiponectin-encoding gene (ADIPOQ), apolipoprotein C3 (APOC3), peroxisome proliferator-activated receptors (PPAR), leptin receptor (LEPR), sterol regulatory element-binding proteins (SREBP), tumor necrosis factor-alpha (TNF-α), microsomal triglyceride transfer protein (MTTP), manganese superoxide dismutase (MnSOD), membrane-bound O-acyltransferase domain-containing 7 (MBOAT7), and mutation in DYRK1B that substitutes cysteine for arginine at position 102 in kinase-like domain. Further cohort studies with a significant sample size using advanced genomic assessments and next-generation sequencing techniques are needed to shed more light on genetic associations between NAFLD and CVD.
Collapse
Affiliation(s)
- Sara Saki
- Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Saki
- Hoveizeh Cohort Study, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Poustchi
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Abstract
Nonalcoholic fatty liver disease is strongly associated with obesity and the metabolic syndrome, but genetic factors also contribute to disease susceptibility. Human genetic studies have identified several common genetic variants contributing to nonalcoholic fatty liver disease initiation and progression. These findings have provided new insights into the pathogenesis of nonalcoholic fatty liver disease and opened up new avenues for the development of therapeutic interventions. In this review, we summarize the current state of knowledge about the genetic determinants of nonalcoholic fatty liver disease, focusing on the most robustly validated genetic risk factors and on recently discovered modifiers of disease progression.
Collapse
Affiliation(s)
- Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8591, USA.
| |
Collapse
|
47
|
Romeo S, Sanyal A, Valenti L. Leveraging Human Genetics to Identify Potential New Treatments for Fatty Liver Disease. Cell Metab 2020; 31:35-45. [PMID: 31914377 DOI: 10.1016/j.cmet.2019.12.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/07/2019] [Accepted: 12/06/2019] [Indexed: 02/08/2023]
Abstract
Fatty liver disease (FLD), including its more severe pathologies, namely steatohepatitis, hepatocarcinoma, and cirrhosis, is the most common cause of chronic liver disease worldwide and is projected to become the leading cause of hepatocellular carcinoma and end-stage liver disease. FLD is heterogeneous with multiple etiologies and diverse histological phenotypes, so therapies will ultimately need to be individualized for relevant targets. Inherited factors contribute to FLD, and most of the genetic variation influencing liver disease development and progression is derived from genes involved in lipid biology, including PNPLA3, TM6SF2, GCKR, MBOAT7, and HSD17B13. From this point of view, we focus in this perspective on how human molecular genetics of FLD have highlighted defects in hepatic lipid handling as a major common mechanism of its pathology and how this insight could be leveraged to treat and prevent its more serious complications.
Collapse
Affiliation(s)
- Stefano Romeo
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy; Cardiology Department, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Arun Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Translational Medicine, Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda, Pad Marangoni, Milan, Italy.
| |
Collapse
|
48
|
Marjot T, Moolla A, Cobbold JF, Hodson L, Tomlinson JW. Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management. Endocr Rev 2020; 41:5601173. [PMID: 31629366 DOI: 10.1210/endrev/bnz009] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disease, extending from simple steatosis to inflammation and fibrosis with a significant risk for the development of cirrhosis. It is highly prevalent and is associated with significant adverse outcomes both through liver-specific morbidity and mortality but, perhaps more important, through adverse cardiovascular and metabolic outcomes. It is closely associated with type 2 diabetes and obesity, and both of these conditions drive progressive disease toward the more advanced stages. The mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not fully understood but reflect a complex interplay between metabolic target tissues including adipose and skeletal muscle, and immune and inflammatory cells. The ability to make an accurate assessment of disease stage (that relates to clinical outcome) can also be challenging. While liver biopsy is still regarded as the gold-standard investigative tool, there is an extensive literature on the search for novel noninvasive biomarkers and imaging modalities that aim to accurately reflect the stage of underlying disease. Finally, although no therapies are currently licensed for the treatment of NAFLD, there are interventions that appear to have proven efficacy in randomized controlled trials as well as an extensive emerging therapeutic landscape of new agents that target many of the fundamental pathophysiological processes that drive NAFLD. It is highly likely that over the next few years, new treatments with a specific license for the treatment of NAFLD will become available.
Collapse
Affiliation(s)
- Thomas Marjot
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ahmad Moolla
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy F Cobbold
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
49
|
Gu Z, Wang Q, He HY, Li D, Wang RR, Zhang L, Ji G, Liu BC. Genetic variations associated with spleen-yang deficiency pattern of non-alcoholic fatty liver disease: A candidate gene study. Eur J Integr Med 2020. [DOI: 10.1016/j.eujim.2019.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
50
|
Bellan M, Colletta C, Barbaglia MN, Salmi L, Clerici R, Mallela VR, Castello LM, Saglietti G, Carnevale Schianca GP, Minisini R, Pirisi M. Severity of Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus: Relationship between Nongenetic Factors and PNPLA3/HSD17B13 Polymorphisms. Diabetes Metab J 2019; 43:700-710. [PMID: 31694082 PMCID: PMC6834828 DOI: 10.4093/dmj.2018.0201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The prevalence of nonalcoholic fatty liver disease (NAFLD) in patients with type 2 diabetes mellitus (T2DM) is high, though its severity is often underestimated. Our aim is to provide an estimate of the prevalence of severe NAFLD in T2DM and identify its major predictors. METHODS T2DM patients (n=328) not previously known to have NAFLD underwent clinical assessment, transient elastography with measure of liver stiffness (LS) and controlled attenuation parameter (CAP), and genotyping for patatin like phospholipase domain containing 3 (PNPLA3) and 17β-hydroxysteroid-dehydrogenase type 13 (HSD17B13). RESULTS Median LS was 6.1 kPa (4.9 to 8.6). More than one-fourth patients had advanced liver disease, defined as LS ≥7.9 kPa (n=94/238, 29%), and had a higher body mass index (BMI) than those with a LS <7.9 kPa. Carriage of the G allele in the PNPLA3 gene was associated with higher LS, being 5.9 kPa (4.7 to 7.7) in C/C homozygotes, 6.1 kPa (5.2 to 8.7) in C/G heterozygotes, and 6.8 kPa (5.8 to 9.2) in G/G homozygotes (P=0.01). This trend was absent in patients with ≥1 mutated HSD17B13 allele. In a multiple linear regression model, BMI and PNPLA3 genotype predicted LS, while age, gender, disease duration, and glycosylated hemoglobin did not fit into the model. None of these variables was confirmed to be predictive among carriers of at least one HSD17B13 mutated allele. There was no association between CAP and polymorphisms of PNPLA3 or HSD17B13. CONCLUSION Advanced NAFLD is common among T2DM patients. LS is predicted by both BMI and PNPLA3 polymorphism, the effect of the latter being modulated by mutated HSD17B13.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Division of Internal Medicine, Sant'Andrea Hospital, Vercelli, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy.
| | | | | | - Livia Salmi
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Roberto Clerici
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Luigi Mario Castello
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Emergency Medicine Department, Maggiore della Carità Hospital, Novara, Italy
| | | | | | - Rosalba Minisini
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), Novara, Italy
- Division of Internal Medicine, AOU Maggiore della Carità Hospital, Novara, Italy
| |
Collapse
|