1
|
Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Osik NA, Meshcheryakova EN, Poluboyarova TV, Berman DI. Metabolic stability of the Pallas' spadefoot Pelobates vespertinus under extreme hypoxia. J Comp Physiol B 2024; 194:855-867. [PMID: 39292257 DOI: 10.1007/s00360-024-01584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/17/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
The Pallas' spadefoot Pelobates vespertinus is a frog species native to eastern Europe and west Siberia. This species resists harsh winter conditions by moving up to 2 m underground. This amphibian is the first species known to withstand extreme air hypoxia. In this study, we investigated the metabolome of liver, heart, and brain of the Pallas' spadefoot after a month-long exposure of hypoxia, with oxygen levels reduced to approximately one-tenth of the air normal content. Surprisingly, our findings revealed a limited impact of hypoxia on the metabolomic profiles. Concentrations of glycolysis end products (lactate and alanine) increased only slightly compared to other amphibians under hypoxia, and no accumulation of succinate was observed. Furthermore, there were no notable changes in the content of adenosine phosphates. These results are consistent with a previous study, which indicated that the Pallas' spadefoot possesses relatively small glycogen and fat reserves before the winter compared to other frogs. It appears that this species conserves energy during winter by minimizing its metabolic activity. These findings corroborated the hypothesis that the survival of P. vespertinus under hypoxic conditions primarily relies on metabolic suppression rather than substantial energy reserves.
Collapse
Affiliation(s)
- S V Shekhovtsov
- Institute of Cytology and Genetics SB RAS, Lavrentieva av. 10, Novosibirsk, 630090, Russia.
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia.
| | - N A Bulakhova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| | - Yu P Tsentalovich
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | - N A Osik
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia
| | - E N Meshcheryakova
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| | - T V Poluboyarova
- Institute of Cytology and Genetics SB RAS, Lavrentieva av. 10, Novosibirsk, 630090, Russia
| | - D I Berman
- Institute of the Biological Problems of the North FEB RAS, Portovaya 18, Magadan, 685000, Russia
| |
Collapse
|
2
|
Meier C, Burns K, Manolikos C, Fatovich D, Bell DA. Hyperammonaemia: review of the pathophysiology, aetiology and investigation. Pathology 2024; 56:763-772. [PMID: 39127541 DOI: 10.1016/j.pathol.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 08/12/2024]
Abstract
Acute hyperammonaemia is a medical emergency as it can progress to cerebral oedema, seizures, coma and death. Hepatic encephalopathy secondary to cirrhotic disease or portosystemic shunting are relatively well-known causes, but non-cirrhotic aetiologies of acute hyperammonaemia are less well-known, especially in the emergency department. However, an elevated ammonia is not required to make the diagnosis of hepatic encephalopathy. Although measurement of plasma ammonia is recommended for patients with acute, unexplained, altered mental status, as early identification allows early effective management which may prevent irreversible brain damage, there is currently reduced awareness among physicians of the non-cirrhotic aetiologies of acute hyperammonaemia. Furthermore, measurement of ammonia in patients with cirrhosis has been shown to have low sensitivity and specificity, and not to have altered management in the majority of cases; thus, measurement of ammonia is currently not recommended in guidelines for management of hepatic encephalopathy. We sought to describe the pathophysiology of hyperammonaemia and review the non-cirrhotic causes. This was achieved by review of MEDLINE, PubMed and Web of Science databases to include published English literature within the last 20 years. We also present a framework for investigating the acute non-cirrhotic causes of hyperammonaemia to assist both chemical pathologists and clinicians managing these often challenging cases.
Collapse
Affiliation(s)
- Ciselle Meier
- The University of Western Australia, Perth, WA, Australia
| | - Kharis Burns
- The University of Western Australia, Perth, WA, Australia; Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, WA, Australia
| | - Catherine Manolikos
- Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, WA, Australia
| | - Daniel Fatovich
- Centre for Clinical Research in Emergency Medicine, Harry Perkins Institute of Medical Research, Perth, WA, Australia; Emergency Department, Royal Perth Hospital, The University of Western Australia, Perth, WA, Australia
| | - Damon A Bell
- The University of Western Australia, Perth, WA, Australia; Inborn Errors of Metabolism Service, Department of Endocrinology, Royal Perth Hospital, Perth, WA, Australia; PathWest Laboratory Medicine, Department of Biochemistry, Fiona Stanley Hospital Network, Perth, WA, Australia.
| |
Collapse
|
3
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024:10.1038/s41416-024-02849-7. [PMID: 39261716 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
4
|
Selle PH, Macelline SP, Toghyani M, Liu SY. The potential of glutamine supplementation in reduced-crude protein diets for chicken-meat production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:49-56. [PMID: 39022775 PMCID: PMC466976 DOI: 10.1016/j.aninu.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 07/20/2024]
Abstract
This review explores the potential of including glutamine, a so-called non-essential amino acid, in the formulation of reduced-crude protein (CP) diets for broiler chickens. There is a precedent for benefits when including glycine and serine in reduced-CP diets. Fundamentally this is due to decreases in non-essential amino acid concentrations in reduced-CP diets - an unavoidable consequence of reducing CP without amino acid supplementation. The situation for glutamine is complicated because analysed dietary concentrations are very rarely provided as standard assays do not differentiate between glutamine and glutamate and are reported on a combined basis as glutamic acid. The dietary requirement for glutamic acid is approximately 36.3 g/kg but it is increasingly unlikely that this requirement will be met as dietary CP levels are progressively reduced. Glutamine is an abundant and versatile amino acid and constitutes 50.5 mg/g of whole-body chicken protein and is the dominant free amino acid in systemic plasma where it has been shown to provide 22.6% (139.9 of 620.3 μg/mL) of the total in birds offered 215 g/kg CP, wheat-based diets. In addition to dietary intakes, glutamine biosynthesis is derived mainly from the condensation of glutamate and ammonia (NH3) catalysed by glutamine synthetase, a reaction that is pivotal to NH3 detoxification. Glutamate and NH3 are converted to glutamine by phosphate-dependent glutaminase in the reciprocal reaction; thus, glutamine and glutamate are interchangeable amino acids. However, the rate of glutamine biosynthesis may not be adequate in rapidly growing broiler chickens and exogenous and endogenous glutamine levels are probably insufficient in birds offered reduced-CP diets. The many functional roles of glutamine, including NH3 detoxification and maintenance of acid-base homeostasis, then become relevant. Twenty feeding studies were identified where dietary glutamine supplementation, usually 10 g/kg, was evaluated in birds kept under thermoneutral conditions. On balance, the outcomes were positive, but the average dietary CP was 213 g/kg across the twenty feeding studies, which indicates that CP and, in turn, glutamine concentrations would have been adequate. This suggests that glutamine inclusions in reduced-CP diets hold potential and consideration is given to how this may be best confirmed.
Collapse
Affiliation(s)
- Peter H. Selle
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Shemil P. Macelline
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Mehdi Toghyani
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Sonia Yun Liu
- Poultry Research Foundation within the University of Sydney, Camden, NSW 2570, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
5
|
Peng Q, Dong Y, Chen Y, Glidle A, Kong L, Yin H, Xu J, Yang K. Rapid profiling of fish cell nitrogen metabolism with single-cell Raman spectroscopy: Unveiling enzyme's role in ammonia detoxification. Talanta 2024; 277:126389. [PMID: 38852346 DOI: 10.1016/j.talanta.2024.126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024]
Abstract
Ammonia is a prevalent aquatic pollutant that disrupts cellular functions and energy metabolism in fish, posing significant environmental and health threats. This research investigates the critical role of arginase 2 (ARG2) in mitigating ammonia toxicity in fish cells and its implications in adapting to nitrogen metabolism under high ammonia exposure. Through a CRISPR-Cas9 engineered ARG2 knockdown (KD) in the Epithelioma Papulosum Cyprini (EPC) cell line, we first investigated the biochemical responses of ARG2 KD and wild-type (WT) EPC cells to ammonia stress (NH4Cl treatment), showing diminished urea production and decreased cell viability in ARG2 KD cells. Subsequently, single-cell Raman spectroscopy analysis revealed that ARG2 KD cells exhibited profound metabolic shifts, including changes in protein, nucleic acids, lipid and sugar levels, showing the adjusting role of ARG2 in the balance of carbohydrate and nitrogen metabolism. Furthermore, the upregulated responses of various amino acids, such as glutamine, arginine, alanine, glutamic acid, glycine, histidine, phenylalanine and valine, in WT cells after NH4Cl treatment diminished in ARG2 KD cells except for the decrease in aspartic acid, indicating a switching effect of ARG2 in nitrogen metabolism under ammonia stress. This study highlights ARG2's essential role in ammonia detoxification and emphasizes ARG2's protective function and its importance in metabolism, shedding light on the adaptive mechanisms fish cells deploy against high ammonia environments. These insights contribute to deep understanding of aquatic organisms' molecular responses to environmental ammonia pollution, offering potential strategies for their protection.
Collapse
Affiliation(s)
- Qiyun Peng
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, People's Republic of China; Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Yingfu Dong
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Yecang Chen
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Andrew Glidle
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Lingjiang Kong
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Huabing Yin
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK
| | - Jiabao Xu
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8LT, UK.
| | - Kun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Ursulino JS, Silva Filho RC, Rodrigues da Rocha Junior E, Crispim AC, Caldas Santos JC, Rezende Leite AC, Mendonça de Aquino T. NMR-based metabolomics analysis reveals the effect of environmental contamination exposure on fishermen living around the Mundaú Lagoon in Maceió (Alagoas, Brazil). CHEMOSPHERE 2024; 364:143261. [PMID: 39236921 DOI: 10.1016/j.chemosphere.2024.143261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The Mundaú lagoon in Maceió (Alagoas, Brazil) is a crucial resource for the local population, particularly fishing communities. Recent studies have revealed potential toxic metal contamination in the lagoon, particularly with mercury (Hg) levels exceeding the maximum regulated values. This inorganic contaminant may be impacting the health of fishermen and the local population. In this context, metabolomics, a study of small-molecule metabolites, can offer insights into the physiological impact of environmental contamination on humans. Thus, volunteers from the control and exposed groups were selected, considering the main exposure criteria primarily defined by their proximity and interaction with the lagoon. Blood and urine samples were collected from the volunteers and subjected to analysis using NMR spectroscopy. The data underwent Principal Component Analysis (PCA) and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-DA) based on metabolic patterns to establish group discrimination or identification. Metabolic pathways were assessed through enrichment analysis. The study revealed several metabolic disturbances in the exposed group's urine and plasma samples compared to control group. Noteworthy findings included arginine and proline metabolism disruptions, indicative of ammonia recycling and urea cycle impairment. These changes suggest compromised ammonia detoxification in the exposed group. Disturbances in the tricarboxylic acid (TCA) cycle and the transfer of acetyl groups into mitochondria suggested systemic metabolic stress in energy metabolism. Furthermore, elevated carnitine and ketone levels may indicate compensatory responses to low TCA cycle activity. Alterations in glutamate and glutathione metabolism and imbalances in glutathione levels indicate oxidative stress and impaired detoxification. This study highlights significant metabolic changes in fishermen exposed to contaminated environments, which can affect various metabolic pathways, including energy metabolism and antioxidant processes, potentially making individuals more vulnerable to the adverse effects of environmental contaminants. Finally, this work highlights insights into the relationship between environmental contamination and metabolic pathways, particularly in regions with limited studies.
Collapse
Affiliation(s)
- Jeferson Santana Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Reginaldo Correia Silva Filho
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Edmilson Rodrigues da Rocha Junior
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Alessandre Carmo Crispim
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Josué Carinhanha Caldas Santos
- Laboratory of Instrumentation and Development in Analytical Chemistry, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil
| | - Ana Catarina Rezende Leite
- Laboratory of Bioenergetics, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| | - Thiago Mendonça de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, Brazil.
| |
Collapse
|
7
|
Li S, Zhua Y, Liu X. Parkinsonism in liver diseases or dysfunction. Med Clin (Barc) 2024:S0025-7753(24)00356-7. [PMID: 38955605 DOI: 10.1016/j.medcli.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Parkinsonism in liver diseases or dysfunction, mainly including neurological manifestations in hereditary liver diseases and neurological complications of advanced liver diseases, occur in isolation or in combination with other movement disorders, and progress along disease course. Prominent akinetic-rigidity syndrome, various onset and progression, poor levodopa response and metabolism abnormalities reflected by serum biomarkers and neuroimaging, make this atypical parkinsonism recognizable and notable in clinical practice. Different susceptibility of brain areas, especially in basal ganglia, to manganese, iron, copper, ammonia overload, together with subsequent oxidative stress, neurotransmitter alterations, disturbed glia-neuron homeostasis and eventually neurotoxicity, contribute to parkinsonism under the circumstances of insufficient liver clearance ability. These mechanisms are interrelated and may interact collectively, adding to the complexity of clinical manifestations and treatment responses. This review summarizes shared clinical features of parkinsonism in liver diseases or dysfunction, depicts their underlying mechanisms and suggests practical flowchart for differential diagnosis.
Collapse
Affiliation(s)
- Sichen Li
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxia Zhua
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xi Liu
- Department of Neurology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
8
|
Ziki RA, Colnot S. Glutamine metabolism, a double agent combating or fuelling hepatocellular carcinoma. JHEP Rep 2024; 6:101077. [PMID: 38699532 PMCID: PMC11063524 DOI: 10.1016/j.jhepr.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/16/2024] [Accepted: 02/28/2024] [Indexed: 05/05/2024] Open
Abstract
The reprogramming of glutamine metabolism is a key event in cancer more generally and in hepatocellular carcinoma (HCC) in particular. Glutamine consumption supplies tumours with ATP and metabolites through anaplerosis of the tricarboxylic acid cycle, while glutamine production can be enhanced by the overexpression of glutamine synthetase. In HCC, increased glutamine production is driven by activating mutations in the CTNNB1 gene encoding β-catenin. Increased glutamine synthesis or utilisation impacts tumour epigenetics, oxidative stress, autophagy, immunity and associated pathways, such as the mTOR (mammalian target of rapamycin) pathway. In this review, we will discuss studies which emphasise the pro-tumoral or tumour-suppressive effect of glutamine overproduction. It is clear that more comprehensive studies are needed as a foundation from which to develop suitable therapies targeting glutamine metabolic pathways, depending on the predicted pro- or anti-tumour role of dysregulated glutamine metabolism in distinct genetic contexts.
Collapse
Affiliation(s)
- Razan Abou Ziki
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sabine Colnot
- INSERM, Sorbonne Université, Centre de Recherche des Cordeliers (CRC), Paris, F-75006, France
- Équipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
9
|
Wang J, Zhao X, Tao Y, Wang X, Yan L, Yu K, Hsu Y, Chen Y, Zhao J, Huang Y, Wei W. Biocompatible aggregation-induced emission active polyphosphate-manganese nanosheets with glutamine synthetase-like activity in excitotoxic nerve cells. Nat Commun 2024; 15:3534. [PMID: 38670989 PMCID: PMC11053040 DOI: 10.1038/s41467-024-47947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glutamine synthetase (GS) is vital in maintaining ammonia and glutamate (Glu) homeostasis in living organisms. However, the natural enzyme relies on adenosine triphosphate (ATP) to activate Glu, resulting in impaired GS function during ATP-deficient neurotoxic events. To date, no reports demonstrate using artificial nanostructures to mimic GS function. In this study, we synthesize aggregation-induced emission active polyP-Mn nanosheets (STPE-PMNSs) based on end-labeled polyphosphate (polyP), exhibiting remarkable GS-like activity independent of ATP presence. Further investigation reveals polyP in STPE-PMNSs serves as phosphate source to activate Glu at low ATP levels. This self-feeding mechanism offers a significant advantage in regulating Glu homeostasis at reduced ATP levels in nerve cells during excitotoxic conditions. STPE-PMNSs can effectively promote the conversion of Glu to glutamine (Gln) in excitatory neurotoxic human neuroblastoma cells (SH-SY5Y) and alleviate Glu-induced neurotoxicity. Additionally, the fluorescence signal of nanosheets enables precise monitoring of the subcellular distribution of STPE-PMNSs. More importantly, the intracellular fluorescence signal is enhanced in a conversion-responsive manner, allowing real-time tracking of reaction progression. This study presents a self-sustaining strategy to address GS functional impairment caused by ATP deficiency in nerve cells during neurotoxic events. Furthermore, it offers a fresh perspective on the potential biological applications of polyP-based nanostructures.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Xinyang Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Yucheng Tao
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China
| | - Li Yan
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research (iMR), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, PR China
| | - Yi Hsu
- Taipei Wego Private Senior High School, Taipei, TWN, PR China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, PR China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, PR China.
- School of Life Sciences, Nanjing University, Nanjing, 210093, PR China.
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Sino-Danish Ecolife Science Industrial Incubator, Jiangbei New Area, Nanjing, 210000, PR China.
- Shenzhen Research Institute, Nanjing University, Shenzhen, PR China.
| |
Collapse
|
10
|
Xiao Y, Wang W, Peng S, Lu Y, Du J, Cai W. Farnesoid X receptor agonist tropifexor detoxifies ammonia by regulating the glutamine metabolism and urea cycles in cholestatic livers. Eur J Pharmacol 2024; 966:176334. [PMID: 38286357 DOI: 10.1016/j.ejphar.2024.176334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024]
Abstract
Hyperammonemia refers to elevated levels of ammonia in the blood, which is an important pathological feature of liver cirrhosis and hepatic failure. Preclinical studies suggest tropifexor (TXR), a novel non-bile acid agonist of Farnesoid X Receptor (FXR), has shown promising effects on reducing hepatic steatosis, inflammation, and fibrosis. This study evaluates the impact of TXR on hyperammonemia in a piglet model of cholestasis. We here observed blood ammonia significantly elevated in patients with biliary atresia (BA) and was positively correlated with liver injury. Targeted metabolomics and immunblotting showed glutamine metabolism and urea cycles were impaired in BA patients. Next, we observed that TXR potently suppresses bile duct ligation (BDL)-induced injuries in liver and brain with improving the glutamine metabolism and urea cycles. Within the liver, TXR enhances glutamine metabolism and urea cycles by up-regulation of key regulatory enzymes, including glutamine synthetase (GS), carbamoyl-phosphate synthetase 1 (CPS1), argininosuccinate synthetase (ASS1), argininosuccinate lyase (ASL), and arginase 1 (ARG1). In primary mice hepatocytes, TXR detoxified ammonia via increasing ureagenesis. Mechanically, TXR activating FXR to increase express enzymes that regulating ureagenesis and glutamine synthesis through a transcriptional approach. Together, these results suggest that TXR may have therapeutic implications for hyperammonemic conditions in cholestatic livers.
Collapse
Affiliation(s)
- Yongtao Xiao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| | - Weipeng Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Shicheng Peng
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Ying Lu
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Jun Du
- Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Institute of Pediatric Research, Shanghai, China; Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.
| |
Collapse
|
11
|
Song Q, Hwang CL, Li Y, Wang J, Park J, Lee SM, Sun Z, Sun J, Xia Y, Nieto N, Cordoba-Chacon J, Jiang Y, Dou X, Song Z. Gut-derived ammonia contributes to alcohol-related fatty liver development via facilitating ethanol metabolism and provoking ATF4-dependent de novo lipogenesis activation. Metabolism 2024; 151:155740. [PMID: 37995805 DOI: 10.1016/j.metabol.2023.155740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND & AIMS Dysbiosis contributes to alcohol-associated liver disease (ALD); however, the precise mechanisms remain elusive. Given the critical role of the gut microbiota in ammonia production, we herein aim to investigate whether and how gut-derived ammonia contributes to ALD. METHODS Blood samples were collected from human subjects with/without alcohol drinking. Mice were exposed to the Lieber-DeCarli isocaloric control or ethanol-containing diets with and without rifaximin (a nonabsorbable antibiotic clinically used for lowering gut ammonia production) supplementation for five weeks. Both in vitro (NH4Cl exposure of AML12 hepatocytes) and in vivo (urease administration for 5 days in mice) hyperammonemia models were employed. RNA sequencing and fecal amplicon sequencing were performed. Ammonia and triglyceride concentrations were measured. The gene and protein expression of enzymes involved in multiple pathways were measured. RESULTS Chronic alcohol consumption causes hyperammonemia in both mice and human subjects. In healthy livers and hepatocytes, ammonia exposure upregulates the expression of urea cycle genes, elevates hepatic de novo lipogenesis (DNL), and increases fat accumulation. Intriguingly, ammonia promotes ethanol catabolism and acetyl-CoA formation, which, together with ammonia, synergistically facilitates intracellular fat accumulation in hepatocytes. Mechanistic investigations uncovered that ATF4 activation, as a result of ER stress induction and general control nonderepressible 2 activation, plays a central role in ammonia-provoked DNL elevation. Rifaximin ameliorates ALD pathologies in mice, concomitant with blunted hepatic ER stress induction, ATF4 activation, and DNL activation. CONCLUSIONS An overproduction of ammonia by gut microbiota, synergistically interacting with ethanol, is a significant contributor to ALD pathologies.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| | - Chueh-Lung Hwang
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Yanhui Li
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Samuel M Lee
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Illinois Chicago, Chicago, IL, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Sun
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Natalia Nieto
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Jose Cordoba-Chacon
- Department of Medicine, Division of Endocrinology, Diabetes & Metabolism, University of Illinois Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, University of Illinois Chicago, Chicago, IL, USA
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Bandeira GA, Lucato LT. Toxic leukoencephalopathies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:455-486. [PMID: 39322394 DOI: 10.1016/b978-0-323-99209-1.00006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Toxic-metabolic encephalopathies are a group of disorders in which an exogenous or endogenous substance leads to transient or permanent neuronal damage. It is an important cause of potentially reversible acute encephalopathy syndrome. The signs and symptoms of toxic encephalopathies may be relatively nonspecific, and toxicologic tests are not always widely available. Imaging plays a key role in determining the most probable diagnosis, pointing to the next steps of investigation, and providing prognostic information. In this chapter, we review the main acquired toxic-metabolic leukoencephalopathies, commenting on their pathophysiology, imaging patterns, and rationale for an adequate diagnosis in detail.
Collapse
Affiliation(s)
- Gabriela Alencar Bandeira
- Neuroradiology Section, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil
| | - Leandro Tavares Lucato
- Neuroradiology Section, Hospital das Clinicas, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil; Grupo Fleury, São Paulo, Brazil.
| |
Collapse
|
13
|
Cholico GN, Fling RR, Sink WJ, Nault R, Zacharewski T. Inhibition of the urea cycle by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin increases serum ammonia levels in mice. J Biol Chem 2024; 300:105500. [PMID: 38013089 PMCID: PMC10731612 DOI: 10.1016/j.jbc.2023.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023] Open
Abstract
The aryl hydrocarbon receptor is a ligand-activated transcription factor known for mediating the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. TCDD induces nonalcoholic fatty liver disease (NAFLD)-like pathologies including simple steatosis that can progress to steatohepatitis with fibrosis and bile duct proliferation in male mice. Dose-dependent progression of steatosis to steatohepatitis with fibrosis by TCDD has been associated with metabolic reprogramming, including the disruption of amino acid metabolism. Here, we used targeted metabolomic analysis to reveal dose-dependent changes in the level of ten serum and eleven hepatic amino acids in mice upon treatment with TCDD. Bulk RNA-seq and protein analysis showed TCDD repressed CPS1, OTS, ASS1, ASL, and GLUL, all of which are associated with the urea cycle and glutamine biosynthesis. Urea and glutamine are end products of the detoxification and excretion of ammonia, a toxic byproduct of amino acid catabolism. Furthermore, we found that the catalytic activity of OTC, a rate-limiting step in the urea cycle was also dose dependently repressed. These results are consistent with an increase in circulating ammonia. Collectively, the repression of the urea and glutamate-glutamine cycles increased circulating ammonia levels and the toxicity of TCDD.
Collapse
Affiliation(s)
- Giovan N Cholico
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Russell R Fling
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA; Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Warren J Sink
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Rance Nault
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Tim Zacharewski
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA.
| |
Collapse
|
14
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Yan Z, Wan J, Liu J, Yao B, Lu Y, Guo Z, Li Y. α-lipoic acid ameliorates hepatotoxicity induced by chronic ammonia toxicity in crucian carp (Carassius auratus gibelio) by alleviating oxidative stress, inflammation and inhibiting ERS pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115533. [PMID: 37806127 DOI: 10.1016/j.ecoenv.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
High environment ammonia (HEA) poses a deadly threat to aquatic animals and indirectly impacts human healthy life, while nutritional regulation can alleviate chronic ammonia toxicity. α-lipoic acid exhibits antioxidative effects in both aqueous and lipid environments, mitigating cellular and tissue damage caused by oxidative stress by aiding in the neutralization of free radicals (reactive oxygen species). Hence, investigating its potential as an effective antioxidant and its protective mechanisms against chronic ammonia stress in crucian carp is highly valuable. Experimental fish (initial weight 20.47 ± 1.68 g) were fed diets supplemented with or without 0.1% α-lipoic acid followed by a chronic ammonia exposure (10 mg/L) for 42 days. The results revealed that chronic ammonia stress affected growth (weight gain rate, specific growth rate, and feed conversion rate), leading to oxidative stress (decreased the activities of antioxidant enzymes catalase, superoxide dismutase, glutathione peroxidase; decreased total antioxidant capacity), increased lipid peroxidation (accumulation of malondialdehyde), immune suppression (decreased contents of nonspecific immune enzymes AKP and ACP, 50% hemolytic complement, and decrease of immunoglobulin M), impaired ammonia metabolism (reduced contents of Glu, GS, GSH, and Gln), imbalance of expression of induced antioxidant-related genes (downregulation of Cu/Zu SOD, CAT, Nrf2, and HO-1; upregulation of GST and Keap1), induction of pro-apoptotic molecules (transcription of BAX, Caspase3, and Caspase9), downregulation of anti-apoptotic gene Bcl-2 expression, and induction of endoplasmic reticulum stress (upregulation of IRE1, PERK, and ATF6 expression). The results suggested that the supplementation of α-lipoic acid could effectively induce humoral immunity, alleviate oxidative stress injury and endoplasmic reticulum stress, and ultimately alleviate liver injury induced by ammonia poisoning (50-60% reduction). This provides theoretical basis for revealing the toxicity of long-term ammonia stress and provides new insights into the anti-ammonia toxicity mechanism of α-lipoic acid.
Collapse
Affiliation(s)
- Zihao Yan
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jiwu Wan
- Jilin Provincial Aquatic Technology Extension Center, Changchun 130118, China
| | - Jia Liu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Baolan Yao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuqian Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhengyao Guo
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Veterinary Medicine, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Wu J, Duan C, Yang Y, Wang Z, Tan C, Han C, Hou X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J Transl Med 2023; 21:712. [PMID: 37817192 PMCID: PMC10566185 DOI: 10.1186/s12967-023-04543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dysfunctional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mechanism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-associated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel insights into liver and eyes communications and help resolve existed clinically significant issues.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
17
|
Cattaneo V, Caccioppola A, Colombo SM, Scaravilli V, Tubiolo D, Crotti S, Bosone M, Rafaniello Raviele P, Olmeda E, Menni F, Furlan F, Rossetti V, Damarco F, Panigada M, Grasselli G. Hyperammonemia Syndrome After Lung Transplantation: A Double-Hit Fatal Syndrome. A Case Report. Transplant Proc 2023; 55:1991-1994. [PMID: 37537075 DOI: 10.1016/j.transproceed.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Hyperammonemia after lung transplantation is a rare but potentially fatal condition. A 59-year-old male patient affected by pulmonary fibrosis underwent an uncomplicated bilateral lung transplant. Fourteen days after the procedure, the patient developed severe encephalopathy caused by elevated serum ammonia levels. Ureaplasma parvum and Mycoplasma hominis were found on bronchial aspirate and urinary samples as well as on pharyngeal and rectal swabs. Despite the initiation of multimodal therapy, brain damage due to hyperosmolarity was so extensive to evolve into brain death. The autopsy revealed glutamine synthetase hypo-expression in the hepatic tissue. The pathophysiology of hyperammonemia syndrome in lung transplant recipients remains unclear. Previous studies have described the presence of disorders of glutamine synthetase, while others considered the infection with urea-splitting microorganisms as a cause of hyperammonemia syndrome. Our report describes the case of a patient who developed hyperammonemia after a lung transplant in which both the aforementioned etiologies were documented. A high level of clinical suspicion for hyperammonemia syndrome should be maintained in lung transplant recipients. Timely recognition and treatment are critical to prevent the potentially dreadful evolution of this severe complication.
Collapse
Affiliation(s)
- Valentina Cattaneo
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Alessio Caccioppola
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sebastiano Maria Colombo
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Vittorio Scaravilli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Daniela Tubiolo
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Crotti
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Bosone
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paola Rafaniello Raviele
- Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Edoardo Olmeda
- Division of Pathology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesca Menni
- Regional Clinical Center for Expanded Newborn Screening, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Furlan
- Regional Clinical Center for Expanded Newborn Screening, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Rossetti
- Respiratory Unit and Adult Cystic Fibrosis Centre, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Damarco
- Thoracic Surgery and Lung Transplant Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Department of Anesthesia, Critical Care and Emergency, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
18
|
Méndez-Narváez J, Warkentin KM. Early onset of urea synthesis and ammonia detoxification pathways in three terrestrially developing frogs. J Comp Physiol B 2023; 193:523-543. [PMID: 37639061 DOI: 10.1007/s00360-023-01506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2023]
Abstract
Frogs evolved terrestrial development multiple times, necessitating mechanisms to avoid ammonia toxicity at early stages. Urea synthesis from ammonia is a key adaptation that reduces water dependence after metamorphosis. We tested for early expression and plasticity of enzymatic mechanisms of ammonia detoxification in three terrestrial-breeding frogs: foam-nest-dwelling larvae of Leptodactylus fragilis (Lf) and arboreal embryos of Hyalinobatrachium fleischmanni (Hf) and Agalychnis callidryas (Ac). Activity of two ornithine-urea cycle (OUC) enzymes, arginase and CPSase, and levels of their products urea and CP in tissues were high in Lf regardless of nest hydration, but reduced in experimental low- vs. high-ammonia environments. High OUC activity in wet and dry nests, comparable to that under experimental high ammonia, suggests terrestrial Lf larvae maintain high capacity for urea excretion regardless of their immediate risk of ammonia toxicity. This may aid survival through unpredictably long waiting periods before rain enables their transition to water. Moderate levels of urea and CP were present in Hf and Ac tissues and enzymatic activities were lower than in Lf. In both species, embryos in drying clutches can hatch and enter the water early, behaviorally avoiding ammonia toxicity. Moreover, glutamine synthetase was active in early stages of all three species, condensing ammonia and glutamate to glutamine as another mechanism of detoxification. Enzyme activity appeared highest in Lf, although substrate and product levels were higher in Ac and Lf. Our results reveal that multiple biochemical mechanisms of ammonia detoxification occur in early life stages of anuran lineages that evolved terrestrial development.
Collapse
Affiliation(s)
- Javier Méndez-Narváez
- Calima, Fundación para la Investigación de la Biodiversidad y Conservación en el Trópico, Cali, Colombia.
- Department of Biology, Boston University, Boston, MA, USA.
| | - Karen M Warkentin
- Department of Biology, Boston University, Boston, MA, USA
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama
| |
Collapse
|
19
|
Levin SN, Tomasini MD, Knox J, Shirani M, Shebl B, Requena D, Clark J, Heissel S, Alwaseem H, Surjan R, Lahasky R, Molina H, Torbenson MS, Lyons B, Migler RD, Coffino P, Simon SM. Disruption of proteome by an oncogenic fusion kinase alters metabolism in fibrolamellar hepatocellular carcinoma. SCIENCE ADVANCES 2023; 9:eadg7038. [PMID: 37343102 PMCID: PMC10284549 DOI: 10.1126/sciadv.adg7038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Fibrolamellar hepatocellular carcinoma (FLC) is a usually lethal primary liver cancer driven by a somatic dysregulation of protein kinase A. We show that the proteome of FLC tumors is distinct from that of adjacent nontransformed tissue. These changes can account for some of the cell biological and pathological alterations in FLC cells, including their drug sensitivity and glycolysis. Hyperammonemic encephalopathy is a recurrent problem in these patients, and established treatments based on the assumption of liver failure are unsuccessful. We show that many of the enzymes that produce ammonia are increased and those that consume ammonia are decreased. We also demonstrate that the metabolites of these enzymes change as expected. Thus, hyperammonemic encephalopathy in FLC may require alternative therapeutics.
Collapse
Affiliation(s)
- Solomon N. Levin
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Michael D. Tomasini
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - James Knox
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Mahsa Shirani
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bassem Shebl
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - David Requena
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jackson Clark
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rodrigo Surjan
- General Surgery Division, Surgery Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Ron Lahasky
- Lahasky Medical Clinic, Abbeville, LA 70510, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | - Barbara Lyons
- The Fibrolamellar Registry, New York, NY 10028, USA
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Philip Coffino
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sanford M. Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- The Fibrolamellar Registry, New York, NY 10028, USA
| |
Collapse
|
20
|
Simon E, Motyka M, Prins GH, Li M, Rust W, Kauschke S, Viollet C, Olinga P, Oldenburger A. Transcriptomic profiling of induced steatosis in human and mouse precision-cut liver slices. Sci Data 2023; 10:304. [PMID: 37208356 DOI: 10.1038/s41597-023-02220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
There is a high need for predictive human ex vivo models for non-alcoholic fatty liver disease (NAFLD). About a decade ago, precision-cut liver slices (PCLSs) have been established as an ex vivo assay for humans and other organisms. In the present study, we use transcriptomics by RNASeq to profile a new human and mouse PCLSs based assay for steatosis in NAFLD. Steatosis as quantified by an increase of triglycerides after 48 h in culture, is induced by incremental supplementation of sugars (glucose and fructose), insulin, and fatty acids (palmitate, oleate). We mirrored the experimental design for human vs. mouse liver organ derived PCLSs and profiled each organ at eight different nutrient conditions after 24 h and 48 h time in culture. Thus, the provided data allows a comprehensive analysis of the donor, species, time, and nutrient factor specific regulation of gene expression in steatosis, despite the heterogeneity of the human tissue samples. Exemplified this is demonstrated by ranking homologous gene pairs by convergent or divergent expression pattern across nutrient conditions.
Collapse
Affiliation(s)
- Eric Simon
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany.
| | | | - Grietje H Prins
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Mei Li
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Werner Rust
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Stefan Kauschke
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Science, Research Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen Research Institute of Pharmacy, A, Deusinglaan 1, 9713AV, Groningen, The Netherlands
| | - Anouk Oldenburger
- CardioMetabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co.KG, Biberach, Germany
| |
Collapse
|
21
|
Wetzel TJ, Erfan SC, Figueroa LD, Wheeler LM, Ananieva EA. Crosstalk between arginine, glutamine, and the branched chain amino acid metabolism in the tumor microenvironment. Front Oncol 2023; 13:1186539. [PMID: 37274280 PMCID: PMC10235471 DOI: 10.3389/fonc.2023.1186539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Arginine, glutamine, and the branched chain amino acids (BCAAs) are a focus of increased interest in the field of oncology due to their importance in the metabolic reprogramming of cancer cells. In the tumor microenvironment (TME), these amino acids serve to support the elevated biosynthetic and energy demands of cancer cells, while simultaneously maintaining the growth, homeostasis, and effector function of tumor-infiltrating immune cells. To escape immune destruction, cancer cells utilize a variety of mechanisms to suppress the cytotoxic activity of effector T cells, facilitating T cell exhaustion. One such mechanism is the ability of cancer cells to overexpress metabolic enzymes specializing in the catabolism of arginine, glutamine, and the BCAAs in the TME. The action of such enzymes supplies cancer cells with metabolic intermediates that feed into the TCA cycle, supporting energy generation, or providing precursors for purine, pyrimidine, and polyamine biosynthesis. Armed with substantial metabolic flexibility, cancer cells redirect amino acids from the TME for their own advantage and growth, while leaving the local infiltrating effector T cells deprived of essential nutrients. This review addresses the metabolic pressure that cancer cells exert over immune cells in the TME by up-regulating amino acid metabolism, while discussing opportunities for targeting amino acid metabolism for therapeutic intervention. Special emphasis is given to the crosstalk between arginine, glutamine, and BCAA metabolism in affording cancer cells with metabolic dominance in the TME.
Collapse
Affiliation(s)
| | | | | | | | - Elitsa A. Ananieva
- Ananieva Laboratory, Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, United States
| |
Collapse
|
22
|
Li K, Pang S, Li Z, Ding X, Gan Y, Gan Q, Fang S. House ammonia exposure causes alterations in microbiota, transcriptome, and metabolome of rabbits. Front Microbiol 2023; 14:1125195. [PMID: 37250049 PMCID: PMC10213413 DOI: 10.3389/fmicb.2023.1125195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/11/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction Pollutant gas emissions in the current production system of the livestock industry have negative influences on environment as well as the health of farm staffs and animals. Although ammonia (NH3) is considered as the primary and harmful gas pollutant in the rabbit farm, less investigation has performed to determine the toxic effects of house ammonia exposure on rabbit in the commercial confined barn. Methods In this study, we performed multi-omics analysis on rabbits exposed to high and low concentration of house ammonia under similar environmental conditions to unravel the alterations in nasal and colonic microbiota, pulmonary and colonic gene expression, and muscular metabolic profile. Results and discussion The results showed that house ammonia exposure notably affected microbial structure, composition, and functional capacity in both nasal and colon, which may impact on local immune responses and inflammatory processes. Transcriptome analysis indicated that genes related to cell death (MCL1, TMBIM6, HSPB1, and CD74) and immune response (CDC42, LAMTOR5, VAMP8, and CTSB) were differentially expressed in the lung, and colonic genes associated with redox state (CAT, SELENBP1, GLUD1, and ALDH1A1) were significantly up-regulated. Several key differentially abundant metabolites such as L-glutamic acid, L-glutamine, L-ornithine, oxoglutaric acid, and isocitric acid were identified in muscle metabolome, which could denote house ammonia exposure perturbed amino acids, nucleotides, and energy metabolism. In addition, the widespread and strong inter-system interplay were uncovered in the integrative correlation network, and central features were confirmed by in vitro experiments. Our findings disclose the comprehensive evidence for the deleterious effects of house ammonia exposure on rabbit and provide valuable information for understanding the underlying impairment mechanisms.
Collapse
|
23
|
Simon SM. Fighting rare cancers: lessons from fibrolamellar hepatocellular carcinoma. Nat Rev Cancer 2023; 23:335-346. [PMID: 36932129 PMCID: PMC10022574 DOI: 10.1038/s41568-023-00554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/12/2023] [Indexed: 03/19/2023]
Abstract
The fight against rare cancers faces myriad challenges, including missed or wrong diagnoses, lack of information and diagnostic tools, too few samples and too little funding. Yet many advances in cancer biology, such as the realization that there are tumour suppressor genes, have come from studying well-defined, albeit rare, cancers. Fibrolamellar hepatocellular carcinoma (FLC), a typically lethal liver cancer, mainly affects adolescents and young adults. FLC is both rare, 1 in 5 million, and problematic to diagnose. From the paucity of data, it was not known whether FLC was one cancer or a collection with similar phenotypes, or whether it was genetically inherited or the result of a somatic mutation. A personal journey through a decade of work reveals answers to these questions and a road map of steps and missteps in our fight against a rare cancer.
Collapse
|
24
|
Villar VH, Allega MF, Deshmukh R, Ackermann T, Nakasone MA, Vande Voorde J, Drake TM, Oetjen J, Bloom A, Nixon C, Müller M, May S, Tan EH, Vereecke L, Jans M, Blancke G, Murphy DJ, Huang DT, Lewis DY, Bird TG, Sansom OJ, Blyth K, Sumpton D, Tardito S. Hepatic glutamine synthetase controls N 5-methylglutamine in homeostasis and cancer. Nat Chem Biol 2023; 19:292-300. [PMID: 36280791 PMCID: PMC9974483 DOI: 10.1038/s41589-022-01154-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
Glutamine synthetase (GS) activity is conserved from prokaryotes to humans, where the ATP-dependent production of glutamine from glutamate and ammonia is essential for neurotransmission and ammonia detoxification. Here, we show that mammalian GS uses glutamate and methylamine to produce a methylated glutamine analog, N5-methylglutamine. Untargeted metabolomics revealed that liver-specific GS deletion and its pharmacological inhibition in mice suppress hepatic and circulating levels of N5-methylglutamine. This alternative activity of GS was confirmed in human recombinant enzyme and cells, where a pathogenic mutation in the active site (R324C) promoted the synthesis of N5-methylglutamine over glutamine. N5-methylglutamine is detected in the circulation, and its levels are sustained by the microbiome, as demonstrated by using germ-free mice. Finally, we show that urine levels of N5-methylglutamine correlate with tumor burden and GS expression in a β-catenin-driven model of liver cancer, highlighting the translational potential of this uncharacterized metabolite.
Collapse
Affiliation(s)
- Victor H Villar
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Tobias Ackermann
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Mark A Nakasone
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | | | - Thomas M Drake
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | | | - Algernon Bloom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Miryam Müller
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Stephanie May
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Ee Hong Tan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Lars Vereecke
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Maude Jans
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Gillian Blancke
- Host-Microbiota Interaction Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Daniel J Murphy
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Danny T Huang
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Y Lewis
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Thomas G Bird
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Sumpton
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Jung EH, Nguyen J, Nelson C, Brauner CJ, Wood CM. Ammonia transport is independent of PNH 3 gradients across the gastrointestinal epithelia of the rainbow trout: A role for the stomach. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:180-192. [PMID: 36369634 DOI: 10.1002/jez.2670] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022]
Abstract
Although the gastrointestinal tract (GIT) is an important site for nitrogen metabolism in teleosts, the mechanisms of ammonia absorption and transport remain to be elucidated. Both protein catabolism in the lumen and the metabolism of the GIT tissues produce ammonia which, in part, enters the portal blood through the anterior region of the GIT. The present study examined the possible roles of different GIT sections of rainbow trout (Oncorhynchus mykiss) in transporting ammonia in its unionized gas form-NH3 -by changing the PNH3 gradient across GIT epithelia using in vitro gut sac preparations. We also surveyed messenger RNA expression patterns of three of the identified Rh proteins (Rhbg, Rhcg1, and Rhcg2) as potential NH3 transporters and NKCC as a potential ammonium ion (NH4 + ) transporter along the GIT of rainbow trout. We found that ammonia absorption is not dependent on the PNH3 gradient despite expression of Rhbg and Rhcg2 in the intestinal tissues, and Rhcg2 in the stomach. We detected no expression of Rhbg in the stomach and no expression of Rhcg1 in any GIT tissues. There was also a lack of correlation between ammonia transport and [NH4 + ] gradient despite NKCC expression in all GIT tissues. Regardless of PNH3 gradients, the stomach showed the greatest absorption and net tissue consumption of ammonia. Overall, our findings suggest nitrogen metabolism zonation of GIT, with stomach serving as an important site for the absorption, handling and transport of ammonia that is independent of the PNH3 gradient.
Collapse
Affiliation(s)
- Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Nguyen
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Charlotte Nelson
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Henao‐Restrepo J, López‐Murillo C, Valderrama‐Carmona P, Orozco‐Santa N, Gomez J, Gutiérrez‐Vargas J, Moraga R, Toledo J, Littau JL, Härtel S, Arboleda‐Velásquez JF, Sepulveda‐Falla D, Lopera F, Cardona‐Gómez GP, Villegas A, Posada‐Duque R. Gliovascular alterations in sporadic and familial Alzheimer's disease: APOE3 Christchurch homozygote glioprotection. Brain Pathol 2023; 33:e13119. [PMID: 36130084 PMCID: PMC10041169 DOI: 10.1111/bpa.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
In response to brain insults, astrocytes become reactive, promoting protection and tissue repair. However, astroglial reactivity is typical of brain pathologies, including Alzheimer's disease (AD). Considering the heterogeneity of the reactive response, the role of astrocytes in the course of different forms of AD has been underestimated. Colombia has the largest human group known to have familial AD (FAD). This group carries the autosomal dominant and fully penetrant mutation E280A in PSEN1, which causes early-onset AD. Recently, our group identified an E280A carrier who did not develop FAD. The individual was homozygous for the Christchurch mutation R136S in APOE3 (APOEch). Remarkably, APOE is the main genetic risk factor for developing sporadic AD (SAD) and most of cerebral ApoE is produced by astroglia. Here, we characterized astrocyte properties related to reactivity, glutamate homeostasis, and structural integrity of the gliovascular unit (GVU), as factors that could underlie the pathogenesis or protection of AD. Specifically, through histological and 3D microscopy analyses of postmortem samples, we briefly describe the histopathology and cytoarchitecture of the frontal cortex of SAD, FAD, and APOEch, and demonstrate that, while astrodegeneration and vascular deterioration are prominent in SAD, FAD is characterized by hyperreactive-like glia, and APOEch displays the mildest astrocytic and vascular alterations despite having the highest burden of Aβ. Notably, astroglial, gliovascular, and vascular disturbances, as well as brain cell death, correlate with the specific astrocytic phenotypes identified in each condition. This study provides new insights into the potential relevance of the gliovasculature in the development and protection of AD. To our knowledge, this is the first study assessing the components of the GVU in human samples of SAD, FAD, and APOEch.
Collapse
Affiliation(s)
- Julián Henao‐Restrepo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Carolina López‐Murillo
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Pablo Valderrama‐Carmona
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Natalia Orozco‐Santa
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Johana Gomez
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Johanna Gutiérrez‐Vargas
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Health Sciences FacultyRemington University CorporationMedellínColombia
| | - Renato Moraga
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jorge Toledo
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Jessica Lisa Littau
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Steffen Härtel
- Biomedical Neuroscience Institute BNI, Faculty of MedicineUniversity of ChileSantiagoChile
| | - Joseph F. Arboleda‐Velásquez
- Schepens Eye Research Institute of Mass Eye and Ear, Department of OphthalmologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Diego Sepulveda‐Falla
- Molecular Neuropathology of Alzheimer's DiseaseInstitute of Neuropathology, University Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Gloria Patricia Cardona‐Gómez
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Andrés Villegas
- Grupo de Neurociencias de Antioquia, Facultad de MedicinaSIU, Universidad de AntioquiaMedellínColombia
| | - Rafael Posada‐Duque
- Instituto de Biología, Facultad de Ciencias Exactas y NaturalesUniversidad de AntioquiaMedellínColombia
- Área de Neurobiología Celular y Molecular, Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
27
|
Ojo OB, Olajide AO, Olagunju GB, Olowu C, Josiah SS, Amoo ZA, Olaleye MT, Akinmoladun AC. Polyphenol-rich Spondias mombin leaf extract abates cerebral ischemia/reperfusion-induced disturbed glutamate-ammonia metabolism and multiorgan toxicity in rats. Biomarkers 2023; 28:65-75. [PMID: 36341500 DOI: 10.1080/1354750x.2022.2145496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: This study investigated the protective properties of Spondias mombin leaf extract (SML), in cerebral ischemia/reperfusion (I/R) mediated toxicity in the brain, liver, and kidney of male Wistar rats. Materials and methods: Animals were subjected to 30 min of bilateral common carotid artery occlusion followed by 24 h of reperfusion (BCCAO/R). The animals were divided into sham, I/R, and I/R treated with SML (25, 50 and 100 mg/kg) or quercetin (20 mg/kg) groups. Animals were sacrificed after 24 h of reperfusion and markers of organ toxicity (urea creatinine, glutamine synthetase (GS), glutaminase (GA), aspartate aminotransferase (AST), alanine aminotransferase (ALT), acetylcholinesterase (AChE)) were measured in the brain regions (cortex, striatum, and hippocampus), liver, and kidney. Results and discussion: BCCAO/R significantly (p < 0.0001) inhibited the glutamate-glutamine cycle and mediated toxicity in the cerebral cortex, striatum, hippocampus, liver, and kidney of rats. Post-treatment with SML significantly (p < 0.0001) reversed glutamate-glutamine cycle inhibition and ameliorated cerebrohepatorenal toxicity in ischemic rats. Conclusion: Cerebral I/R significantly mediated cerebral, hepatic, and renal toxicity through the inhibition of glutamate-ammonia detoxification in rats, and SML protected against this post-ischemic glutamate-ammonia mediated multiorgan toxicity.
Collapse
Affiliation(s)
- Olubukola Benedicta Ojo
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Abigail Oladunni Olajide
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Grace Boluwatife Olagunju
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Comfort Olowu
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Sunday Solomon Josiah
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Zainab Abiola Amoo
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Mary Tolulope Olaleye
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| | - Afolabi Clement Akinmoladun
- Biochemical and Molecular Pharmacology and Toxicology Laboratories, Department of Biochemistry, School of Life Sciences, The Federal University of Technology, Akure, Nigeria
| |
Collapse
|
28
|
Rigual MDM, Sánchez Sánchez P, Djouder N. Is liver regeneration key in hepatocellular carcinoma development? Trends Cancer 2023; 9:140-157. [PMID: 36347768 DOI: 10.1016/j.trecan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
The liver is the largest organ of the mammalian body and has the remarkable ability to fully regenerate in order to maintain tissue homeostasis. The adult liver consists of hexagonal lobules, each with a central vein surrounded by six portal triads localized in the lobule border containing distinct parenchymal and nonparenchymal cells. Because the liver is continuously exposed to diverse stress signals, several sophisticated regenerative processes exist to restore its functional status following impairment. However, these stress signals can affect the liver's capacity to regenerate and may lead to the development of hepatocellular carcinoma (HCC), one of the most aggressive liver cancers. Here, we review the mechanisms of hepatic regeneration and their potential to influence HCC development.
Collapse
Affiliation(s)
- María Del Mar Rigual
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Paula Sánchez Sánchez
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain
| | - Nabil Djouder
- Molecular Oncology Programme, Growth Factors, Nutrients and Cancer Group, Centro Nacional de Investigaciones Oncológicas, CNIO, Madrid, ES-28029, Spain.
| |
Collapse
|
29
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
30
|
Glutamine supplementation moderately affects growth, plasma metabolite and free amino acid patterns in neonatal low birth weight piglets. Br J Nutr 2022; 128:2330-2340. [PMID: 35144703 PMCID: PMC9723486 DOI: 10.1017/s0007114522000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Low birth weight (LBW) neonates show impaired growth compared with normal birth weight (NBW) neonates. Glutamine (Gln) supplementation benefits growth of weaning piglets, while the effect on neonates is not sufficiently clear. We examined the effect of neonatal Gln supplementation on piglet growth, milk intake and metabolic parameters. Sow-reared pairs of newborn LBW (0·8-1·2 kg) and NBW (1·4-1·8 kg) male piglets received Gln (1 g/kg body mass (BM)/d; Gln-LBW, Gln-NBW; n 24/group) or isonitrogenous alanine (1·22 g/kg BM/d; Ala-LBW; Ala-NBW; n 24/group) supplementation at 1-5 or 1-12 d of age (daily in three equal portions at 07:00, 12:00 and 17:00 by syringe feeding). We measured piglet BM, milk intake (1, 11-12 d), plasma metabolite, insulin, amino acid (AA) and liver TAG concentrations (5, 12 d). The Gln-LBW group had higher BM (+7·5%, 10 d, P = 0·066; 11-12 d, P < 0·05) and milk intake (+14·7%, P = 0·015) than Ala-LBW. At 5 d, Ala-LBW group had higher plasma TAG (+34·7%, P < 0·1) and lower carnosine (-22·5%, P < 0·05) than Ala-NBW and Gln-LBW, and higher liver TAG (+66·9%, P = 0·029) than Ala-NBW. At 12 d, plasma urea was higher (+37·5%, P < 0·05) with Gln than Ala supplementation. Several proteinogenic AA in plasma were lower (P < 0·05) in Ala-NBW v. Gln-NBW. Plasma arginine was higher (P < 0·05) in Gln-NBW v Ala-NBW piglets (5, 12 d). Supplemental Gln moderately improved growth and milk intake and affected lipid metabolism in LBW piglets and AA metabolism in NBW piglets, suggesting effects on intestinal and liver function.
Collapse
|
31
|
Dai W, Shen J, Yan J, Bott AJ, Maimouni S, Daguplo HQ, Wang Y, Khayati K, Guo JY, Zhang L, Wang Y, Valvezan A, Ding WX, Chen X, Su X, Gao S, Zong WX. Glutamine synthetase limits β-catenin-mutated liver cancer growth by maintaining nitrogen homeostasis and suppressing mTORC1. J Clin Invest 2022; 132:161408. [PMID: 36256480 PMCID: PMC9754002 DOI: 10.1172/jci161408] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) catalyzes de novo synthesis of glutamine that facilitates cancer cell growth. In the liver, GS functions next to the urea cycle to remove ammonia waste. As a dysregulated urea cycle is implicated in cancer development, the impact of GS's ammonia clearance function has not been explored in cancer. Here, we show that oncogenic activation of β-catenin (encoded by CTNNB1) led to a decreased urea cycle and elevated ammonia waste burden. While β-catenin induced the expression of GS, which is thought to be cancer promoting, surprisingly, genetic ablation of hepatic GS accelerated the onset of liver tumors in several mouse models that involved β-catenin activation. Mechanistically, GS ablation exacerbated hyperammonemia and facilitated the production of glutamate-derived nonessential amino acids, which subsequently stimulated mechanistic target of rapamycin complex 1 (mTORC1). Pharmacological and genetic inhibition of mTORC1 and glutamic transaminases suppressed tumorigenesis facilitated by GS ablation. While patients with hepatocellular carcinoma, especially those with CTNNB1 mutations, have an overall defective urea cycle and increased expression of GS, there exists a subset of patients with low GS expression that is associated with mTORC1 hyperactivation. Therefore, GS-mediated ammonia clearance serves as a tumor-suppressing mechanism in livers that harbor β-catenin activation mutations and a compromised urea cycle.
Collapse
Affiliation(s)
- Weiwei Dai
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Junrong Yan
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Alex J. Bott
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sara Maimouni
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Heineken Q. Daguplo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yujue Wang
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Khoosheh Khayati
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jessie Yanxiang Guo
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Lanjing Zhang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alexander Valvezan
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA.,Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, UCSF, San Francisco, California, USA
| | - Xiaoyang Su
- Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, New Jersey, USA.,Rutgers Cancer Institute of New Jersey, Rutgers-The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
32
|
Sheng W, Sun R, Zhang R, Xu P, Wang Y, Xu H, Aa J, Wang G, Xie Y. Identification of Biomarkers for Methamphetamine Exposure Time Prediction in Mice Using Metabolomics and Machine Learning Approaches. Metabolites 2022; 12:metabo12121250. [PMID: 36557288 PMCID: PMC9780981 DOI: 10.3390/metabo12121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) abuse has become a global public health and safety problem. More information is needed to identify the time of drug abuse. In this study, methamphetamine was administered to male C57BL/6J mice with increasing doses from 5 to 30 mg kg-1 (once a day, i.p.) for 20 days. Serum and urine samples were collected for metabolomics studies using gas chromatography-mass spectrometry (GC-MS). Six machine learning models were used to infer the time of drug abuse and the best model was selected to predict administration time preliminarily. The metabolic changes caused by methamphetamine were explored. As results, the metabolic patterns of methamphetamine exposure mice were quite different from the control group and changed over time. Specifically, serum metabolomics showed enhanced amino acid metabolism and increased fatty acid consumption, while urine metabolomics showed slowed metabolism of the tricarboxylic acid (TCA) cycle, increased organic acid excretion, and abnormal purine metabolism. Phenylalanine in serum and glutamine in urine increased, while palmitic acid, 5-HT, and monopalmitin in serum and gamma-aminobutyric acid in urine decreased significantly. Among the six machine learning models, the random forest model was the best to predict the exposure time (serum: MAE = 1.482, RMSE = 1.69, R squared = 0.981; urine: MAE = 2.369, RMSE = 1.926, R squared = 0.946). The potential biomarker set containing four metabolites in the serum (palmitic acid, 5-hydroxytryptamine, monopalmitin, and phenylalanine) facilitated the identification of methamphetamine exposure. The random forest model helped predict the methamphetamine exposure time based on these potential biomarkers.
Collapse
Affiliation(s)
- Wei Sheng
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Runbin Sun
- China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing 210000, China
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Ran Zhang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Peng Xu
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Youmei Wang
- China National Narcotics Control Commission—China Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics Control, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Xu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| | - Yuan Xie
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (G.W.); (Y.X.)
| |
Collapse
|
33
|
Neuffer J, González-Domínguez R, Lefèvre-Arbogast S, Low DY, Driollet B, Helmer C, Du Preez A, de Lucia C, Ruigrok SR, Altendorfer B, Aigner L, Lucassen PJ, Korosi A, Thuret S, Manach C, Pallàs M, Urpi-Sardà M, Sánchez-Pla A, Andres-Lacueva C, Samieri C. Exploration of the Gut-Brain Axis through Metabolomics Identifies Serum Propionic Acid Associated with Higher Cognitive Decline in Older Persons. Nutrients 2022; 14:4688. [PMID: 36364950 PMCID: PMC9655149 DOI: 10.3390/nu14214688] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The gut microbiome is involved in nutrient metabolism and produces metabolites that, via the gut−brain axis, signal to the brain and influence cognition. Human studies have so far had limited success in identifying early metabolic alterations linked to cognitive aging, likely due to limitations in metabolite coverage or follow-ups. Older persons from the Three-City population-based cohort who had not been diagnosed with dementia at the time of blood sampling were included, and repeated measures of cognition over 12 subsequent years were collected. Using a targeted metabolomics platform, we identified 72 circulating gut-derived metabolites in a case−control study on cognitive decline, nested within the cohort (discovery n = 418; validation n = 420). Higher serum levels of propionic acid, a short-chain fatty acid, were associated with increased odds of cognitive decline (OR for 1 SD = 1.40 (95% CI 1.11, 1.75) for discovery and 1.26 (1.02, 1.55) for validation). Additional analyses suggested mediation by hypercholesterolemia and diabetes. Propionic acid strongly correlated with blood glucose (r = 0.79) and with intakes of meat and cheese (r > 0.15), but not fiber (r = 0.04), suggesting a minor role of prebiotic foods per se, but a possible link to processed foods, in which propionic acid is a common preservative. The adverse impact of propionic acid on metabolism and cognition deserves further investigation.
Collapse
Affiliation(s)
- Jeanne Neuffer
- Bordeaux Population Health Research Center, University of Bordeaux, INSERMUMR 1219, F-33000 Bordeaux, France
| | - Raúl González-Domínguez
- Nutrition, Food Science and Gastronomy Department, Food Innovation Network (XIA), Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sophie Lefèvre-Arbogast
- Bordeaux Population Health Research Center, University of Bordeaux, INSERMUMR 1219, F-33000 Bordeaux, France
| | - Dorrain Y. Low
- Human Nutrition Unit, Université Clermont Auvergne, INRAEUMR1019, F-63000 Clermont Ferrand, France
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Bénédicte Driollet
- Bordeaux Population Health Research Center, University of Bordeaux, INSERMUMR 1219, F-33000 Bordeaux, France
| | - Catherine Helmer
- Bordeaux Population Health Research Center, University of Bordeaux, INSERMUMR 1219, F-33000 Bordeaux, France
| | - Andrea Du Preez
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Chiara de Lucia
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
| | - Silvie R. Ruigrok
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Paul J. Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
- The Center for Urban Mental Health, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9NU, UK
- Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudine Manach
- Human Nutrition Unit, Université Clermont Auvergne, INRAEUMR1019, F-63000 Clermont Ferrand, France
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurociencies, University of Barcelona, 08028 Barcelona, Spain
| | - Mireia Urpi-Sardà
- Nutrition, Food Science and Gastronomy Department, Food Innovation Network (XIA), Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alex Sánchez-Pla
- Nutrition, Food Science and Gastronomy Department, Food Innovation Network (XIA), Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina Andres-Lacueva
- Nutrition, Food Science and Gastronomy Department, Food Innovation Network (XIA), Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cécilia Samieri
- Bordeaux Population Health Research Center, University of Bordeaux, INSERMUMR 1219, F-33000 Bordeaux, France
| |
Collapse
|
34
|
Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, Ning K, Ling B, Fu Q, Xu J. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther 2022; 13:494. [PMID: 36195966 PMCID: PMC9531400 DOI: 10.1186/s13287-022-03049-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Background Hepatic fibrosis is a common pathologic stage in chronic liver disease development, which might ultimately lead to liver cirrhosis. Accumulating evidence suggests that adipose-derived stromal cells (ADSCs)-based therapies show excellent therapeutic potential in liver injury disease owing to its superior properties, including tissue repair ability and immunomodulation effect. However, cell-based therapy still limits to several problems, such as engraftment efficiency and immunoreaction, which impede the ADSCs-based therapeutics development. So, ADSCs-derived extracellular vesicles (EVs), especially for exosomes (ADSC-EXO), emerge as a promise cell-free therapeutics to ameliorate liver fibrosis. The effect and underlying mechanisms of ADSC-EXO in liver fibrosis remains blurred. Methods Hepatic fibrosis murine model was established by intraperitoneal sequential injecting the diethylnitrosamine (DEN) for two weeks and then carbon tetrachloride (CCl4) for six weeks. Subsequently, hepatic fibrosis mice were administrated with ADSC-EXO (10 μg/g) or PBS through tail vein infusion for three times in two weeks. To evaluate the anti-fibrotic capacity of ADSC-EXO, we detected liver morphology by histopathological examination, ECM deposition by serology test and Sirius Red staining, profibrogenic markers by qRT-PCR assay. LX-2 cells treated with TGF-β (10 ng/ml) for 12 h were conducted for evaluating ADSC-EXO effect on activated hepatic stellate cells (HSCs). RNA-seq was performed for further analysis of the underlying regulatory mechanisms of ADSC-EXO in liver fibrosis. Results In this study, we obtained isolated ADSCs, collected and separated ADSCs-derived exosomes. We found that ADSC-EXO treatment could efficiently ameliorate DEN/CCl4-induced hepatic fibrosis by improving mice liver function and lessening hepatic ECM deposition. Moreover, ADSC-EXO intervention could reverse profibrogenic phenotypes both in vivo and in vitro, including HSCs activation depressed and profibrogenic markers inhibition. Additionally, RNA-seq analysis further determined that decreased glutamine synthetase (Glul) of perivenous hepatocytes in hepatic fibrosis mice could be dramatically up-regulated by ADSC-EXO treatment; meanwhile, glutamine and ammonia metabolism-associated key enzyme OAT was up-regulated and GLS2 was down-regulated by ADSC-EXO treatment in mice liver. In addition, glutamine synthetase inhibitor would erase ADSC-EXO therapeutic effect on hepatic fibrosis. Conclusions These findings demonstrated that ADSC-derived exosomes could efficiently alleviate hepatic fibrosis by suppressing HSCs activation and remodeling glutamine and ammonia metabolism mediated by hepatocellular glutamine synthetase, which might be a novel and promising anti-fibrotic therapeutics for hepatic fibrosis disease. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03049-x.
Collapse
Affiliation(s)
- Baitong Wu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jiuxing Feng
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jingyi Guo
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Jian Wang
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Guanghui Xiu
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China
| | - Jiaqi Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China
| | - Ke Ning
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Bin Ling
- Department of Intensive Care Unit, Affiliated Hospital of Yunnan University (The Second People's Hospital of Yunnan Province), Yunnan University, Kunming, People's Republic of China.
| | - Qingchun Fu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, People's Republic of China.
| | - Jun Xu
- East Hospital, School of Medicine, Tongji University, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
35
|
Laemmle A, Poms M, Hsu B, Borsuk M, Rüfenacht V, Robinson J, Sadowski MC, Nuoffer J, Häberle J, Willenbring H. Aquaporin 9 induction in human iPSC-derived hepatocytes facilitates modeling of ornithine transcarbamylase deficiency. Hepatology 2022; 76:646-659. [PMID: 34786702 PMCID: PMC9295321 DOI: 10.1002/hep.32247] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/30/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIMS Patient-derived human-induced pluripotent stem cells (hiPSCs) differentiated into hepatocytes (hiPSC-Heps) have facilitated the study of rare genetic liver diseases. Here, we aimed to establish an in vitro liver disease model of the urea cycle disorder ornithine transcarbamylase deficiency (OTCD) using patient-derived hiPSC-Heps. APPROACH AND RESULTS Before modeling OTCD, we addressed the question of why hiPSC-Heps generally secrete less urea than adult primary human hepatocytes (PHHs). Because hiPSC-Heps are not completely differentiated and maintain some characteristics of fetal PHHs, we compared gene-expression levels in human fetal and adult liver tissue to identify genes responsible for reduced urea secretion in hiPSC-Heps. We found lack of aquaporin 9 (AQP9) expression in fetal liver tissue as well as in hiPSC-Heps, and showed that forced expression of AQP9 in hiPSC-Heps restores urea secretion and normalizes the response to ammonia challenge by increasing ureagenesis. Furthermore, we proved functional ureagenesis by challenging AQP9-expressing hiPSC-Heps with ammonium chloride labeled with the stable isotope [15 N] (15 NH4 Cl) and by assessing enrichment of [15 N]-labeled urea. Finally, using hiPSC-Heps derived from patients with OTCD, we generated a liver disease model that recapitulates the hepatic manifestation of the human disease. Restoring OTC expression-together with AQP9-was effective in fully correcting OTC activity and normalizing ureagenesis as assessed by 15 NH4 Cl stable-isotope challenge. CONCLUSION Our results identify a critical role for AQP9 in functional urea metabolism and establish the feasibility of in vitro modeling of OTCD with hiPSC-Heps. By facilitating studies of OTCD genotype/phenotype correlation and drug screens, our model has potential for improving the therapy of OTCD.
Collapse
Affiliation(s)
- Alexander Laemmle
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of PediatricsUniversity Children's HospitalBernSwitzerland,University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Martin Poms
- Division of Clinical Chemistry and BiochemistryUniversity Children’s Hospital ZurichZurichSwitzerland
| | - Bernadette Hsu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Mariia Borsuk
- University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children`s Research CenterUniversity Children’s HospitalZurichSwitzerland
| | - Joshua Robinson
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Center for Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of PediatricsMedical GeneticsUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | | | - Jean‐Marc Nuoffer
- Department of PediatricsUniversity Children's HospitalBernSwitzerland,University Institute of Clinical ChemistryUniversity of BernBernSwitzerland
| | - Johannes Häberle
- Division of Metabolism and Children`s Research CenterUniversity Children’s HospitalZurichSwitzerland,Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell ResearchUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Department of SurgeryDivision of Transplant SurgeryUniversity of California San FranciscoSan FranciscoCaliforniaUSA,Liver CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
36
|
Zhao L, Li Y, Wang Y, Ge Z, Zhu H, Zhou X, Li Y. Non-hepatic Hyperammonemia: A Potential Therapeutic Target for Sepsis-associated Encephalopathy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:738-751. [PMID: 34939553 DOI: 10.2174/1871527321666211221161534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Sepsis-Associated Encephalopathy (SAE) is a common complication in the acute phase of sepsis, and patients who develop SAE have a higher mortality rate, longer hospital stay, and worse quality of life than other sepsis patients. Although the incidence of SAE is as high as 70% in sepsis patients, no effective treatment is available for this condition. To develop an effective treatment for SAE, it is vital to explore its pathogenesis. It is known that hyperammonemia is a possible factor in the pathogenesis of hepatic encephalopathy as ammonia is a potent neurotoxin. Furthermore, our previous studies indicate that non-hepatic hyperammonemia seems to occur more often in sepsis patients; it was also found that >50% of sepsis patients with non-hepatic hyperammonemia exhibited encephalopathy and delirium. Substatistical analyses indicate that non-hepatic hyperammonemia is an independent risk factor for SAE. This study updates the definition, clinical manifestations, and diagnosis of SAE; it also investigates the possible treatment options available for non-hepatic hyperammonemia in patients with sepsis and the mechanisms by which non-hepatic hyperammonemia causes encephalopathy.
Collapse
Affiliation(s)
- Lina Zhao
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuhua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
37
|
Jiang Y, Qi M, Zhang J, Wen Y, Sun J, Liu Q. Metabolomic Profiling Analysis of Physiological Responses to Acute Hypoxia and Reoxygenation in Juvenile Qingtian Paddy Field Carp Cyprinus Carpio Var Qingtianensis. Front Physiol 2022; 13:853850. [PMID: 35669576 PMCID: PMC9163826 DOI: 10.3389/fphys.2022.853850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The Qingtian paddy field carp (Cyprinus carpio var qingtianensis) is a local carp cultivated in the rice field of Qingtian county, Zhejiang province, China. The paddy field environment is distinct from the pond environment. Due to the inability to artificially increase oxygen, the dissolved oxygen greatly changes during the day. Therefore, investigating the physiological regulation to the changes of acute dissolved oxygen in Qingtian paddy field carp (PF-carp) will dramatically clarify how it adapts to the paddy breeding environment. The high tolerance of Qingtian paddy field carp to hypoxia makes it an ideal organism for studying molecular regulatory mechanisms during hypoxia process and reoxygenation following hypoxia in fish. In this study, we compared the changes of metabolites in the hepatopancreas during hypoxia stress and the following reoxygenation through comparative metabolomics. The results showed 131 differentially expressed metabolites between the hypoxic groups and control groups. Among them, 95 were up-regulated, and 36 were down-regulated. KEGG Pathway enrichment analysis showed that these differential metabolites were mainly involved in regulating lipid, protein, and purine metabolism PF-carps could require energy during hypoxia by enhancing the gluconeogenesis pathway with core glutamic acid and glutamine metabolism. A total of 63 differentially expressed metabolites were screened by a comparison between the reoxygenated groups and the hypoxic groups. Specifically, 15 were up-regulated, and 48 were down-regulated. The KEGG Pathway enrichment analysis supported that PF-carp could continue to gain energy by consuming glutamic acid and the glutamine accumulated during hypoxia and simultaneously weaken the ammonia-transferring effect of amino acids and the toxicity of ammonia. By consuming glycerophospholipids and maintaining the Prostaglandin E content, cell damage was improved, sphingosinol synthesis was reduced, and apoptosis was inhibited. Additionally, it could enhance the salvage synthesis and de novo synthesis of purine, reduce purine accumulation, promote the synthesis of nucleotide and energy carriers, and assist in recovering physiological metabolism. Overall, results explained the physiological regulation mechanism of PF-carp adapting to the acute changes of dissolved oxygen at the metabolic level and also provided novel evidence for physiological regulation of other fish in an environment with acute changes in dissolved oxygen levels.
Collapse
Affiliation(s)
- Yuhan Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Ming Qi
- Zhejiang Fisheries Technical Extension Center, Hangzhou, China
| | - Jinpeng Zhang
- Huzhou Academy of Agricultural Sciences, Huzhou, China
| | - Yuanlin Wen
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Jiamin Sun
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Qigen Liu
- Centre for Research on Environmental Ecology and Fish Nutrition of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
38
|
Zielińska M, Albrecht J, Popek M. Dysregulation of Astrocytic Glutamine Transport in Acute Hyperammonemic Brain Edema. Front Neurosci 2022; 16:874750. [PMID: 35733937 PMCID: PMC9207324 DOI: 10.3389/fnins.2022.874750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute liver failure (ALF) impairs ammonia clearance from blood, which gives rise to acute hyperammonemia and increased ammonia accumulation in the brain. Since in brain glutamine synthesis is the only route of ammonia detoxification, hyperammonemia is as a rule associated with increased brain glutamine content (glutaminosis) which correlates with and contributes along with ammonia itself to hyperammonemic brain edema-associated with ALF. This review focuses on the effects of hyperammonemia on the two glutamine carriers located in the astrocytic membrane: Slc38a3 (SN1, SNAT3) and Slc7a6 (y + LAT2). We emphasize the contribution of the dysfunction of either of the two carriers to glutaminosis- related aspects of brain edema: retention of osmotically obligated water (Slc38a3) and induction of oxidative/nitrosative stress (Slc7a6). The changes in glutamine transport link glutaminosis- evoked mitochondrial dysfunction to oxidative-nitrosative stress as formulated in the “Trojan Horse” hypothesis.
Collapse
|
39
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
40
|
Kamel AY, Emtiazjoo AM, Adkins L, Shahmohammadi A, Alnuaimat H, Pelaez A, Machuca T, Pipkin M, Lee HW, Weiner ID, Chandrashekaran S. Hyperammonemia After Lung Transplantation: Systematic Review and a Mini Case Series. Transpl Int 2022; 35:10433. [PMID: 35620675 PMCID: PMC9128545 DOI: 10.3389/ti.2022.10433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022]
Abstract
Background: Hyperammonemia after lung transplantation (HALT) is a rare but serious complication with high mortality. This systematic review delineates possible etiologies of HALT and highlights successful strategies used to manage this fatal complication. Methods: Seven biomedical databases and grey literature sources were searched using keywords relevant to hyperammonemia and lung transplantation for publications between 1995 and 2020. Additionally, we retrospectively analyzed HALT cases managed at our institution between January 2016 and August 2018. Results: The systematic review resulted in 18 studies with 40 individual cases. The mean peak ammonia level was 769 μmol/L at a mean of 14.1 days post-transplant. The mortality due to HALT was 57.5%. In our cohort of 120 lung transplants performed, four cases of HALT were identified. The mean peak ammonia level was 180.5 μmol/L at a mean of 11 days after transplantation. HALT in all four patients was successfully treated using a multimodal approach with an overall mortality of 25%. Conclusion: The incidence of HALT (3.3%) in our institution is comparable to prior reports. Nonetheless, ammonia levels in our cohort were not as high as previously reported and peaked earlier. We attributed these significant differences to early recognition and prompt institution of multimodal treatment approach.
Collapse
Affiliation(s)
- Amir Y. Kamel
- Department of Pharmacy, UF Health Shands Hospital, College of Pharmacy, University of Florida, Gainesville, FL, United States
- *Correspondence: Amir Y. Kamel,
| | - Amir M. Emtiazjoo
- Division of Pulmonary, Critical Care and Sleep Medicine, UF Lung Transplant Program, College of Medicine, University of Florida Health Hospital, Gainesville, FL, United States
| | - Lauren Adkins
- College of Pharmacy Liaison Librarian, Health Science Center Libraries, Gainesville, FL, United States
| | - Abbas Shahmohammadi
- Division of Pulmonary, Critical Care and Sleep Medicine, UF Lung Transplant Program, College of Medicine, University of Florida Health Hospital, Gainesville, FL, United States
| | - Hassan Alnuaimat
- Division of Pulmonary, Critical Care and Sleep Medicine, UF Lung Transplant Program, College of Medicine, University of Florida Health Hospital, Gainesville, FL, United States
| | - Andres Pelaez
- Division of Pulmonary, Critical Care and Sleep Medicine, UF Lung Transplant Program, College of Medicine, University of Florida Health Hospital, Gainesville, FL, United States
| | - Tiago Machuca
- Division of Cardiothoracic Surgery, UF Lung Transplant Program, University of Florida Health Hospital, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Mauricio Pipkin
- Division of Cardiothoracic Surgery, UF Lung Transplant Program, University of Florida Health Hospital, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Hyun-wook Lee
- Division of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL, United States
| | - I. David Weiner
- Division of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL, United States
- North Florida/South Georgia Veterans Health System, Gainesville, FL, United States
| | - Satish Chandrashekaran
- Division of Pulmonary, Critical Care and Sleep Medicine, UF Lung Transplant Program, College of Medicine, University of Florida Health Hospital, Gainesville, FL, United States
| |
Collapse
|
41
|
Yu J, Zhang J, Shi M, Ding H, Ma L, Zhang H, Liu J. Maintenance of glutamine synthetase expression alleviates endotoxin-induced sepsis via alpha-ketoglutarate-mediated demethylation. FASEB J 2022; 36:e22281. [PMID: 35344214 DOI: 10.1096/fj.202200059r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (Glul) is the enzyme that synthesizes endogenous glutamine, which is responsible for critical metabolic pathways and the immune system. However, the role of Glul in regulating endotoxin (lipopolysaccharide, LPS)-induced sepsis remains unclear. Here, we found that Glul expression in macrophages was significantly inhibited in endotoxemia, and that Glul deletion induced macrophages to differentiate into the pro-inflammatory type and aggravated sepsis in mice. Mechanistically, TLR4/NF-κB-induced alpha-ketoglutarate (α-KG) depletion inhibits Glul expression through H3K27me3-mediated methylation in septic mice. Both Glul overexpression with adeno-associated virus (AAV) and restoration by replenishing α-KG can alleviate the severity of sepsis. In conclusion, the study demonstrated that Glul can regulate LPS-induced sepsis and provides a novel strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Jianghong Yu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Menglin Shi
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Ding
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Liyun Ma
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases of Huashan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Delgado TC, de las Heras J, Martínez-Chantar ML. Understanding gut-liver axis nitrogen metabolism in Fatty Liver Disease. Front Endocrinol (Lausanne) 2022; 13:1058101. [PMID: 36589817 PMCID: PMC9797658 DOI: 10.3389/fendo.2022.1058101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
The homeostasis of the most important nitrogen-containing intermediates, ammonia and glutamine, is a tightly regulated process in which the gut-liver axis plays a central role. Several studies revealed that nitrogen metabolism is altered in Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD), a consensus-driven novel nomenclature for Non-Alcoholic Fatty Liver Disease (NAFLD), the most common chronic liver disease worldwide. Both increased ammonia production by gut microbiota and decreased ammonia hepatic removal due to impaired hepatic urea cycle activity or disrupted glutamine synthetase activity may contribute to hepatic ammonia accumulation underlying steatosis, which can eventually progress to hyperammonemia in more advanced stages of steatohepatitis and overt liver fibrosis. Furthermore, our group recently showed that augmented hepatic ammoniagenesis via increased glutaminase activity and overexpression of the high activity glutaminase 1 isoenzyme occurs in Fatty Liver Disease. Overall, the improved knowledge of disrupted nitrogen metabolism and metabolic miscommunication between the gut and the liver suggests that the reestablishment of altered gut-liver axis nitrogenous balance is an appealing and attractive therapeutic approach to tackle Fatty Liver Disease, a growing and unmet health problem.
Collapse
Affiliation(s)
- Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- *Correspondence: Teresa C. Delgado,
| | - Javier de las Heras
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Division of Pediatric Metabolism, Department of Pediatrics, CIBERer, Cruces University Hospital, Barakaldo, Spain
- Department of Pediatrics, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - María L. Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| |
Collapse
|
43
|
Dao HT, Clay JW, Sharma NK, Bradbury EJ, Swick RA. Effects of L-arginine and L-citrulline supplementation in reduced protein diets on cecal fermentation metabolites of broilers under normal, cyclic warm temperature and necrotic enteritis challenge. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Katayama K. Clinical significance of the latency period of abnormal ammonia metabolism in chronic liver disease: Proposal of a new concept. Hepatol Res 2022; 52:75-80. [PMID: 34679199 DOI: 10.1111/hepr.13724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/17/2021] [Indexed: 02/08/2023]
Abstract
The liver is a key organ in regulating metabolism, and chronic liver disease is associated with several metabolic disorders. In the later stages of liver cirrhosis, the urea cycle is impaired, which disrupts of ammonia detoxification and eventually causes hyperammonemia and hepatic encephalopathy. Although hyperammonemia is not detected during the period between the late stage of chronic hepatitis and the early stage of liver cirrhosis, hepatic albumin synthesis capacity decreases as the fibrosis progresses. Increased ammonia levels are associated with a decreased capacity of the liver to synthesize albumin as well as activation of hepatic stellate cells, which promote fibrosis. Herein, we discuss the possibility that abnormal ammonia metabolism might play an important role in the pathogenesis of liver diseases even without hyperammonemia. We consider the disease period without hyperammonemia as the latency period of abnormal ammonia metabolism and discuss its clinical significance.
Collapse
|
45
|
Tang S, Yin C, Xie J, Jiao J, Chen L, Liu L, Zhang S, Zhang H. Aerial ammonia exposure induces the perturbation of the interorgan ammonia disposal and branched-chain amino acid catabolism in growing pigs. ANIMAL NUTRITION 2021; 7:947-958. [PMID: 34703912 PMCID: PMC8521175 DOI: 10.1016/j.aninu.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chang Yin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jinglin Jiao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, 14853, USA
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Corresponding author.
| |
Collapse
|
46
|
Miller SG, Hafen PS, Law AS, Springer CB, Logsdon DL, O'Connell TM, Witczak CA, Brault JJ. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle. Metabolism 2021; 123:154864. [PMID: 34400216 PMCID: PMC8453098 DOI: 10.1016/j.metabol.2021.154864] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND Skeletal muscle atrophy, whether caused by chronic disease, acute critical illness, disuse or aging, is characterized by tissue-specific decrease in oxidative capacity and broad alterations in metabolism that contribute to functional decline. However, the underlying mechanisms responsible for these metabolic changes are largely unknown. One of the most highly upregulated genes in atrophic muscle is AMP deaminase 3 (AMPD3: AMP → IMP + NH3), which controls the content of intracellular adenine nucleotides (AdN; ATP + ADP + AMP). Given the central role of AdN in signaling mitochondrial gene expression and directly regulating metabolism, we hypothesized that overexpressing AMPD3 in muscle cells would be sufficient to alter their metabolic phenotype similar to that of atrophic muscle. METHODS AMPD3 and GFP (control) were overexpressed in mouse tibialis anterior (TA) muscles via plasmid electroporation and in C2C12 myotubes using adenovirus vectors. TA muscles were excised one week later, and AdN were quantified by UPLC. In myotubes, targeted measures of AdN, AMPK/PGC-1α/mitochondrial protein synthesis rates, unbiased metabolomics, and transcriptomics by RNA sequencing were measured after 24 h of AMPD3 overexpression. Media metabolites were measured as an indicator of net metabolic flux. At 48 h, the AMPK/PGC-1α/mitochondrial protein synthesis rates, and myotube respiratory function/capacity were measured. RESULTS TA muscles overexpressing AMPD3 had significantly less ATP than contralateral controls (-25%). In myotubes, increasing AMPD3 expression for 24 h was sufficient to significantly decrease ATP concentrations (-16%), increase IMP, and increase efflux of IMP catabolites into the culture media, without decreasing the ATP/ADP or ATP/AMP ratios. When myotubes were treated with dinitrophenol (mitochondrial uncoupler), AMPD3 overexpression blunted decreases in ATP/ADP and ATP/AMP ratios but exacerbated AdN degradation. As such, pAMPK/AMPK, pACC/ACC, and phosphorylation of AMPK substrates, were unchanged by AMPD3 at this timepoint. AMPD3 significantly altered 191 out of 639 detected intracellular metabolites, but only 30 transcripts, none of which encoded metabolic enzymes. The most altered metabolites were those within purine nucleotide, BCAA, glycolysis, and ceramide metabolic pathways. After 48 h, AMPD3 overexpression significantly reduced pAMPK/AMPK (-24%), phosphorylation of AMPK substrates (-14%), and PGC-1α protein (-22%). Moreover, AMPD3 significantly reduced myotube mitochondrial protein synthesis rates (-55%), basal ATP synthase-dependent (-13%), and maximal uncoupled oxygen consumption (-15%). CONCLUSIONS Increased expression of AMPD3 significantly decreased mitochondrial protein synthesis rates and broadly altered cellular metabolites in a manner similar to that of atrophic muscle. Importantly, the changes in metabolites occurred prior to reductions in AMPK signaling, gene expression, and mitochondrial protein synthesis, suggesting metabolism is not dependent on reductions in oxidative capacity, but may be consequence of increased AMP deamination. Therefore, AMP deamination in skeletal muscle may be a mechanism that alters the metabolic phenotype of skeletal muscle during atrophy and could be a target to improve muscle function during muscle wasting.
Collapse
Affiliation(s)
- Spencer G Miller
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Kinesiology, East Carolina University, Greenville, NC, USA
| | - Paul S Hafen
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew S Law
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - David L Logsdon
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas M O'Connell
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carol A Witczak
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey J Brault
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
47
|
Hamdani EH, Popek M, Frontczak-Baniewicz M, Utheim TP, Albrecht J, Zielińska M, Chaudhry FA. Perturbation of astroglial Slc38 glutamine transporters by NH 4 + contributes to neurophysiologic manifestations in acute liver failure. FASEB J 2021; 35:e21588. [PMID: 34169573 DOI: 10.1096/fj.202001712rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Ammonia is considered the main pathogenic toxin in hepatic encephalopathy (HE). However, the molecular mechanisms involved have been disputed. As altered glutamatergic and GABAergic neurotransmission has been reported in HE, we investigated whether four members of the solute carrier 38 (Slc38) family of amino acid transporters-involved in the replenishment of glutamate and GABA-contribute to ammonia neurotoxicity in HE. We show that ammonium ion exerts multiple actions on the Slc38 transporters: It competes with glutamine for the binding to the system N transporters Slc38a3 and Slc38a5, consequently inhibiting bidirectional astroglial glutamine transport. It also competes with H+ , Na+ , and K+ for uncoupled permeation through the same transporters, which may perturb astroglial intracellular pH, membrane potential, and K+ -buffering. Knockdown of Slc38a3 in mice results in cerebral cortical edema and disrupted neurotransmitter synthesis mimicking events contributing to HE development. Finally, in a mouse model of acute liver failure (ALF), we demonstrate the downregulation of Slc38a3 protein, impeded astroglial glutamine release, and cytotoxic edema. Altogether, we demonstrate contribution of Slc38 transporters to the ammonia-induced impairment of glutamine recycling between astrocytes and neurons, a phenomenon underlying acute ammonia neurotoxicity in the setting of ALF.
Collapse
Affiliation(s)
- El Hassan Hamdani
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Institute of Behavioural Science, Oslo Metropolitan University, Oslo, Norway
| | - Mariusz Popek
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | | | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Jan Albrecht
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Magdalena Zielińska
- Neurotoxicology Department, Mossakowski Medical Research Institute PAS, Warsaw, Poland
| | - Farrukh Abbas Chaudhry
- Department of Molecular Medicine, University of Oslo (UiO), Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
48
|
Grima-Reyes M, Martinez-Turtos A, Abramovich I, Gottlieb E, Chiche J, Ricci JE. Physiological impact of in vivo stable isotope tracing on cancer metabolism. Mol Metab 2021; 53:101294. [PMID: 34256164 PMCID: PMC8358691 DOI: 10.1016/j.molmet.2021.101294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 07/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is growing interest in the analysis of tumor metabolism to identify cancer-specific metabolic vulnerabilities and therapeutic targets. Finding of such candidate metabolic pathways mainly relies on the highly sensitive identification and quantitation of numerous metabolites and metabolic fluxes using metabolomics and isotope tracing analyses. However, nutritional requirements and metabolic routes used by cancer cells cultivated in vitro do not always reflect the metabolic demands of malignant cells within the tumor milieu. Therefore, to understand how the metabolism of tumor cells in its physiological environment differs from that of normal cells, these analyses must be performed in vivo. Scope of Review This review covers the physiological impact of the exogenous administration of a stable isotope tracer into cancer animal models. We discuss specific aspects of in vivo isotope tracing protocols based on discrete bolus injections of a labeled metabolite: the tracer administration per se and the fasting period prior to it. In addition, we illustrate the complex physiological scenarios that arise when studying tumor metabolism – by isotopic labeling in animal models fed with a specific amino acid restricted diet. Finally, we provide strategies to minimize these limitations. Major Conclusions There is growing evidence that metabolic dependencies in cancers are influenced by tissue environment, cancer lineage, and genetic events. An increasing number of studies describe discrepancies in tumor metabolic dependencies when studied in in vitro settings or in vivo models, including cancer patients. Therefore, in-depth in vivo profiling of tumor metabolic routes within the appropriate pathophysiological environment will be key to identify relevant alterations that contribute to cancer onset and progression. In vivo isotope tracing is the state-of-the-art approach to study tumor metabolism. In vivo tracer administration challenges the physiological metabolism of mice. Interorgan conversion of the tracer might confound tumor labeling patterns. Mouse fasting before in vivo tracing impacts on systemic and tumor metabolism. Optimization is key to minimize physiological alterations linked to in vivo tracing.
Collapse
Affiliation(s)
- Manuel Grima-Reyes
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Adriana Martinez-Turtos
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Ifat Abramovich
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Eyal Gottlieb
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Johanna Chiche
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Nice, France; Equipe labellisée LIGUE Contre le Cancer, Nice, France.
| |
Collapse
|
49
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
50
|
Leal Yepes FA, Mann S, Overton TR, Behling-Kelly E, Nydam DV, Wakshlag JJ. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J Dairy Sci 2021; 104:10324-10337. [PMID: 34176626 DOI: 10.3168/jds.2021-20265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022]
Abstract
Essential amino acids (EAA) are critical for multiple physiological processes. Branched-chain amino acid (BCAA) supplementation provides energy substrates, promotes protein synthesis, and stimulates insulin secretion in rodents and humans. Most dairy cows face a protein and energy deficit during the first weeks postpartum and utilize body reserves to counteract this shortage. The objective was to evaluate the effect of rumen-protected BCAA (RP-BCAA; 375 g of 27% l-leucine, 85 g of 48% l-isoleucine, and 91 g of 67% l-valine) with or without oral propylene glycol (PG) administration on markers of liver health status, concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) in plasma, and liver triglycerides (TG) during the early postpartum period in dairy cows. Multiparous Holstein cows were enrolled in blocks of 3 and randomly assigned to either the control group or 1 of the 2 treatments from calving until 35 d postpartum. The control group (n = 16) received 200 g of dry molasses per cow/d; the RP-BCAA group (n = 14) received RP-BCAA mixed with 200 g of dry molasses per cow/d; the RP-BCAA plus PG (RP-BCAAPG) group (n = 16) received RP-BCAA mixed with 200 g of dry molasses per cow/d, plus 300 mL of PG, once daily from calving until 7 d in milk (DIM). The RP-BCAA and RP-BCAAGP groups, on average (± standard deviation), were predicted to receive a greater supply of metabolizable protein in the form of l-Leu 27.4 ± 3.5 g/d, l-Ile 15.2 ± 1.8 g/d, and l-Val 24.2 ± 2.4 g/d compared with the control cows. Liver biopsies were collected at d 9 ± 4 prepartum and at 5 ± 1 and 21 ± 1 DIM. Blood was sampled 3 times per week from calving until 21 DIM. Milk yield, dry matter intake, NEFA, BHB, EAA blood concentration, serum chemistry, insulin, glucagon, and liver TG and protein abundance of total and phosphorylated branched-chain ketoacid dehydrogenase E1α (p-BCKDH-E1α) were analyzed using repeated measures ANOVA. Cows in the RP-BCAA and RP-BCAAPG groups had lower liver TG and lower activities of aspartate aminotransferase and glutamate dehydrogenase during the first 21 DIM, compared with control. All cows, regardless of treatment, showed an upregulation of p-BCKDH-E1α at d 5 postpartum, compared with levels at 21 d postpartum. Insulin, Met, and Glu blood concentration were greater in RP-BCAA and RP-BCAAPG compared with control during the first 35 DIM. Therefore, the use of RP-BCAA in combination with PG might be a feasible option to reduce hepatic lipidosis in dairy cows during early lactation.
Collapse
Affiliation(s)
- F A Leal Yepes
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853.
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - E Behling-Kelly
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - D V Nydam
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY 14853
| | - J J Wakshlag
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|