1
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
2
|
Moreno-Gonzalez M, Hampton K, Ruiz P, Beasy G, Nagies FSP, Parker A, Lazenby J, Bone C, Alava-Arteaga A, Patel M, Hellmich C, Luri-Martin P, Silan E, Philo M, Baker D, Rushbrook SM, Hildebrand F, Rushworth SA, Beraza N. Regulation of intestinal senescence during cholestatic liver disease modulates barrier function and liver disease progression. JHEP Rep 2024; 6:101159. [PMID: 39314550 PMCID: PMC11418120 DOI: 10.1016/j.jhepr.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 09/25/2024] Open
Abstract
Background & Aims Senescence has been reported to have differential functions in cholangiocytes and hepatic stellate cells (HSCs) during human and murine cholestatic disease, being detrimental in biliary cells and anti-fibrotic in HSCs. Cholestatic liver disease is associated with loss of intestinal barrier function and changes in the microbiome, the mechanistic cause of which is undetermined. Methods Intestinal samples were analysed from controls and patients with primary sclerosing cholangitis, as well as wild-type (WT) and p16-3MR transgenic mice. Cholestatic liver disease was induced by bile duct ligation (BDL) and DDC diet feeding. Fexaramine was used as an intestinal-restricted FXR agonist and antibiotics were given to eliminate the intestinal microbiome. Senescent cells were eliminated in p16-3MR mice with ganciclovir and in WT mice with the senolytic drug ABT-263. In vitro studies were done in intestinal CaCo-2 cells and organoids were generated from intestinal crypts isolated from mice. Results Herein, we show increased senescence in intestinal epithelial cells (IECs) in patients with primary sclerosing cholangitis and in mice after BDL and DDC diet feeding. Intestinal senescence was increased in response to reduced exposure to bile acids and increased presence of lipopolysaccharide in vitro and in vivo during cholestatic liver disease. Senescence of IECs was associated with lower proliferation but increased intestinal stem cell activation, as supported by increased organoid growth from intestinal stem cells. Elimination of senescent cells with genetic and pharmacological approaches exacerbated liver injury and fibrosis during cholestatic liver disease, which was associated with increased IEC apoptosis and permeability. Conclusions Senescence occurs in IECs during cholestatic disease and the elimination of senescent cells has a detrimental impact on the gut-liver axis. Our results point to cell-specific rather than systemic targeting of senescence as a therapeutic approach to treat cholestatic liver disease. Impact and implications Cholestatic liver disease associates with the dysregulation of intestinal barrier function, while the mechanisms mediating the disruption of the gut-liver axis remain largely undefined. Here, we demonstrate that senescence, a cellular response to stress, is activated in intestinal cells during cholestatic liver disease in humans and mice. Mechanistically, we demonstrate that the reduction of bile acids and the increased presence of bacterial products mediate the activation of intestinal senescence during cholestatic liver disease. Importantly, the elimination of these senescent cells promotes further damage to the intestine that aggravates liver disease, with increased tissue damage and fibrosis. Our results provide evidence that therapeutic strategies to treat cholestatic liver disease by eliminating senescent cells may have unwanted effects in the intestine and support the need to develop cell/organ-specific approaches.
Collapse
Affiliation(s)
- Mar Moreno-Gonzalez
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Katherine Hampton
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Paula Ruiz
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Gemma Beasy
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Falk SP. Nagies
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Aimee Parker
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - James Lazenby
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Caitlin Bone
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ane Alava-Arteaga
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Meha Patel
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Charlotte Hellmich
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Haematology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Pablo Luri-Martin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Ece Silan
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Mark Philo
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - David Baker
- Science Operations, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Simon M. Rushbrook
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
- Department of Gastroenterology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Falk Hildebrand
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Stuart A. Rushworth
- Centre for Metabolic Health, Faculty of Medicine, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food, Microbiome and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Food Innovation and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| |
Collapse
|
3
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Zhang W, Kyritsi K, Isidan A, Park Y, Li P, Cross-Najafi AA, Lopez K, Kennedy L, Sato K, Glaser S, Francis H, Alpini G, Ekser B. Development of Scaffold-Free Three-Dimensional Cholangiocyte Organoids to Study the Progression of Primary Sclerosing Cholangitis. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1156-1169. [PMID: 37263345 DOI: 10.1016/j.ajpath.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/29/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023]
Abstract
Organoids are novel in vitro models to study intercellular cross talk between the different types of cells in disease pathophysiology. To better understand the underlying mechanisms driving the progression of primary sclerosing cholangitis (PSC), scaffold-free multicellular three-dimensional cholangiocyte organoids (3D-CHOs) were developed using primary liver cells derived from normal subjects and patients with PSC. Human liver samples from healthy donors and patients with PSC were used to isolate primary cholangiocytes [epithelial cell adhesion molecule (EpCam)+/ cytokeratin-19+], liver endothelial cells (CD31+), and hepatic stellate cells (HSCs; CD31-/CD68-/desmin+/vitamin A+). 3D-CHOs were formed using cholangiocytes, HSCs, and liver endothelial cells, and kept viable for up to 1 month. Isolated primary cell lines and 3D-CHOs were further characterized by immunofluorescence, quantitative RT-PCR, and transmission electron microscopy. Transcription profiles for cholangiocytes (SOX9, CFTR, EpCAM, AE, SCT, and SCTR), fibrosis (ACTA2, COL1A1, DESMIN, and TGFβ1), angiogenesis (PECAM, VEGF, CDH5, and vWF), and inflammation (IL-6 and TNF-α) confirmed PSC phenotypes of 3D-CHOs. Because cholangiocytes develop a neuroendocrine phenotype and express neuromodulators, confocal immunofluorescence was used to demonstrate localization of the neurokinin-1 receptor within cytokeratin-19+ cholangiocytes and desmin+ HSCs. Moreover, 3D-CHOs from patients with PSC confirmed PSC phenotypes with up-regulated neurokinin-1 receptor, tachykinin precursor 1, and down-regulated membrane metalloendopeptidase. Scaffold-free multicellular 3D-CHOs showed superiority as an in vitro model in mimicking PSC in vivo phenotypes compared with two-dimensional cell culture, which can be used in PSC disease-related research.
Collapse
Affiliation(s)
- Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Abdulkadir Isidan
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Yujin Park
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | | | - Kevin Lopez
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indianapolis, Indiana.
| |
Collapse
|
5
|
Zeng J, Fan J, Zhou H. Bile acid-mediated signaling in cholestatic liver diseases. Cell Biosci 2023; 13:77. [PMID: 37120573 PMCID: PMC10149012 DOI: 10.1186/s13578-023-01035-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023] Open
Abstract
Chronic cholestatic liver diseases, such as primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), are associated with bile stasis and gradually progress to fibrosis, cirrhosis, and liver failure, which requires liver transplantation. Although ursodeoxycholic acid is effective in slowing the disease progression of PBC, it has limited efficacy in PSC patients. It is challenging to develop effective therapeutic agents due to the limited understanding of disease pathogenesis. During the last decade, numerous studies have demonstrated that disruption of bile acid (BA) metabolism and intrahepatic circulation promotes the progression of cholestatic liver diseases. BAs not only play an essential role in nutrition absorption as detergents but also play an important role in regulating hepatic metabolism and modulating immune responses as key signaling molecules. Several excellent papers have recently reviewed the role of BAs in metabolic liver diseases. This review focuses on BA-mediated signaling in cholestatic liver disease.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Huiping Zhou
- Department of Microbiology and Immunology, Medical College of Virginia and Richmond VA Medical Center, Central Virginia Veterans Healthcare System, Virginia Commonwealth University, 1220 East Broad Street, MMRB-5044, Richmond, VA, 23298-0678, USA.
| |
Collapse
|
6
|
SIRT7 affects autophagy and activation of hepatic stellate cells by regulating the acetylation level of high mobility group protein 1. Immunobiology 2023; 228:152323. [PMID: 36753789 DOI: 10.1016/j.imbio.2022.152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Preventing the progression of hepatic fibrosis is an important strategy to improve the prognosis of liver disease. The purpose of this study was to investigate the role of sirtuin7 (SIRT7) and high mobility group box 1 (HMGB1) acetylation in the occurrence and development of hepatic fibrosis. MATERIALS AND METHODS Hepatic fibrosis mice model was induced by CCl4. TGF-β1 was used to activated quiescent hepatic stellate cell (qHSC) into activated HSC (aHSC). Hematoxylin-eosin evaluated hepatic fibrosis in vivo, and the distribution of α-smooth muscle actin (α-SMA) or HMGB1 was detected by immunohistochemistry or immunofluorescence. The expressions of SIRT7, autophagy related proteins, and HSC activation-related proteins were detected by Western blot. Immunoprecipitation detected the acetylation level of HMGB1. Lysine mutants of HMGB1 were constructed in vitro to explore the acetylation sites of HMGB1. RESULTS Hepatocyte autophagy and activation levels were enhanced in CCl4 group or aHSC group, and the acetylation level of HMGB1 was increased. Nuclear transfer of HMGB1 occurred in aHSC, and HMGB1was mainly distributed in cytoplasm. The expression of SIRT7 in CCl4 group or aHSC group was most significantly decreased, and knockdown of SIRT7 leads to increased levels of HSCs autophagy and activation. Overexpression of SIRT7 or interference of HMGB1 alone in aHSC can reduce the level of autophagy and activation of aHSC. However, continued overexpression of SIRT7 in shHMGB1-aHSC could not reduce the autophagy and activation levels of aHSC. Among the 11 Flag-HMGB1 mutants, the acetylation level of K86R-Flag-HMGB1 was the lowest. The acetylation level of K86R-Flag-HMGB1 did not change due to SIRT7 downregulation. CONCLUSION This study proved that SIRT7 can directly target the K86R site of HMGB1 and participate in regulating the expression and distribution of HMGB1, thus affecting the autophagy and activation level of HSCs.
Collapse
|
7
|
Ezhilarasan D, Najimi M. Deciphering the possible reciprocal loop between hepatic stellate cells and cancer cells in the tumor microenvironment of the liver. Crit Rev Oncol Hematol 2023; 182:103902. [PMID: 36621514 DOI: 10.1016/j.critrevonc.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Activated hepatic stellate cells (HSCs)/myofibroblasts are the important sources of cancer-associated fibroblasts in the liver tumor microenvironment (TME). The crosstalk between activated HSCs and tumor cells mediates HCC progression, metastasis, tumor cell survival, angiogenesis and chemoresistance. In TME, HCC cells secrete various soluble factors responsible for the phenotypic activation of quiescent HSCs. Tumor cells use activated HSC-derived extracellular matrix (ECM) for migration and invasion. Further, in liver TME, activated HSCs and sinusoidal endothelial cells engage in a crosstalk that causes the secretion of angiogenesis and metastasis-related growth factors and cytokines. Activated HSCs and immune cells crosstalk to decrease immune surveillance in the liver TME by increasing the population of T regulatory cells and M2 macrophages or myeloid-derived suppressor cells. Thus, HSCs play a vital role in liver TME cell interactions. Therefore, a deep understanding of HSCs activation and their crosstalk with cancer and immune cells in TME may lead to the development of novel therapeutic strategies to target HCC.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India.
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels 1200, Belgium
| |
Collapse
|
8
|
Kyritsi K, Wu N, Zhou T, Carpino G, Baiocchi L, Kennedy L, Chen L, Ceci L, Meyer AA, Barupala N, Franchitto A, Onori P, Ekser B, Gaudio E, Wu C, Marakovits C, Chakraborty S, Francis H, Glaser S, Alpini G. Knockout of secretin ameliorates biliary and liver phenotypes during alcohol-induced hepatotoxicity. Cell Biosci 2023; 13:5. [PMID: 36624475 PMCID: PMC9830859 DOI: 10.1186/s13578-022-00945-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is characterized by ductular reaction (DR), liver inflammation, steatosis, fibrosis, and cirrhosis. The secretin (Sct)/secretin receptor (SR) axis (expressed only by cholangiocytes) regulates liver phenotypes in cholestasis. We evaluated the role of Sct signaling on ALD phenotypes. METHODS We used male wild-type and Sct-/- mice fed a control diet (CD) or ethanol (EtOH) for 8 wk. Changes in liver phenotypes were measured in mice, female/male healthy controls, and patients with alcoholic cirrhosis. Since Cyp4a10 and Cyp4a11/22 regulate EtOH liver metabolism, we measured their expression in mouse/human liver. We evaluated: (i) the immunoreactivity of the lipogenesis enzyme elongation of very-long-chain fatty acids 1 (Elovl, mainly expressed by hepatocytes) in mouse/human liver sections by immunostaining; (ii) the expression of miR-125b (that is downregulated in cholestasis by Sct) in mouse liver by qPCR; and (iii) total bile acid (BA) levels in mouse liver by enzymatic assay, and the mRNA expression of genes regulating BA synthesis (cholesterol 7a-hydroxylase, Cyp27a1, 12a-hydroxylase, Cyp8b1, and oxysterol 7a-hydroxylase, Cyp7b11) and transport (bile salt export pump, Bsep, Na+-taurocholate cotransporting polypeptide, NTCP, and the organic solute transporter alpha (OSTa) in mouse liver by qPCR. RESULTS In EtOH-fed WT mice there was increased biliary and liver damage compared to control mice, but decreased miR-125b expression, phenotypes that were blunted in EtOH-fed Sct-/- mice. The expression of Cyp4a10 increased in cholangiocytes and hepatocytes from EtOH-fed WT compared to control mice but decreased in EtOH-fed Sct-/- mice. There was increased immunoreactivity of Cyp4a11/22 in patients with alcoholic cirrhosis compared to controls. The expression of miR-125b decreased in EtOH-fed WT mice but returned at normal values in EtOH-fed Sct-/- mice. Elovl1 immunoreactivity increased in patients with alcoholic cirrhosis compared to controls. There was no difference in BA levels between WT mice fed CD or EtOH; BA levels decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. There was increased expression of Cyp27a1, Cyp8b1, Cyp7b1, Bsep, NTCP and Osta in total liver from EtOH-fed WT compared to control mice, which decreased in EtOH-fed Sct-/- compared to EtOH-fed WT mice. CONCLUSIONS Targeting Sct/SR signaling may be important for modulating ALD phenotypes.
Collapse
Affiliation(s)
- Konstantina Kyritsi
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nan Wu
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Tianhao Zhou
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Guido Carpino
- grid.7841.aDepartment of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Leonardo Baiocchi
- grid.6530.00000 0001 2300 0941Unit of Hepatology, Tor Vergata University, Rome, Italy
| | - Lindsey Kennedy
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA ,grid.280828.80000 0000 9681 3540Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN 46202-2859 USA
| | - Lixian Chen
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Ludovica Ceci
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA ,grid.7841.aDepartment of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Alison Ann Meyer
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Nipuni Barupala
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Antonio Franchitto
- grid.412756.30000 0000 8580 6601Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Paolo Onori
- grid.7841.aDepartment of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Burcin Ekser
- grid.257413.60000 0001 2287 3919Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, IN USA
| | - Eugenio Gaudio
- grid.7841.aDepartment of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza University of Rome, Rome, Italy
| | - Chaodong Wu
- grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Corinn Marakovits
- grid.257413.60000 0001 2287 3919Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sanjukta Chakraborty
- grid.264756.40000 0004 4687 2082Department of Medical Physiology, Texas A&M University School of Medicine, 8447 Riverside Parkway, MREB II, Room 2342, Bryan, TX 77807-3260 USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN, 46202-2859, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University School of Medicine, 8447 Riverside Parkway, MREB II, Room 2342, Bryan, TX, 77807-3260, USA.
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Division of Research, Indiana Center for Liver Research, Gastroenterology, Medicine, Richard L. Roudebush VA Medical Center and Indiana University, 702 Rotary Circle, Rm. 013C, Indianapolis, IN, 46202-2859, USA.
| |
Collapse
|
9
|
Zhu E, Liu Y, Zhong M, Liu Y, Jiang X, Shu X, Li N, Guan H, Xia Y, Li J, Lan HY, Zheng Z. Targeting NK-1R attenuates renal fibrosis via modulating inflammatory responses and cell fate in chronic kidney disease. Front Immunol 2023; 14:1142240. [PMID: 37033943 PMCID: PMC10080018 DOI: 10.3389/fimmu.2023.1142240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Background Renal fibrosis is the final common pathway of chronic kidney disease (CKD), which is clinically irreversible and without effective therapy. Renal tubules are vulnerable to various insults, and tubular injury is involving in the initiation and evolution of renal inflammation and fibrosis. Neurokinin-1 receptor (NK-1R) functions by interacting with proinflammatory neuropeptide substance P (SP), exerting crucial roles in various neurological and non-neurological diseases. However, its roles in renal inflammation and fibrosis are still unknown. Methods We collected renal biopsy specimens and serum samples of individuals with or without CKD. Additionally, knockout mice lacking NK-1R expression, SP addition and NK-1R pharmacological antagonist treatment in the unilateral ureteral obstruction (UUO) model, and NK-1R-overexpressed HK-2 cells were employed. Results Renal SP/NK-1R and serum SP were increased in patients with CKD and mice experiencing UUO and correlated with renal fibrosis and function. SP addition enhanced UUO-induced progressive inflammatory responses and renal fibrosis, whereas genetically or pharmacologically targeting NK-1R attenuated these effects. Mechanistically, TFAP4 promoted NK-1R transcription by binding to its promoter, which was abolished by mutation of the binding site between TFAP4 and NK-1R promoter. Furthermore, SP acted through the NK-1R to activate the JNK/p38 pathways to modulate cell fate of tubular epithelial cells including growth arrest, apoptosis, and expression of profibrogenic genes. Conclusion Our data reveals that SP/NK-1R signaling promotes renal inflammatory responses and fibrosis, suggesting NK-1R could be a potential therapeutic target for the patients with CKD.
Collapse
Affiliation(s)
- Enyi Zhu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Ming Zhong
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yu Liu
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xi Jiang
- Department of Clinical Laboratory, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaorong Shu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hui Guan
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yin Xia
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jinhong Li
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhihua Zheng, ; Hui-yao Lan, ; Jinhong Li,
| | - Hui-yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People’s Hospital and Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Zhihua Zheng, ; Hui-yao Lan, ; Jinhong Li,
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- *Correspondence: Zhihua Zheng, ; Hui-yao Lan, ; Jinhong Li,
| |
Collapse
|
10
|
Li B, Wang H, Zhang Y, Liu Y, Zhou T, Zhou B, Zhang Y, Chen R, Xing J, He L, Salinas JM, Koyama S, Meng F, Wan Y. Current Perspectives of Neuroendocrine Regulation in Liver Fibrosis. Cells 2022; 11:3783. [PMID: 36497043 PMCID: PMC9736734 DOI: 10.3390/cells11233783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/19/2022] [Indexed: 11/29/2022] Open
Abstract
Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.
Collapse
Affiliation(s)
- Bowen Li
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Hui Wang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Yudian Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Liu
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tiejun Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingru Zhou
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ying Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rong Chen
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Juan Xing
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Longfei He
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jennifer Mata Salinas
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Sachiko Koyama
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Ying Wan
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
11
|
O’Brien A, Zhou T, White T, Medford A, Chen L, Kyritsi K, Wu N, Childs J, Stiles D, Ceci L, Chakraborty S, Ekser B, Baiocchi L, Carpino G, Gaudio E, Wu C, Kennedy L, Francis H, Alpini G, Glaser S. FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2 -/- Mouse Model of Primary Sclerosing Cholangitis. Hepatol Commun 2022; 6:1574-1588. [PMID: 35271760 PMCID: PMC9234675 DOI: 10.1002/hep4.1909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/21/2021] [Accepted: 12/26/2021] [Indexed: 11/16/2022] Open
Abstract
Fibroblast growth factor 1 (FGF1) belongs to a family of growth factors involved in cellular growth and division. MicroRNA 16 (miR-16) is a regulator of gene expression, which is dysregulated during liver injury and insult. However, the role of FGF1 in the progression of biliary proliferation, senescence, fibrosis, inflammation, angiogenesis, and its potential interaction with miR-16, are unknown. In vivo studies were performed in male bile duct-ligated (BDL, 12-week-old) mice, multidrug resistance 2 knockout (Mdr2-/-) mice (10-week-old), and their corresponding controls, treated with recombinant human FGF1 (rhFGF1), fibroblast growth factor receptor (FGFR) antagonist (AZD4547), or anti-FGF1 monoclonal antibody (mAb). In vitro, the human cholangiocyte cell line (H69) and human hepatic stellate cells (HSCs) were used to determine the expression of proliferation, fibrosis, angiogenesis, and inflammatory genes following rhFGF1 treatment. PSC patient and control livers were used to evaluate FGF1 and miR-16 expression. Intrahepatic bile duct mass (IBDM), along with hepatic fibrosis and inflammation, increased in BDL mice treated with rhFGF1, with a corresponding decrease in miR-16, while treatment with AZD4547 or anti-FGF1 mAb decreased hepatic fibrosis, IBDM, and inflammation in BDL and Mdr2-/- mice. In vitro, H69 and HSCs treated with rhFGF1 had increased expression of proliferation, fibrosis, and inflammatory markers. PSC samples also showed increased FGF1 and FGFRs with corresponding decreases in miR-16 compared with healthy controls. Conclusion: Our study demonstrates that suppression of FGF1 and miR-16 signaling decreases the presence of hepatic fibrosis, biliary proliferation, inflammation, senescence, and angiogenesis. Targeting the FGF1 and miR-16 axis may provide therapeutic options in treating cholangiopathies such as PSC.
Collapse
Affiliation(s)
- April O’Brien
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Tianhao Zhou
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Tori White
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Abigail Medford
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Lixian Chen
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Konstantina Kyritsi
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Nan Wu
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Jonathan Childs
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Danaleigh Stiles
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Ludovica Ceci
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Sanjukta Chakraborty
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Burcin Ekser
- Division of Transplant SurgeryDepartment of SurgeryIndiana University School of MedicineIndianapolisINUSA
| | - Leonardo Baiocchi
- Hepatology UnitDept of MedicineUniversity of Tor Vergata RomeRomeItaly
| | - Guido Carpino
- Department of MovementHuman and Health Sciences, University of Rome “Foro Italico”RomeItaly
| | - Eugenio Gaudio
- Department of AnatomicalHistologicalForensic Medicine and Orthopedics SciencesSapienza University of RomeRomeItaly
| | - Chaodong Wu
- Department of NutritionTexas A&M UniversityCollege StationTXUSA
| | - Lindsey Kennedy
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
- ResearchRichard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Heather Francis
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
- ResearchRichard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Gianfranco Alpini
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
- ResearchRichard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| |
Collapse
|
12
|
Li Y, Wu J, Lu Q, Liu X, Wen J, Qi X, Liu J, Lian B, Zhang B, Sun H, Tian G. GA&HA-Modified Liposomes for Co-Delivery of Aprepitant and Curcumin to Inhibit Drug-Resistance and Metastasis of Hepatocellular Carcinoma. Int J Nanomedicine 2022; 17:2559-2575. [PMID: 35698562 PMCID: PMC9188407 DOI: 10.2147/ijn.s366180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumor microenvironment (TME) plays a vital role in the development of hepatocellular carcinoma (HCC). Mounting evidence indicates that peripheral nerves could induce a shift from quiescent hepatic stellate cells (HSCs) to cancer-associated fibroblasts (CAFs) by secreting substance P (SP). The anti-tumor strategy by targeting “SP-HSCs-HCC” axis might be an effective therapy to inhibit tumor growth and metastasis. Objective In this study, we prepared novel liposomes (CUR-APR/HA&GA-LPs) modified with hyaluronic acid (HA) and glycyrrhetinic acid (GA) for co-delivery aprepitant (APR) and curcumin (CUR), in which APR was chosen to inhibit the activation of HSCs by blocking SP/neurokinin-1 receptor (NK-1R), and CUR was used to induce apoptosis of tumor cells. Results To mimic the TME, we established “SP+HSCs+HCC” co-cultured cell model in vitro. The results showed that CUR-APR/HA&GA-LPs could be taken up by CAFs and HCC simultaneously, and inhibit tumor cell migration. Meanwhile, the “SP+m-HSCs+HCC” co-implanted mice model was established to evaluate the anti-tumor effect in vivo. The results showed that CUR-APR/HA&GA-LPs could inhibit tumor proliferation and metastasis, and reduce extracellular matrix (ECM) deposition and tumor angiogenesis, indicating a superior anti-HCC effect. Conclusion Overall, the combination therapy based on HA&GA-LPs could be a potential nano-sized formulation for anti-HCC therapy.
Collapse
Affiliation(s)
- Yanying Li
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China.,School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Jingliang Wu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Qiao Lu
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xuemin Liu
- School of Nursing, Weifang University of Science and Technology, Weifang, 262700, People's Republic of China
| | - Jiaxuan Wen
- School of Nursing, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Xiaohui Qi
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Jianhao Liu
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bo Lian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bo Zhang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Hengyi Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Guixiang Tian
- School of Life Science and Technology, Weifang Medical University, Weifang, 261053, People's Republic of China
| |
Collapse
|
13
|
Huang Y, Zhang S, Weng JF, Huang D, Gu WL. Recent discoveries in microbiota dysbiosis, cholangiocytic factors, and models for studying the pathogenesis of primary sclerosing cholangitis. Open Med (Wars) 2022; 17:915-929. [PMID: 35647306 PMCID: PMC9106112 DOI: 10.1515/med-2022-0481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a cholangiopathy caused by genetic and microenvironmental changes, such as bile homeostasis disorders and microbiota dysbiosis. Therapeutic options are limited, and proven surveillance strategies are currently lacking. Clinically, PSC presents as alternating strictures and dilatations of biliary ducts, resulting in the typical “beaded” appearance seen on cholangiography. The pathogenesis of PSC is still unclear, but cholangiocytes play an essential role in disease development, wherein a reactive phenotype is caused by the secretion of neuroendocrine factors. The liver–gut axis is implicated in the pathogenesis of PSC owing to the dysbiosis of microbiota, but the underlying mechanism is still poorly understood. Alterations in cholangiocyte responses and related signalling pathways during PSC progression were elucidated by recent research, providing novel therapeutic targets. In this review, we summarise the currently known underlying mechanisms of PSC pathogenesis caused by the dysbiosis of microbiota and newly reported information regarding cholangiocytes in PSC. We also summarise recently reported in vitro and in vivo models for studying the pathogenesis of PSC.
Collapse
Affiliation(s)
- Yu Huang
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| | - Shuai Zhang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Jie-Feng Weng
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Di Huang
- Department of Surgery, Guangzhou First People's Hospital, Guangdong 510180, People's Republic of China
| | - Wei-Li Gu
- Department of Surgery, Guangzhou First People's Hospital, No. 1 Panfu Road, Yuexiu District, Guangzhou, Guangdong 510180, People's Republic of China
| |
Collapse
|
14
|
Ratnayake GM, Laskaratos FM, Mandair D, Caplin ME, Rombouts K, Toumpanakis C. What Causes Desmoplastic Reaction in Small Intestinal Neuroendocrine Neoplasms? Curr Oncol Rep 2022; 24:1281-1286. [PMID: 35554845 PMCID: PMC9474437 DOI: 10.1007/s11912-022-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
Purpose of Review Mesenteric desmoplasia in small intestinal neuroendocrine neoplasms (SINENs) is associated with increased morbidity and mortality. In this paper, we discuss the development of desmoplasia in SINENs. Recent Findings The fibrotic reactions associated with these tumours could be limited to the loco-regional environment of the tumour and/or at distant sites. Mesenteric fibrotic mass forms around a local lymph node. Formation of desmoplasia is mediated by interactions between the neoplastic cells and its microenvironment via number of profibrotic mediators and signalling pathways. Profibrotic molecules that are mainly involved in the desmoplastic reaction include serotonin, TGFβ (transforming growth factor β) and CTGF (connective tissue growth factor), although there is some evidence to suggest that there are a number of other molecules involved in this process. Summary Desmoplasia is a result of autocrine and paracrine effects of multiple molecules and signalling pathways. However, more research is needed to understand these mechanisms and to develop targeted therapy to minimise desmoplasia.
Collapse
Affiliation(s)
- Gowri M Ratnayake
- Neuroendocrine Tumour Unit - ENETS Centre of Excellence, Royal Free Hospital, London, NW3 2QG, UK
| | | | - Dalvinder Mandair
- Neuroendocrine Tumour Unit - ENETS Centre of Excellence, Royal Free Hospital, London, NW3 2QG, UK
| | - Martyn E Caplin
- Neuroendocrine Tumour Unit - ENETS Centre of Excellence, Royal Free Hospital, London, NW3 2QG, UK
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, NW3 2PF, UK
| | - Christos Toumpanakis
- Neuroendocrine Tumour Unit - ENETS Centre of Excellence, Royal Free Hospital, London, NW3 2QG, UK.
| |
Collapse
|
15
|
Wu N, Carpino G, Ceci L, Baiocchi L, Francis H, Kennedy L, Zhou T, Chen L, Sato K, Kyritsi K, Meadows V, Ekser B, Franchitto A, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Melatonin receptor 1A, but not 1B, knockout decreases biliary damage and liver fibrosis during cholestatic liver injury. Hepatology 2022; 75:797-813. [PMID: 34743371 PMCID: PMC8930565 DOI: 10.1002/hep.32233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND AIMS Melatonin reduces biliary damage and liver fibrosis in cholestatic models by interaction with melatonin receptors 1A (MT1) and 1B (MT2). MT1 and MT2 can form heterodimers and homodimers, but MT1 and MT2 can heterodimerize with the orphan receptor G protein-coupled receptor 50 (GPR50). MT1/GPR50 dimerization blocks melatonin binding, but MT2/GPR50 dimerization does not affect melatonin binding. GPR50 can dimerize with TGFβ receptor type I (TGFβRI) to activate this receptor. We aimed to determine the differential roles of MT1 and MT2 during cholestasis. APPROACH AND RESULTS Wild-type (WT), MT1 knockout (KO), MT2KO, and MT1/MT2 double KO (DKO) mice underwent sham or bile duct ligation (BDL); these mice were also treated with melatonin. BDL WT and multidrug resistance 2 KO (Mdr2-/- ) mice received mismatch, MT1, or MT2 Vivo-Morpholino. Biliary expression of MT1 and GPR50 increases in cholestatic rodents and human primary sclerosing cholangitis (PSC) samples. Loss of MT1 in BDL and Mdr2-/- mice ameliorated biliary and liver damage, whereas these parameters were enhanced following loss of MT2 and in DKO mice. Interestingly, melatonin treatment alleviated BDL-induced biliary and liver injury in BDL WT and BDL MT2KO mice but not in BDL MT1KO or BDL DKO mice, demonstrating melatonin's interaction with MT1. Loss of MT2 or DKO mice exhibited enhanced GPR50/TGFβR1 signaling, which was reduced by loss of MT1. CONCLUSIONS Melatonin ameliorates liver phenotypes through MT1, whereas down-regulation of MT2 promotes liver damage through GPR50/TGFβR1 activation. Blocking GPR50/TGFβR1 binding through modulation of melatonin signaling may be a therapeutic approach for PSC.
Collapse
Affiliation(s)
- Nan Wu
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Guido Carpino
- Department of MovementHuman and Health SciencesDivision of Health SciencesUniversity of Rome "Foro Italico,"RomeItaly
| | - Ludovica Ceci
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | | | - Heather Francis
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Lindsey Kennedy
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| | - Tianhao Zhou
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lixian Chen
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Keisaku Sato
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Konstantina Kyritsi
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Vik Meadows
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Burcin Ekser
- Division of Transplant SurgeryDepartment of SurgeryIndiana UniversityIndianapolisIndianaUSA
| | - Antonio Franchitto
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Romina Mancinelli
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Eugenio Gaudio
- Department of AnatomicalHistologicalForensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTexasUSA
| | - Gianfranco Alpini
- Hepatology and Gastroenterology, MedicineIndiana UniversityIndianapolisIndianaUSA.,Richard L. Roudebush VA Medical CenterIndianapolisIndianaUSA
| |
Collapse
|
16
|
Speciale A, Muscarà C, Molonia MS, Cristani M, Cimino F, Saija A. Recent Advances in Glycyrrhetinic Acid-Functionalized Biomaterials for Liver Cancer-Targeting Therapy. Molecules 2022; 27:1775. [PMID: 35335138 PMCID: PMC8954912 DOI: 10.3390/molecules27061775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the most common causes of cancer mortality worldwide. Chemotherapy and radiotherapy are the conventional therapies generally employed in patients with liver tumors. The major issue associated with the administration of chemotherapeutics is their high toxicity and lack of selectivity, leading to systemic toxicity that can be detrimental to the patient's quality of life. An important approach to the development of original liver-targeted therapeutic products takes advantage of the employment of biologically active ligands able to bind specific receptors on the cytoplasmatic membranes of liver cells. In this perspective, glycyrrhetinic acid (GA), a pentacyclic triterpenoid present in roots and rhizomes of licorice, has been used as a ligand for targeting the liver due to the expression of GA receptors on the sinusoidal surface of mammalian hepatocytes, so it may be employed to modify drug delivery systems (DDSs) and obtain better liver or hepatocyte drug uptake and efficacy. In the current review, we focus on the most recent and interesting research advances in the development of GA-based hybrid compounds and DDSs developed for potential employment as efficacious therapeutic options for the treatment of hepatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (A.S.); (C.M.); (M.S.M.); (M.C.); (A.S.)
| | | |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Cellular senescence (i.e. permanent withdrawal from the cell cycle) is increasingly recognized as a pathologic feature in a variety of inflammatory liver diseases, including primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC) and additional cholangiopathies. Herein, we provide an update on the interplay between cholangiocytes, cellular senescence and the cholangiopathies. RECENT FINDINGS The themes covered by this review include novel models for studying the role of senescent cholangiocytes and the cholangiopathies, identification and modulation of key pathways or molecules regulating cholangiocyte senescence, and discovery of druggable targets to advance therapeutic options for the cholangiopathies. Most recent studies focused on PSC; however, the concepts and findings may be applied to additional cholangiopathies. SUMMARY Cholangiopathies present unique and divergent clinicopathological features, causes and genetic backgrounds, but share several common disease processes. Cholangiocyte senescence in the cholestatic cholangiopathies, primarily PSC and PBC, is regarded as a key pathogenetic process. Importantly, senescent cholangiocytes exhibit phenotypic features including the senescence-associated secretory phenotype (SASP) and resistance to apoptosis that provide new directions for basic research and new prognostic and therapeutic approaches for clinical practice.
Collapse
|
18
|
Nie X, Yu Q, Li L, Yi M, Wu B, Huang Y, Zhang Y, Han H, Yuan X. Kinsenoside Protects Against Radiation-Induced Liver Fibrosis via Downregulating Connective Tissue Growth Factor Through TGF-β1 Signaling. Front Pharmacol 2022; 13:808576. [PMID: 35126163 PMCID: PMC8814438 DOI: 10.3389/fphar.2022.808576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Radiation-induced liver fibrosis (RILF) is a serious complication of the radiotherapy of liver cancer, which lacks effective prevention and treatment measures. Kinsenoside (KD) is a monomeric glycoside isolated from Anoectochilus roxburghii, which has been reported to show protective effect on the early progression of liver fibrosis. However, the role of KD in affecting RILF remains unknown. Here, we found that KD alleviated RILF via downregulating connective tissue growth factor (CTGF) through TGF-β1 signaling. Sprague-Dawley rats were administered with 20 mg/kg KD per day for 8 weeks after a single 30Gy irradiation on the right part of liver, and tumor-bearing nude mice were administered with 30 mg/kg KD per day after a single fraction of 10Gy on the tumor inoculation site. Twenty-four weeks postirradiation, we found that the administration of KD after irradiation resulted in decreased expression of α-SMA and fibronectin in the liver tissue while had no adverse effect on the tumor radiotherapy. Besides, KD inhibited the activation of hepatic stellate cells (HSCs) postirradiation via targeting CTGF as indicated by the transcriptome sequencing. Results of the pathway enrichment and immunohistochemistry suggested that KD reduced the expression of TGF-β1 protein after radiotherapy, and exogenous TGF-β1 induced HSCs to produce α-SMA and other fibrosis-related proteins. The content of activated TGF-β1 in the supernatant decreased after treatment with KD. In addition, KD inhibited the expression of the fibrosis-related proteins by regulating the TGF-β1/Smad/CTGF pathway, resulting in the intervention of liver fibrosis. In conclusion, this study revealed that KD alleviated RILF through the regulation of TGFβ1/Smad/CTGF pathway with no side effects on the tumor therapy. KD, in combination with blocking the TGF-β1 pathway and CTGF molecule or not, may become the innovative and effective treatment for RILF.
Collapse
Affiliation(s)
- Xiaoqi Nie
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Minxiao Yi
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bili Wu
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghui Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hu Han
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hu Han, ; Xianglin Yuan,
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hu Han, ; Xianglin Yuan,
| |
Collapse
|
19
|
Mechanism of cholangiocellular damage and repair during cholestasis. Ann Hepatol 2021; 26:100530. [PMID: 34509686 DOI: 10.1016/j.aohep.2021.100530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
The mechanism of damage of the biliary epithelium remains partially unexplored. However, recently many works have offered new evidence regarding the cholangiocytes' damage process, which is the main target in a broad spectrum of pathologies ranging from acute cholestasis, cholangiopathies to cholangiocarcinoma. This is encouraging since some works addressed this epithelium's relevance in health and disease until a few years ago. The biliary tree in the liver, comprised of cholangiocytes, is a pipeline for bile flow and regulates key hepatic processes such as proliferation, regeneration, immune response, and signaling. This review aimed to compile the most recent advances on the mechanisms of cholangiocellular damage during cholestasis, which, although it is present in many cholangiopathies, is not necessarily a common or conserved process in all of them, having a relevant role cAMP and PKA during obstructive cholestasis, as well as Ca2+-dependent PKC in functional cholestasis. Cholangiocellular damage could vary according to the type of cholestasis, the aggressor, or the bile ducts' location where it develops and what kind of damage can favor cholangiocellular carcinoma development.
Collapse
|
20
|
Udomsinprasert W, Sobhonslidsuk A, Jittikoon J, Honsawek S, Chaikledkaew U. Cellular senescence in liver fibrosis: Implications for age-related chronic liver diseases. Expert Opin Ther Targets 2021; 25:799-813. [PMID: 34632912 DOI: 10.1080/14728222.2021.1992385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION New insights indicate a causative link between cellular senescence and liver fibrosis. Senescent hepatic stellate cells (HSCs) facilitate fibrosis resolution, while senescence in hepatocytes and cholangiocytes acts as a potent mechanism driving liver fibrogenesis. In many clinical studies, telomeres and mitochondrial DNA contents, which are both aging biomarkers, were reportedly associated with a degree of liver fibrosis in patients with chronic liver diseases (CLDs); this highlights their potential as biomarkers for liver fibrogenesis. A deeper understanding of mechanisms underlying multi-step progression of senescence may yield new therapeutic strategies for age-related chronic liver pathologies. AREAS COVERED This review examines the recent findings from preclinical and clinical studies on mechanisms of senescence in liver fibrogenesis and its involvement in liver fibrosis. A comprehensive literature search in electronic databases consisting of PubMed and Scopus from inception to 31 August 2021 was performed. EXPERT OPINION Cellular senescence has diagnostic, prognostic, and therapeutic potential in progressive liver complications, especially liver fibrosis. Stimulating or reinforcing the immune response against senescent cells may be a promising and forthright biotherapeutic strategy. This approach will need a deeper understanding of the immune system's ability to eliminate senescent cells and the molecular and cellular mechanisms underlying this process.
Collapse
Affiliation(s)
| | - Abhasnee Sobhonslidsuk
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Sittisak Honsawek
- Department of Biochemistry, Osteoarthritis and Musculoskeleton Research Unit, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Usa Chaikledkaew
- Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.,Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Chen L, Wu N, Kennedy L, Francis H, Ceci L, Zhou T, Samala N, Kyritsi K, Wu C, Sybenga A, Ekser B, Dar W, Atkins C, Meadows V, Glaser S, Alpini G. Inhibition of Secretin/Secretin Receptor Axis Ameliorates NAFLD Phenotypes. Hepatology 2021; 74:1845-1863. [PMID: 33928675 PMCID: PMC8782246 DOI: 10.1002/hep.31871] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Human NAFLD is characterized at early stages by hepatic steatosis, which may progress to NASH when the liver displays microvesicular steatosis, lobular inflammation, and pericellular fibrosis. The secretin (SCT)/secretin receptor (SCTR) axis promotes biliary senescence and liver fibrosis in cholestatic models through down-regulation of miR-125b signaling. We aim to evaluate the effect of disrupting biliary SCT/SCTR/miR-125b signaling on hepatic steatosis, biliary senescence, and liver fibrosis in NAFLD/NASH. APPROACH AND RESULTS In vivo, 4-week-old male wild-type, Sct-/- and Sctr-/- mice were fed a control diet or high-fat diet (HFD) for 16 weeks. The expression of SCT/SCTR/miR-125b axis was measured in human NAFLD/NASH liver samples and HFD mouse livers by immunohistochemistry and quantitative PCR. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were evaluated in mouse liver and human NAFLD/NASH liver samples. miR-125b target lipogenesis genes in hepatocytes were screened and validated by custom RT2 Profiler PCR array and luciferase assay. Biliary SCT/SCTR expression was increased in human NAFLD/NASH samples and in livers of HFD mice, whereas the expression of miR-125b was decreased. Biliary/hepatocyte senescence, ductular reaction, and liver angiogenesis were observed in human NAFLD/NASH samples as well as HFD mice, which were decreased in Sct-/- and Sctr-/- HFD mice. Elovl1 is a lipogenesis gene targeted by miR-125b, and its expression was also decreased in HFD mouse hepatocytes following Sct or Sctr knockout. Bile acid profile in fecal samples have the greatest changes between wild-type mice and Sct-/- /Sctr-/- mice. CONCLUSION The biliary SCT/SCTR/miR-125b axis promotes liver steatosis by up-regulating lipid biosynthesis gene Elovl1. Targeting the biliary SCT/SCTR/miR-125b axis may be key for ameliorating phenotypes of human NAFLD/NASH.
Collapse
Affiliation(s)
- Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Niharika Samala
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX
| | - Amelia Sybenga
- Department of Pathology, Laboratory Medicine, University of Vermont Medical Center, Burlington, VT
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Wasim Dar
- Department of Surgery, Division of Acute Care Surgery, The University of Texas Health Sciences Center at Houston
| | - Constance Atkins
- Department of Anesthesiology, University of Texas Health Sciences Center at Houston
| | - Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, TX
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University, Indianapolis, IN,Richard L. Roudebush VA Medical Center, Indianapolis, IN
| |
Collapse
|
22
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
23
|
Baiocchi L, Glaser S, Francis H, Kennedy L, Felli E, Alpini G, Gracia-Sancho J. Impact of Aging on Liver Cells and Liver Disease: Focus on the Biliary and Vascular Compartments. Hepatol Commun 2021; 5:1125-1137. [PMID: 34278165 PMCID: PMC8279468 DOI: 10.1002/hep4.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/26/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
The aging process is represented by the time-dependent decay in physiologic functions of living beings. Major interest has been focused in recent years on the determinants of this progressive condition due to its correlative relationship with the onset of diseases. Several hallmark features have been observed in aging, such as genetic alterations, mitochondrial impairment, and telomere shortening. At the cellular level, a senescent phenotype has been identified in response to aging that is characterized by a flat appearance, proliferative arrest, and production of specific molecules. The net effect of these cells in the course of diseases is an argument of debate. In fact, while the onset of a senescent phenotype may prevent tumor spreading, these cells appear to support pathological processes in some conditions. Several studies are now focused on clarifying the specific molecular pathways of aging/senescence in different cells, tissues, or organs. Biliary and vascular components, within the liver, have emerged as important determinants of some form of liver disease. In this review we summarize the most recent achievements on aging/senescence, focusing on the biliary and vascular liver system. Conclusion: Several findings, in both preclinical animal models and on human liver specimens, converge in supporting the presence of specific aging hallmarks in the diseases involving these hepatic compartments.
Collapse
Affiliation(s)
- Leonardo Baiocchi
- Hepatology UnitDepartment of MedicineUniversity of Tor VergataRomeItaly
| | - Shannon Glaser
- Medical PhysiologyTexas A&M College of MedicineBryanTXUSA
| | - Heather Francis
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Lindsey Kennedy
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Eric Felli
- HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| | - Gianfranco Alpini
- Hepatology and MedicineIndiana UniversityIndianapolisINUSA.,Richard L. Roudebush VA Medical CenterIndianapolisINUSA
| | - Jordi Gracia-Sancho
- Liver Vascular BiologyIDIBAPS Biomedical Research Institute and CIBEREHDBarcelonaSpain.,HepatologyDepartment of Biomedical ResearchInselspitalBernSwitzerland
| |
Collapse
|
24
|
Wu R, Wang X, Shao Y, Jiang Y, Zhou Y, Lu C. NFATc4 mediates ethanol-triggered hepatocyte senescence. Toxicol Lett 2021; 350:10-21. [PMID: 34192554 DOI: 10.1016/j.toxlet.2021.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Hepatocyte senescence is a core event that mediates the occurrence and development of alcoholic liver disease. Nuclear factor of activated T-cells 4 (NFATc4) is a key driver of nonalcoholic steatohepatitis. However, little was known about the implication of NFATc4 for alcoholic liver disease. This study was aimed to investigate the role of NFATc4 in hepatocyte senescence and further elucidate the underlying mechanism. METHODS Real-time PCR, Western blot, immunofluorescence staining, and enzyme-linked immunosorbent assay were performed to explore the role of NFATc4 in hepatocyte senescence. RESULTS NFATc4 was induced in ethanol-incubated hepatocytes. NFATc4 knockdown recovered cell viability and reduced the release of aspartate transaminase, alanine transaminase, and lactic dehydrogenase from ethanol-incubated hepatocytes. NFATc4 knockdown protected mice from alcoholic liver injury and inflammation. NFATc4 knockdown counteracted ethanol-induced hepatocyte senescence, evidenced by decreased senescence-associated β-galactosidase positivity and reduced p16, p21, HMGA1, and γH2AX, which was validated in in vivo studies. Peroxisome proliferator-activated receptor (PPAR)γ was inhibited by NFATc4 in ethanol-treated hepatocytes. PPARγ deficiency abrogated the inhibitory effects of NFATc4 knockdown on hepatocyte senescence, oxidative stress, and hepatic steatosis in mice with alcoholic liver disease. CONCLUSIONS This work discovered that ethanol enhanced NFATc4 expression, which further triggered hepatocyte senescence via repression of PPARγ.
Collapse
Affiliation(s)
- Ruoman Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xinqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yiming Jiang
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Ying Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
25
|
Jia R, Yang F, Yan P, Ma L, Yang L, Li L. Paricalcitol inhibits oxidative stress-induced cell senescence of the bile duct epithelium dependent on modulating Sirt1 pathway in cholestatic mice. Free Radic Biol Med 2021; 169:158-168. [PMID: 33872698 DOI: 10.1016/j.freeradbiomed.2021.04.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clinical studies indicate that vitamin D receptor (VDR) expression is reduced in primary biliary cirrhosis patient livers. However, the mechanism by which activated VDR effect cholestatic liver injury remains unclear. METHODS Mice were injected intraperitoneally with the VDR agonist paricalcitol or a vehicle 3 days prior to bile duct ligation (BDL) and for 5 or 28 days after surgery. The analyses of liver morphology and necrotic areas were based on H&E staining. Serum biochemical indicators of liver damage were analyzed by commercial kits. The mechanisms of paricalcitol on cholestatic liver injury were determined by Western blot analysis. RESULTS Paricalcitol ameliorated the BDL-induced liver damage in mice. Paricalcitol increased the proliferation of BECs to promote the repair of the bile duct. Paricalcitol also reduced the BDL-induced oxidative stress level in the mice. Mechanistic analysis revealed that paricalcitol decreased the number of SA-β-gal-positive cells and downregulated the expression of p53, p21 and p16 proteins which was associated with reducing oxidative stress. Additionally, paricalcitol exerted the inhibitory effect of cell senescence was through reducing DNA damage and promoting DNA repair. Interesting, we found that paricalcitol prevented the downregulation of oxidative stress-induced Sirt1 expression in the BDL mice and t-BHP-induced BECs models. Moreover, paricalcitol suppressed cell senescence through a Sirt1-dependent pathway. These results were confirmed by antioxidant ALCAR and the Sirt1 inhibitor EX-527. CONCLUSION Paricalcitol alleviated cholestatic liver injury through promoting the repair of damaged bile ducts and reducing oxidative stress-induced cell senescence of the bile duct via modulating Sirt1 pathway.
Collapse
Affiliation(s)
- Rongjun Jia
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China; Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Fan Yang
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Pengfei Yan
- Department of Cell Biology, Jinzhou Medical University, Jinzhou, PR China.
| | - Liman Ma
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, PR China.
| | - Lihua Li
- Department of Cell Biology, School of Medicine, Taizhou University, Taizhou, PR China.
| |
Collapse
|
26
|
Chen L, Zhou T, White T, O’Brien A, Chakraborty S, Liangpunsakul S, Yang Z, Kennedy L, Saxena R, Wu C, Meng F, Huang Q, Francis H, Alpini G, Glaser S. The Apelin-Apelin Receptor Axis Triggers Cholangiocyte Proliferation and Liver Fibrosis During Mouse Models of Cholestasis. Hepatology 2021; 73:2411-2428. [PMID: 32964473 PMCID: PMC9288669 DOI: 10.1002/hep.31545] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Apelin (APLN) is the endogenous ligand of its G protein-coupled receptor, apelin receptor (APJ). APLN serum levels are increased in human liver diseases. We evaluated whether the APLN-APJ axis regulates ductular reaction and liver fibrosis during cholestasis. APPROACH AND RESULTS We measured the expression of APLN and APJ and serum APLN levels in human primary sclerosing cholangitis (PSC) samples. Following bile duct ligation (BDL) or sham surgery, male wild-type (WT) mice were treated with ML221 (APJ antagonist) or saline for 1 week. WT and APLN-/- mice underwent BDL or sham surgery for 1 week. Multidrug resistance gene 2 knockout (Mdr2-/- ) mice were treated with ML221 for 1 week. APLN levels were measured in serum and cholangiocyte supernatants, and cholangiocyte proliferation/senescence and liver inflammation, fibrosis, and angiogenesis were measured in liver tissues. The regulatory mechanisms of APLN-APJ in (1) biliary damage and liver fibrosis were examined in human intrahepatic biliary epithelial cells (HIBEpiCs) treated with APLN and (2) hepatic stellate cell (HSC) activation in APLN-treated human HSC lines (HHSteCs). APLN serum levels and biliary expression of APLN and APJ increased in PSC samples. APLN levels were higher in serum and cholangiocyte supernatants from BDL and Mdr2-/- mice. ML221 treatment or APLN-/- reduced BDL-induced and Mdr2-/- -induced cholangiocyte proliferation/senescence, liver inflammation, fibrosis, and angiogenesis. In vitro, APLN induced HIBEpiC proliferation, increased nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) expression, reactive oxygen species (ROS) generation, and extracellular signal-regulated kinase (ERK) phosphorylation. Pretreatment of HIBEpiCs with ML221, diphenyleneiodonium chloride (Nox4 inhibitor), N-acetyl-cysteine (NAC, ROS inhibitor), or PD98059 (ERK inhibitor) reduced APLN-induced cholangiocyte proliferation. Activation of HHSteCs was induced by APLN but reduced by NAC. CONCLUSIONS The APLN-APJ axis induces cholangiocyte proliferation through Nox4/ROS/ERK-dependent signaling and HSC activation through intracellular ROS. Modulation of the APLN-APJ axis may be important for managing cholangiopathies.
Collapse
Affiliation(s)
- Lixian Chen
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Tori White
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - April O’Brien
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| | - Suthat Liangpunsakul
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Zhihong Yang
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Romil Saxena
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Fanyin Meng
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Lab of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Heather Francis
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Gianfranco Alpini
- Research, Richard L. Roudebush VA Medical Center, Indiana University School of Medicine, Indianapolis, IN,Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine; Bryan, TX
| |
Collapse
|
27
|
Alsuraih M, O'Hara SP, Woodrum JE, Pirius NE, LaRusso NF. Genetic or pharmacological reduction of cholangiocyte senescence improves inflammation and fibrosis in the Mdr2 -/- mouse. JHEP Rep 2021; 3:100250. [PMID: 33870156 PMCID: PMC8044431 DOI: 10.1016/j.jhepr.2021.100250] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/10/2023] Open
Abstract
Background & Aims Cholangiocyte senescence is important in the pathogenesis of primary sclerosing cholangitis (PSC). We found that CDKN2A (p16), a cyclin-dependent kinase inhibitor and mediator of senescence, was increased in cholangiocytes of patients with PSC and from a PSC mouse model (multidrug resistance 2; Mdr2-/-). Given that recent data suggest that a reduction of senescent cells is beneficial in different diseases, we hypothesised that inhibition of cholangiocyte senescence would ameliorate disease in Mdr2-/- mice. Methods We used 2 novel genetic murine models to reduce cholangiocyte senescence: (i) p16Ink4a apoptosis through targeted activation of caspase (INK-ATTAC)xMdr2-/-, in which the dimerizing molecule AP20187 promotes selective apoptotic removal of p16-expressing cells; and (ii) mice deficient in both p16 and Mdr2. Mdr2-/- mice were also treated with fisetin, a flavonoid molecule that selectively kills senescent cells. p16, p21, and inflammatory markers (tumour necrosis factor [TNF]-α, IL-1β, and monocyte chemoattractant protein-1 [MCP-1]) were measured by PCR, and hepatic fibrosis via a hydroxyproline assay and Sirius red staining. Results AP20187 treatment reduced p16 and p21 expression by ~35% and ~70% (p >0.05), respectively. Expression of inflammatory markers (TNF-α, IL-1β, and MCP-1) decreased (by 60%, 40%, and 60%, respectively), and fibrosis was reduced by ~60% (p >0.05). Similarly, p16-/-xMdr2-/- mice exhibited reduced p21 expression (70%), decreased expression of TNF-α, IL-1β (60%), and MCP-1 (65%) and reduced fibrosis (~50%) (p >0.05) compared with Mdr2-/- mice. Fisetin treatment reduced expression of p16 and p21 (80% and 90%, respectively), TNF-α (50%), IL-1β (50%), MCP-1 (70%), and fibrosis (60%) (p >0.05). Conclusions Our data support a pathophysiological role of cholangiocyte senescence in the progression of PSC, and that targeted removal of senescent cholangiocytes is a plausible therapeutic approach. Lay summary Primary sclerosing cholangitis is a fibroinflammatory, incurable biliary disease. We previously reported that biliary epithelial cell senescence (cell-cycle arrest and hypersecretion of profibrotic molecules) is an important phenotype in primary sclerosing cholangitis. Herein, we demonstrate that reducing the number of senescent cholangiocytes leads to a reduction in the expression of inflammatory, fibrotic, and senescence markers associated with the disease. p16 and p21 are major mediators of cellular senescence and are highly expressed in cholangiocytes in a Mdr2-/- murine model of PSC. The senescence-associated secretory phenotype markers are all increased in cholangiocytes of Mdr2-/- mice. Genetic and pharmacological elimination of senescent cholangiocytes reduces peribiliary inflammation and fibrosis in Mdr2-/- mice. Preclinical work suggests that fisetin, a naturally occurring and safe senolytic flavonoid, has the potential to be tested in patients with PSC.
Collapse
Key Words
- ALP, alkaline phosphatase
- AP, AP20187
- Apoptosis resistance
- BCL2, B cell lymphoma 2
- Bcl-xL, B-cell lymphoma-extra large
- Biliary epithelial cell
- CCA, cholangiocarcinoma
- CKI, cyclin-dependent kinase inhibitor
- Cellular senescence
- Cholestatic liver disease
- Col.1A, collagen 1A
- D, dasatinib
- EVs, extracellular vesicles
- FKBP-Casp8, FK506-binding-protein-caspase 8
- IF, immunofluorescence
- INK-ATTAC, p16Ink4a apoptosis through targeted activation of caspase
- IR, irradiation
- MCL1, myeloid cell leukemia 1
- MCP-1, monocyte chemoattractant protein-1
- MMP, matrix metalloproteinase
- NHC, normal human cholangiocyte
- PSC, primary sclerosing cholangitis
- Primary sclerosing cholangitis
- Q, quercetin
- RT, reverse transcription
- SA-β-gal, senescence-associated β-gal
- SASP, senescence-associated secretory phenotype
- Senescence-associated secretory phenotype
- Senolytics
- TNF, tumour necrosis factor
- WT, wild-type
- mdr2, multidrug-resistance 2
- qPCR, quantitative PCR
- α-SMA, α-smooth muscle actin
- β-Gal, β-galactosidase
Collapse
Affiliation(s)
- Mohammed Alsuraih
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.,Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Steven P O'Hara
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Julie E Woodrum
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas E Pirius
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
28
|
Ferreira-Gonzalez S, Rodrigo-Torres D, Gadd VL, Forbes SJ. Cellular Senescence in Liver Disease and Regeneration. Semin Liver Dis 2021; 41:50-66. [PMID: 33764485 DOI: 10.1055/s-0040-1722262] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cellular senescence is an irreversible cell cycle arrest implemented by the cell as a result of stressful insults. Characterized by phenotypic alterations, including secretome changes and genomic instability, senescence is capable of exerting both detrimental and beneficial processes. Accumulating evidence has shown that cellular senescence plays a relevant role in the occurrence and development of liver disease, as a mechanism to contain damage and promote regeneration, but also characterizing the onset and correlating with the extent of damage. The evidence of senescent mechanisms acting on the cell populations of the liver will be described including the role of markers to detect cellular senescence. Overall, this review intends to summarize the role of senescence in liver homeostasis, injury, disease, and regeneration.
Collapse
Affiliation(s)
| | - Daniel Rodrigo-Torres
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Victoria L Gadd
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Kyritsi K, Francis H, Zhou T, Ceci L, Wu N, Yang Z, Meng F, Chen L, Baiocchi L, Kundu D, Kennedy L, Liangpunsakul S, Wu C, Glaser S, Alpini G. Downregulation of p16 Decreases Biliary Damage and Liver Fibrosis in the Mdr2 / Mouse Model of Primary Sclerosing Cholangitis. Gene Expr 2020; 20:89-103. [PMID: 32393417 PMCID: PMC7650011 DOI: 10.3727/105221620x15889714507961] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biliary senescence and hepatic fibrosis are hallmarks of cholangiopathies including primary sclerosing cholangitis (PSC). Senescent cholangiocytes display senescence-associated secretory phenotypes [SASPs, e.g., transforming growth factor-1 (TGF-1)] that further increase biliary senescence (by an autocrine loop) and trigger liver fibrosis by paracrine mechanisms. The aim of this study was to determine the effect of p16 inhibition and role of the TGF-1/microRNA (miR)-34a/sirtuin 1 (SIRT1) axis in biliary damage and liver fibrosis in the Mdr2/ mouse model of PSC. We treated (i) in vivo male wild-type (WT) and Mdr2/ mice with p16 Vivo-Morpholino or controls before measuring biliary mass [intrahepatic bile duct mass (IBDM)] and senescence, biliary SASP levels, and liver fibrosis, and (ii) in vitro intrahepatic murine cholangiocyte lines (IMCLs) with small interfering RNA against p16 before measuring the mRNA expression of proliferation, senescence, and fibrosis markers. p16 and miR-34a increased but SIRT1 decreased in Mdr2/ mice and PSC human liver samples compared to controls. p16 immunoreactivity and biliary senescence and SASP levels increased in Mdr2/ mice but decreased in Mdr2/ mice treated with p16 Vivo-Morpholino. The increase in IBDM and hepatic fibrosis (observed in Mdr2/ mice) returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. TGF-1 immunoreactivity and biliary SASPs levels were higher in Mdr2/ compared to those of WT mice but returned to normal values in Mdr2/ mice treated with p16 Vivo-Morpholino. The expression of fibrosis/senescence markers decreased in cholangiocytes from Mdr2/ mice treated with p16 Vivo-Morpholino (compared to Mdr2/ mice) and in IMCLs (after p16 silencing) compared to controls. Modulation of the TGF-1/miR-34a/SIRT1 axis may be important in the management of PSC phenotypes.
Collapse
Affiliation(s)
| | - Heather Francis
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianhao Zhou
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ludovica Ceci
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Nan Wu
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Zhihong Yang
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Fanyin Meng
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lixian Chen
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Leonardo Baiocchi
- §Liver Unit, Department of Medicine, University of Rome “Tor Vergata,”Rome, Italy
| | - Debjyoti Kundu
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Lindsey Kennedy
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Suthat Liangpunsakul
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| | - Chaodong Wu
- ¶Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Shannon Glaser
- ‡Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Gianfranco Alpini
- *Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
- †Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
30
|
Ceci L, Francis H, Zhou T, Giang T, Yang Z, Meng F, Wu N, Kennedy L, Kyritsi K, Meadows V, Wu C, Liangpunsakul S, Franchitto A, Sybenga A, Ekser B, Mancinelli R, Onori P, Gaudio E, Glaser S, Alpini G. Knockout of the Tachykinin Receptor 1 in the Mdr2 -/- (Abcb4 -/-) Mouse Model of Primary Sclerosing Cholangitis Reduces Biliary Damage and Liver Fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:2251-2266. [PMID: 32712019 PMCID: PMC7592721 DOI: 10.1016/j.ajpath.2020.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
Activation of the substance P (SP)/neurokinin 1 receptor (NK1R) axis triggers biliary damage/senescence and liver fibrosis in bile duct ligated and Mdr2-/- (alias Abcb4-/-) mice through enhanced transforming growth factor-β1 (TGF-β1) biliary secretion. Recent evidence indicates a role for miR-31 (MIR31) in TGF-β1-induced liver fibrosis. We aimed to define the role of the SP/NK1R/TGF-β1/miR-31 axis in regulating biliary proliferation and liver fibrosis during cholestasis. Thus, we generated a novel model with double knockout of Mdr2-/- and NK1R-/ (alias Tacr1-/-) to further address the role of the SP/NK1R axis during chronic cholestasis. In vivo studies were performed in the following 12-week-old male mice: (i) NK1R-/-; (ii) Mdr2-/-; and (iii) NK1R-/-/Mdr2-/- (Tacr1-/-/Abcb4-/-) and their corresponding wild-type controls. Liver tissues and cholangiocytes were collected, and liver damage, changes in biliary mass/senescence, and inflammation as well as liver fibrosis were evaluated by both immunohistochemistry in liver sections and real-time PCR. miR-31 expression was measured by real-time PCR in isolated cholangiocytes. Decreased ductular reaction, liver fibrosis, biliary senescence, and biliary inflammation were observed in NK1R-/-/Mdr2-/- mice compared with Mdr2-/- mice. Elevated expression of miR-31 was observed in Mdr2-/- mice, which was reduced in NK1R-/-/Mdr2-/- mice. Targeting the SP/NK1R and/or miR-31 may be a potential approach in treating human cholangiopathies, including primary sclerosing cholangitis.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Heather Francis
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Thao Giang
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Zhihong Yang
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Fanyin Meng
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Nan Wu
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Vik Meadows
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, Texas
| | - Suthat Liangpunsakul
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | | | - Amelia Sybenga
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, Vermont
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University, Indianapolis, Indiana
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Bryan, Texas
| | - Gianfranco Alpini
- Division of Hepatology and Gastroenterology, Medicine, Indiana University, Indianapolis, Indiana; Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
31
|
Chen Y, Yuan B, Chen G, Zhang L, Zhuang Y, Niu H, Zeng Z. Circular RNA RSF1 promotes inflammatory and fibrotic phenotypes of irradiated hepatic stellate cell by modulating miR-146a-5p. J Cell Physiol 2020; 235:8270-8282. [PMID: 31960423 DOI: 10.1002/jcp.29483] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
The role of circular RNA (circRNA) in radiation-induced liver disease (RILD) remains largely unknown. In this study, Ras-related C3 botulinum toxin substrate 1 (RAC1) was elevated in irradiated human hepatic stellate cell (HSC) line LX2, the important effector cell mediating RILD. Overexpression of RAC1 promotes cell proliferation, proinflammatory cytokines production, and α-smooth muscle actin expression, which were blocked by microRNA (miR)-146a-5p mimics. CircRNA RSF1 (circRSF1) was upregulated in irradiated LX2 cells and predicted to harbor binding site for miR-146a-5p. Biotinylated-RNA pull down and dual-luciferase reporter detection confirmed the direct interaction of circRSF1 and miR-146a-5p. Enforced expression of circRSF1 increased RAC1 expression by acting as miR-146a-5p sponge to inhibit miR-146a-5p activity, and thus enhanced the cell viability, and promoted inflammatory and fibrotic phenotype of irradiated LX2 cells. These findings indicate a functional regulatory axis composing of circRSF1, miR-146a-5p, and RAC1 in irradiated HSC, which may provide attractive therapeutic targets for RILD.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Niu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
32
|
Zhao X, Yang Y, Yu H, Wu W, Sun Y, Pan Y, Kong L. Polydatin inhibits ZEB1-invoked epithelial-mesenchymal transition in fructose-induced liver fibrosis. J Cell Mol Med 2020; 24:13208-13222. [PMID: 33058500 PMCID: PMC7701525 DOI: 10.1111/jcmm.15933] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022] Open
Abstract
High fructose intake is a risk factor for liver fibrosis. Polydatin is a main constituent of the rhizome of Polygonum cuspidatum, which has been used in traditional Chinese medicine to treat liver fibrosis. However, the underlying mechanisms of fructose-driven liver fibrosis as well as the actions of polydatin are not fully understood. In this study, fructose was found to promote zinc finger E-box binding homeobox 1 (ZEB1) nuclear translocation, decrease microRNA-203 (miR-203) expression, increase survivin, activate transforming growth factor β1 (TGF-β1)/Smad signalling, down-regulate E-cadherin, and up-regulate fibroblast specific protein 1 (FSP1), vimentin, N-cadherin and collagen I (COL1A1) in rat livers and BRL-3A cells, in parallel with fructose-induced liver fibrosis. Furthermore, ZEB1 nuclear translocation-mediated miR-203 low-expression was found to target survivin to activate TGF-β1/Smad signalling, causing the EMT in fructose-exposed BRL-3A cells. Polydatin antagonized ZEB1 nuclear translocation to up-regulate miR-203, subsequently blocked survivin-activated TGF-β1/Smad signalling, which were consistent with its protection against fructose-induced EMT and liver fibrosis. These results suggest that ZEB1 nuclear translocation may play an essential role in fructose-induced EMT in liver fibrosis by targeting survivin to activate TGF-β1/Smad signalling. The suppression of ZEB1 nuclear translocation by polydatin may be a novel strategy for attenuating the EMT in liver fibrosis associated with high fructose diet.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yanzi Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hanwen Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Wenyuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ying Pan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Pinto C, Ninfole E, Gaggiano L, Benedetti A, Marzioni M, Maroni L. Aging and the Biological Response to Liver Injury. Semin Liver Dis 2020; 40:225-232. [PMID: 31887774 DOI: 10.1055/s-0039-3402033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Interest in understanding the aging process has recently risen in the scientific community. Aging, commonly defined as the functional decline in the function of organs and tissues, is indeed the major risk factor for the development of many chronic diseases, such as cardiovascular diseases, pathologies of nervous system, or cancer. To date, the influence of aging in the pathophysiology of liver and biliary diseases is not fully understood. Although liver cells have a high regenerative capacity, hepatocytes and cholangiocytes undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, liver cells initially activate compensatory mechanisms that, if hyperstimulated, may lead to the decline of regenerative capacity and the development of pathologies. A deeper understanding of molecular aging has undoubtedly the potential to improve the clinical management of patients, possibly unveiling new pathways for selective drug treatment.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Laura Gaggiano
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
34
|
Sato K, Glaser S, Alvaro D, Meng F, Francis H, Alpini G. Cholangiocarcinoma: novel therapeutic targets. Expert Opin Ther Targets 2020; 24:345-357. [PMID: 32077341 PMCID: PMC7129482 DOI: 10.1080/14728222.2020.1733528] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Introduction: Cholangiocarcinoma (CCA) is a liver cancer derived from the biliary tree with a less than 30% five-year survival rate. Early diagnosis of CCA is challenging and treatment options are limited. Some CCA patients have genetic mutations and several therapeutic drugs or antibodies have been introduced to target abnormally expressed proteins. However, CCA is heterogeneous and patients often present with drug resistance which is attributed to multiple mutations or other factors. Novel approaches and methodologies for CCA treatments are in demand.Area covered: This review summarizes current approaches for CCA treatments leading to the development of novel therapeutic drugs or tools for human CCA patients. A literature search was conducted in PubMed utilizing the combination of the searched term 'cholangiocarcinoma' with other keywords such as 'miRNA', 'FGFR', 'immunotherapy' or 'microenvironment'. Papers published within 2015-2019 were obtained for reading.Expert opinion: Preclinical studies have demonstrated promising therapeutic approaches that target various cells or pathways. Recent studies have revealed that hepatic cells coordinate to promote CCA tumor progression in the tumor microenvironment, which may be a new therapeutic target. Although further studies are required, novel therapeutic tools such as extracellular vesicles could be utilized to manage CCA and its microenvironment.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Bryan, Texas
| | - Domenico Alvaro
- Gastroenterology, Medicine, Università Sapienza, Rome, Italy
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA
| |
Collapse
|
35
|
Matyas C, Erdelyi K, Trojnar E, Zhao S, Varga ZV, Paloczi J, Mukhopadhyay P, Nemeth BT, Haskó G, Cinar R, Rodrigues RM, Ahmed YA, Gao B, Pacher P. Interplay of Liver-Heart Inflammatory Axis and Cannabinoid 2 Receptor Signaling in an Experimental Model of Hepatic Cardiomyopathy. Hepatology 2020; 71:1391-1407. [PMID: 31469200 PMCID: PMC7048661 DOI: 10.1002/hep.30916] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Hepatic cardiomyopathy, a special type of heart failure, develops in up to 50% of patients with cirrhosis and is a major determinant of survival. However, there is no reliable model of hepatic cardiomyopathy in mice. We aimed to characterize the detailed hemodynamics of mice with bile duct ligation (BDL)-induced liver fibrosis, by monitoring echocardiography and intracardiac pressure-volume relationships and myocardial structural alterations. Treatment of mice with a selective cannabinoid-2 receptor (CB2 -R) agonist, known to attenuate inflammation and fibrosis, was used to explore the impact of liver inflammation and fibrosis on cardiac function. APPROACH AND RESULTS BDL induced massive inflammation (increased leukocyte infiltration, inflammatory cytokines, and chemokines), oxidative stress, microvascular dysfunction, and fibrosis in the liver. These pathological changes were accompanied by impaired diastolic, systolic, and macrovascular functions; cardiac inflammation (increased macrophage inflammatory protein 1, interleukin-1, P-selectin, cluster of differentiation 45-positive cells); and oxidative stress (increased malondialdehyde, 3-nitrotyrosine, and nicotinamide adenine dinucleotide phosphate oxidases). CB2 -R up-regulation was observed in both livers and hearts of mice exposed to BDL. CB2 -R activation markedly improved hepatic inflammation, impaired microcirculation, and fibrosis. CB2 -R activation also decreased serum tumor necrosis factor-alpha levels and improved cardiac dysfunction, myocardial inflammation, and oxidative stress, underlining the importance of inflammatory mediators in the pathology of hepatic cardiomyopathy. CONCLUSIONS We propose BDL-induced cardiomyopathy in mice as a model for hepatic/cirrhotic cardiomyopathy. This cardiomyopathy, similar to cirrhotic cardiomyopathy in humans, is characterized by systemic hypotension and impaired macrovascular and microvascular function accompanied by both systolic and diastolic dysfunction. Our results indicate that the liver-heart inflammatory axis has a pivotal pathophysiological role in the development of hepatic cardiomyopathy. Thus, controlling liver and/or myocardial inflammation (e.g., with selective CB2 -R agonists) may delay or prevent the development of cardiomyopathy in severe liver disease.
Collapse
Affiliation(s)
- Csaba Matyas
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Katalin Erdelyi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Eszter Trojnar
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Suxian Zhao
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Zoltan V. Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA,ZVV’s present affiliation: HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Balazs T. Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY 10032, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Robim M. Rodrigues
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Yeni Ait Ahmed
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institutes of Health/NIAAA, Bethesda, MD, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, USA
| |
Collapse
|
36
|
Jannone G, Rozzi M, Najimi M, Decottignies A, Sokal EM. An Optimized Protocol for Histochemical Detection of Senescence-associated Beta-galactosidase Activity in Cryopreserved Liver Tissue. J Histochem Cytochem 2020; 68:269-278. [PMID: 32154749 DOI: 10.1369/0022155420913534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Senescence-associated beta-galactosidase (SA-β-gal) activity assay is commonly used to evaluate the increased beta-galactosidase (β-gal) activity in senescent cells related to enhanced lysosomal activity. Although the optimal pH for β-gal is 4.0, this enzymatic activity has been most commonly investigated at a suboptimal pH by using histochemical reaction on fresh tissue material. In the current study, we optimized a SA-β-gal activity histochemistry protocol that can also be applied on cryopreserved hepatic tissue. This protocol was developed on livers obtained from control rats and after bile duct resection (BDR). A significant increase in β-gal liver activity was observed in BDR rats vs controls after 2 hr of staining at physiological pH 4.0 (6.98 ± 1.19% of stained/total area vs 0.38 ± 0.22; p<0.01) and after overnight staining at pH 5.8 (24.09 ± 6.88 vs 0.12 ± 0.08; p<0.01). Although we noticed that β-gal activity staining decreased with cryopreservation time (from 4 to 12 months of storage at -80C; p<0.05), the enhanced staining observed in BDR compared with controls remained detectable up to 12 months after cryopreservation (p<0.01). In conclusion, we provide an optimized protocol for SA-β-gal activity histochemical detection at physiological pH 4.0 on long-term cryopreserved liver tissue.
Collapse
Affiliation(s)
- Giulia Jannone
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Milena Rozzi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Anabelle Decottignies
- Genetic and Epigenetic Alterations of Genomes Group, de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
37
|
Intercellular crosstalk of hepatic stellate cells in liver fibrosis: New insights into therapy. Pharmacol Res 2020; 155:104720. [PMID: 32092405 DOI: 10.1016/j.phrs.2020.104720] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/08/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Liver fibrosis is a dynamic wound-healing process characterized by the net accumulation of extracellular matrix. There is no efficient antifibrotic therapy other than liver transplantation to date. Activated hepatic stellate cells (HSCs) are the major cellular source of matrix-producing myofibroblasts, playing a central role in the initiation and progression of liver fibrosis. Paracrine signals from resident and inflammatory cells such as hepatocytes, liver sinusoidal endothelial cells, hepatic macrophages, natural killer/natural killer T cells, biliary epithelial cells, hepatic progenitor cells, and platelets can directly or indirectly regulate HSC differentiation and activation. Intercellular crosstalk between HSCs and those "responded" cells has been a critical event involved in HSC activation and fibrogenesis. This review summarizes recent advancement regarding intercellular communication between HSCs and other "responded cells" during liver fibrosis and experimental models of intercellular crosstalk systems, and provides novel ideas for potential antifibrotic therapeutic strategy.
Collapse
|
38
|
Sato K, Francis H, Zhou T, Meng F, Kennedy L, Ekser B, Baiocchi L, Onori P, Mancinelli R, Gaudio E, Franchitto A, Glaser S, Alpini G. Neuroendocrine Changes in Cholangiocarcinoma Growth. Cells 2020; 9:E436. [PMID: 32069926 PMCID: PMC7072848 DOI: 10.3390/cells9020436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive malignancy that emerges from the biliary tree. There are three major classes of CCA-intrahepatic, hilar (perihilar), or distal (extrahepatic)-according to the location of tumor development. Although CCA tumors are mainly derived from biliary epithelia (i.e., cholangiocytes), CCA can be originated from other cells, such as hepatic progenitor cells and hepatocytes. This heterogeneity of CCA may be responsible for poor survival rates of patients, limited effects of chemotherapy and radiotherapy, and the lack of treatment options and novel therapies. Previous studies have identified a number of neuroendocrine mediators, such as hormones, neuropeptides, and neurotransmitters, as well as corresponding receptors. The mediator/receptor signaling pathways play a vital role in cholangiocyte proliferation, as well as CCA progression and metastases. Agonists or antagonists for candidate pathways may lead to the development of novel therapies for CCA patients. However, effects of mediators may differ between healthy or cancerous cholangiocytes, or between different subtypes of receptors. This review summarizes current understandings of neuroendocrine mediators and their functional roles in CCA.
Collapse
Affiliation(s)
- Keisaku Sato
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Tianhao Zhou
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Fanyin Meng
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Leonardo Baiocchi
- Liver Unit, Department of Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX 77807, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
39
|
Pinto C, Ninfole E, Benedetti A, Maroni L, Marzioni M. Aging-Related Molecular Pathways in Chronic Cholestatic Conditions. Front Med (Lausanne) 2020; 6:332. [PMID: 32039217 PMCID: PMC6985088 DOI: 10.3389/fmed.2019.00332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is commonly defined as the time-dependent functional decline of organs and tissues. Average life expectancy has increased considerably over the past century and is estimated to increase even further, consequently also the interest in understanding the aging processes. Although aging is not a disease, it is the major risk factor for the development of many chronic diseases. Pathologies, such as Primary Biliary Cholangitis (PBC) and Primary Sclerosing Cholangitis (PSC) are cholestatic liver diseases characterized by chronic inflammation, biliary damage and ultimately liver fibrosis, targeting specifically cholangiocytes. To date, the influence of aging in these biliary diseases is not fully understood. Currently, liver transplantation is the only solution because of lacking in efficiently therapies. Although liver cells have a high regenerative capacity, they undergo extensive molecular changes in response to aging. Following time-dependent damage induced by aging, the cells initially activate protective compensatory processes that, if hyperstimulated, can lead to the decline of regenerative ability and the development of pathologies. Recent studies have introduced novel therapeutic tools for cholangiopathies that have showed to have promising potential as novel therapies for PSC and PBC and for the development of new drugs. The recent advancements in understanding of molecular aging have undoubtedly the potential to unveil new pathways for selective drug treatments, but further studies are needed to deepen their knowledge.
Collapse
Affiliation(s)
- Claudio Pinto
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Elisabetta Ninfole
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Benedetti
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Luca Maroni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| | - Marco Marzioni
- Department of Gastroenterology and Hepatology, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
40
|
Substance P enhances cellular migration and inhibits senescence in human dermal fibroblasts under hyperglycemic conditions. Biochem Biophys Res Commun 2019; 522:917-923. [PMID: 31806373 DOI: 10.1016/j.bbrc.2019.11.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/26/2019] [Indexed: 01/07/2023]
Abstract
Diabetes induces cellular dysfunction in dermal fibroblasts, such as impairment in migration, which is a major cause of chronic wound. Here, we demonstrated that the migration of human dermal fibroblasts was impaired under a high glucose culture condition. Substance P (SP) rescued the impaired migration of the fibroblasts. The activity of Rac1, Rho-associated kinase (ROCK), and Src was required for SP-mediated rescue of fibroblast migration. SP activated Rac1 and Src, whereas, NSC23766, a Rac1 inhibitor, and PP1 and PP2, Src inhibitors, inhibited SP-mediated enhancement of fibroblast migration. Y-27632, a ROCK inhibitor, inhibited the SP-mediated rescue of fibroblast migration. Senescence-associated β-galactosidase activity increased in human dermal fibroblasts cultured in a high glucose environment, but SP inhibited the β-galactosidase activity of the fibroblasts. These results suggest that SP promotes the migration of human dermal fibroblasts in diabetic-condition-mimicking cultures via the activity of Rac1, ROCK, and Src, and inhibits fibroblast senescence in hyperglycemic cultures.
Collapse
|
41
|
Zhou T, Kyritsi K, Wu N, Francis H, Yang Z, Chen L, O'Brien A, Kennedy L, Ceci L, Meadows V, Kusumanchi P, Wu C, Baiocchi L, Skill NJ, Saxena R, Sybenga A, Xie L, Liangpunsakul S, Meng F, Alpini G, Glaser S. Knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes in the Mdr2 -/- mouse model of primary sclerosing cholangitis (PSC). EBioMedicine 2019; 48:130-142. [PMID: 31522982 PMCID: PMC6838376 DOI: 10.1016/j.ebiom.2019.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cholangiocytes are the target cells of cholangiopathies including primary sclerosing cholangitis (PSC). Vimentin is an intermediate filament protein that has been found in various types of mesenchymal cells. The aim of this study is to evaluate the role of vimentin in the progression of biliary damage/liver fibrosis and whether there is a mesenchymal phenotype of cholangiocytes in the Mdr2-/- model of PSC. METHODS In vivo studies were performed in 12 wk. Mdr2-/- male mice with or without vimentin Vivo-Morpholino treatment and their corresponding control groups. Liver specimens from human PSC patients, human intrahepatic biliary epithelial cells (HIBEpiC) and human hepatic stellate cell lines (HHSteCs) were used to measure changes in epithelial-to-mesenchymal transition (EMT). FINDINGS There was increased mesenchymal phenotype of cholangiocytes in Mdr2-/- mice, which was reduced by treatment of vimentin Vivo-Morpholino. Concomitant with reduced vimentin expression, there was decreased liver damage, ductular reaction, biliary senescence, liver fibrosis and TGF-β1 secretion in Mdr2-/- mice treated with vimentin Vivo-Morpholino. Human PSC patients and derived cell lines had increased expression of vimentin and other mesenchymal markers compared to healthy controls and HIBEpiC, respectively. In vitro silencing of vimentin in HIBEpiC suppressed TGF-β1-induced EMT and fibrotic reaction. HHSteCs had decreased fibrotic reaction and increased cellular senescence after stimulation with cholangiocyte supernatant with reduced vimentin levels. INTERPRETATION Our study demonstrated that knockdown of vimentin reduces mesenchymal phenotype of cholangiocytes, which leads to decreased biliary senescence and liver fibrosis. Inhibition of vimentin may be a key therapeutic target in the treatment of cholangiopathies including PSC. FUND: National Institutes of Health (NIH) awards, VA Merit awards.
Collapse
Affiliation(s)
- Tianhao Zhou
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Konstantina Kyritsi
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Nan Wu
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Lixian Chen
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - April O'Brien
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America
| | - Lindsey Kennedy
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Ludovica Ceci
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Vik Meadows
- Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Chaodong Wu
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | | | - Nicholas J Skill
- Department of Surgery, Indiana University, Indianapolis, IN, United States of America
| | - Romil Saxena
- Department of Pathology, Indiana University, Indianapolis, IN, United States of America
| | - Amelia Sybenga
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Linglin Xie
- Department of Nutrition and Food Science, College of Medicine, Texas A&M University, United States of America
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States of America; Gastroenterology, Medicine, Indiana University, Indianapolis, IN, United States of America.
| | - Shannon Glaser
- Department of Medical Physiology, College of Medicine, Texas A&M University, Bryan, TX, United States of America.
| |
Collapse
|
42
|
Huda N, Liu G, Hong H, Yan S, Khambu B, Yin XM. Hepatic senescence, the good and the bad. World J Gastroenterol 2019; 25:5069-5081. [PMID: 31558857 PMCID: PMC6747293 DOI: 10.3748/wjg.v25.i34.5069] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Gradual alterations of cell’s physiology and functions due to age or exposure to various stresses lead to the conversion of normal cells to senescent cells. Once becoming senescent, the cell stops dividing permanently but remains metabolically active. Cellular senescence does not have a single marker but is characterized mainly by a combination of multiple markers, such as, morphological changes, expression of cell cycle inhibitors, senescence associated β-galactosidase activity, and changes in nuclear membrane. When cells in an organ become senescent, the entire organism can be affected. This may occur through the senescence-associated secretory phenotype (SASP). SASP may exert beneficial or harmful effects on the microenvironment of tissues. Research on senescence has become a very exciting field in cell biology since the link between age-related diseases, including cancer, and senescence has been established. The loss of regenerative and homeostatic capacity of the liver over the age is somehow connected to cellular senescence. The major contributors of senescence properties in the liver are hepatocytes and cholangiocytes. Senescent cells in the liver have been implicated in the etiology of chronic liver diseases including cirrhosis and hepatocellular carcinoma and in the interference of liver regeneration. This review summarizes recently reported findings in the understanding of the molecular mechanisms of senescence and its relationship with liver diseases.
Collapse
Affiliation(s)
- Nazmul Huda
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Gang Liu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Honghai Hong
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Shengmin Yan
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
43
|
Nishio T, Hu R, Koyama Y, Liang S, Rosenthal SB, Yamamoto G, Karin D, Baglieri J, Ma HY, Xu J, Liu X, Dhar D, Iwaisako K, Taura K, Brenner DA, Kisseleva T. Activated hepatic stellate cells and portal fibroblasts contribute to cholestatic liver fibrosis in MDR2 knockout mice. J Hepatol 2019; 71:573-585. [PMID: 31071368 DOI: 10.1016/j.jhep.2019.04.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/27/2019] [Accepted: 04/08/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Chronic liver injury often results in the activation of hepatic myofibroblasts and the development of liver fibrosis. Hepatic myofibroblasts may originate from 3 major sources: hepatic stellate cells (HSCs), portal fibroblasts (PFs), and fibrocytes, with varying contributions depending on the etiology of liver injury. Here, we assessed the composition of hepatic myofibroblasts in multidrug resistance gene 2 knockout (Mdr2-/-) mice, a genetic model that resembles primary sclerosing cholangitis in patients. METHODS Mdr2-/- mice expressing a collagen-GFP reporter were analyzed at different ages. Hepatic non-parenchymal cells isolated from collagen-GFP Mdr2-/- mice were sorted based on collagen-GFP and vitamin A. An NADPH oxidase (NOX) 1/4 inhibitor was administrated to Mdr2-/- mice aged 12-16 weeks old to assess the therapeutic approach of targeting oxidative stress in cholestatic injury. RESULTS Thy1+ activated PFs accounted for 26%, 51%, and 54% of collagen-GFP+ myofibroblasts in Mdr2-/- mice at 4, 8, and 16 weeks of age, respectively. The remaining collagen-GFP+ myofibroblasts were composed of activated HSCs, suggesting that PFs and HSCs are both activated in Mdr2-/- mice. Bone-marrow-derived fibrocytes minimally contributed to liver fibrosis in Mdr2-/- mice. The development of cholestatic liver fibrosis in Mdr2-/- mice was associated with early recruitment of Gr1+ myeloid cells and upregulation of pro-inflammatory cytokines (4 weeks). Administration of a NOX inhibitor to 12-week-old Mdr2-/- mice suppressed the activation of myofibroblasts and attenuated the development of cholestatic fibrosis. CONCLUSIONS Activated PFs and activated HSCs contribute to cholestatic fibrosis in Mdr2-/- mice, and serve as targets for antifibrotic therapy. LAY SUMMARY Activated portal fibroblasts and hepatic stellate cells, but not fibrocytes, contributed to the production of the fibrous scar in livers of Mdr2-/- mice, and these cells can serve as targets for antifibrotic therapy in cholestatic injury. Therapeutic inhibition of the enzyme NADPH oxidase (NOX) in Mdr2-/- mice reversed cholestatic fibrosis, suggesting that targeting NOXs may be an effective strategy for the treatment of cholestatic fibrosis.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ronglin Hu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yukinori Koyama
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuang Liang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gen Yamamoto
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel Karin
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jacopo Baglieri
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Hsiao-Yen Ma
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jun Xu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Xiao Liu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
44
|
Słoniecka M, Danielson P. Substance P induces fibrotic changes through activation of the RhoA/ROCK pathway in an in vitro human corneal fibrosis model. J Mol Med (Berl) 2019; 97:1477-1489. [PMID: 31399750 PMCID: PMC6746877 DOI: 10.1007/s00109-019-01827-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/24/2019] [Accepted: 07/31/2019] [Indexed: 12/19/2022]
Abstract
Fibrosis is characterized by hardening, overgrowth, and development of scars in various tissues as a result of faulty reparative processes, diseases, or chronic inflammation. During the fibrotic process in the corneal stroma of the eye, the resident cells called keratocytes differentiate into myofibroblasts, specialized contractile fibroblastic cells that produce excessive amounts of disorganized extracellular matrix (ECM) and pro-fibrotic components such as alpha-smooth muscle actin (α-SMA) and fibronectin. This study aimed to elucidate the role of substance P (SP), a neuropeptide that has been shown to be involved in corneal wound healing, in ECM production and fibrotic markers expression in quiescent human keratocytes, and during the onset of fibrosis in corneal fibroblasts, in an in vitro human corneal fibrosis model. We report that SP induces keratocyte contraction and upregulates gene expression of collagens I, III, and V, and fibrotic markers: α-SMA and fibronectin, in keratocytes. Using our in vitro human corneal fibrosis model, we show that SP enhances gene expression and secretion of collagens I, III, and V, and lumican. Moreover, SP upregulates gene expression and secretion of α-SMA and fibronectin, and increases contractility of corneal fibroblasts during the onset of fibrosis. Activation of the preferred SP receptor, the neurokinin-1 receptor (NK-1R), is necessary for the SP-induced pro-fibrotic changes. In addition, SP induces the pro-fibrotic changes through activation of the RhoA/ROCK pathway. Taken together, we show that SP has a pro-fibrotic effect in both quiescent human keratocytes and during the onset of fibrosis in an in vitro human corneal fibrosis model.
Collapse
Affiliation(s)
- Marta Słoniecka
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Umeå University, SE-901 87, Umeå, Sweden.
- Department of Clinical Sciences, Ophthalmology, Umeå University, SE-901 87, Umeå, Sweden.
| |
Collapse
|
45
|
Peng L, Agogo GO, Guo J, Yan M. Substance P and fibrotic diseases. Neuropeptides 2019; 76:101941. [PMID: 31256921 DOI: 10.1016/j.npep.2019.101941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Substance P (SP) is an undecapeptide encoding the tachykinin 1 (TAC1) gene and belongs to the tachykinin family. SP is widely distributed in the central nervous system and the peripheral nervous system. SP is also produced by nonneuronal cells, such as inflammatory cells and endothelial cells. The biological activities of SP are mainly regulated through the high-affinity neurokinin 1 receptor (NK-1R). The SP/NK-1R system plays an important role in the molecular bases of many human pathophysiologic processes, such as pain, infectious and inflammatory diseases, and cancer. In addition, this system has been implicated in fibrotic diseases and processes such as wound healing, myocardial fibrosis, bowel fibrosis, myelofibrosis, renal fibrosis, and lung fibrosis. Recently, studies have shown that SP plays an important role in liver fibrosis and that NK-1R antagonists can inhibit the progression of fibrosis. NK-1R receptor antagonists could provide clinical solutions for fibrotic diseases. This review summarizes the structure and function of SP and its involvement in fibrotic diseases.
Collapse
Affiliation(s)
- Lei Peng
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - George O Agogo
- Department of Internal Medicine, Medical School of Yale University, New Haven, CT 06511, USA.
| | - Jianqiang Guo
- Department of Gastroenterology, The Second Hospital of Shandong University, Jinan, Shandong Province, China.
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
46
|
Kennedy L, Francis H, Invernizzi P, Venter J, Wu N, Carbone M, Gershwin ME, Bernuzzi F, Franchitto A, Alvaro D, Marzioni M, Onori P, Gaudio E, Sybenga A, Fabris L, Meng F, Glaser S, Alpini G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis. FASEB J 2019; 33:10269-10279. [PMID: 31251081 DOI: 10.1096/fj.201802606r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Primary biliary cholangitis (PBC) primarily targets cholangiocytes and is characterized by liver fibrosis and biliary proliferation. Activation of the secretin (Sct)/secretin receptor (SR) axis, expressed only by cholangiocytes, increases biliary proliferation, liver fibrosis, and bicarbonate secretion. We evaluated the effectiveness of SR antagonist treatment for early-stage PBC. Male and female dominant-negative TGF-β receptor II (dnTGF-βRII) (model of PBC) and wild-type mice at 12 wk of age were treated with saline or the SR antagonist, Sec 5-27, for 1 wk. dnTGF-βRII mice expressed features of early-stage PBC along with enhanced Sct/SR axis activation and Sct secretion. dnTGF-βRII mice had increased biliary proliferation or senescence, inflammation, and liver fibrosis. In dnTGF-βRII mice, there was increased microRNA-125b/TGF-β1/TGF-β receptor 1/VEGF-A signaling. Human early-stage PBC patients had an increase in hepatobiliary Sct and SR expression and serum Sct levels. Increased biliary Sct/SR signaling promotes biliary and hepatic damage during early-stage PBC.-Kennedy, L., Francis, H., Invernizzi, P., Venter, J., Wu, N., Carbone, M., Gershwin, M. E., Bernuzzi, F., Franchitto, A., Alvaro, D., Marzioni, M., Onori, P., Gaudio, E., Sybenga, A., Fabris, L., Meng, F., Glaser, S., Alpini, G. Secretin/secretin receptor signaling mediates biliary damage and liver fibrosis in early-stage primary biliary cholangitis.
Collapse
Affiliation(s)
- Lindsey Kennedy
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Heather Francis
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | | | - Julie Venter
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Nan Wu
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA
| | - Marco Carbone
- Humanitas Clinical and Research Center, Rozzano (MI), Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California-Davis, Davis, California, USA
| | | | | | - Domenico Alvaro
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Amelia Sybenga
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy.,Digestive Disease Section, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Fanyin Meng
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas, USA.,Department of Medical Physiology, Texas A&M University, College of Medicine, Temple, Texas, USA.,Baylor Scott & White Health Digestive Disease Research Center, Baylor Scott and White Health, Temple, Texas, USA
| |
Collapse
|
47
|
Knockout of α-calcitonin gene-related peptide attenuates cholestatic liver injury by differentially regulating cellular senescence of hepatic stellate cells and cholangiocytes. J Transl Med 2019; 99:764-776. [PMID: 30700848 PMCID: PMC6570540 DOI: 10.1038/s41374-018-0178-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
α-Calcitonin gene-related peptide (α-CGRP) is a 37-amino acid neuropeptide involved in several pathophysiological processes. α-CGRP is involved in the regulation of cholangiocyte proliferation during cholestasis. In this study, we aimed to evaluate if α-CGRP regulates bile duct ligation (BDL)-induced liver fibrosis by using a α-CGRP knockout (α-CGRP-/-) mouse model. α-CGRP-/- and wild-type (WT) mice were subjected to sham surgery or BDL for 7 days. Then, liver fibrosis and cellular senescence as well as the expression of kinase such as p38 and C-Jun N-terminal protein kinase (JNK) in mitogen-activated protein kinases (MAPK) signaling pathway were evaluated in total liver, together with measurement of cellular senescence in cholangiocytes or hepatic stellate cells (HSCs). There was enhanced hepatic expression of Calca (coding α-CGRP) and the CGRP receptor components (CRLR, RAMP-1 and RCP) in BDL and in both WT α-CGRP-/- and BDL α-CGRP-/- mice, respectively. Moreover, there was increased CGRP serum levels and hepatic mRNA expression of CALCA and CGRP receptor components in late-stage PSC samples compared to healthy control samples. Depletion of α-CGRP reduced liver injury and fibrosis in BDL mice that was associated with enhanced cellular senescence of hepatic stellate cells and reduced senescence of cholangiocytes as well as decreased activation of p38 and JNK MAPK signaling pathway. Cholangiocyte supernatant from BDL α-CGRP-/- mice inhibited the activation and increased cellular senescence of cultured human HSCs (HHSCs) compared to HHSCs stimulated with BDL cholangiocyte supernatant. Taken together, endogenous α-CGRP promoted BDL-induced cholestatic liver fibrosis through differential changes in senescence of HSCs and cholangiocytes and activation of p38 and JNK signaling. Modulation of α-CGRP/CGRP receptor signaling may be key for the management of biliary senescence and liver fibrosis in cholangiopathies.
Collapse
|
48
|
Sato K, Kennedy L, Liangpunsakul S, Kusumanchi P, Yang Z, Meng F, Glaser S, Francis H, Alpini G. Intercellular Communication between Hepatic Cells in Liver Diseases. Int J Mol Sci 2019; 20:ijms20092180. [PMID: 31052525 PMCID: PMC6540342 DOI: 10.3390/ijms20092180] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/23/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
Liver diseases are perpetuated by the orchestration of hepatocytes and other hepatic non-parenchymal cells. These cells communicate and regulate with each other by secreting mediators such as peptides, hormones, and cytokines. Extracellular vesicles (EVs), small particles secreted from cells, contain proteins, DNAs, and RNAs as cargos. EVs have attracted recent research interests since they can communicate information from donor cells to recipient cells thereby regulating physiological events via delivering of specific cargo mediators. Previous studies have demonstrated that liver cells secrete elevated numbers of EVs during diseased conditions, and those EVs are internalized into other liver cells inducing disease-related reactions such as inflammation, angiogenesis, and fibrogenesis. Reactions in recipient cells are caused by proteins and RNAs carried in disease-derived EVs. This review summarizes cell-to-cell communication especially via EVs in the pathogenesis of liver diseases and their potential as a novel therapeutic target.
Collapse
Grants
- R01 DK110035 NIDDK NIH HHS
- I01 BX000574 BLRD VA
- IK6 BX004601 BLRD VA
- R01 DK108959 NIDDK NIH HHS
- K01 AA026385 NIAAA NIH HHS
- I01 BX001724 BLRD VA
- DK054811, DK076898, DK107310, DK110035, DK062975, AA025997, DK108959, AA025208, DK107682, AA026917, AA026903, AA025157, and AA026385 NIH HHS
Collapse
Affiliation(s)
- Keisaku Sato
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Lindsey Kennedy
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Praveen Kusumanchi
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Zhihong Yang
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Fanyin Meng
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University, Temple, TX 76504, USA.
| | - Heather Francis
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical Center, Indianapolis, IN 46202, USA.
- Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
49
|
Sato K, Glaser S, Kennedy L, Liangpunsakul S, Meng F, Francis H, Alpini G. Preclinical insights into cholangiopathies: disease modeling and emerging therapeutic targets. Expert Opin Ther Targets 2019; 23:461-472. [PMID: 30990740 DOI: 10.1080/14728222.2019.1608950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The common predominant clinical features of cholangiopathies such as primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), and biliary atresia (BA) are biliary damage/senescence and liver fibrosis. Curative therapies are lacking, and liver transplantation is the only option. An understanding of the mechanisms and pathogenesis is needed to develop novel therapies. Previous studies have developed various disease-based research models and have identified candidate therapeutic targets. Areas covered: This review summarizes recent studies performed in preclinical models of cholangiopathies and the current understanding of the pathophysiology representing potential targets for novel therapies. A literature search was conducted in PubMed using the combination of the searched term 'cholangiopathies' with one or two keywords including 'model', 'cholangiocyte', 'animal', or 'fibrosis'. Papers published within five years were obtained. Expert opinion: Access to appropriate research models is a key challenge in cholangiopathy research; establishing more appropriate models for PBC is an important goal. Several preclinical studies have demonstrated promising results and have led to novel therapeutic approaches, especially for PSC. Further studies on the pathophysiology of PBC and BA are necessary to identify candidate targets. Innovative therapeutic approaches such as stem cell transplantation have been introduced, and those therapies could be applied to PSC, PBC, and BA.
Collapse
Affiliation(s)
- Keisaku Sato
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Shannon Glaser
- c Department of Medical Physiology , Texas A&M University Collage of Medicine , Temple , TX , USA
| | - Lindsey Kennedy
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Suthat Liangpunsakul
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Fanyin Meng
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Heather Francis
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| | - Gianfranco Alpini
- a Indiana Center for Liver Research, Division of Gastroenterology & Hepatology, Department of Medicine , Indiana University School of Medicine , Indianapolis , IN , USA.,b Richard L. Roudebush VA Medical Center , Indianapolis , IN , USA
| |
Collapse
|
50
|
Usher KM, Zhu S, Mavropalias G, Carrino JA, Zhao J, Xu J. Pathological mechanisms and therapeutic outlooks for arthrofibrosis. Bone Res 2019; 7:9. [PMID: 30937213 PMCID: PMC6433953 DOI: 10.1038/s41413-019-0047-x] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 02/17/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
Arthrofibrosis is a fibrotic joint disorder that begins with an inflammatory reaction to insults such as injury, surgery and infection. Excessive extracellular matrix and adhesions contract pouches, bursae and tendons, cause pain and prevent a normal range of joint motion, with devastating consequences for patient quality of life. Arthrofibrosis affects people of all ages, with published rates varying. The risk factors and best management strategies are largely unknown due to a poor understanding of the pathology and lack of diagnostic biomarkers. However, current research into the pathogenesis of fibrosis in organs now informs the understanding of arthrofibrosis. The process begins when stress signals stimulate immune cells. The resulting cascade of cytokines and mediators drives fibroblasts to differentiate into myofibroblasts, which secrete fibrillar collagens and transforming growth factor-β (TGF-β). Positive feedback networks then dysregulate processes that normally terminate healing processes. We propose two subtypes of arthrofibrosis occur: active arthrofibrosis and residual arthrofibrosis. In the latter the fibrogenic processes have resolved but the joint remains stiff. The best therapeutic approach for each subtype may differ significantly. Treatment typically involves surgery, however, a pharmacological approach to correct dysregulated cell signalling could be more effective. Recent research shows that myofibroblasts are capable of reversing differentiation, and understanding the mechanisms of pathogenesis and resolution will be essential for the development of cell-based treatments. Therapies with significant promise are currently available, with more in development, including those that inhibit TGF-β signalling and epigenetic modifications. This review focuses on pathogenesis of sterile arthrofibrosis and therapeutic treatments.
Collapse
Affiliation(s)
- Kayley M. Usher
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
| | - Sipin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang China
| | - Georgios Mavropalias
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia Australia
| | | | - Jinmin Zhao
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia Australia
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi China
| |
Collapse
|