1
|
Savoca M, Takemoto K, Hu J, Li L, Jacob Kendrick B, Zhong Z, Lemasters JJ. MitoTracker Red for isolation of zone-specific hepatocytes and characterization of hepatic sublobular metabolism. Biochem Biophys Res Commun 2024; 735:150457. [PMID: 39146811 PMCID: PMC11532002 DOI: 10.1016/j.bbrc.2024.150457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND The liver lobule is divided into three zones or regions: periportal (PP or Zone 1) that is highly oxidative and active in ureagenesis, pericentral (PC or Zone 3) that is more glycolytic, and midzonal (MZ or Zone 2) with intermediate characteristics. AIM Our goal was to isolate and metabolically characterize hepatocytes from specific sublobular zones. METHODS Mice were administered rhodamine123 (Rh123) or MitoTracker Red (MTR) prior to intravital imaging, liver fixation, or hepatocyte isolation. After in vivo MTR, hepatocytes were isolated and sorted based on MTR fluorescence intensity. Alternatively, E-cadherin (Ecad) and cytochrome P450 2E1 (CYP2E1) immunolabeling was performed in fixed liver slices. Ecad and CYP2E1 gene expression in sorted hepatocytes was assessed by qPCR. Oxygen consumption rates (OCR) of sorted hepatocytes were also assessed. RESULTS Multiphoton microscopy showed Rh123 and MTR fluorescence distributed zonally, decreasing from PP to PC in a flow-dependent fashion. In liver cross-sections, Ecad was expressed periportally and CYP2E1 pericentrally in association with high and low MTR labeling, respectively. Based on MTR fluorescence, hepatocytes were sorted into PP, MZ, and PC populations with PP and PC hepatocytes enriched in Ecad and CYP2E1, respectively. OCR of PP hepatocytes was ∼4 times that of PC hepatocytes. CONCLUSIONS MTR treatment in vivo delineates sublobular hepatic zones and can be used to sort hepatocytes zonally. PP hepatocytes have substantially greater OCR compared to PC and MZ. The results also indicate a sharp midzonal demarcation between hepatocytes with PP characteristics (Ecad) and those with PC features (CYP2E1). This new method to sort hepatocytes in a zone-specific fashion holds the potential to shed light on sublobular hepatocyte metabolism and regulatory pathways in health and disease.
Collapse
Affiliation(s)
- Matthew Savoca
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenji Takemoto
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jiangting Hu
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Li Li
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - B Jacob Kendrick
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Darby Children's Research Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zhi Zhong
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - John J Lemasters
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
2
|
van de Graaf SFJ, Paulusma CC, In Het Panhuis W. Getting in the zone: Metabolite transport across liver zones. Acta Physiol (Oxf) 2024; 240:e14239. [PMID: 39364668 DOI: 10.1111/apha.14239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
The liver has many functions including the regulation of nutrient and metabolite levels in the systemic circulation through efficient transport into and out of hepatocytes. To sustain these functions, hepatocytes display large functional heterogeneity. This heterogeneity is reflected by zonation of metabolic processes that take place in different zones of the liver lobule, where nutrient-rich blood enters the liver in the periportal zone and flows through the mid-zone prior to drainage by a central vein in the pericentral zone. Metabolite transport plays a pivotal role in the division of labor across liver zones, being either transport into the hepatocyte or transport between hepatocytes through the blood. Signaling pathways that regulate zonation, such as Wnt/β-catenin, have been shown to play a causal role in the development of metabolic dysfunction-associated steatohepatitis (MASH) progression, but the (patho)physiological regulation of metabolite transport remains enigmatic. Despite the practical challenges to separately study individual liver zones, technological advancements in the recent years have greatly improved insight in spatially divided metabolite transport. This review summarizes the theories behind the regulation of zonation, diurnal rhythms and their effect on metabolic zonation, contemporary techniques used to study zonation and current technological challenges, and discusses the current view on spatial and temporal metabolite transport.
Collapse
Affiliation(s)
- Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Wietse In Het Panhuis
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology and Metabolism (AGEM), Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Wang S, Xu B, Liang J, Feng Y, Han P, Shen J, Li X, Zheng M, Zhang T, Zhang C, Mi P, Zhang Y, Liu Z, Li S, Yuan D. Spatial Transcriptomic Study Reveals Heterogeneous Metabolic Adaptation and a Role of Pericentral PPARα/CAR/Ces2a Axis During Fasting in Mouse Liver. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405240. [PMID: 39234807 PMCID: PMC11538668 DOI: 10.1002/advs.202405240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/13/2024] [Indexed: 09/06/2024]
Abstract
Spatial heterogeneity and plasticity of the mammalian liver are critical for systemic metabolic homeostasis in response to fluctuating nutritional conditions. Here, a spatially resolved transcriptomic landscape of mouse livers across fed, fasted and refed states using spatial transcriptomics is generated. This approach elucidated dynamic temporal-spatial gene cascades and how liver zonation-both expression levels and patterns-adapts to shifts in nutritional status. Importantly, the pericentral nuclear receptor Nr1i3 (CAR) as a pivotal regulator of triglyceride metabolism is pinpointed. It is showed that the activation of CAR in the pericentral region is transcriptionally governed by Pparα. During fasting, CAR activation enhances lipolysis by upregulating carboxylesterase 2a, playing a crucial role in maintaining triglyceride homeostasis. These findings lay the foundation for future mechanistic studies of liver metabolic heterogeneity and plasticity in response to nutritional status changes, offering insights into the zonated pathology that emerge during liver disease progression linked to nutritional imbalances.
Collapse
Affiliation(s)
- Shiguan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Bowen Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yawei Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Penghu Han
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Jing Shen
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Mengqi Zheng
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Tingguo Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| | - Yi Zhang
- Department of Clinical LaboratoryQilu Hospital of Shandong UniversityJinan250012China
| | - Zhiping Liu
- Department of Biomedical Engineering, School of Control Science and EngineeringShandong UniversityJinanShandong250061China
| | - Shiyang Li
- Advanced Medical Research InstituteShandong UniversityJinan250012China
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinan250012China
| |
Collapse
|
4
|
Gallego-Durán R, Hadjihambi A, Ampuero J, Rose CF, Jalan R, Romero-Gómez M. Ammonia-induced stress response in liver disease progression and hepatic encephalopathy. Nat Rev Gastroenterol Hepatol 2024; 21:774-791. [PMID: 39251708 DOI: 10.1038/s41575-024-00970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/11/2024]
Abstract
Ammonia levels are orchestrated by a series of complex interrelated pathways in which the urea cycle has a central role. Liver dysfunction leads to an accumulation of ammonia, which is toxic and is strongly associated with disruption of potassium homeostasis, mitochondrial dysfunction, oxidative stress, inflammation, hypoxaemia and dysregulation of neurotransmission. Hyperammonaemia is a hallmark of hepatic encephalopathy and has been strongly associated with liver-related outcomes in patients with cirrhosis and liver failure. In addition to the established role of ammonia as a neurotoxin in the pathogenesis of hepatic encephalopathy, an increasing number of studies suggest that it can lead to hepatic fibrosis progression, sarcopenia, immune dysfunction and cancer. However, elevated systemic ammonia levels are uncommon in patients with metabolic dysfunction-associated steatotic liver disease. A clear causal relationship between ammonia-induced immune dysfunction and risk of infection has not yet been definitively proven. In this Review, we discuss the mechanisms by which ammonia produces its diverse deleterious effects and their clinical relevance in liver diseases, the importance of measuring ammonia levels for the diagnosis of hepatic encephalopathy, the prognosis of patients with cirrhosis and liver failure, and how our knowledge of inter-organ ammonia metabolism is leading to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Javier Ampuero
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Christopher F Rose
- Hepato-Neuro Laboratory, CRCHUM, Université de Montréal, Montreal, Canada
| | - Rajiv Jalan
- Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free Hospital, London, UK
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Manuel Romero-Gómez
- UCM Digestive Diseases, Virgen del Rocío University Hospital. Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Department of Medicine, University of Seville, Seville, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain.
| |
Collapse
|
5
|
Guo J, Krehl K, Safraou Y, Wallach I, Braun J, Meierhofer D, Sack I, Berndt N. Pregnancy alters fatty acid metabolism, glucose regulation, and detoxification of the liver in synchrony with biomechanical property changes. Heliyon 2024; 10:e39674. [PMID: 39506943 PMCID: PMC11538949 DOI: 10.1016/j.heliyon.2024.e39674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Pregnancy places a metabolic burden on the body including the liver, which is responsible for ensuring adequate nutrition for the maternal and fetal systems. To gain a better understanding of liver adaptation, this study investigates metabolic shifts occurring in livers of pregnant rats. Metabolic capacities of the livers of pregnant and non-pregnant female Wistar rats were assessed using comprehensive metabolic models. Kinetic metabolic models were generated for each animal based on protein abundance data from proteomics analysis allowing for a subject-specific assessment of hepatic metabolic functions. Data are available via ProteomeXchange with identifier PXD050758. Additionally, tissue stiffness, viscosity, and water diffusion obtained from magnetic resonance imaging and elastography were correlated with metabolic capabilities to study the relationship between metabolic function and biophysical properties. Proteome profiling revealed differences in protein expression in the livers of pregnant and non-pregnant animals. Functional analysis showed significant variations in metabolic capacities. Livers of pregnant rats had reduced capacities in carbohydrate and fatty acid metabolism, along with altered urea synthesis. Additionally, there were associations between metabolic functions and biophysical properties highlighting potential links between changes in liver structure and metabolic capacities during pregnancy. In summary, our work reveals extensive hepatic metabolic changes in pregnant rats. The liver adapts its metabolic capacities to ensure whole-body metabolic homeostasis but may struggle to counteract nutritional challenges, such as hypoglycemia. The study, employing a personalized approach combining proteomics, kinetic modeling, and advanced imaging, sheds light on the intricate interplay between hepatic adaptations and medical imaging markers, providing a foundation for further investigations into the implications for maternal and fetal health.
Collapse
Affiliation(s)
- Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Karolina Krehl
- Department of Veterinary Medicine, Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| |
Collapse
|
6
|
Seubnooch P, Montani M, Dufour JF, Masoodi M. Spatial lipidomics reveals zone-specific hepatic lipid alteration and remodeling in metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100599. [PMID: 39032559 PMCID: PMC11388789 DOI: 10.1016/j.jlr.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Alteration in lipid metabolism plays a pivotal role in developing metabolic dysfunction-associated steatohepatitis (MASH). However, our understanding of alteration in lipid metabolism across liver zonation in MASH remains limited. Within this study, we investigated MASH-associated zone-specific lipid metabolism in a diet and chemical-induced MASH mouse model. Spatial lipidomics using mass spectrometry imaging in a MASH mouse model revealed 130 lipids from various classes altered across liver zonation and exhibited zone-specific lipid signatures in MASH. Triacylglycerols, diacylglycerols, sphingolipids and ceramides showed distinct zone-specific changes and re-distribution from pericentral to periportal localization in MASH. Saturated and monounsaturated fatty acids (FA) were the primary FA composition of increased lipids in MASH, while polyunsaturated FAs were the major FA composition of decreased lipids. We observed elevated fibrosis in the periportal region, which could be the result of observed metabolic alteration across zonation. Our study provides valuable insights into zone-specific hepatic lipid metabolism and demonstrates the significance of spatial lipidomics in understanding liver lipid metabolism. Identifying unique lipid distribution patterns may offer valuable insights into the pathophysiology of MASH and facilitate the discovery of diagnostic markers associated with liver zonation.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland.
| |
Collapse
|
7
|
Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024; 35:518-532. [PMID: 38212233 DOI: 10.1016/j.tem.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024]
Abstract
Tumours are heterogeneous tissues containing diverse populations of cells and an abundant extracellular matrix (ECM). This tumour microenvironment prompts cancer cells to adapt their metabolism to survive and grow. Besides epigenetic factors, the metabolism of cancer cells is shaped by crosstalk with stromal cells and extracellular components. To date, most experimental models neglect the complexity of the tumour microenvironment and its relevance in regulating the dynamics of the metabolism in cancer. We discuss emerging strategies to model cellular and extracellular aspects of cancer metabolism. We highlight cancer models based on bioengineering, animal, and mathematical approaches to recreate cell-cell and cell-matrix interactions and patient-specific metabolism. Combining these approaches will improve our understanding of cancer metabolism and support the development of metabolism-targeting therapies.
Collapse
Affiliation(s)
- Rodrigo Curvello
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia
| | - Nikolaus Berndt
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; Institute of Computer-assisted Cardiovascular Medicine, Deutsches Herzzentrum der Charité, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Daniela Loessner
- Department of Chemical and Biological Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Leibniz Institute of Polymer Research Dresden e.V., Max Bergmann Center of Biomaterials, Dresden, Germany; Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Egners A, Cramer T, Wallach I, Berndt N. Kinetic Modeling of Hepatic Metabolism and Simulation of Treatment Effects. Methods Mol Biol 2024; 2769:211-225. [PMID: 38315400 DOI: 10.1007/978-1-0716-3694-7_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Mathematical modeling is a promising strategy to fill the experimentally unapproachable knowledge gaps about the relative contribution of various molecular processes to cellular metabolic function. To this end, we developed detailed kinetic models of the central metabolism of different cell types, comprising multiple metabolic functionalities. We used the model to simulate metabolic changes in several cell types under different experimental settings in health and disease. In this way, we show that it is possible to decipher and characterize the relative influence of various metabolic pathways and enzymes to overall metabolic performance and phenotype.Quantitative Systems Metabolism (QSM™) allows quantitative assessment of metabolic functionality and metabolic profiling based on proteomic data. Here, we describe the technique, namely, molecular resolved kinetic modeling, underlying QSM™. We explain the necessary steps for the generation of cell-specific models to functionally interpret proteomic data and point out some unresolved challenges and open questions.
Collapse
Affiliation(s)
- Antje Egners
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
| | - Thorsten Cramer
- Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Aachen, Germany
- Department of Surgery, Maastricht University Medical Center, Maastricht, The Netherlands
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Iwona Wallach
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité (DHZC), Institute of Computer-assisted Cardiovascular Medicine, Berlin, Germany.
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.
| |
Collapse
|
9
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Kumar BS. Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) in disease diagnosis: an overview. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3768-3784. [PMID: 37503728 DOI: 10.1039/d3ay00867c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Tissue analysis, which is essential to histology and is considered the benchmark for the diagnosis and prognosis of many illnesses, including cancer, is significant. During surgery, the surgical margin of the tumor is assessed using the labor-intensive, challenging, and commonly subjective technique known as frozen section histopathology. In the biopsy section, large numbers of molecules can now be visualized at once (ion images) following recent developments in [MSI] mass spectrometry imaging under atmospheric conditions. This is vastly superior to and different from the single optical tissue image processing used in traditional histopathology. This review article will focus on the advancement of desorption electrospray ionization mass spectrometry imaging [DESI-MSI] technique, which is label-free and requires little to no sample preparation. Since the proportion of molecular species in normal and abnormal tissues is different, DESI-MSI can capture ion images of the distributions of lipids and metabolites on biopsy sections, which can provide rich diagnostic information. This is not a systematic review but a summary of well-known, cutting-edge and recent DESI-MSI applications in cancer research between 2018 and 2023.
Collapse
Affiliation(s)
- Bharath Sampath Kumar
- Independent Researcher, 21, B2, 27th Street, Nanganallur, Chennai 61, TamilNadu, India.
| |
Collapse
|
11
|
Capiglioni AM, Capitani MC, Marrone J, Marinelli RA. Adenoviral Transfer of Human Aquaporin-8 Gene to Mouse Liver Improves Ammonia-Derived Ureagenesis. Cells 2023; 12:1535. [PMID: 37296655 PMCID: PMC10253139 DOI: 10.3390/cells12111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
We previously reported that, in cultured hepatocytes, mitochondrial aquaporin-8 (AQP8) channels facilitate the conversion of ammonia to urea and that the expression of human AQP8 (hAQP8) enhances ammonia-derived ureagenesis. In this study, we evaluated whether hepatic gene transfer of hAQP8 improves detoxification of ammonia to urea in normal mice as well as in mice with impaired hepatocyte ammonia metabolism. A recombinant adenoviral (Ad) vector encoding hAQP8, AdhAQP8, or a control Ad vector was administered via retrograde infusion into the bile duct of the mice. Hepatocyte mitochondrial expression of hAQP8 was confirmed using confocal immunofluorescence and immunoblotting. The normal hAQP8-transduced mice showed decreased plasma ammonia and increased liver urea. Enhanced ureagenesis was confirmed via the NMR studies assessing the synthesis of 15N-labeled urea from 15N-labeled ammonia. In separate experiments, we made use of the model hepatotoxic agent, thioacetamide, to induce defective hepatic metabolism of ammonia in mice. The adenovirus-mediated mitochondrial expression of hAQP8 was able to restore normal ammonemia and ureagenesis in the liver of the mice. Our data suggest that hAQP8 gene transfer to mouse liver improves detoxification of ammonia to urea. This finding could help better understand and treat disorders with defective hepatic ammonia metabolism.
Collapse
Affiliation(s)
| | | | | | - Raúl A. Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
12
|
Seubnooch P, Montani M, Tsouka S, Claude E, Rafiqi U, Perren A, Dufour JF, Masoodi M. Characterisation of hepatic lipid signature distributed across the liver zonation using mass spectrometry imaging. JHEP Rep 2023; 5:100725. [PMID: 37284141 PMCID: PMC10240278 DOI: 10.1016/j.jhepr.2023.100725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/08/2023] Open
Abstract
Background & Aims Lipid metabolism plays an important role in liver pathophysiology. The liver lobule asymmetrically distributes oxygen and nutrition, resulting in heterogeneous metabolic functions. Periportal and pericentral hepatocytes have different metabolic functions, which lead to generating liver zonation. We developed spatial metabolic imaging using desorption electrospray ionisation mass spectrometry to investigate lipid distribution across liver zonation with high reproducibility and accuracy. Methods Fresh frozen livers from healthy mice with control diet were analysed using desorption electrospray ionisation mass spectrometry imaging. Imaging was performed at 50 μm × 50 μm pixel size. Regions of interest (ROIs) were manually created by co-registering with histological data to determine the spatial hepatic lipids across liver zonation. The ROIs were confirmed by double immunofluorescence. The mass list of specific ROIs was automatically created, and univariate and multivariate statistical analysis were performed to identify statistically significant lipids across liver zonation. Results A wide range of lipid species was identified, including fatty acids, phospholipids, triacylglycerols, diacylglycerols, ceramides, and sphingolipids. We characterised hepatic lipid signatures in three different liver zones (periportal zone, midzone, and pericentral zone) and validated the reproducibility of our method for measuring a wide range of lipids. Fatty acids were predominantly detected in the periportal region, whereas phospholipids were distributed in both the periportal and pericentral zones. Interestingly, phosphatidylinositols, PI(36:2), PI(36:3), PI(36:4), PI(38:5), and PI(40:6) were located predominantly in the midzone (zone 2). Triacylglycerols and diacylglycerols were detected mainly in the pericentral region. De novo triacylglycerol biosynthesis appeared to be the most influenced pathway across the three zones. Conclusions The ability to accurately assess zone-specific hepatic lipid distribution in the liver could lead to a better understanding of lipid metabolism during the progression of liver disease. Impact and Implications Zone-specific hepatic lipid metabolism could play an important role in lipid homoeostasis during disease progression. Herein, we defined the zone-specific references of hepatic lipid species in the three liver zones using molecular imaging. The de novo triacylglycerol biosynthesis was highlighted as the most influenced pathway across the three zones.
Collapse
Affiliation(s)
- Patcharamon Seubnooch
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Matteo Montani
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Sofia Tsouka
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | | | - Umara Rafiqi
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Tissue Medicine and Pathology, University of Bern, Bern, Switzerland
| | - Jean-Francois Dufour
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
13
|
Liu QL, Zhou H, Zhou ZG, Chen HN. Colorectal cancer liver metastasis: genomic evolution and crosstalk with the liver microenvironment. Cancer Metastasis Rev 2023; 42:575-587. [PMID: 37061644 DOI: 10.1007/s10555-023-10107-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Colorectal cancer (CRC) patients frequently develop liver metastases, which are the major cause of cancer-related mortality. The molecular basis and management of colorectal liver metastases (CRLMs) remain a challenging clinical issue. Recent genomic evidence has demonstrated the liver tropism of CRC and the presence of a stricter evolutionary bottleneck in the liver as a target organ compared to lymph nodes. This bottleneck challenging CRC cells in the liver is organ-specific and requires adaptation not only at the genetic level, but also at the phenotypic level to crosstalk with the hepatic microenvironment. Here, we highlight the emerging evidence on the clonal evolution of CRLM and review recent insights into the molecular mechanisms orchestrating the bidirectional interactions between metastatic CRC cells and the unique liver microenvironment.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huijie Zhou
- Department of Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hai-Ning Chen
- Department of General Surgery, Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
14
|
Shahryari M, Keller S, Meierhofer D, Wallach I, Safraou Y, Guo J, Marticorena Garcia SR, Braun J, Makowski MR, Sack I, Berndt N. On the relationship between metabolic capacities and in vivo viscoelastic properties of the liver. Front Bioeng Biotechnol 2023; 10:1042711. [PMID: 36698634 PMCID: PMC9868178 DOI: 10.3389/fbioe.2022.1042711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
The liver is the central metabolic organ. It constantly adapts its metabolic capacity to current physiological requirements. However, the relationship between tissue structure and hepatic function is incompletely understood; this results in a lack of diagnostic markers in medical imaging that can provide information about the liver's metabolic capacity. Therefore, using normal rabbit livers, we combined magnetic resonance elastography (MRE) with proteomics-based kinetic modeling of central liver metabolism to investigate the potential role of MRE for predicting the liver's metabolic function in vivo. Nineteen New Zealand white rabbits were investigated by multifrequency MRE and positron emission tomography (PET). This yielded maps of shear wave speed (SWS), penetration rate (PR) and standardized uptake value (SUV). Proteomic analysis was performed after the scans. Hepatic metabolic functions were assessed on the basis of the HEPATOKIN1 model in combination with a model of hepatic lipid-droplet metabolism using liquid chromatography-mass spectrometry. Our results showed marked differences between individual livers in both metabolic functions and stiffness properties, though not in SUV. When livers were divided into 'stiff' and 'soft' subgroups (cutoff SWS = 1.6 m/s), stiff livers showed a lower capacity for triacylglycerol storage, while at the same time showing an increased capacity for gluconeogenesis and cholesterol synthesis. Furthermore, SWS was correlated with gluconeogenesis and PR with urea production and glutamine exchange. In conclusion, our study indicates a close relationship between the viscoelastic properties of the liver and metabolic function. This could be used in future studies to predict non-invasively the functional reserve capacity of the liver in patients.
Collapse
Affiliation(s)
- Mehrgan Shahryari
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sarah Keller
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Meierhofer
- Mass Spectrometry Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Iwona Wallach
- Institute of Computer-Assisted Cardiovascular Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasmine Safraou
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan R. Marticorena Garcia
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Braun
- Institute of Medical Informatics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marcus R. Makowski
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, Faculty of Medicine, Munich, Germany
| | - Ingolf Sack
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nikolaus Berndt
- Institute of Computer-Assisted Cardiovascular Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Nikolaus Berndt,
| |
Collapse
|
15
|
Onyango AN. Excessive gluconeogenesis causes the hepatic insulin resistance paradox and its sequelae. Heliyon 2022; 8:e12294. [PMID: 36582692 PMCID: PMC9792795 DOI: 10.1016/j.heliyon.2022.e12294] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Background Hepatic insulin signaling suppresses gluconeogenesis but promotes de novo lipid synthesis. Paradoxically, hepatic insulin resistance (HIR) enhances both gluconeogenesis and de novo lipid synthesis. Elucidation of the etiology of this paradox, which participates in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, the metabolic syndrome and hepatocellular carcinoma, has not been fully achieved. Scope of review This article briefly outlines the previously proposed hypotheses on the etiology of the HIR paradox. It then discusses literature consistent with an alternative hypothesis that excessive gluconeogenesis, the direct effect of HIR, is responsible for the aberrant lipogenesis. The mechanisms involved therein are explained, involving de novo synthesis of fructose and uric acid, promotion of glutamine anaplerosis, and induction of glucagon resistance. Thus, gluconeogenesis via lipogenesis promotes hepatic steatosis, a component of NAFLD, and dyslipidemia. Gluconeogenesis-centred mechanisms for the progression of NAFLD from simple steatosis to non-alcoholic steatohepatitis (NASH) and fibrosis are suggested. That NAFLD often precedes and predicts type 2 diabetes is explained by the ability of lipogenesis to cushion against blood glucose dysregulation in the earlier stages of NAFLD. Major conclusions HIR-induced excessive gluconeogenesis is a major cause of the HIR paradox and its sequelae. Such involvement of gluconeogenesis in lipid synthesis rationalizes the fact that several types of antidiabetic drugs ameliorate NAFLD. Thus, dietary, lifestyle and pharmacological targeting of HIR and hepatic gluconeogenesis may be a most viable approach for the prevention and management of the HIR-associated network of diseases.
Collapse
|
16
|
Maeda K, Hagimori S, Sugimoto M, Sakai Y, Nishikawa M. Simulation of the crosstalk between glucose and acetaminophen metabolism in a liver zonation model. Front Pharmacol 2022; 13:995597. [PMID: 36210818 PMCID: PMC9537759 DOI: 10.3389/fphar.2022.995597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
The liver metabolizes a variety of substances that sometimes interact and regulate each other. The modeling of a single cell or a single metabolic pathway does not represent the complexity of the organ, including metabolic zonation (heterogeneity of functions) along with liver sinusoids. Here, we integrated multiple metabolic pathways into a single numerical liver zonation model, including drug and glucose metabolism. The model simulated the time-course of metabolite concentrations by the combination of dynamic simulation and metabolic flux analysis and successfully reproduced metabolic zonation and localized hepatotoxicity induced by acetaminophen (APAP). Drug metabolism was affected by nutritional status as the glucuronidation reaction rate changed. Moreover, sensitivity analysis suggested that the reported metabolic characteristics of obese adults and healthy infants in glucose metabolism could be associated with the metabolic features of those in drug metabolism. High activities of phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphate phosphatase in obese adults led to increased APAP oxidation by cytochrome P450 2E1. In contrast, the high activity of glycogen synthase and low activities of PEPCK and glycogen phosphorylase in healthy infants led to low glucuronidation and high sulfation rates of APAP. In summary, this model showed the effects of glucose metabolism on drug metabolism by integrating multiple pathways into a single liver metabolic zonation model.
Collapse
Affiliation(s)
- Kazuhiro Maeda
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka, Japan
| | - Shuta Hagimori
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- *Correspondence: Masahiro Sugimoto,
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
DiProspero TJ, Brown LG, Fachko TD, Lockett MR. HepaRG cells adopt zonal-like drug-metabolizing phenotypes under physiologically relevant oxygen tensions and Wnt/β-catenin signaling. Drug Metab Dispos 2022; 50:DMD-AR-2022-000870. [PMID: 35701181 PMCID: PMC9341261 DOI: 10.1124/dmd.122.000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular microenvironment plays an important role in liver zonation, the spatial distribution of metabolic tasks amongst hepatocytes lining the sinusoid. Standard tissue culture practices provide an excess of oxygen and a lack of signaling molecules typically found in the liver. We hypothesized that incorporating physiologically relevant environments would promote post-differentiation patterning of hepatocytes and result in zonal-like characteristics. To test this hypothesis, we evaluated the transcriptional regulation and activity of drug-metabolizing enzymes in HepaRG cells exposed to three different oxygen tensions, in the presence or absence of Wnt/β-catenin signaling. The drug-metabolizing activity of cells exposed to representative periportal (11% O2) or perivenous (5% O2) oxygen tensions were significantly less than cells exposed to ambient oxygen. A comparison of cytochrome P450 (CYP) 1A2, 2D6, and 3A4 activity at PP and PV oxygen tensions showed significant increases at the lower oxygen tension. The activation of the Wnt/β-catenin pathway only modestly impacted CYP activity at PV oxygen tension, despite a significant increase in CYP expression under this condition. Our results suggest oxygen tension is the major contributor to zonal patterning in HepaRG cells, with the Wnt/β-catenin signaling pathway playing a lesser albeit important role. Our datasets also highlight the importance of including activity-based assays, as transcript data alone does not provide an accurate picture of metabolic competence. Significance Statement This work investigates the post-differentiation patterning of HepaRG cells cultured at physiologically relevant oxygen tensions, in the presence and absence of Wnt/β-catenin signaling. HepaRG cells exposed to periportal (11% O2) or perivenous (5% O2) oxygen tensions display zonation-like patterning of both cytochrome P450 (CYP) and glucuronosyltransferase (UGT) enzymes. These datasets also suggest that oxygen is a primary regulator of post-differentiation patterning, with Wnt/β-catenin having a lesser effect on activity but a significant effect on transcriptional regulation of these enzymes.
Collapse
Affiliation(s)
| | - Lauren G Brown
- Chemistry, Univeristy of North Carolina at Chapel Hill, United States
| | - Trevor D Fachko
- Chemistry, University of North Carolina at Chapel Hill, United States
| | - Matthew R Lockett
- Chemistry, University of North Carolina at Chapel Hill, United States
| |
Collapse
|
18
|
Paulusma CC, Lamers W, Broer S, van de Graaf SFJ. Amino acid metabolism, transport and signalling in the liver revisited. Biochem Pharmacol 2022; 201:115074. [PMID: 35568239 DOI: 10.1016/j.bcp.2022.115074] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
The liver controls the systemic exposure of amino acids entering via the gastro-intestinal tract. For most amino acids except branched chain amino acids, hepatic uptake is very efficient. This implies that the liver orchestrates amino acid metabolism and also controls systemic amino acid exposure. Although many amino acid transporters have been identified, cloned and investigated with respect to substrate specificity, transport mechanism, and zonal distribution, which of these players are involved in hepatocellular amino acid transport remains unclear. Here, we aim to provide a review of current insight into the molecular machinery of hepatic amino acid transport. Furthermore, we place this information in a comprehensive overview of amino acid transport, signalling and metabolism.
Collapse
Affiliation(s)
- Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Wouter Lamers
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands
| | - Stefan Broer
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Research School of Biology, Australian National University, Canberra, Australia
| | - Stan F J van de Graaf
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Anatomy & Embryology, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Hepatic Positron Emission Tomography: Applications in Metabolism, Haemodynamics and Cancer. Metabolites 2022; 12:metabo12040321. [PMID: 35448508 PMCID: PMC9026326 DOI: 10.3390/metabo12040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 11/28/2022] Open
Abstract
Evaluating in vivo the metabolic rates of the human liver has been a challenge due to its unique perfusion system. Positron emission tomography (PET) represents the current gold standard for assessing non-invasively tissue metabolic rates in vivo. Here, we review the existing literature on the assessment of hepatic metabolism, haemodynamics and cancer with PET. The tracer mainly used in metabolic studies has been [18F]2-fluoro-2-deoxy-D-glucose (18F-FDG). Its application not only enables the evaluation of hepatic glucose uptake in a variety of metabolic conditions and interventions, but based on the kinetics of 18F-FDG, endogenous glucose production can also be assessed. 14(R,S)-[18F]fluoro-6-thia-Heptadecanoic acid (18F-FTHA), 11C-Palmitate and 11C-Acetate have also been applied for the assessment of hepatic fatty acid uptake rates (18F-FTHA and 11C-Palmitate) and blood flow and oxidation (11C-Acetate). Oxygen-15 labelled water (15O-H2O) has been used for the quantification of hepatic perfusion. 18F-FDG is also the most common tracer used for hepatic cancer diagnostics, whereas 11C-Acetate has also shown some promising applications in imaging liver malignancies. The modelling approaches used to analyse PET data and also the challenges in utilizing PET in the assessment of hepatic metabolism are presented.
Collapse
|
20
|
Chalhoub ER, Belovich JM. Quantitative analysis of the interaction of ethanol metabolism with gluconeogenesis and fatty acid oxidation in the perfused liver of fasted rats. Arch Biochem Biophys 2022; 718:109148. [PMID: 35143783 DOI: 10.1016/j.abb.2022.109148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/12/2022]
Abstract
Ethanol is known to significantly affect gluconeogenesis and lipid metabolism in the liver, primarily by altering the redox ratio in both cytosol and mitochondria. The effect of ethanol was analyzed using a comprehensive, dynamic model of liver metabolism that takes into account sub-cellular compartmentation, detailed kinetics for the citric acid cycle, ethanol and acetaldehyde oxidation, and gluconeogenesis, and inter-compartmental transport of metabolites, including the malate-aspartate shuttle. The kinetic expression for alcohol dehydrogenase takes into account inhibition by ethanol and NADH. Simulations of perfusions of the rat liver were performed with various combinations of substrates (lactate, pyruvate, and fatty acids), with subsequent addition of ethanol to the perfusate. The model successfully predicts NADH/NAD+, in both cytosol and mitochondria, the expected directional flux of reducing equivalents between the two compartments during perfusion with different gluconeogenic precursors, and the effect of ethanol on glucose and ketone body production. This model can serve as a platform for in silico experiments investigating the effects of ethanol on the many dehydrogenases, and thus the major carbohydrate and lipid metabolic pathways in the liver, as well as potential effects of various drugs that may interact with ethanol.
Collapse
Affiliation(s)
- Elie R Chalhoub
- Department of Chemical Engineering, University of Balamand, Faculty of Engineering, P.O.Box 100, Tripoli, Lebanon.
| | - Joanne M Belovich
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| |
Collapse
|
21
|
Zhang HB, Su W, Xu H, Zhang XY, Guan YF. HSD17B13: A Potential Therapeutic Target for NAFLD. Front Mol Biosci 2022; 8:824776. [PMID: 35071330 PMCID: PMC8776652 DOI: 10.3389/fmolb.2021.824776] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), especially in its inflammatory form (steatohepatitis, NASH), is closely related to the pathogenesis of chronic liver disease. Despite substantial advances in the management of NAFLD/NASH in recent years, there are currently no efficacious therapies for its treatment. The biogenesis and expansion of lipid droplets (LDs) are critical pathophysiological processes in the development of NAFLD/NASH. In the past decade, increasing evidence has demonstrated that lipid droplet-associated proteins may represent potential therapeutic targets for the treatment of NAFLD/NASH given the critical role they play in regulating the biogenesis and metabolism of lipid droplets. Recently, HSD17B13, a newly identified liver-enriched, hepatocyte-specific, lipid droplet-associated protein, has been reported to be strongly associated with the development and progression of NAFLD/NASH in both mice and humans. Notably, human genetic studies have repeatedly reported a robust association of HSD17B13 single nucleotide polymorphisms (SNPs) with the occurrence and severity of NAFLD/NASH and other chronic liver diseases (CLDs). Here we briefly overview the discovery, tissue distribution, and subcellular localization of HSD17B13 and highlight its important role in promoting the pathogenesis of NAFLD/NASH in both experimental animal models and patients. We also discuss the potential of HSD17B13 as a promising target for the development of novel therapeutic agents for NAFLD/NASH.
Collapse
Affiliation(s)
- Hai-Bo Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Wen Su
- Department of Pathophysiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Hildebrandt F, Andersson A, Saarenpää S, Larsson L, Van Hul N, Kanatani S, Masek J, Ellis E, Barragan A, Mollbrink A, Andersson ER, Lundeberg J, Ankarklev J. Spatial Transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat Commun 2021; 12:7046. [PMID: 34857782 PMCID: PMC8640072 DOI: 10.1038/s41467-021-27354-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Reconstruction of heterogeneity through single cell transcriptional profiling has greatly advanced our understanding of the spatial liver transcriptome in recent years. However, global transcriptional differences across lobular units remain elusive in physical space. Here, we apply Spatial Transcriptomics to perform transcriptomic analysis across sectioned liver tissue. We confirm that the heterogeneity in this complex tissue is predominantly determined by lobular zonation. By introducing novel computational approaches, we enable transcriptional gradient measurements between tissue structures, including several lobules in a variety of orientations. Further, our data suggests the presence of previously transcriptionally uncharacterized structures within liver tissue, contributing to the overall spatial heterogeneity of the organ. This study demonstrates how comprehensive spatial transcriptomic technologies can be used to delineate extensive spatial gene expression patterns in the liver, indicating its future impact for studies of liver function, development and regeneration as well as its potential in pre-clinical and clinical pathology.
Collapse
Affiliation(s)
- Franziska Hildebrandt
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
| | - Alma Andersson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Sami Saarenpää
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Ludvig Larsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Noémi Van Hul
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Sachie Kanatani
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Jan Masek
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00, Prague 2, Czech Republic
| | - Ewa Ellis
- Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, 141-86, Stockholm, Sweden
| | - Antonio Barragan
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden
| | - Annelie Mollbrink
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet Stockholm, SE-171 77, Solna, Sweden
| | - Joakim Lundeberg
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Tomtebodavägen 23a, SE-171 65, Solna, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, the Wenner-Gren Institute, Stockholm University, Svante Arrhenius Väg 20C, SE-106 91, Stockholm, Sweden.
- Microbial Single Cell Genomics facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, SE-751 23, Uppsala, Sweden.
| |
Collapse
|
23
|
Kling S, Lang B, Hammer HS, Naboulsi W, Sprenger H, Frenzel F, Pötz O, Schwarz M, Braeuning A, Templin MF. Characterization of hepatic zonation in mice by mass-spectrometric and antibody-based proteomics approaches. Biol Chem 2021; 403:331-343. [PMID: 34599868 DOI: 10.1515/hsz-2021-0314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 01/05/2023]
Abstract
Periportal and perivenous hepatocytes show zonal heterogeneity in metabolism and signaling. Here, hepatic zonation in mouse liver was analyzed by non-targeted mass spectrometry (MS) and by the antibody-based DigiWest technique, yielding a comprehensive overview of protein expression in periportal and perivenous hepatocytes. Targeted immunoaffinity-based proteomics were used to substantiate findings related to drug metabolism. 165 (MS) and 82 (DigiWest) zonated proteins were identified based on the selected criteria for statistical significance, including 7 (MS) and 43 (DigiWest) proteins not identified as zonated before. New zonated proteins especially comprised kinases and phosphatases related to growth factor-dependent signaling, with mainly periportal localization. Moreover, the mainly perivenous zonation of a large panel of cytochrome P450 enzymes was characterized. DigiWest data were shown to complement the MS results, substantially improving possibilities to bioinformatically identify zonated biological processes. Data mining revealed key regulators and pathways preferentially active in either periportal or perivenous hepatocytes, with β-catenin signaling and nuclear xeno-sensing receptors as the most prominent perivenous regulators, and several kinase- and G-protein-dependent signaling cascades active mainly in periportal hepatocytes. In summary, the present data substantially broaden our knowledge of hepatic zonation in mouse liver at the protein level.
Collapse
Affiliation(s)
- Simon Kling
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Benedikt Lang
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Helen S Hammer
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany.,Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Wael Naboulsi
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Heike Sprenger
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Falko Frenzel
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Oliver Pötz
- Signatope, Markwiesenstr. 55, D-72770Reutlingen, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, D-72074Tübingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, D-10589Berlin, Germany
| | - Markus F Templin
- Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstr. 55, D-72770Reutlingen, Germany
| |
Collapse
|
24
|
Cunningham RP, Porat-Shliom N. Liver Zonation - Revisiting Old Questions With New Technologies. Front Physiol 2021; 12:732929. [PMID: 34566696 PMCID: PMC8458816 DOI: 10.3389/fphys.2021.732929] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the ever-increasing prevalence of non-alcoholic fatty liver disease (NAFLD), the etiology and pathogenesis remain poorly understood. This is due, in part, to the liver's complex physiology and architecture. The liver maintains glucose and lipid homeostasis by coordinating numerous metabolic processes with great efficiency. This is made possible by the spatial compartmentalization of metabolic pathways a phenomenon known as liver zonation. Despite the importance of zonation to normal liver function, it is unresolved if and how perturbations to liver zonation can drive hepatic pathophysiology and NAFLD development. While hepatocyte heterogeneity has been identified over a century ago, its examination had been severely hindered due to technological limitations. Recent advances in single cell analysis and imaging technologies now permit further characterization of cells across the liver lobule. This review summarizes the advances in examining liver zonation and elucidating its regulatory role in liver physiology and pathology. Understanding the spatial organization of metabolism is vital to further our knowledge of liver disease and to provide targeted therapeutic avenues.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
25
|
Liu S, Qin D, Yan Y, Wu J, Meng L, Huang W, Wang L, Chen X, Zhang L. Metabolic nuclear receptors coordinate energy metabolism to regulate Sox9 + hepatocyte fate. iScience 2021; 24:103003. [PMID: 34505013 PMCID: PMC8417399 DOI: 10.1016/j.isci.2021.103003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Recent research has indicated the adult liver Sox9+ cells located in the portal triads contribute to the physiological maintenance of liver mass and injury repair. However, the physiology and pathology regulation mechanisms of adult liver Sox9+ cells remain unknown. Here, PPARα and FXR bound to the shared site in Sox9 promoter with opposite transcriptional outputs. PPARα activation enhanced the fatty acid β-oxidation, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) production, thus promoting proliferation and differentiation of Sox9+ hepatocytes along periportal (PP)-perivenous (PV) axis. However, FXR activation increased glycolysis but decreased OXPHOS and ATP production, therefore preventing proliferation of Sox9+ hepatocytes along PP-PV axis by promoting Sox9+ hepatocyte self-renewal. Our research indicates that metabolic nuclear receptors play critical roles in liver progenitor Sox9+ hepatocyte homeostasis to initiate or terminate liver injury-induced cell proliferation and differentiation, suggesting that PPARα and FXR are potential therapeutic targets for modulating liver regeneration. PPARα promotes Sox9 expression and FXR inhibits Sox9 expression PPARα promotes proliferation and differentiation of Sox9+ hepatocytes FXR promotes Sox9+ hepatocyte self-renewal PPARα and FXR coordinate energy metabolism to regulate Sox9+ hepatocyte fate
Collapse
Affiliation(s)
- Shenghui Liu
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Dan Qin
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Yi Yan
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Jiayan Wu
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Lihua Meng
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Liqiang Wang
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28th Fuxing Road, Beijing 100853, China
| | - Lisheng Zhang
- College of Veterinary Medicine/Bio-medical Center, Huazhong Agricultural University, Wuhan, Hu Bei 430070, China
| |
Collapse
|
26
|
Li X, Ramadori P, Pfister D, Seehawer M, Zender L, Heikenwalder M. The immunological and metabolic landscape in primary and metastatic liver cancer. Nat Rev Cancer 2021; 21:541-557. [PMID: 34326518 DOI: 10.1038/s41568-021-00383-9] [Citation(s) in RCA: 275] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The liver is the sixth most common site of primary cancer in humans, and generally arises in a background of cirrhosis and inflammation. Moreover, the liver is frequently colonized by metastases from cancers of other organs (particularly the colon) because of its anatomical location and organization, as well as its unique metabolic and immunosuppressive environment. In this Review, we discuss how the hepatic microenvironment adapts to pathologies characterized by chronic inflammation and metabolic alterations. We illustrate how these immunological or metabolic changes alter immunosurveillance and thus hinder or promote the development of primary liver cancer. In addition, we describe how inflammatory and metabolic niches affect the spreading of cancer metastases into or within the liver. Finally, we review the current therapeutic options in this context and the resulting challenges that must be surmounted.
Collapse
Affiliation(s)
- Xin Li
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, Tuebingen, Germany
- German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
27
|
Abstract
The reactions of the tricarboxylic acid (TCA) cycle allow the controlled combustion of fat and carbohydrate. In principle, TCA cycle intermediates are regenerated on every turn and can facilitate the oxidation of an infinite number of nutrient molecules. However, TCA cycle intermediates can be lost to cataplerotic pathways that provide precursors for biosynthesis, and they must be replaced by anaplerotic pathways that regenerate these intermediates. Together, anaplerosis and cataplerosis help regulate rates of biosynthesis by dictating precursor supply, and they play underappreciated roles in catabolism and cellular energy status. They facilitate recycling pathways and nitrogen trafficking necessary for catabolism, and they influence redox state and oxidative capacity by altering TCA cycle intermediate concentrations. These functions vary widely by tissue and play emerging roles in disease. This article reviews the roles of anaplerosis and cataplerosis in various tissues and discusses how they alter carbon transitions, and highlights their contribution to mechanisms of disease. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Melissa Inigo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| | - Stanisław Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; .,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
28
|
Dietary-challenged mice with Alzheimer-like pathology show increased energy expenditure and reduced adipocyte hypertrophy and steatosis. Aging (Albany NY) 2021; 13:10891-10919. [PMID: 33864446 PMCID: PMC8109068 DOI: 10.18632/aging.202978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/27/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer’s disease (AD) is frequently accompanied by progressing weight loss, correlating with mortality. Counter-intuitively, weight loss in old age might predict AD onset but obesity in midlife increases AD risk. Furthermore, AD is associated with diabetes-like alterations in glucose metabolism. Here, we investigated metabolic features of amyloid precursor protein overexpressing APP23 female mice modeling AD upon long-term challenge with high-sucrose (HSD) or high-fat diet (HFD). Compared to wild type littermates (WT), APP23 females were less prone to mild HSD-induced and considerable HFD-induced glucose tolerance deterioration, despite unaltered glucose tolerance during normal-control diet. Indirect calorimetry revealed increased energy expenditure and hyperactivity in APP23 females. Dietary interventions, especially HFD, had weaker effects on lean and fat mass gain, steatosis and adipocyte hypertrophy of APP23 than WT mice, as shown by 1H-magnetic-resonance-spectroscopy, histological and biochemical analyses. Proteome analysis revealed differentially regulated expression of mitochondrial proteins in APP23 livers and brains. In conclusion, hyperactivity, increased metabolic rate, and global mitochondrial dysfunction potentially add up to the development of AD-related body weight changes in APP23 females, becoming especially evident during diet-induced metabolic challenge. These findings emphasize the importance of translating this metabolic phenotyping into human research to decode the metabolic component in AD pathogenesis.
Collapse
|
29
|
Holzhütter HG, Berndt N. Computational Hypothesis: How Intra-Hepatic Functional Heterogeneity May Influence the Cascading Progression of Free Fatty Acid-Induced Non-Alcoholic Fatty Liver Disease (NAFLD). Cells 2021; 10:cells10030578. [PMID: 33808045 PMCID: PMC7999144 DOI: 10.3390/cells10030578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common type of chronic liver disease in developed nations, affecting around 25% of the population. Elucidating the factors causing NAFLD in individual patients to progress in different rates and to different degrees of severity, is a matter of active medical research. Here, we aim to provide evidence that the intra-hepatic heterogeneity of rheological, metabolic and tissue-regenerating capacities plays a central role in disease progression. We developed a generic mathematical model that constitutes the liver as ensemble of small liver units differing in their capacities to metabolize potentially cytotoxic free fatty acids (FFAs) and to repair FFA-induced cell damage. Transition from simple steatosis to more severe forms of NAFLD is described as self-amplifying process of cascading liver failure, which, to stop, depends essentially on the distribution of functional capacities across the liver. Model simulations provided the following insights: (1) A persistently high plasma level of FFAs is sufficient to drive the liver through different stages of NAFLD; (2) Presence of NAFLD amplifies the deleterious impact of additional tissue-damaging hits; and (3) Coexistence of non-steatotic and highly steatotic regions is indicative for the later occurrence of severe NAFLD stages.
Collapse
Affiliation(s)
- Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence:
| | - Nikolaus Berndt
- Institute for Imaging Science and Computational Modelling in Cardiovascular Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
30
|
Ölander M, Wegler C, Flörkemeier I, Treyer A, Handin N, Pedersen JM, Vildhede A, Mateus A, LeCluyse EL, Urdzik J, Artursson P. Hepatocyte size fractionation allows dissection of human liver zonation. J Cell Physiol 2021; 236:5885-5894. [PMID: 33452735 DOI: 10.1002/jcp.30273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Human hepatocytes show marked differences in cell size, gene expression, and function throughout the liver lobules, an arrangement termed liver zonation. However, it is not clear if these zonal size differences, and the associated phenotypic differences, are retained in isolated human hepatocytes, the "gold standard" for in vitro studies of human liver function. Here, we therefore explored size differences among isolated human hepatocytes and investigated whether separation by size can be used to study liver zonation in vitro. We used counterflow centrifugal elutriation to separate cells into different size fractions and analyzed them with label-free quantitative proteomics, which revealed an enrichment of 151 and 758 proteins (out of 5163) in small and large hepatocytes, respectively. Further analysis showed that protein abundances in different hepatocyte size fractions recapitulated the in vivo expression patterns of previously described zonal markers and biological processes. We also found that the expression of zone-specific cytochrome P450 enzymes correlated with their metabolic activity in the different fractions. In summary, our results show that differences in hepatocyte size matches zonal expression patterns, and that our size fractionation approach can be used to study zone-specific liver functions in vitro.
Collapse
Affiliation(s)
- Magnus Ölander
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,DMPK, Research and Early Development Cardiovascular Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Andrea Treyer
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Anna Vildhede
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - André Mateus
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Jozef Urdzik
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Oxidative Stress in Chronic Liver Disease and Portal Hypertension: Potential of DHA as Nutraceutical. Nutrients 2020; 12:nu12092627. [PMID: 32872239 PMCID: PMC7551786 DOI: 10.3390/nu12092627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic liver disease constitutes a growing public health issue worldwide, with no safe and effective enough treatment clinical scenarios. The present review provides an overview of the current knowledge regarding advanced chronic liver disease (ACLD), focusing on the major contributors of its pathophysiology: inflammation, oxidative stress, fibrosis and portal hypertension. We present the benefits of supplementation with docosahexaenoic acid triglycerides (TG-DHA) in other health areas as demonstrated experimentally, and explore its potential as a novel nutraceutical approach for the treatment of ACLD and portal hypertension based on published pre-clinical data.
Collapse
|