1
|
Wong D, Seitz F, Bauer V, Giessmann T, Schulze F. Safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 685509, a soluble guanylyl cyclase activator, in healthy volunteers: Results from two randomized controlled trials. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8101-8116. [PMID: 38789635 PMCID: PMC11449976 DOI: 10.1007/s00210-024-03165-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
This study evaluated the safety, tolerability, pharmacokinetics, and pharmacodynamics of BI 685509 after oral single rising doses (SRDs) or multiple rising doses (MRDs) in healthy volunteers. In the SRD trial (NCT02694354; February 29, 2016), within each of the three dose groups (DGs), six subjects received BI 685509 (1.0, 2.5, or 5.0 mg) and two received placebo (N = 24). In the MRD trial (NCT03116906; April 17, 2017), within each of the five DGs, nine subjects received BI 685509 (uptitrated to 1 mg once daily [qd; DG1], 2.5 mg twice daily [DG2], 5.0 mg qd [DG3]; 3.0 mg three times daily [tid; DG4] or 4.0 mg tid [DG5]) and three received placebo, for 14-17 days (N = 60). In the SRD trial, 7/24 subjects (29.2%) had ≥ 1 adverse event (AE), most frequently orthostatic dysregulation (n = 4). In the MRD trial, 26/45 subjects (57.8%) receiving BI 685509 had ≥ 1 AE, most frequently orthostatic dysregulation and fatigue (each n = 12). Tolerance development led to a marked decrease in orthostatic dysregulation events (DG3). BI 685509 was rapidly absorbed after oral administration, and exposure increased in a dose-proportional manner after single doses. Multiple dosing resulted in near-dose-proportional increase in exposure and limited accumulation. BI 685509 pharmacokinetics appeared linear with time; steady state occurred 3-5 days after each multiple-dosing period. Increased plasma cyclic guanosine monophosphate and decreased blood pressure followed by a compensatory increase in heart rate indicated target engagement. BI 685509 was generally well tolerated; orthostatic dysregulation may be appropriately countered by careful uptitration.
Collapse
Affiliation(s)
- Diane Wong
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, 06877, USA.
| | | | - Verena Bauer
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | - Thomas Giessmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an Der Riss, Germany
| | | |
Collapse
|
2
|
Owen NE, Williams TL, Maguire JJ, Kuc RE, Davenport EE, Davenport AP. Microarray analysis demonstrates up-regulation of the endothelin-1 gene with compensatory down-regulation of the ETA receptor gene in human portal vein. Biosci Rep 2024; 44:BSR20240528. [PMID: 38860875 DOI: 10.1042/bsr20240528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024] Open
Abstract
High blood pressure in the portal vein, portal hypertension (PH), is the final common pathway in liver cirrhosis regardless of aetiology. Complications from PH are the major cause of morbidity and mortality in these patients. Current drug therapy to reduce portal pressure is mainly limited to β-adrenergic receptor blockade but approximately 40% of patients do not respond. Our aim was to use microarray to measure the expression of ∼20,800 genes in portal vein from patients with PH undergoing transplantation for liver cirrhosis (PH, n=12) versus healthy vessels (control, n=9) to identify potential drug targets to improve therapy. Expression of 9,964 genes above background was detected in portal vein samples. Comparing PH veins versus control (adjusted P-value < 0.05, fold change > 1.5) identified 548 up-regulated genes and 1,996 down-regulated genes. The 2,544 differentially expressed genes were subjected to pathway analysis. We identified 49 significantly enriched pathways. The endothelin pathway was ranked the tenth most significant, the only vasoconstrictive pathway to be identified. ET-1 gene (EDN1) was significantly up-regulated, consistent with elevated levels of ET-1 peptide previously measured in PH and cirrhosis. ETA receptor gene (EDNRA) was significantly down-regulated, consistent with an adaptive response to increased peptide levels in the portal vein but there was no change in the ETB gene (EDNRB). The results provide further support for evaluating the efficacy of ETA receptor antagonists as a potential therapy in addition to β-blockers in patients with PH and cirrhosis.
Collapse
Affiliation(s)
- Nicola E Owen
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, U.K
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, Department of Medicine, University of Cambridge, CB2 0QQ, U.K
| |
Collapse
|
3
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
4
|
Li T, Zheng Q, Zhang R, Liu S, Lin Y, Zhan J. A novel model based on immune-related genes for differentiating biliary atresia from other cholestatic diseases. Pediatr Surg Int 2022; 39:45. [PMID: 36502440 DOI: 10.1007/s00383-022-05322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Based on a public gene expression database, this study established the immune-related genetic model that distinguished BA from other cholestasis diseases (DC) for the first time. We explored the molecular mechanism of BA based on the gene model. METHODS The BA microarray dataset GSE46960, containing BA, other cause of intrahepatic cholestasis than biliary atresia and normal liver gene expression data, was downloaded from the Gene Expression Omnibus (GEO) database. We performed a comprehensive bioinformatics analysis to establish and validate an immune-related gene model and subsequently identified hub genes as biomarkers associated with the molecular mechanisms of BA. To assess the model's performance for separating BA from other cholestasis diseases, we used receiver operating characteristic (ROC) curves and the area under the curve (AUC) of the ROC. Independent datasets GSE69948 and GSE122340 were used for the validation process. RESULTS The model was built using eight immune-related genes, including EDN1, HAMP, SAA1, SPP1, ANKRD1, MMP7, TACSTD2, and UCA1. In the GSE46960 and validation group, it presented excellent results, and the prediction accuracy of BA in comparison to other cholestasis diseases was good. Functional enrichment analysis revealed significant immunological differences between BA and other cholestatic diseases. Finally, we found that the TNFα-NF-κB pathway is associated with EDN1 gene expression and may explain fibrosis progression, which may become a new therapeutic target. CONCLUSION In summary, we have successfully constructed an immune-related gene model that can distinguish BA from other cholestatic diseases, while identifying the hub gene. Our exploration of immune genes provides new clues for the early diagnosis, molecular mechanism, and clinical treatment of biliary atresia.
Collapse
Affiliation(s)
- Tengfei Li
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China
| | - Qipeng Zheng
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China
| | - Ruifeng Zhang
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China
| | - Shaowen Liu
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China
| | - Yuda Lin
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China
| | - Jianghua Zhan
- Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, Tianjin, 300400, China.
| |
Collapse
|
5
|
Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O. Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 2021; 12:265-305. [PMID: 34367381 PMCID: PMC8334338 DOI: 10.1007/s13167-021-00248-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Endothelin-1 (ET-1) is involved in the regulation of a myriad of processes highly relevant for physical and mental well-being; female and male health; in the modulation of senses, pain, stress reactions and drug sensitivity as well as healing processes, amongst others. Shifted ET-1 homeostasis may influence and predict the development and progression of suboptimal health conditions, metabolic impairments with cascading complications, ageing and related pathologies, cardiovascular diseases, neurodegenerative pathologies, aggressive malignancies, modulating, therefore, individual outcomes of both non-communicable and infectious diseases such as COVID-19. This article provides an in-depth analysis of the involvement of ET-1 and related regulatory pathways in physiological and pathophysiological processes and estimates its capacity as a predictor of ageing and related pathologies,a sensor of lifestyle quality and progression of suboptimal health conditions to diseases for their targeted preventionand as a potent target for cost-effective treatments tailored to the person.
Collapse
Affiliation(s)
- Adriana Torres Crigna
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Barbara Link
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
6
|
Quantitative real-time measurement of endothelin-1-induced contraction in single non-activated hepatic stellate cells. PLoS One 2021; 16:e0255656. [PMID: 34343209 PMCID: PMC8330899 DOI: 10.1371/journal.pone.0255656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although quiescent hepatic stellate cells (HSCs) have been suggested to regulate hepatic blood flow, there is no direct evidence that quiescent HSCs display contractile abilities. Here, we developed a new method to quantitatively measure the contraction of single isolated HSCs and evaluated whether endothelin-1 (ET-1) induced contraction of HSCs in a non-activated state. HSCs isolated from mice were seeded on collagen gel containing fluorescent beads. The beads around a single HSC were observed gravitating toward the cell upon contraction. By recording the movement of each bead by fluorescent microscopy, the real-time contraction of HSCs was quantitatively evaluated. ET-1 induced a slow contraction of non-activated HSCs, which was inhibited by the non-muscle myosin II inhibitor blebbistatin, the calmodulin inhibitor W-7, and the ETA receptor antagonist ambrisentan. ET-1-induced contraction was also largely reduced in Ca2+-free conditions, but sustained contraction still remained. The tonic contraction was further diminished by the Rho-kinase inhibitor H-1152. The mRNA expression of P/Q-type voltage-dependent Ca2+ channels (VDCC), as well as STIM and Orai, constituents of store-operated channels (SOCs), was observed in mouse non-activated HSCs. ET-1-induced contraction was not affected by amlodipine, a VDCC blocker, whereas it was partly reduced by Gd3+ and amiloride, non-selective cation channel blockers. However, neither YM-58483 nor SKF-96365, which inhibit SOCs, had any effects on the contraction. These results suggest that ET-1 leads to Ca2+-influx through cation channels other than SOCs and produces myosin II-mediated contraction of non-activated HSCs via ETA receptors, as well as via mechanisms involving Ca2+-calmodulin and Rho kinase.
Collapse
|
7
|
Jo HS, Han JH, Choi YY, Seok JI, Yoon YI, Kim DS. The beneficial impacts of splanchnic vasoactive agents on hepatic functional recovery in massive hepatectomy porcine model. Hepatobiliary Surg Nutr 2021; 10:325-336. [PMID: 34159160 DOI: 10.21037/hbsn.2019.11.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Excessive portal pressure after massive hepatectomy can cause hepatic sinusoidal injury and have deleterious impacts on hepatic functional recovery, contributing to developing post-hepatectomy liver failure. This study aimed to assess the effects of splanchnic vasoactive agents on hepatic functional recovery and regeneration while clarifying the underlying mechanism, using a 70% hepatectomy porcine model. Methods Eighteen pigs undergoing 70% hepatectomy were involved in this study and divided into three groups: control (n=6), terlipressin (n=6), and octreotide (n=6). Terlipressin (0.5 mg) and octreotide (0.2 mg) were administered 3 times a day for each group with the first dose starting just before surgery until the 7th postoperative day, at which time the surviving pigs were sacrificed. During the period, portal pressure, liver weight, biochemical analysis, histological injury score, and molecular markers were evaluated and compared between groups. Results The 7-day survival rates in the octreotide, terlipressin, and control groups were 100%, 83.3%, and 66.7%, respectively. The portal pressures decreased in both terlipressin and octreotide groups than the control group at 30 minutes, 1 hour and 6 hours after hepatectomy. The amount of regeneration measured by liver weight to body weight ratio at the time of sacrifice in the terlipressin group was smaller than that in the control group (117% vs. 129%, P=0.03). Serum aspartate aminotransferase (AST) and total bilirubin levels at 1 and 6 hours after hepatectomy and prothrombin time/international normalized ratio (PT/INR) at 6 hours after hepatectomy were significantly improved in the terlipressin and octreotide groups compared to the control group. Serum endothelin-1 (ET-1) was significantly lower in the terlipressin group than that in the control group 6 hours after hepatectomy (P<0.01). The histological injury score in the control group was significantly higher than that in the terlipressin group on the 7th postoperative day (P<0.01). Conclusions Splanchnic vasoactive agents, such as terlipressin and octreotide, could effectively decrease portal pressure and attenuate liver injury after massive hepatectomy.
Collapse
Affiliation(s)
- Hye-Sung Jo
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jae Hyun Han
- Department of Surgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Young Choi
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Republic of Korea
| | - Jin-I Seok
- Department of Biomedical Science, Korea University College of Medicine Graduate School, Seoul, Republic of Korea
| | - Young-In Yoon
- Division of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Haep N, Florentino RM, Squires JE, Bell A, Soto-Gutierrez A. The Inside-Out of End-Stage Liver Disease: Hepatocytes are the Keystone. Semin Liver Dis 2021; 41:213-224. [PMID: 33992030 PMCID: PMC8996333 DOI: 10.1055/s-0041-1725023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic liver injury results in cirrhosis and end-stage liver disease (ESLD) which represents a leading cause of death worldwide, affecting people in their most productive years of life. Medical therapy can extend life, but the only definitive treatment is liver transplantation (LT). However, LT remains limited by access to quality donor organs and suboptimal long-term outcomes. The degeneration from healthy-functioning livers to cirrhosis and ESLD involves a dynamic process of hepatocyte damage, diminished hepatic function, and adaptation. However, the mechanisms responsible for deterioration of hepatocyte function and ultimately hepatic failure in man are poorly understood. We review the current understanding of cirrhosis and ESLD as a dynamic process and outline the current mechanisms associated with the development of hepatic failure from the clinical manifestations to energy adaptations, regeneration, and regulation of nuclear transcription factors. A new generation of therapeutics could target stabilization of hepatocyte differentiation and function to avoid the need for transplantation in patients with cirrhosis and ESLD.
Collapse
Affiliation(s)
- Nils Haep
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - James E. Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania,Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Sufleţel RT, Melincovici CS, Gheban BA, Toader Z, Mihu CM. Hepatic stellate cells - from past till present: morphology, human markers, human cell lines, behavior in normal and liver pathology. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:615-642. [PMID: 33817704 PMCID: PMC8112759 DOI: 10.47162/rjme.61.3.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic stellate cell (HSC), initially analyzed by von Kupffer, in 1876, revealed to be an extraordinary mesenchymal cell, essential for both hepatocellular function and lesions, being the hallmark of hepatic fibrogenesis and carcinogenesis. Apart from their implications in hepatic injury, HSCs play a vital role in liver development and regeneration, xenobiotic response, intermediate metabolism, and regulation of immune response. In this review, we discuss the current state of knowledge regarding HSCs morphology, human HSCs markers and human HSC cell lines. We also summarize the latest findings concerning their roles in normal and liver pathology, focusing on their impact in fibrogenesis, chronic viral hepatitis and liver tumors.
Collapse
Affiliation(s)
- Rada Teodora Sufleţel
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania;
| | | | | | | | | |
Collapse
|
10
|
Neri AA, Dontas IA, Iliopoulos DC, Karatzas T. Pathophysiological Changes During Ischemia-reperfusion Injury in Rodent Hepatic Steatosis. In Vivo 2021; 34:953-964. [PMID: 32354880 DOI: 10.21873/invivo.11863] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIM Ischemia and reperfusion injuries may produce deleterious effects on hepatic tissue after liver surgery and transplantation. The impact of ischemia-reperfusion injury (IRI) on the liver depends on its substrate, the percentage of liver ischemic tissue subjected to IRI and the ischemia time. The consequences of IRI are more evident in pathologic liver substrates, such as steatotic livers. This review is the result of an extended bibliographic PubMed search focused on the last 20 years. It highlights basic differences encountered during IRI in lean and steatotic livers based on studies using rodent experimental models. CONCLUSION The main difference in cell death between lean and steatotic livers is the prevalence of apoptosis in the former and necrosis in the latter. There are also major changes in the effect of intracellular mediators, such as TNFα and IL-1β. Further experimental studies are needed in order to increase current knowledge of IRI effects and relevant mechanisms in both lean and steatotic livers, so that new preventive and therapeutic strategies maybe developed.
Collapse
Affiliation(s)
- Anna-Aikaterini Neri
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Ismene A Dontas
- Laboratory for Research of the Musculoskeletal System "Th. Garofalidis", KAT Hospital, School of Medicine, National & Kapodistrian University of Athens, Kifissia, Greece
| | - Dimitrios C Iliopoulos
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| | - Theodore Karatzas
- Laboratory of Experimental Surgery & Surgical Research "N.S. Christeas", School of Medicine, National & Kapodistrian University of Athens, Athens, Greece.,2 Department of Propedeutic Surgery, School of Medicine, National & Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
11
|
Osawa Y, Yoshio S, Aoki Y, Korenaga M, Imamura M, Oide T, Okawara M, Kawai H, Tsutsui Y, Yoshida Y, Yoshikawa S, Mori T, Yamazoe T, Kanto T. Blood angiopoietin-2 predicts liver angiogenesis and fibrosis in hepatitis C patients. BMC Gastroenterol 2021; 21:55. [PMID: 33557759 PMCID: PMC7871374 DOI: 10.1186/s12876-021-01633-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background Pathological angiogenesis is involved in the development of hepatocellular carcinoma. In patients with chronic hepatitis C (CHC), the level of angiogenic factor angiopoietin (ANGP)-2 is reported to be increased in the blood, correlating with fibrosis. In this study, we aimed to clarify whether blood ANGP-2 is useful as a biomarker for liver angiogenesis and fibrosis in CHC patients and to further reveal the relationship between such pathology in a carbon tetrachloride (CCl4)-treated liver fibrosis mouse model. Methods Plasma levels of ANGP-2, expression of a liver sinusoidal endothelial cell (LSEC) marker (CD31), collagen deposition (Sirius Red staining) in the liver, clinical fibrosis markers (Mac-2 binding protein glycosylation isomer, virtual touch quantification, and liver stiffness measurement), and liver function (albumin bilirubin score) were examined in CHC patients. To determine the effects of an anti-angiogenic agent on liver fibrosis in vivo, sorafenib was administered to the CCl4-treated mice (BALB/c male). Results The plasma levels of ANGP-2 were increased in CHC patients compared to healthy volunteers and decreased by the eradication of hepatitis C with direct-acting antivirals. In addition, plasma ANGP-2 levels were correlated with CD31 expression, collagen deposition, clinical fibrosis markers, and liver function. Sorafenib inhibited liver angiogenesis and fibrosis in the CCl4-treated mice and was accompanied by decreased ANGP-2 expression in LSECs. Conclusions ANGP-2 may serve as a useful biomarker for liver angiogenesis and fibrosis in CHC patients. In addition, angiogenesis and fibrosis may be closely related.
Collapse
Affiliation(s)
- Yosuke Osawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan. .,Department of Gastroenterology, International University of Health and Welfare Hospital, 537-3 Iguchi, Nasushiobara, Tochigi, 239-2763, Japan. .,Department of Gastroenterology and Hepatology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| | - Sachiyo Yoshio
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Yoshihiko Aoki
- Department of Gastroenterology and Hepatology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masaaki Korenaga
- Department of Gastroenterology and Hepatology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Masatoshi Imamura
- Department of Gastroenterology and Hepatology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Takashi Oide
- Department of Pathology and Laboratory Medicine, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Miku Okawara
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Hironari Kawai
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Yuriko Tsutsui
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Yuichi Yoshida
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Shiori Yoshikawa
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Taizo Mori
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Taiji Yamazoe
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan
| | - Tatsuya Kanto
- The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan. .,Department of Gastroenterology and Hepatology, Kohnodai Hospital, National Center for Global Health and Medicine, 1-7-1 Kohnodai, Ichikawa, Chiba, 272-8516, Japan.
| |
Collapse
|
12
|
cAMP Signaling in Pathobiology of Alcohol Associated Liver Disease. Biomolecules 2020; 10:biom10101433. [PMID: 33050657 PMCID: PMC7600246 DOI: 10.3390/biom10101433] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
The importance of cyclic adenosine monophosphate (cAMP) in cellular responses to extracellular signals is well established. Many years after discovery, our understanding of the intricacy of cAMP signaling has improved dramatically. Multiple layers of regulation exist to ensure the specificity of cellular cAMP signaling. Hence, disturbances in cAMP homeostasis could arise at multiple levels, from changes in G protein coupled receptors and production of cAMP to the rate of degradation by phosphodiesterases. cAMP signaling plays critical roles in metabolism, inflammation and development of fibrosis in several tissues. Alcohol-associated liver disease (ALD) is a multifactorial condition ranging from a simple steatosis to steatohepatitis and fibrosis and ultimately cirrhosis, which might lead to hepatocellular cancer. To date, there is no FDA-approved therapy for ALD. Hence, identifying the targets for the treatment of ALD is an important undertaking. Several human studies have reported the changes in cAMP homeostasis in relation to alcohol use disorders. cAMP signaling has also been extensively studied in in vitro and in vivo models of ALD. This review focuses on the role of cAMP in the pathobiology of ALD with emphasis on the therapeutic potential of targeting cAMP signaling for the treatment of various stages of ALD.
Collapse
|
13
|
Chen J, Argemi J, Odena G, Xu MJ, Cai Y, Massey V, Parrish A, Vadigepalli R, Altamirano J, Cabezas J, Gines P, Caballeria J, Snider N, Sancho-Bru P, Akira S, Rusyn I, Gao B, Bataller R. Hepatic lipocalin 2 promotes liver fibrosis and portal hypertension. Sci Rep 2020; 10:15558. [PMID: 32968110 PMCID: PMC7512007 DOI: 10.1038/s41598-020-72172-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Advanced fibrosis and portal hypertension influence short-term mortality. Lipocalin 2 (LCN2) regulates infection response and increases in liver injury. We explored the role of intrahepatic LCN2 in human alcoholic hepatitis (AH) with advanced fibrosis and portal hypertension and in experimental mouse fibrosis. We found hepatic LCN2 expression and serum LCN2 level markedly increased and correlated with disease severity and portal hypertension in patients with AH. In control human livers, LCN2 expressed exclusively in mononuclear cells, while its expression was markedly induced in AH livers, not only in mononuclear cells but also notably in hepatocytes. Lcn2-/- mice were protected from liver fibrosis caused by either ethanol or CCl4 exposure. Microarray analysis revealed downregulation of matrisome, cell cycle and immune related gene sets in Lcn2-/- mice exposed to CCl4, along with decrease in Timp1 and Edn1 expression. Hepatic expression of COL1A1, TIMP1 and key EDN1 system components were elevated in AH patients and correlated with hepatic LCN2 expression. In vitro, recombinant LCN2 induced COL1A1 expression. Overexpression of LCN2 increased HIF1A that in turn mediated EDN1 upregulation. LCN2 contributes to liver fibrosis and portal hypertension in AH and could represent a new therapeutic target.
Collapse
Affiliation(s)
- Jiegen Chen
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Josepmaria Argemi
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA
| | - Gemma Odena
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ming-Jiang Xu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Yan Cai
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Veronica Massey
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Austin Parrish
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Jose Altamirano
- Hepatology-Internal Medicine Department, Hospital Quironsalud Barcelona, Barcelona, Spain
| | - Joaquin Cabezas
- Gastroenterology and Hepatology Department, Research Institute Valdecilla (IDIVAL), University Hospital Marques de Valdecilla, Santander, Spain
| | - Pere Gines
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Juan Caballeria
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Natasha Snider
- Department of Cell Biology and Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pau Sancho-Bru
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBER de Enfermedades Hepáticas Y Digestivas (CIBERehd), Barcelona, Catalonia, Spain
| | - Shizuo Akira
- Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health, Bethesda, DM, 20892, USA
| | - Ramon Bataller
- Departments of Medicine and Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Urotensin II receptor antagonist reduces hepatic resistance and portal pressure through enhanced eNOS-dependent HSC vasodilatation in CCl4-induced cirrhotic rats. Front Med 2019; 13:398-408. [DOI: 10.1007/s11684-019-0689-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 12/27/2018] [Indexed: 12/11/2022]
|
15
|
Yoshida K, Matsuzaki K, Murata M, Yamaguchi T, Suwa K, Okazaki K. Clinico-Pathological Importance of TGF-β/Phospho-Smad Signaling during Human Hepatic Fibrocarcinogenesis. Cancers (Basel) 2018; 10:cancers10060183. [PMID: 29874844 PMCID: PMC6025395 DOI: 10.3390/cancers10060183] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic viral hepatitis is a global public health problem, with approximately 570 million persons chronically infected. Hepatitis B and C viruses increase the risk of morbidity and mortality from liver cirrhosis, hepatocellular carcinoma (HCC), and extrahepatic complications that develop. Hepatitis virus infection induces transforming growth factor (TGF)-β, which influences microenvironments within the infected liver. TGF-β promotes liver fibrosis by up-regulating extracellular matrix production by hepatic stellate cells. TGF-β is also up-regulated in patients with HCC, in whom it contributes importantly to bringing about a favorable microenvironment for tumor growth. Thus, TGF-β is thought to be a major factor regulating liver fibrosis and carcinogenesis. Since TGF-β carries out regulatory signaling by influencing the phosphorylation of Smads, we have generated several kinds of phospho-specific antibodies to Smad2/3. Using these, we have identified three types of phospohorylated forms: COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L), and dually phosphorylated Smad3 (pSmad2L/C and pSmad3L/C). TGF-β-mediated pSmad2/3C signaling terminates cell proliferation; on the other hand, cytokine-induced pSmad3L signaling accelerates cell proliferation and promotes fibrogenesis. This review addresses TGF-β/Smad signal transduction in chronic liver injuries and carcinogenic processes. We also discuss the reversibility of Smad signaling after antiviral therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kanehiko Suwa
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University 2-5-1, Shin-Machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
16
|
Cheung AC, Lorenzo Pisarello MJ, LaRusso NF. Pathobiology of biliary epithelia. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1220-1231. [PMID: 28716705 PMCID: PMC5777905 DOI: 10.1016/j.bbadis.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
Cholangiocytes are epithelial cells that line the intra- and extrahepatic biliary tree. They serve predominantly to mediate the content of luminal biliary fluid, which is controlled via numerous signaling pathways influenced by endogenous (e.g., bile acids, nucleotides, hormones, neurotransmitters) and exogenous (e.g., microbes/microbial products, drugs etc.) molecules. When injured, cholangiocytes undergo apoptosis/lysis, repair and proliferation. They also become senescent, a form of cell cycle arrest, which may prevent propagation of injury and/or malignant transformation. Senescent cholangiocytes can undergo further transformation to a senescence-associated secretory phenotype (SASP), where they begin secreting pro-inflammatory and pro-fibrotic signals that may contribute to disease initiation and progression. These and other concepts related to cholangiocyte pathobiology will be reviewed herein. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.
Collapse
Affiliation(s)
- Angela C Cheung
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Maria J Lorenzo Pisarello
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
17
|
Abstract
Portal hypertension develops as a result of increased intrahepatic vascular resistance often caused by chronic liver disease that leads to structural distortion by fibrosis, microvascular thrombosis, dysfunction of liver sinusoidal endothelial cells (LSECs), and hepatic stellate cell (HSC) activation. While the basic mechanisms of LSEC and HSC dysregulation have been extensively studied, the role of microvascular thrombosis and platelet function in the pathogenesis of portal hypertension remains to be clearly characterized. As a secondary event, portal hypertension results in splanchnic and systemic arterial vasodilation, leading to the development of a hyperdynamic circulatory syndrome and subsequently to clinically devastating complications including gastroesophageal varices and variceal hemorrhage, hepatic encephalopathy from the formation of portosystemic shunts, ascites, and renal failure due to the hepatorenal syndrome. This review article discusses: (1) mechanisms of sinusoidal portal hypertension, focusing on HSC and LSEC biology, pathological angiogenesis, and the role of microvascular thrombosis and platelets, (2) the mesenteric vasculature in portal hypertension, and (3) future directions for vascular biology research in portal hypertension.
Collapse
Affiliation(s)
- Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, 1080 LMP, 333 Cedar St., New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Eulenberg VM, Lidbury JA. Hepatic Fibrosis in Dogs. J Vet Intern Med 2017; 32:26-41. [PMID: 29194760 PMCID: PMC5787209 DOI: 10.1111/jvim.14891] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/17/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatic fibrosis is commonly diagnosed in dogs, often as a sequela to chronic hepatitis (CH). The development of fibrosis is a crucial event in the progression of hepatic disease that is of prognostic value. The pathophysiology of hepatic fibrosis in human patients and rodent models has been studied extensively. Although less is known about this process in dogs, evidence suggests that fibrogenic mechanisms are similar between species and that activation of hepatic stellate cells is a key step. Diagnosis and staging of hepatic fibrosis in dogs requires histopathological examination of a liver biopsy specimen. However, performing a liver biopsy is invasive and assessment of fibrotic stage is complicated by the absence of a universally accepted staging scheme in veterinary medicine. Serum biomarkers that can discriminate among different fibrosis stages are used in human patients, but such markers must be more completely evaluated in dogs before clinical use. When successful treatment of its underlying cause is feasible, reversal of hepatic fibrosis has been shown to be possible in rodent models and human patients. Reversal of fibrosis has not been well documented in dogs, but successful treatment of CH is possible. In human medicine, better understanding of the pathomechanisms of hepatic fibrosis is leading to the development of novel treatment strategies. In time, these may be applied to dogs. This article comparatively reviews the pathogenesis of hepatic fibrosis, its diagnosis, and its treatment in dogs.
Collapse
Affiliation(s)
- V M Eulenberg
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| | - J A Lidbury
- Gastrointestinal Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX
| |
Collapse
|
19
|
Abstract
Acute on chronic liver failure (ACLF) was first described in 1995 as a clinical syndrome distinct to classic acute decompensation. Characterized by complications of decompensation, ACLF occurs on a background of chronic liver dysfunction and is associated with high rates of organ failure and significant short-term mortality estimated between 45% and 90%. Despite the clinical relevance of the condition, it still remains largely undefined with continued disagreement regarding its precise etiological factors, clinical course, prognostic criteria and management pathways. It is concerning that, despite our relative lack of understanding of the condition, the burden of ACLF among cirrhotic patients remains significant with an estimated prevalence of 30.9%. This paper highlights our current understanding of ACLF, including its etiology, diagnostic and prognostic criteria and pathophysiology. It is evident that further refinement of the ACLF classification system is required in order to detect high-risk patients and improve short-term mortality rates. The field of metabolomics certainly warrants investigation to enhance diagnostic and prognostic parameters, while the use of granulocyte-colony stimulating factor is a promising future therapeutic intervention for patients with ACLF.
Collapse
Affiliation(s)
- Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, SW7 2AZ, UK
| |
Collapse
|
20
|
Metastasis 'systems' biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Curr Opin Cell Biol 2017; 48:79-86. [PMID: 28715713 DOI: 10.1016/j.ceb.2017.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 01/01/2023]
Abstract
Disseminated breast tumor cells reside on or near stable microvascular endothelium. Currently, the cues that disrupt DTC dormancy and facilitate outgrowth are largely unknown. This article explores the hypothesis that specific patient lifestyle exposures (e.g., alcohol abuse) may disrupt the microenvironments that maintain disseminated tumor cell (DTC) dormancy in a tissue-specific fashion. We suggest that such exposures are 'transmitted' to the dormant niche in the form of injury. Thus, we discuss the relationship between wound healing and metastasis using liver as an example to illustrate how injury steers the phenotype of liver endothelium and perivascular hepatic stellate cells to a potentially pro-metastatic one. We posit further that non-steroidal anti-inflammatory drugs (NSAIDs) - recently shown to prevent metastatic relapse - may act by preserving the dormant niche. We conclude by suggesting that maintenance of the dormant niche - either through patient lifestyle or via development of therapeutics that mimic local molecular cues/responses that coincide with a healthy lifestyle - is a means to prevent metastatic relapse, and should be the subject of far greater research.
Collapse
|
21
|
Hu D, Hu Y, Xu W, Yu H, Yang N, Ni S, Fu R. miR‑203 inhibits the expression of collagen‑related genes and the proliferation of hepatic stellate cells through a SMAD3‑dependent mechanism. Mol Med Rep 2017; 16:1248-1254. [PMID: 28586069 PMCID: PMC5561992 DOI: 10.3892/mmr.2017.6702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 03/21/2017] [Indexed: 12/22/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is a pivotal event during hepatic fibrogenesis. Activated HSCs are the main source of collagen and other extracellular matrix (ECM) components, and emerging antifibrotic therapies are aimed at preventing ECM synthesis and deposition. MicroRNAs (miRNAs) have been demonstrated to exert regulatory effects on HSC activation and ECM synthesis. In the present study, the HSC-T6 rat hepatic stellate cell line was transiently transfected with a miRNA (miR)-203 mimic, which is an artificial miRNA that enhances the function of miR-203, with a miR-203 inhibitor or with a scramble miRNA negative control. mRNA and protein expression levels of collagen (COL) 1A1, COL3A1, α-smooth muscle actin (α-SMA) and mothers against decapentaplegic homolog 3 (SMAD3) were assessed using reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. The interaction between miR-203 and the 3′-untranslated region (UTR) of SMAD3 mRNA was examined using a dual-luciferase reporter assay. The proliferative capabilities of activated HSCs were measured using an MTT assay. The present results demonstrated that the mRNA and protein expression levels of COL1A1, COL3A1, α-SMA and SMAD3 were significantly upregulated following transfection of HSC-T6 cells with the miR-203 inhibitor. Conversely, COL1A1, COL3A1, α-SMA, and SMAD3 mRNA and protein expression appeared to be downregulated in rat HSCs transfected with miR-203 mimics. Notably, the inhibition of miR-203 expression was revealed to promote HSC proliferation, whereas increased miR-203 expression suppressed the proliferative capabilities of HSC-T6 cells. Furthermore, SMAD3 was revealed to be a direct target of miR-203. The present study suggested that miR-203 may function to prevent the synthesis and deposition of ECM components, including COL1A1, COL3A1 and α-SMA, and to inhibit the proliferation of HSCs through a SMAD3-dependent mechanism. Therefore, it may be hypothesized that miR-203 has potential as a novel target for the development of alternative therapeutic strategies for the treatment of patients with hepatic fibrosis in clinical practice.
Collapse
Affiliation(s)
- Danping Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Yibing Hu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Wangwang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Huanhuan Yu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| | - Naibin Yang
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shunlan Ni
- Department of Infectious Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Rongquan Fu
- Department of Infectious Diseases, The Third Affiliated Hospital of Wenzhou Medical University, Rui'an, Zhejiang 325200, P.R. China
| |
Collapse
|
22
|
Multi-targeted protection of acetaminophen-induced hepatotoxicity in mice by tannic acid. Int Immunopharmacol 2017; 47:95-105. [DOI: 10.1016/j.intimp.2017.03.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 01/14/2023]
|
23
|
Schwabl P, Hambruch E, Seeland BA, Hayden H, Wagner M, Garnys L, Strobel B, Schubert TL, Riedl F, Mitteregger D, Burnet M, Starlinger P, Oberhuber G, Deuschle U, Rohr-Udilova N, Podesser BK, Peck-Radosavljevic M, Reiberger T, Kremoser C, Trauner M. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J Hepatol 2017; 66:724-733. [PMID: 27993716 DOI: 10.1016/j.jhep.2016.12.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/27/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Steroidal farnesoid X receptor (FXR) agonists demonstrated potent anti-fibrotic activities and lowered portal hypertension in experimental models. The impact of the novel non-steroidal and selective FXR agonist PX20606 on portal hypertension and fibrosis was explored in this study. METHODS In experimental models of non-cirrhotic (partial portal vein ligation, PPVL, 7days) and cirrhotic (carbon tetrachloride, CCl4, 14weeks) portal hypertension, PX20606 (PX,10mg/kg) or the steroidal FXR agonist obeticholic acid (OCA,10mg/kg) were gavaged. We then measured portal pressure, intrahepatic vascular resistance, liver fibrosis and bacterial translocation. RESULTS PX decreased portal pressure in non-cirrhotic PPVL (12.6±1.7 vs. 10.4±1.1mmHg; p=0.020) and cirrhotic CCl4 (15.2±0.5 vs. 11.8±0.4mmHg; p=0.001) rats. In PPVL animals, we observed less bacterial translocation (-36%; p=0.041), a decrease in lipopolysaccharide binding protein (-30%; p=0.024) and splanchnic tumour necrosis factor α levels (-39%; p=0.044) after PX treatment. In CCl4 rats, PX decreased fibrotic Sirius Red area (-43%; p=0.005), hepatic hydroxyproline (-66%; p<0.001), and expression of profibrogenic proteins (Col1a1, α smooth muscle actin, transforming growth factor β). CCl4-PX rats had significantly lower transaminase levels and reduced hepatic macrophage infiltration. Moreover, PX induced sinusoidal vasodilation (upregulation of cystathionase, dimethylaminohydrolase (DDAH)1, endothelial nitric oxide synthase (eNOS), GTP-cyclohydrolase1) and reduced intrahepatic vasoconstriction (downregulation of endothelin-1, p-Moesin). In cirrhosis, PX improved endothelial dysfunction (decreased von-Willebrand factor) and normalized overexpression of vascular endothelial growth factor, platelet-derived growth factor and angiopoietins. While short-term 3-day PX treatment reduced portal pressure (-14%; p=0.041) by restoring endothelial function, 14week PX therapy additionally inhibited sinusoidal remodelling and decreased portal pressure to a greater extent (-22%; p=0.001). In human liver sinusoidal endothelial cells, PX increased eNOS and DDAH expression. CONCLUSIONS The non-steroidal FXR agonist PX20606 ameliorates portal hypertension by reducing liver fibrosis, vascular remodelling and sinusoidal dysfunction. LAY SUMMARY The novel drug PX20606 activates the bile acid receptor FXR and shows beneficial effects in experimental liver cirrhosis: In the liver, it reduces scarring and inflammation, and also widens blood vessels. Thus, PX20606 leads to an improved blood flow through the liver and decreases hypertension of the portal vein. Additionally, PX20606 improves the altered intestinal barrier and decreases bacterial migration from the gut.
Collapse
Affiliation(s)
- Philipp Schwabl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Eva Hambruch
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Berit A Seeland
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Hubert Hayden
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Wagner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lukas Garnys
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bastian Strobel
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Tim-Lukas Schubert
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Florian Riedl
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Dieter Mitteregger
- Vienna Medical Innovation Center (VMIC), Group Practice LABORS.at, Vienna, Austria
| | - Michael Burnet
- Synovo GmbH, Paul-Ehrlich-Str. 15, 72076 Tübingen, Germany
| | | | - Georg Oberhuber
- Dept. of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ulrich Deuschle
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Nataliya Rohr-Udilova
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Dept. of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Markus Peck-Radosavljevic
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Reiberger
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Claus Kremoser
- Phenex Pharmaceuticals, Waldhofer Strasse 104, 69123 Heidelberg, Germany
| | - Michael Trauner
- Div. of Gastroenterology and Hepatology, Dept. of Internal Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
24
|
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct entity that differs from acute liver failure and decompensated cirrhosis in timing, presence of treatable acute precipitant, and course of disease, with a potential for self-recovery. The core concept is acute deterioration of existing liver function in a patient of chronic liver disease with or without cirrhosis in response to an acute insult. The insult should be a hepatic one and presentation in the form of liver failure (jaundice, encephalopathy, coagulopathy, ascites) with or without extrahepatic organ failure in a defined time frame. ACLF is characterized by a state of deregulated inflammation. Initial cytokine burst presenting as SIRS, progression to CARS and associated immunoparalysis leads to sepsis and multi-organ failure. Early identification of the acute insult and mitigation of the same, use of nucleoside analogue in HBV-ACLF, steroid in severe alcoholic hepatitis, steroid in severe autoimmune hepatitis and/or bridging therapy lead to recovery, with a 90-day transplant-free survival rate of up to 50 %. First-week presentation is crucial concerning SIRS/sepsis, development, multiorgan failure and consideration of transplant. A protocol-based multi-disciplinary approach including critical care hepatology, early liver transplant before multi-organ involvement, or priority for organ allocation may improve the outcome. Presentation with extrahepatic organ involvement or inclusion of sepsis as an acute insult in definition restricts the therapy, i.e., liver transplant or bridging therapy, and needs serious consideration. Augmentation of regeneration, cell-based therapy, immunotherapy, and gut microbiota modulation are the emerging areas and need further research.
Collapse
Affiliation(s)
- Shiv Kumar Sarin
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India.
| | - Ashok Choudhury
- Department of Hepatology and Liver Transplant, Institute of Liver and Biliary Sciences, D-1, VasantKunj, New Delhi, 110070, India
| |
Collapse
|
25
|
Liberal R, Grant CR. Cirrhosis and autoimmune liver disease: Current understanding. World J Hepatol 2016; 8:1157-1168. [PMID: 27729952 PMCID: PMC5055585 DOI: 10.4254/wjh.v8.i28.1157] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/14/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Primary biliary cirrhosis (PBC), primary sclerosing cholangitis (PSC) and autoimmune hepatitis (AIH) constitute the classic autoimmune liver diseases (AILDs). While AIH target the hepatocytes, in PBC and PSC the targets of the autoimmune attack are the biliary epithelial cells. Persistent liver injury, associated with chronic AILD, leads to un-resolving inflammation, cell proliferation and the deposition of extracellular matrix proteins by hepatic stellate cells and portal myofibroblasts. Liver cirrhosis, and the resultant loss of normal liver function, inevitably ensues. Patients with cirrhosis have higher risks or morbidity and mortality, and that in the decompensated phase, complications of portal hypertension and/or liver dysfunction lead to rapid deterioration. Accurate diagnosis and monitoring of cirrhosis is, therefore of upmost importance. Liver biopsy is currently the gold standard technique, but highly promising non-invasive methodology is under development. Liver transplantation (LT) is an effective therapeutic option for the management of end-stage liver disease secondary to AIH, PBC and PSC. LT is indicated for AILD patients who have progressed to end-stage chronic liver disease or developed intractable symptoms or hepatic malignancy; in addition, LT may also be indicated for patients presenting with acute liver disease due to AIH who do not respond to steroids.
Collapse
|
26
|
Feng RB. Relationship between chronic liver disease and liver hypoxia. Shijie Huaren Xiaohua Zazhi 2016; 24:2184-2190. [DOI: 10.11569/wcjd.v24.i14.2184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver is an organ that metabolizes various substances very vigorously. During hepatic metabolism a large amount of oxygen needs to be provided for the liver, so the liver is vulnerable to hypoxia. Many chronic liver diseases are accompanied by liver cell hypoxia. In turn, liver cell hypoxia not only worsens liver tissue damage on the basis of primary liver lesion and inhibits hepatocellular regeneration but also accelerates liver fibrosis, cirrhosis, and even primary liver carcinoma. With chronic liver diseases exacerbating, liver hypoxia becomes more and more serious, and vice versa. This is an important mechanism by which chronic liver diseases gradually get worse and worse. As the most important hypoxia signal transduction factor in vivo, hypoxia inducible factor-1α (HIF-1α) plays an indispensable key role in the process of adaptive responses of the liver to hypoxia stimulus. Some progress in therapy for chronic liver diseases has been being made as the relationship between chronic liver diseases and liver hypoxia has been revealed and understood more deeply, especially by regulating and controlling HIF-1α and its downstream target to treat liver fibrosis. In addition, it has been found that some medicines have positive therapeutic effects on patients with chronic liver diseases through improving liver microcirculation and ameliorating liver hypoxia. However, the very complicated mechanism of interaction between chronic liver diseases and liver hypoxia, which involves a number of complex signal pathways, has not been completely elucidated, and therefore more basic and clinical studies need to be carried out for the clarification of their interaction.
Collapse
|
27
|
Sarin SK, Choudhury A. Acute-on-chronic liver failure: terminology, mechanisms and management. Nat Rev Gastroenterol Hepatol 2016; 13:131-49. [PMID: 26837712 DOI: 10.1038/nrgastro.2015.219] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acute-on-chronic liver failure (ACLF) is a distinct clinical entity and differs from acute liver failure and decompensated cirrhosis in timing, presence of acute precipitant, course of disease and potential for unaided recovery. The definition involves outlining the acute and chronic insults to include a homogenous patient group with liver failure and an expected outcome in a specific timeframe. The pathophysiology of ACLF relates to persistent inflammation, immune dysregulation with initial wide-spread immune activation, a state of systematic inflammatory response syndrome and subsequent sepsis due to immune paresis. The disease severity and outcome can be predicted by both hepatic and extrahepatic organ failure(s). Clinical recovery is expected with the use of nucleoside analogues for hepatitis B, and steroids for severe alcoholic hepatitis and, possibly, severe autoimmune hepatitis. Artificial liver support systems help remove toxins and metabolites and serve as a bridge therapy before liver transplantation. Hepatic regeneration during ongoing liver failure, although challenging, is possible through the use of growth factors. Liver transplantation remains the definitive treatment with a good outcome. Pre-emptive antiviral agents for hepatitis B before chemotherapy to prevent viral reactivation and caution in using potentially hepatotoxic drugs can prevent the development of ACLF.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi 110070, India
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, D-1, Vasant Kunj, New Delhi 110070, India
| |
Collapse
|
28
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K, Okazaki K. Reversible Human TGF-β Signal Shifting between Tumor Suppression and Fibro-Carcinogenesis: Implications of Smad Phospho-Isoforms for Hepatic Epithelial-Mesenchymal Transitions. J Clin Med 2016; 5:jcm5010007. [PMID: 26771649 PMCID: PMC4730132 DOI: 10.3390/jcm5010007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 12/23/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are observed during both physiological liver wound healing and the pathological fibrotic/carcinogenic (fibro-carcinogenetic) process. TGF-β and pro-inflammatory cytokine are considered to be the major factors accelerating liver fibrosis and promoting liver carcinogenesis. Smads, consisting of intermediate linker regions connecting Mad homology domains, act as the intracellular mediators of the TGF-β signal transduction pathway. As the TGF-β receptors, c-Jun N-terminal kinase and cyclin-dependent kinase, differentially phosphorylate Smad2/3, we have generated numerous antibodies against linker (L) and C-terminal (C) phosphorylation sites in Smad2/3 and identified four types of phosphorylated forms: cytostatic COOH-terminally-phosphorylated Smad3 (pSmad3C), mitogenic pSmad3L (Ser-213) signaling, fibrogenic pSmad2L (Ser-245/250/255)/C signaling and migratory pSmad2/3L (Thr-220/179)/C signaling. After acute liver injury, TGF-β upregulates pSmad3C signaling and terminates pSmad3L (Ser-213)-mediated hepatocyte proliferation. TGF-β and pro-inflammatory cytokines cooperatively enhance collagen synthesis by upregulating pSmad2L (Thr-220)/C and pSmad3L (Thr-179)/C pathways in activated hepatic stellate cells. During chronic liver injuries, hepatocytes persistently affected by TGF-β and pro-inflammatory cytokines eventually become pre-neoplastic hepatocytes. Both myofibroblasts and pre-neoplastic hepatocyte exhibit the same carcinogenic (mitogenic) pSmad3L (Ser-213) and fibrogenic pSmad2L (Ser-245/250/255)/C signaling, with acquisition of fibro-carcinogenic properties and increasing risk of hepatocellular carcinoma (HCC). Firstly, we review phospho-Smad-isoform signalings in epithelial and mesenchymal cells in physiological and pathological conditions and then consider Smad linker phosphorylation as a potential target for pathological EMT during human fibro-carcinogenesis, because human Smad phospho-isoform signals can reverse from fibro-carcinogenesis to tumor-suppression in a process of MET after therapy.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| | - Kazuichi Okazaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, 2-5-1, Shin-machi, Hirakata, Osaka 573-1010, Japan.
| |
Collapse
|
29
|
Bocca C, Novo E, Miglietta A, Parola M. Angiogenesis and Fibrogenesis in Chronic Liver Diseases. Cell Mol Gastroenterol Hepatol 2015; 1:477-488. [PMID: 28210697 PMCID: PMC5301407 DOI: 10.1016/j.jcmgh.2015.06.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/02/2015] [Indexed: 12/12/2022]
Abstract
Pathologic angiogenesis appears to be intrinsically associated with the fibrogenic progression of chronic liver diseases, which eventually leads to the development of cirrhosis and related complications, including hepatocellular carcinoma. Several laboratories have suggested that this association is relevant for chronic liver disease progression, with angiogenesis proposed to sustain fibrogenesis. This minireview offers a synthesis of relevant findings and opinions that have emerged in the last few years relating liver angiogenesis to fibrogenesis. We discuss liver angiogenesis in normal and pathophysiologic conditions with a focus on the role of hypoxia and hypoxia-inducible factors and assess the evidence supporting a clear relationship between angiogenesis and fibrogenesis. A section is dedicated to the critical interactions between liver sinusoidal endothelial cells and either quiescent hepatic stellate cells or myofibroblast-like stellate cells. Finally, we introduce the unusual, dual (profibrogenic and proangiogenic) role of hepatic myofibroblasts and emerging evidence supporting a role for specific mediators like vasohibin and microparticles and microvesicles.
Collapse
Key Words
- ANGPTL3, angiopoietin-like-3 peptide
- Akt, protein kinase B
- Ang-1, angiopoietin-1
- CCL2, chemokine ligand 2
- CCR, chemokine receptor
- CLD, chronic liver disease
- ET-1, endothelin 1
- HCC, hepatocellular carcinoma
- HIF, hypoxia-inducible factor
- HSC, hepatic stellate cell
- HSC/MFs, myofibroblast-like cells from activated hepatic stellate cells
- Hh, Hedgehog
- Hypoxia
- LSEC, liver sinusoidal endothelial cell
- Liver Angiogenesis
- Liver Fibrogenesis
- MF, myofibroblast
- MP, microparticle
- Myofibroblasts
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NO, nitric oxide
- PDGF, platelet-derived growth factor
- ROS, reactive oxygen species
- VEGF, vascular endothelial growth factor
- VEGF-R2, vascular endothelial growth factor receptor type 2
- eNOS, endothelial nitric oxide synthase
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
| | | | | | - Maurizio Parola
- Unit of Experimental Medicine and Clinical Pathology, Department of Clinical and Biological Sciences, School of Medicine, University of Torino, Torino, Italy
| |
Collapse
|
30
|
Gracia-Sancho J, Maeso-Díaz R, Fernández-Iglesias A, Navarro-Zornoza M, Bosch J. New cellular and molecular targets for the treatment of portal hypertension. Hepatol Int 2015; 9:183-91. [PMID: 25788198 DOI: 10.1007/s12072-015-9613-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/10/2015] [Indexed: 12/12/2022]
Abstract
Portal hypertension (PH) is a common complication of chronic liver disease, and it determines most complications leading to death or liver transplantation in patients with liver cirrhosis. PH results from increased resistance to portal blood flow through the cirrhotic liver. This is caused by two mechanisms: (a) distortion of the liver vascular architecture and (b) hepatic microvascular dysfunction. Increment in hepatic resistance is latterly accompanied by splanchnic vasodilation, which further aggravates PH. Hepatic microvascular dysfunction occurs early in the course of chronic liver disease as a consequence of inflammation and oxidative stress and determines loss of the normal phenotype of liver sinusoidal endothelial cells (LSEC). The cross-talk between LSEC and hepatic stellate cells induces activation of the latter, which in turn proliferate, migrate and increase collagen deposition around the sinusoids, contributing to fibrogenesis, architectural disruption and angiogenesis. Therapy for PH aims at correcting these pathophysiological abnormalities: liver injury, fibrogenesis, increased hepatic vascular tone and splanchnic vasodilatation. Continuing liver injury may be counteracted specifically by etiological treatments, while architectural disruption and fibrosis can be ameliorated by a variety of anti-fibrogenic drugs and anti-angiogenic strategies. Sinusoidal endothelial dysfunction is ameliorated by statins and other drugs increasing NO availability. Splanchnic hyperemia can be counteracted by non-selective beta-blockers (NSBBs), vasopressin analogs and somatostatin analogs. Future treatment of portal hypertension will evolve to use etiological treatments together with anti-fibrotic agents and/or drugs improving microvascular function in initial stages of cirrhosis (pre-primary prophylaxis), while NSBBs will be added in advanced stages of the disease.
Collapse
Affiliation(s)
- Jordi Gracia-Sancho
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), University of Barcelona, Rosselló 149, 4th Floor, 08036, Barcelona, Spain,
| | | | | | | | | |
Collapse
|
31
|
Fernandez M. Molecular pathophysiology of portal hypertension. Hepatology 2015; 61:1406-15. [PMID: 25092403 DOI: 10.1002/hep.27343] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/27/2014] [Indexed: 12/11/2022]
Abstract
Over the past two decades the advances in molecular cell biology have led to significant discoveries about the pathophysiology of portal hypertension (PHT). In particular, great progress has been made in the study of the molecular and cellular mechanisms that regulate the increased intrahepatic vascular resistance (IHVR) in cirrhosis. We now know that the increased IHVR is not irreversible, but that both the structural component caused by fibrosis and the active component caused by hepatic sinusoidal constriction can be, at least partially, reversed. Indeed, it is now apparent that the activation of perisinusoidal hepatic stellate cells, which is a key event mediating the augmented IHVR, is regulated by multiple signal transduction pathways that could be potential therapeutic targets for PHT treatment. Furthermore, the complexity of the molecular physiology of PHT can also be appreciated when one considers the complex signals capable of inducing vasodilatation and hyporesponsiveness to vasoconstrictors in the splanchnic vascular bed, with several vasoactive molecules, controlled at multiple levels, working together to mediate these circulatory abnormalities. Added to the complexity is the occurrence of pathological angiogenesis during the course of disease progression, with recent emphasis given to understanding its molecular machinery and regulation. Although much remains to be learned, with the current availability of reagents and new technologies and the exchange of concepts and data among investigators, our knowledge of the molecular basis of PHT will doubtless continue to grow, accelerating the transfer of knowledge generated by basic research to clinical practice. This will hopefully permit a better future for patients with PHT.
Collapse
Affiliation(s)
- Mercedes Fernandez
- Angiogenesis in Liver Disease Research Group, Institute of Biomedical Research IDIBAPS, CIBERehd, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
|
33
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
34
|
Regulator of G-protein signaling-5 is a marker of hepatic stellate cells and expression mediates response to liver injury. PLoS One 2014; 9:e108505. [PMID: 25290689 PMCID: PMC4188519 DOI: 10.1371/journal.pone.0108505] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/22/2014] [Indexed: 12/11/2022] Open
Abstract
Liver fibrosis is mediated by hepatic stellate cells (HSCs), which respond to a variety of cytokine and growth factors to moderate the response to injury and create extracellular matrix at the site of injury. G-protein coupled receptor (GPCR)-mediated signaling, via endothelin-1 (ET-1) and angiotensin II (AngII), increases HSC contraction, migration and fibrogenesis. Regulator of G-protein signaling-5 (RGS5), an inhibitor of vasoactive GPCR agonists, functions to control GPCR-mediated contraction and hypertrophy in pericytes and smooth muscle cells (SMCs). Therefore we hypothesized that RGS5 controls GPCR signaling in activated HSCs in the context of liver injury. In this study, we localize RGS5 to the HSCs and demonstrate that Rgs5 expression is regulated during carbon tetrachloride (CCl4)-induced acute and chronic liver injury in Rgs5LacZ/LacZ reporter mice. Furthermore, CCl4 treated RGS5-null mice develop increased hepatocyte damage and fibrosis in response to CCl4 and have increased expression of markers of HSC activation. Knockdown of Rgs5 enhances ET-1-mediated signaling in HSCs in vitro. Taken together, we demonstrate that RGS5 is a critical regulator of GPCR signaling in HSCs and regulates HSC activation and fibrogenesis in liver injury.
Collapse
|
35
|
Kawanaka H, Akahoshi T, Kinjo N, Iguchi T, Ninomiya M, Yamashita YI, Ikegami T, Yoshizumi T, Shirabe K, Maehara Y. Effect of laparoscopic splenectomy on portal haemodynamics in patients with liver cirrhosis and portal hypertension. Br J Surg 2014; 101:1585-93. [PMID: 25200126 DOI: 10.1002/bjs.9622] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 06/11/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND The effect of splenomegaly in patients with liver cirrhosis and portal hypertension is not fully understood. This study was designed to determine the effect of laparoscopic splenectomy on portal haemodynamics in these patients. METHODS Patients with liver cirrhosis and portal hypertension who underwent laparoscopic splenectomy in Kyushu University Hospital from January 2006 to March 2009 were evaluated retrospectively. Correlations between splenic size and portal haemodynamics, and changes in portal haemodynamics and in levels of the vasoactive agents endothelin (ET) 1 and nitric oxide metabolites (NOx) before and 7-10 days after laparoscopic splenectomy were analysed. RESULTS Portal venous (PV) blood flow, PV cross-sectional area and PV congestion index correlated significantly with splenic size (P < 0·050). All three were significantly reduced following splenectomy in 59 patients. The hepatic venous pressure gradient, measured in 18 patients, decreased by 25 per cent after splenectomy (P < 0·001). Portal vascular resistance was also reduced, by 21 per cent (P = 0·009). The peripheral blood concentration of ET-1 decreased from 2·95 to 2·11 pg/ml (P < 0·001), and that of NOx tended to decrease (from 29·2 to 25·0 pg/ml; P = 0·068). In hepatic venous blood, the level of ET-1 decreased from 2·37 to 1·83 pg/ml (P = 0·006), whereas NOx concentration tended to increase (from 24·5 to 30·9 pg/ml; P = 0·067). CONCLUSION In patients with liver cirrhosis and portal hypertension, splenectomy reduced portal venous pressure. A decrease in splanchnic blood flow, by eliminating splenic blood flow, and reduction in intrahepatic vascular resistance, by normalizing hepatic concentrations of ET-1 and NOx, may both have contributed.
Collapse
Affiliation(s)
- H Kawanaka
- Department of Surgery and Multidisciplinary Treatment, Kyushu University, Fukuoka, Japan; Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yoshida K, Murata M, Yamaguchi T, Matsuzaki K. TGF-β/Smad signaling during hepatic fibro-carcinogenesis (review). Int J Oncol 2014; 45:1363-71. [PMID: 25050845 PMCID: PMC4151811 DOI: 10.3892/ijo.2014.2552] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022] Open
Abstract
After hepatitis virus infection, plasma transforming growth factor (TGF)-β increases in either the acute or chronic inflammatory microenvironment. Although TGF-β is upregulated in patients with hepatocellular carcinoma, it is one of the most potent growth inhibitors for hepatocytes. This cytokine also upregulates extracellular matrix (ECM) production of hepatic stellate cells. Therefore, TGF-β is considered to be the major factor regulating liver carcinogenesis and accelerating liver fibrosis. Smad2 and Smad3 act as the intracellular mediators of TGF-β signal transduction pathway. We have generated numerous antibodies against individual phosphorylation sites in Smad2/3, and identified 3 types of phosphorylated forms (phospho-isoforms): COOH-terminally phosphorylated Smad2/3 (pSmad2C and pSmad3C), linker phosphorylated Smad2/3 (pSmad2L and pSmad3L) and dually phosphorylated Smad2/3 (pSmad2L/C and pSmad3L/C). These Smad phospho-isoforms are categorized into 3 groups: cytostatic pSmad3C signaling, mitogenic pSmad3L signaling and invasive/fibrogenic pSmad2L/C signaling. In this review, we describe differential regulation of TGF-β/Smad signaling after acute or chronic liver injuries. In addition, we consider how chronic inflammation associated with hepatitis virus infection promotes hepatic fibrosis and carcinogenesis (fibro-carcinogenesis), focusing on alteration of Smad phospho-isoform signaling. Finally, we show reversibility of Smad phospho-isoform signaling after therapy against hepatitis virus infection.
Collapse
Affiliation(s)
- Katsunori Yoshida
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Miki Murata
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Takashi Yamaguchi
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| | - Koichi Matsuzaki
- Department of Gastroenterology and Hepatology, Kansai Medical University, Hirakata, Osaka 573-1010, Japan
| |
Collapse
|
37
|
Richards J, Welch AK, Barilovits SJ, All S, Cheng KY, Wingo CS, Cain BD, Gumz ML. Tissue-specific and time-dependent regulation of the endothelin axis by the circadian clock protein Per1. Life Sci 2014; 118:255-62. [PMID: 24721511 PMCID: PMC4387882 DOI: 10.1016/j.lfs.2014.03.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/01/2014] [Accepted: 03/26/2014] [Indexed: 01/08/2023]
Abstract
AIMS The present study is designed to consider a role for the circadian clock protein Per1 in the regulation of the endothelin axis in mouse kidney, lung, liver and heart. Renal endothelin-1 (ET-1) is a regulator of the epithelial sodium channel (ENaC) and blood pressure (BP), via activation of both endothelin receptors, ETA and ETB. However, ET-1 mediates many complex events in other tissues. MAIN METHODS Tissues were collected in the middle of murine rest and active phases, at noon and midnight, respectively. ET-1, ETA and ETB mRNA expressions were measured in the lung, heart, liver, renal inner medulla and renal cortex of wild type and Per1 heterozygous mice using real-time quantitative RT-PCR. KEY FINDINGS The effect of reduced Per1 expression on levels of mRNAs and the time-dependent regulation of expression of the endothelin axis genes appeared to be tissue-specific. In the renal inner medulla and the liver, ETA and ETB exhibited peaks of expression in opposite circadian phases. In contrast, expressions of ET-1, ETA and ETB in the lung did not appear to vary with time, but ET-1 expression was dramatically decreased in this tissue in Per1 heterozygous mice. Interestingly, ET-1 and ETA, but not ETB, were expressed in a time-dependent manner in the heart. SIGNIFICANCE Per1 appears to regulate expression of the endothelin axis genes in a tissue-specific and time-dependent manner. These observations have important implications for our understanding of the best time of day to deliver endothelin receptor antagonists.
Collapse
Affiliation(s)
- Jacob Richards
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Amanda K Welch
- Department of Medicine, University of Florida, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Sarah J Barilovits
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Sean All
- Department of Medicine, University of Florida, USA
| | | | - Charles S Wingo
- Department of Medicine, University of Florida, USA; North Florida/South Georgia Veterans Health System, Gainesville, FL, USA
| | - Brian D Cain
- Department of Biochemistry and Molecular Biology, University of Florida, USA
| | - Michelle L Gumz
- Department of Medicine, University of Florida, USA; Department of Biochemistry and Molecular Biology, University of Florida, USA.
| |
Collapse
|
38
|
The profibrotic role of endothelin-1: is the door still open for the treatment of fibrotic diseases? Life Sci 2013; 118:156-64. [PMID: 24378671 DOI: 10.1016/j.lfs.2013.12.024] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/06/2013] [Accepted: 12/16/2013] [Indexed: 01/07/2023]
Abstract
The endothelin (ET) system consists of two G-protein-coupled receptors (ETA and ETB), three peptide ligands (ET-1, ET-2 and ET-3), and two activating peptidases (endothelin-converting enzyme-, ECE-1 and ECE-2). While initially described as a vasoregulatory factor, shown to influence several cardiovascular diseases, from hypertension to heart failure, ET-1, the predominant form in most cells and tissues, has expanded its pathophysiological relevance by recent evidences implicating this factor in the regulation of fibrosis. In this article, we review the current knowledge of the role of ET-1 in the development of fibrosis, with particular focus on the regulation of its biosynthesis and the molecular mechanisms involved in its profibrotic actions. We summarize also the contribution of ET-1 to fibrotic disorders in several organs and tissues. The development and availability of specific ET receptor antagonists have greatly stimulated a number of clinical trials in these pathologies that unfortunately have so far given negative or inconclusive results. This review finally discusses the circumstances underlying these disappointing results, as well as provides basic and clinical researchers with arguments to keep exploring the complex physiology of ET-1 and its therapeutic potential in the process of fibrosis.
Collapse
|
39
|
Dranoff JA, Bhatia N, Fausther M, Lavoie EG, Granell S, Baldini G, Hickman DA, Sheung N. Posttranslational regulation of tissue inhibitor of metalloproteinase-1 by calcium-dependent vesicular exocytosis. Physiol Rep 2013; 1:e00125. [PMID: 24400134 PMCID: PMC3871447 DOI: 10.1002/phy2.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/31/2022] Open
Abstract
Liver myofibroblasts derived from hepatic stellate cells (HSC) are critical mediators of liver fibrosis. Release of tissue inhibitor of metalloproteinase-1 (TIMP-1) advances liver fibrosis by blocking fibrinolysis. The mechanisms responsible for the posttranslational regulation of TIMP-1 by myofibroblastic HSC are unknown. Here, we demonstrate that TIMP-1 release by HSC is regulated in a posttranslational fashion via calcium-sensitive vesicular exocytosis. To our knowledge, this is the first article to directly examine vesicular trafficking in myofibroblastic HSC, potentially providing a new target to treat and or prevent liver fibrosis.
Collapse
Affiliation(s)
- Jonathan A Dranoff
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences Little Rock, Arkansas ; Research Service, Central Arkansas VA Healthcare System Little Rock, Arkansas
| | | | - Michel Fausther
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences Little Rock, Arkansas ; Research Service, Central Arkansas VA Healthcare System Little Rock, Arkansas
| | - Elise G Lavoie
- Division of Gastroenterology & Hepatology, University of Arkansas for Medical Sciences Little Rock, Arkansas ; Research Service, Central Arkansas VA Healthcare System Little Rock, Arkansas
| | - Susana Granell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, Arkansas
| | - Giulia Baldini
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock, Arkansas
| | | | - Nina Sheung
- Platt Technical High School Milford, Connecticut
| |
Collapse
|
40
|
Angiotensin II induces endothelin-1 expression in human hepatic stellate cells. Dig Dis Sci 2013; 58:2542-9. [PMID: 23625292 DOI: 10.1007/s10620-013-2685-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/09/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND Both angiotensin (Ang)-II and endothelin-1 (ET-1) are involved in the pathogenesis of liver fibrosis. Activated hepatic stellate cells (HSCs) are considered a key effector of liver fibrosis. AIMS To explore the effect of Ang-II on ET-1 expression in cultured human HSCs and the underlying mechanisms. METHODS Human HSCs were treated with Ang-II in different concentrations (0.1, 0.5, 1, 5, or 10 nM) for different lengths of time (0.5, 1, 2, 4, or 6 h) with or without transcription inhibitor actinomycin D, Ang-II type 1 (AT1) receptor blocker losartan, AT2 receptor blocker PD123177, or different kinase inhibitors. RESULTS Ang-II increased the ET-1 mRNA level in a statistically significant dose- and time-dependent manner within 4 h, which led to dose-dependent up-regulation of the ET-1 protein level. Actinomycin D (1 mg/ml), losartan (50 μM), and phosphatidylinositol-3 kinase inhibitor LY294002 (50 μM) abolished the promoting effect of Ang-II on ET-1 expression. Ang-II (10 nM) significantly increased the expression of α-smooth muscle actin and type I collagen in HSCs, which was abolished by losartan, LY294002, ET A receptor blocker BQ123, and ET-1 siRNA, but not PD123177 and ET B receptor blocker BQ788. CONCLUSIONS Ang-II induces ET-1 expression in human HSCs via the AT1 receptor by the PI3 K/Akt signaling pathway. The ET-1/ET A receptor axis could mediate the promoting effects of Ang-II on HSCs' transdifferentiation into myofibroblast-like cells. This is the first evidence of crosstalk between the Ang-II/AT1 axis and the ET-1 system in regard to the pathogenesis of liver fibrosis.
Collapse
|
41
|
Du QH, Han L, Jiang JJ, Li PT, Wang XY, Jia X. Increased endothelin receptor B and G protein coupled kinase-2 in the mesentery of portal hypertensive rats. World J Gastroenterol 2013; 19:2065-2072. [PMID: 23599626 PMCID: PMC3623984 DOI: 10.3748/wjg.v19.i13.2065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To elucidate the mechanisms of mesenteric vasodilation in portal hypertension (PHT), with a focus on endothelin signaling.
METHODS: PHT was induced in rats by common bile duct ligation (CBDL). Portal pressure (PP) was measured directly via catheters placed in the portal vein tract. The level of endothelin-1 (ET-1) in the mesenteric circulation was determined by radioimmunoassay, and the expression of the endothelin A receptor (ETAR) and endothelin B receptor (ETBR) was assessed by immunofluorescence and Western blot. Additionally, expression of G protein coupled kinase-2 (GRK2) and β-arrestin 2, which influence endothelin receptor sensitivity, were also studied by Western blot.
RESULTS: PP of CBDL rats increased significantly (11.89 ± 1.38 mmHg vs 16.34 ± 1.63 mmHg). ET-1 expression decreased in the mesenteric circulation 2 and 4 wk after CBDL. ET-1 levels in the systemic circulation of CBDL rats were increased at 2 wk and decreased at 4 wk. There was no change in ETAR expression in response to CBDL; however, increased expression of ETBR in the endothelial cells of mesenteric arterioles and capillaries was observed. In sham-operated rats, ETBR was mainly expressed in the CD31+ endothelial cells of the arterioles. With development of PHT, in addition to the endothelial cells, ETBR expression was noticeably detectable in the SMA+ smooth muscle cells of arterioles and in the CD31+ capillaries. Following CBDL, increased expression of GRK2 was also found in mesenteric tissue, though there was no change in the level of β-arrestin 2.
CONCLUSION: Decreased levels of ET-1 and increased ETBR expression in the mesenteric circulation following CBDL in rats may underlie mesenteric vasodilation in individuals with PHT. Mechanistically, increased GRK2 expression may lead to desensitization of ETAR, as well as other vasoconstrictors, promoting this vasodilatory effect.
Collapse
|
42
|
Influence of block of NF-kappa B signaling pathway on oxidative stress in the liver homogenates. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:308358. [PMID: 23577221 PMCID: PMC3612439 DOI: 10.1155/2013/308358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to assess whether BAY 11-7082, a nuclear factor-kappaB (NF-κB) inhibitor, influences the level of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α), and NF-κB related signaling pathways in the liver. The animals were divided into 4 groups: I: saline; II: saline + endothelin-1 (ET-1) (1.25 μg/kg b.w., i.v.); III: saline + ET-1 (12.5 μg/kg b.w., i.v.); and IV: BAY 11-7082 (10 mg/kg b.w., i.v.) + ET-1 (12.5 μg/kg b.w., i.v.). Injection of ET-1 alone at a dose of 12.5 μg/kg b.w. showed a significant (P < 0.001) increase in thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) level and decrease (P < 0.01) in GSH level (vs. control). ET-1 administration slightly downregulated gene expression of p65 of NF-κB but potently and in a dose-dependent way downregulated p21-cip gene expression in the liver. BAY 11-7082 significantly decreased TBARS (P < 0.001), H2O2 (P < 0.01) and improved the redox status (P < 0.05), compared to ET-1 group. The concentration of TNF-α was increased in the presence of ET-1 (P < 0.05), while BAY 11-7082 decreased TNF-α concentration (P < 0.01). Inhibition of IkBα before ET-1 administration downregulated gene expression of p21-cip but had no effect on p65.
Collapse
|
43
|
Grace JA, Angus PW. Hepatopulmonary syndrome: update on recent advances in pathophysiology, investigation, and treatment. J Gastroenterol Hepatol 2013. [PMID: 23190201 DOI: 10.1111/jgh.12061] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatopulmonary syndrome (HPS) is an important cause of dyspnea and hypoxia in the setting of liver disease, occurring in 10-30% of patients with cirrhosis. It is due to vasodilation and angiogenesis in the pulmonary vascular bed, which leads to ventilation-perfusion mismatching, diffusion limitation to oxygen exchange, and arteriovenous shunting. There is evidence, primarily from animal studies, that vasodilation is mediated by a number of endogenous vasoactive molecules, including endothelin-1 and nitric oxide (NO). In experimental HPS, liver injury stimulates release of endothelin-1 and results in increased expression of ET(B) receptors on pulmonary endothelial cells, leading to upregulation of endothelial NO synthase (eNOS) and subsequent increased production of NO, which causes vasodilation. In addition, increased phagocytosis of bacterial endotoxin in the lung not only promotes stimulation of inducible NO synthase, which increases NO production, but also contributes to intrapulmonary accumulation of monocytes, which may stimulate angiogenesis via vascular endothelial growth factor pathway. Despite these insights into the pathogenesis of experimental HPS, there is no established medical therapy, and liver transplantation remains the main treatment for symptomatic HPS, although selected patients may benefit from other surgical or radiological interventions. In this review, we focus on recent advances in our understanding of the pathophysiology of HPS, and discuss current approaches to the investigation and treatment of this condition.
Collapse
Affiliation(s)
- Josephine A Grace
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
44
|
A nanofiber membrane maintains the quiescent phenotype of hepatic stellate cells. Dig Dis Sci 2012; 57:1152-62. [PMID: 22359192 DOI: 10.1007/s10620-012-2084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 02/06/2012] [Indexed: 12/27/2022]
Abstract
BACKGROUND Hepatic stellate cells (HSC) play a major role in the progression of liver fibrosis. AIM The aim of our study was to investigate whether rat HSC cultured on a nanofiber membrane (NM) retain their quiescent phenotype during both short- and long-term culture and whether activated HSC revert to a quiescent form when re-cultured on NM. METHODS Rat HSC cultured for 1 day on plastic plates (PP) were used as quiescent HSC, while cells cultured for 1 week on PP were considered to be activated HSC. Quiescent or activated HSC were subsequently plated on PP or NM and cultured for an additional 4 days at which time their gene expression, stress fiber development, and growth factor production were determined. For long-term culture, HSC were grown on NM for 20 days and the cells then replated on PP and cultured for another 10 days. RESULTS Expression of marker genes for HSC activation, stress fiber development, and growth factor production were significantly lower in both quiescent and activated HSC cultured on NM than in those cultured on PP. After long-term culture on NM, activation marker gene expression and stress fiber development were still significantly lower in HSC than in PP, and HSC still retained the ability to activate when replated onto PP. CONCLUSIONS HSC cultured on NM retained quiescent characteristics after both short- and long-term culture while activated HSC reverted toward a quiescent state when cultured on NM. Cultures of HSC grown on NM are a useful in vitro model to investigate the mechanisms of activation and deactivation.
Collapse
|
45
|
Li T, Shi Z, Rockey DC. Preproendothelin-1 expression is negatively regulated by IFNγ during hepatic stellate cell activation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G948-57. [PMID: 22301113 PMCID: PMC3362071 DOI: 10.1152/ajpgi.00359.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endothelin-1 (ET-1), a powerful vasoconstrictor peptide, is produced by activated hepatic stellate cells (HSC) and promotes cell proliferation, fibrogenesis, and contraction, the latter of which has been thought to be mechanistically linked to portal hypertension in cirrhosis. Interferon-γ (IFNγ), a Th1 cytokine produced by T cells, inhibits stellate cell proliferation, fibrogenesis, and muscle-specific gene expression. Whether IFNγ-induced inhibitory effects are linked to regulation of ET-1 expression in activated stellate cells remains unknown. Here we examined IFNγ's effects on preproET-1 mRNA expression and the signaling pathways underlying this process. We demonstrated that preproET-1 mRNA expression in HSCs was prominently increased during cell culture-induced activation; IFNγ significantly inhibited both preproET-1 mRNA expression and ET-1 peptide production. Similar results were found in an in vivo model of liver injury and intraperitoneal administration of IFNγ. PreproET-1 promoter analysis revealed that IFNγ-induced inhibition of preproET-1 mRNA expression was closely linked to the AP-1 and Smad3 signaling pathways. Furthermore, IFNγ reduced JNK phosphorylation, which tightly was associated with decreased phosphorylation of downstream factors c-Jun and Smad3 and decreased binding activity of c-Jun and Smad3 in the preprpET-1 promoter. Importantly, IFNγ reduced both c-Jun mRNA and protein levels. Given the important role of ET-1 in wound healing, our results suggest a novel negative signaling network by which IFNγ inhibits preproET-1 expression, highlighting one potential molecular mechanism for IFNγ-induced host immunomodulation of liver fibrogenesis.
Collapse
Affiliation(s)
- Tianxia Li
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Zengdun Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Don C. Rockey
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
46
|
Verbeke L, Nevens F, Laleman W. Bench-to-beside review: acute-on-chronic liver failure - linking the gut, liver and systemic circulation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:233. [PMID: 22104633 PMCID: PMC3334742 DOI: 10.1186/cc10424] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The concept of acute-on-chronic liver failure (ACLF) was introduced recently to describe a subset of patients with chronic liver disease presenting with profound deterioration of liver function and rapidly evolving multi-organ failure. ACLF is frequently accompanied by the development of severe inflammatory response syndrome and has a high mortality. To date, treatment options are limited and exclusively supportive. Over the last few years, some insights have been generated in the pathophysiology of ACLF. A key role for the interaction of innate immune dysfunction, enhanced bacterial translocation from the gut, and circulatory dysfunction has been proposed. In this respect, therapeutic strategies have been examined, with variable success, in experimental studies in animals and humans. This review focuses on potentially relevant pathophysiological elements in the development of ACLF and points out promising treatment modalities in ACLF.
Collapse
Affiliation(s)
- Len Verbeke
- Department of Liver and Biliopancreatic Disorders, University Hospital Gasthuisberg, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
47
|
Iizuka M, Murata T, Hori M, Ozaki H. Increased contractility of hepatic stellate cells in cirrhosis is mediated by enhanced Ca2+-dependent and Ca2+-sensitization pathways. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1010-21. [PMID: 21393429 DOI: 10.1152/ajpgi.00350.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of hepatic stellate cells (HSCs) results in cirrhosis and portal hypertension due to intrahepatic resistance. Activated HSCs increase their contraction after receptor agonist stimulation; however, the signaling pathways for the regulation of contraction are not fully understood. The aim of this study was to elucidate the change in contractile mechanisms of HSCs after cirrhotic activation. The expression pattern of contractile regulatory proteins was analyzed with quantitative RT-PCR and Western blotting. The phosphorylation levels of myosin light chain (MLC), 17-kDa PKC-potentiated protein phosphatase 1 inhibitor protein (CPI-17), and MLC phosphatase targeting subunit 1 (MYPT1) after endothelin-1 (ET-1) stimulation in culture-activated HSCs were measured using phosphorylation-specific antibodies. In vivo-activated HSCs were isolated from rats subjected to bile duct ligation and repeated dimethylnitrosoamine injections. HSCs showed increased expression of not only α-smooth muscle actin, but also the contractile regulatory proteins MLC kinase (MLCK), Rho kinase 2 (ROCK2), and CPI-17 during HSC activation in vitro. In culture-activated HSCs, ET-1 increased phosphorylation of CPI-17 at Thr18, which was markedly inhibited by the PKC inhibitor Ro-31-8425. ET-1 induced phosphorylation of MYPT1 at Thr853, which was suppressed by the ROCK inhibitor Y-27632. ET-1 induced sustained phosphorylation of MLC at Thr18/Ser19, which was inhibited by both Ro-31-8425 and Y-27632. Consistent with the data obtained from the in vitro study, HSCs isolated from cirrhotic rats showed increased expression of α-smooth muscle actin, MLCK, CPI-17, and ROCK2 compared with HSCs from nontreated rats. Furthermore, MLC phosphorylation in in vivo-activated HSCs was increased, according to enhanced phosphorylation of CPI-17 and MYPT1 in the presence of ET-1. These results suggest that activated HSCs may participate in constriction of hepatic sinusoids in the cirrhotic liver through both Ca(2+)-dependent (MLCK pathway) and Ca(2+)-sensitization mechanism (CPI-17 and MYPT1 pathways).
Collapse
Affiliation(s)
- Masateru Iizuka
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Penz-Österreicher M, Österreicher CH, Trauner M. Fibrosis in autoimmune and cholestatic liver disease. Best Pract Res Clin Gastroenterol 2011; 25:245-58. [PMID: 21497742 PMCID: PMC3134112 DOI: 10.1016/j.bpg.2011.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/18/2011] [Indexed: 01/31/2023]
Abstract
Autoimmune and cholestatic liver disease account for a significant part of end-stage liver disease and are leading indications for liver transplantation. Especially cholestatic liver diseases (primary biliary cirrhosis and primary sclerosing cholangitis) appear to be different from other chronic liver diseases with regards to pathogenesis. Portal fibroblasts located in the connective tissue surrounding bile ducts appear to be different from hepatic stellate cells with regards to expression of marker proteins and response the profibrogenic and mitogenic stimuli. In addition there is increasing evidence for a cross talk between activated cholangiocytes and portal myofibroblasts. Several animal models have improved our understanding of the mechanisms underlying these chronic liver diseases. In the present review, we discuss the current concepts and ideas with regards to myofibroblastic cell populations, mechanisms of fibrosis, summarize characteristic histological findings and currently employed animal models of autoimmune and cholestatic liver disease.
Collapse
Affiliation(s)
- Melitta Penz-Österreicher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Christoph H. Österreicher
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria,Corresponding author. Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 43 18-20, A-1090 Vienna, Austria. Tel.: +43 140 400 4741; fax: +43 140 400 4735.
| |
Collapse
|
49
|
Khimji AK, Rockey DC. Endothelin and hepatic wound healing. Pharmacol Res 2011; 63:512-8. [PMID: 21421048 DOI: 10.1016/j.phrs.2011.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 03/14/2011] [Indexed: 02/08/2023]
Abstract
Liver wound healing is a coordinated response to injury caused by infections (hepatitis) or toxins (alcohol) or other processes where activation of hepatic stellate cells are a central component. During stellate cell activation, a major phenotypic transformation occurs which leads to increased production of increased extracellular matrix proteins and smooth muscle α-actin the results is organ dysfunction due to gross architectural disruption and impaired blood flow. Endothelin-1 (ET-1) is produced in increased amounts and the cellular source of ET-1 shifts from endothelial cells to stellate cells during liver injury thus setting a feedback loop which accentuates further activation, stellate cell proliferation, and production of extracellular matrix proteins. Therapy directed at intervening the ET-1 signaling pathway has significant therapeutic potential in patients with liver disease.
Collapse
Affiliation(s)
- Al-karim Khimji
- Department of Internal Medicine, Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA
| | | |
Collapse
|
50
|
Zhan S, Rockey DC. Tumor necrosis factor α stimulates endothelin-1 synthesis in rat hepatic stellate cells in hepatic wound healing through a novel IKK/JNK pathway. Exp Cell Res 2011; 317:1040-8. [PMID: 21216243 DOI: 10.1016/j.yexcr.2010.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/24/2010] [Accepted: 12/30/2010] [Indexed: 01/01/2023]
Abstract
Endothelin-1 (ET-1), a potent vasoconstrictor peptide up-regulated during wound healing and fibrosis, induces myofibroblasts to contract tissue. Here we have used a liver injury model to test the hypothesis that TNFα may be an important stimulator of ET-1 production in hepatic wound healing. We examined primary rat hepatic stellate cells, isolated from either normal or injured livers and used standard methodology to measure preproET-1 mRNA and mature ET-1 peptide, specific kinases, and preproET-1 promoter activity. Chromatin immunoprecipitation analysis was used to determine basal binding of transcription factors to the preproET-1 promoter. TNFα induced preproET-1 expression in activated hepatic stellate cells in a c-Jun N-terminal kinase (JNK)/AP-1-dependent fashion. TNFα activated JNK through an IκB kinase (IKK) pathway, which activated the transcriptional factor, c-Jun, leading to preproET-1 promoter mediated ET-1 transcription. The TNFα mediated induction of ET-1 synthesis also had functional effects, specifically mediating autocrine induced stellate cell contraction. TNFα stimulated activated stellate cells to produce ET-1 via a novel IKK-JNK-dependent signaling pathway. The resulting autocrine functional effects of ET-1 are likely to be important in the wound-healing process.
Collapse
Affiliation(s)
- Shuxin Zhan
- Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390-8887, USA
| | | |
Collapse
|