1
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Shahcheraghi SH, Ayatollahi J, Lotfi M, Aljabali AAA, Al-Zoubi MS, Panda PK, Mishra V, Satija S, Charbe NB, Serrano-Aroca Á, Bahar B, Takayama K, Goyal R, Bhatia A, Almutary AG, Alnuqaydan AM, Mishra Y, Negi P, Courtney A, McCarron PA, Bakshi HA, Tambuwala MM. Gene Therapy for Neuropsychiatric Disorders: Potential Targets and Tools. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:51-65. [PMID: 35249508 DOI: 10.2174/1871527321666220304153719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/16/2022] [Accepted: 01/16/2022] [Indexed: 01/01/2023]
Abstract
Neuropsychiatric disorders that affect the central nervous system cause considerable pressures on the health care system and have a substantial economic burden on modern societies. The present treatments based on available drugs are mostly ineffective and often costly. The molecular process of neuropsychiatric disorders is closely connected to modifying the genetic structures inherited or caused by damage, toxic chemicals, and some current diseases. Gene therapy is presently an experimental concept for neurological disorders. Clinical applications endeavor to alleviate the symptoms, reduce disease progression, and repair defective genes. Implementing gene therapy in inherited and acquired neurological illnesses entails the integration of several scientific disciplines, including virology, neurology, neurosurgery, molecular genetics, and immunology. Genetic manipulation has the power to minimize or cure illness by inducing genetic alterations at endogenous loci. Gene therapy that involves treating the disease by deleting, silencing, or editing defective genes and delivering genetic material to produce therapeutic molecules has excellent potential as a novel approach for treating neuropsychiatric disorders. With the recent advances in gene selection and vector design quality in targeted treatments, gene therapy could be an effective approach. This review article will investigate and report the newest and the most critical molecules and factors in neuropsychiatric disorder gene therapy. Different genome editing techniques available will be evaluated, and the review will highlight preclinical research of genome editing for neuropsychiatric disorders while also evaluating current limitations and potential strategies to overcome genome editing advancements.
Collapse
Affiliation(s)
- Seyed H Shahcheraghi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Jamshid Ayatollahi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Marzieh Lotfi
- Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alaa A A Aljabali
- Department of Pharmaceutics & Pharmaceutical Technology, Yarmouk University, Irbid, Jordan
| | - Mazhar S Al-Zoubi
- Yarmouk University, Faculty of Medicine, Department of Basic Medical Sciences, Irbid, Jordan
| | - Pritam K Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Nitin B Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir, C/Guillem de Castro 94, 46001 Valencia, Spain
| | - Bojlul Bahar
- Nutrition Sciences and Applied Food Safety Studies, Research Centre for Global Development, School of Sport & Health Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Kazuo Takayama
- Center for IPS Cell Research and Application, Kyoto University, Kyoto, 606-8397, Japan
| | - Rohit Goyal
- Neuropharmacology Laboratory, School of Pharmaceutical Sciences, Shoolini University, Post Box No. 9, Solan, Himachal Pradesh 173212, India
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Punjab 151001, India
| | - Abdulmajeed G Almutary
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Abdullah M Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia
| | - Yachana Mishra
- Shri Shakti Degree College, Sankhahari, Ghatampur 209206, India
| | - Poonam Negi
- Shoolini University of Biotechnology and Management Sciences, Solan 173 212, India
| | - Aaron Courtney
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Paul A McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Hamid A Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, United Kingdom
| |
Collapse
|
3
|
The M1/M4 preferring muscarinic agonist xanomeline modulates functional connectivity and NMDAR antagonist-induced changes in the mouse brain. Neuropsychopharmacology 2021; 46:1194-1206. [PMID: 33342996 PMCID: PMC8115158 DOI: 10.1038/s41386-020-00916-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/02/2020] [Accepted: 11/10/2020] [Indexed: 12/25/2022]
Abstract
Cholinergic drugs acting at M1/M4 muscarinic receptors hold promise for the treatment of symptoms associated with brain disorders characterized by cognitive impairment, mood disturbances, or psychosis, such as Alzheimer's disease or schizophrenia. However, the brain-wide functional substrates engaged by muscarinic agonists remain poorly understood. Here we used a combination of pharmacological fMRI (phMRI), resting-state fMRI (rsfMRI), and resting-state quantitative EEG (qEEG) to investigate the effects of a behaviorally active dose of the M1/M4-preferring muscarinic agonist xanomeline on brain functional activity in the rodent brain. We investigated both the effects of xanomeline per se and its modulatory effects on signals elicited by the NMDA-receptor antagonists phencyclidine (PCP) and ketamine. We found that xanomeline induces robust and widespread BOLD signal phMRI amplitude increases and decreased high-frequency qEEG spectral activity. rsfMRI mapping in the mouse revealed that xanomeline robustly decreased neocortical and striatal connectivity but induces focal increases in functional connectivity within the nucleus accumbens and basal forebrain. Notably, xanomeline pre-administration robustly attenuated both the cortico-limbic phMRI response and the fronto-hippocampal hyper-connectivity induced by PCP, enhanced PCP-modulated functional connectivity locally within the nucleus accumbens and basal forebrain, and reversed the gamma and high-frequency qEEG power increases induced by ketamine. Collectively, these results show that xanomeline robustly induces both cholinergic-like neocortical activation and desynchronization of functional networks in the mammalian brain. These effects could serve as a translatable biomarker for future clinical investigations of muscarinic agents, and bear mechanistic relevance for the putative therapeutic effect of these class of compounds in brain disorders.
Collapse
|
4
|
Metabolomic and transcriptomic signatures of prenatal excessive methionine support nature rather than nurture in schizophrenia pathogenesis. Commun Biol 2020; 3:409. [PMID: 32732995 PMCID: PMC7393105 DOI: 10.1038/s42003-020-01124-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022] Open
Abstract
The imbalance of prenatal micronutrients may perturb one-carbon (C1) metabolism and increase the risk for neuropsychiatric disorders. Prenatal excessive methionine (MET) produces in mice behavioral phenotypes reminiscent of human schizophrenia. Whether in-utero programming or early life caregiving mediate these effects is, however, unknown. Here, we show that the behavioral deficits of MET are independent of the early life mother-infant interaction. We also show that MET produces in early life profound changes in the brain C1 pathway components as well as glutamate transmission, mitochondrial function, and lipid metabolism. Bioinformatics analysis integrating metabolomics and transcriptomic data reveal dysregulations of glutamate transmission and lipid metabolism, and identify perturbed pathways of methylation and redox reactions. Our transcriptomics Linkage analysis of MET mice and schizophrenia subjects reveals master genes involved in inflammation and myelination. Finally, we identify potential metabolites as early biomarkers for neurodevelopmental defects and suggest therapeutic targets for schizophrenia. Chen, Alhassen et al. show that schizophrenia-like behavioral deficits induced by excessive prenatal methionine administration are due to in-uterus aberrations rather than through early life mother-infant interaction in mice. This study identifies the brain metabolites and transcriptomic signatures, which potentially serve as early biomarkers for schizophrenia-like behaviors.
Collapse
|
5
|
Energization by multiple substrates and calcium challenge reveal dysfunctions in brain mitochondria in a model related to acute psychosis. J Bioenerg Biomembr 2019; 52:1-15. [PMID: 31853754 DOI: 10.1007/s10863-019-09816-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/26/2019] [Indexed: 12/23/2022]
Abstract
Schizophrenia etiology is unknown, nevertheless imbalances occurring in an acute psychotic episode are important to its development, such as alterations in cellular energetic state, REDOX homeostasis and intracellular Ca2+ management, all of which are controlled primarily by mitochondria. However, mitochondrial function was always evaluated singularly, in the presence of specific respiratory substrates, without considering the plurality of the electron transport system. In this study, mitochondrial function was analyzed under conditions of isolated or multiple respiratory substrates using brain mitochondria isolated from MK-801-exposed mice. Results showed a high H2O2 production in the presence of pyruvate/malate, with no change in oxygen consumption. In the condition of multiple substrates, however, this effect is lost. The analysis of Ca2+ retention capacity revealed a significant change in the uptake kinetics of this ion by mitochondria in MK-801-exposed animals. Futhermore, when mitochondria were exposed to calcium, a total loss of oxidative phosphorylation and an impressive increase in H2O2 production were observed in the condition of multiple substrates. There was no alteration in the activity of the antioxidant enzymes analyzed. The data demonstrate for the first time, in an animal model of psychosis, two important aspects (1) mitochondria may compensate deficiencies in a single mitochondrial complex when they oxidize several substrates simultaneously, (2) Ca2+ handling is compromised in MK-801-exposed mice, resulting in a loss of phosphorylative capacity and an increase in H2O2 production. These data favor the hypothesis that disruption of key physiological roles of mitochondria may be a trigger in acute psychosis and, consequently, schizophrenia.
Collapse
|
6
|
López Hill X, Richeri A, McGregor R, Acuña A, Scorza C. Neuro-behavioral effects after systemic administration of MK-801 and disinhibition of the anterior thalamic nucleus in rats: Potential relevance in schizophrenia. Brain Res 2019; 1718:176-185. [PMID: 31071305 DOI: 10.1016/j.brainres.2019.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
Non-competitive N-methyl-d-aspartate receptor (NMDA-R) antagonists have been suggested to evoke psychotomimetic-like behaviors by selectively targeting GABAergic elements in cortical and thalamic circuits. In previous studies, we had reported the involvement of the reticular and anterior thalamic nuclei (ATN) in the MK-801-evoked hyperactivity and other motor alterations. Consistent with the possibility that these responses were mediated by thalamic disinhibition, we examined the participation of cortical and hippocampal areas innervated by ATN in the responses elicited by the systemic administration of MK-801 (0.2 mg/kg) and compared them to the effects produced by the microinjection of a subconvulsive dose of bicuculline (GABAA receptor antagonist) in the ATN. We used the expression of Fos related antigen 2 (Fra-2) as a neuronal activity marker in the ATN and its projection areas such as hippocampus (HPC), retrosplenial cortex (RS), entorhinal cortex (EC) and medial prefrontal cortex (mPFC). Dorsal (caudate-putamen, CPu) and ventral striatum (nucleus accumbens, core and shell, NAc,co and NAc,sh) were also studied. Behavioral and brain activation results suggest a partial overlap after the effect of MK-801 administration and ATN disinhibition. MK-801 and ATN disinhibition increases locomotor activity and disorganized movements, while ATN disinhibition also reduces rearing behavior. A significant increase in Fra-2 immunoreactivity (Fra-2-IR) in the ATN, mPFC (prelimbic area, PrL) and NAc,sh was observed after MK-801, while a different pattern of Fra-2-IR was detected following ATN disinhibition (e.g., increase in DG and NAc,sh, and decrease in PrL cortex). Overall, our data may contribute to the understanding of dysfunctional neural circuits involved in schizophrenia.
Collapse
Affiliation(s)
- Ximena López Hill
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Analía Richeri
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay; Laboratory of Cell Biology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Ronald McGregor
- Veterans Administration Greater Los Angeles Healthcare System, Neurobiology Research (151A3), North Hills, CA 91343, United States; Department Psychiatry and Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA 90095, United States; Brain Research Institute, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | - Alejo Acuña
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Scorza
- Department of Experimental Neuropharmacology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
7
|
Lieberman JA, Girgis RR, Brucato G, Moore H, Provenzano F, Kegeles L, Javitt D, Kantrowitz J, Wall MM, Corcoran CM, Schobel SA, Small SA. Hippocampal dysfunction in the pathophysiology of schizophrenia: a selective review and hypothesis for early detection and intervention. Mol Psychiatry 2018; 23:1764-1772. [PMID: 29311665 PMCID: PMC6037569 DOI: 10.1038/mp.2017.249] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Scientists have long sought to characterize the pathophysiologic basis of schizophrenia and develop biomarkers that could identify the illness. Extensive postmortem and in vivo neuroimaging research has described the early involvement of the hippocampus in the pathophysiology of schizophrenia. In this context, we have developed a hypothesis that describes the evolution of schizophrenia-from the premorbid through the prodromal stages to syndromal psychosis-and posits dysregulation of glutamate neurotransmission beginning in the CA1 region of the hippocampus as inducing attenuated psychotic symptoms and initiating the transition to syndromal psychosis. As the illness progresses, this pathological process expands to other regions of the hippocampal circuit and projection fields in other anatomic areas including the frontal cortex, and induces an atrophic process in which hippocampal neuropil is reduced and interneurons are lost. This paper will describe the studies of our group and other investigators supporting this pathophysiological hypothesis, as well as its implications for early detection and therapeutic intervention.
Collapse
Affiliation(s)
- JA Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - RR Girgis
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - G Brucato
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - H Moore
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - F Provenzano
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - L Kegeles
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - D Javitt
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - J Kantrowitz
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA
| | - MM Wall
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,New York State Psychiatric Institute, New York, NY, USA,Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - CM Corcoran
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - SA Schobel
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - SA Small
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA,Department of Radiology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
8
|
Cortical Circuit Models in Psychiatry. COMPUTATIONAL PSYCHIATRY 2018. [DOI: 10.1016/b978-0-12-809825-7.00001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: effects of acute sodium nitroprusside. Psychopharmacology (Berl) 2017; 234:211-222. [PMID: 27725997 DOI: 10.1007/s00213-016-4451-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/25/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE The cognitive symptoms observed in schizophrenia are not consistently alleviated by conventional antipsychotics. Following a recent pilot study, sodium nitroprusside (SNP) has been identified as a promising adjunct treatment to reduce the working memory impairments experienced by schizophrenia patients. OBJECTIVE The present experiments were designed to explore the effects of SNP on the highly translatable trial-unique, delayed nonmatching-to-location (TUNL) task in rats with and without acute MK-801 treatment. METHODS SNP (0.5, 1.0, 2.0, 4.0, and 5.0 mg/kg) and MK-801 (0.05, 0.075, and 0.1 mg/kg) were acutely administered to rats trained on the TUNL task. RESULTS Acute MK-801 treatment impaired TUNL task accuracy. Administration of SNP (2.0 mg/kg) with MK-801 (0.1 mg/kg) failed to rescue performance on TUNL. SNP (5.0 mg/kg) administration nearly 4 h prior to MK-801 (0.05 mg/kg) treatment had no preventative effect on performance impairments. SNP (2.0 mg/kg) improved performance on a subset of trials. CONCLUSION These results suggest that SNP may possess intrinsic cognitive-enhancing properties but is unable to block the effects of acute MK-801 treatment on the TUNL task. These results are inconsistent with the effectiveness of SNP as an adjunct therapy for working memory impairments in schizophrenia patients. Future studies in rodents that assess SNP as an adjunct therapy will be valuable in understanding the mechanisms underlying the effectiveness of SNP as a treatment for schizophrenia.
Collapse
|
10
|
Talati P, Rane S, Donahue MJ, Heckers S. Hippocampal arterial cerebral blood volume in early psychosis. Psychiatry Res 2016; 256:21-25. [PMID: 27644028 PMCID: PMC5064837 DOI: 10.1016/j.pscychresns.2016.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
Recent studies of patients in the early stage of psychosis have revealed increased cerebral blood volume (CBV) in specific subfields of the anterior hippocampus. These studies required injection of a contrast agent to measure steady state CBV. Here we used a novel, non-invasive method, inflow-based-vascular-space-occupancy with dynamic subtraction (iVASO-DS), to measure the arterial component of CBV (aCBV) in a single slice of the hippocampus. Based on evidence from contrast-enhanced CBV studies, we hypothesized increased aCBV in the anterior hippocampus in early psychosis. We used 3T MRI to generate iVASO-derived aCBV maps in 17 medicated patients (average duration of illness = 7.6 months) and 25 matched controls. We did not find hemispheric or regional group differences in hippocampal aCBV. The limited spatial resolution of the iVASO-DS method did not allow us to test for aCBV differences in specific subfields of the hippocampus. Future studies should investigate venous and arterial CBV changes in the hippocampus of early psychosis patients.
Collapse
Affiliation(s)
- Pratik Talati
- Vanderbilt Brain Institute, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| | - Swati Rane
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Radiology, University of Washington, Seattle, WA 98195, USA
| | - Manus J Donahue
- Vanderbilt Brain Institute, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephan Heckers
- Vanderbilt Brain Institute, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
11
|
MacDonald III AW, Zick JL, Chafee MV, Netoff TI. Integrating Insults: Using Fault Tree Analysis to Guide Schizophrenia Research across Levels of Analysis. Front Hum Neurosci 2016; 9:698. [PMID: 26779007 PMCID: PMC4702292 DOI: 10.3389/fnhum.2015.00698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 12/11/2015] [Indexed: 12/13/2022] Open
Abstract
The grand challenges of schizophrenia research are linking the causes of the disorder to its symptoms and finding ways to overcome those symptoms. We argue that the field will be unable to address these challenges within psychiatry's standard neo-Kraepelinian (DSM) perspective. At the same time the current corrective, based in molecular genetics and cognitive neuroscience, is also likely to flounder due to its neglect for psychiatry's syndromal structure. We suggest adopting a new approach long used in reliability engineering, which also serves as a synthesis of these approaches. This approach, known as fault tree analysis, can be combined with extant neuroscientific data collection and computational modeling efforts to uncover the causal structures underlying the cognitive and affective failures in people with schizophrenia as well as other complex psychiatric phenomena. By making explicit how causes combine from basic faults to downstream failures, this approach makes affordances for: (1) causes that are neither necessary nor sufficient in and of themselves; (2) within-diagnosis heterogeneity; and (3) between diagnosis co-morbidity.
Collapse
Affiliation(s)
- Angus W. MacDonald III
- Department of Psychology, Translational Research in Cognitive and Affective Mechanisms, University of MinnesotaMinneapolis, MN, USA
| | - Jennifer L. Zick
- Department of Neuroscience, University of Minnesota School of MedicineMinneapolis, MN, USA
| | - Matthew V. Chafee
- Department of Neuroscience, University of Minnesota School of MedicineMinneapolis, MN, USA
- Veterans Affairs Medical CenterMinneapolis, MN, USA
| | - Theoden I. Netoff
- Department of Biomedical Engineering, University of MinnesotaMinneapolis, MN, USA
| |
Collapse
|
12
|
Riebe I, Seth H, Culley G, Dósa Z, Radi S, Strand K, Fröjd V, Hanse E. Tonically active NMDA receptors--a signalling mechanism critical for interneuronal excitability in the CA1 stratum radiatum. Eur J Neurosci 2015; 43:169-78. [PMID: 26547631 DOI: 10.1111/ejn.13128] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022]
Abstract
In contrast to tonic extrasynaptic γ-aminobutyric acid (GABA)A receptor-mediated signalling, the physiological significance of tonic extrasynaptic N-methyl-D-aspartate (NMDA) receptor (NMDAR)-mediated signalling remains uncertain. In this study, reversible open-channel blockers of NMDARs, memantine and phencyclidine (PCP) were used as tools to examine tonic NMDAR-mediated signalling in rat hippocampal slices. Memantine in concentrations up to 10 μM had no effect on synaptically evoked NMDAR-mediated responses in pyramidal neurons or GABAergic interneurons. On the other hand, 10 μM memantine reduced tonic NMDAR-mediated currents in GABAergic interneurons by approximately 50%. These tonic NMDAR-mediated currents in interneurons contributed significantly to the excitability of the interneurons as 10 μM memantine reduced the disynaptic inhibitory postsynaptic current in pyramidal cells by about 50%. Moreover, 10 μM memantine, but also PCP in concentrations ≤ 1 μM, increased the magnitude of the population spike, likely because of disinhibition. The relatively higher impact of tonic NMDAR-mediated signalling in interneurons was at least partly explained by the expression of GluN2D-containing NMDARs, which was not observed in mature pyramidal cells. The current results are consistent with the idea that low doses of readily reversible NMDAR open-channel blockers preferentially inhibit tonically active extrasynaptic NMDARs, and they suggest that tonically active NMDARs contribute more prominently to the intrinsic excitation in GABAergic interneurons than in pyramidal cells. It is proposed that this specific difference between interneurons and pyramidal cells can explain the disinhibition caused by the Alzheimer's disease medication memantine.
Collapse
Affiliation(s)
- Ilse Riebe
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Henrik Seth
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Georgia Culley
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Zita Dósa
- Synaptic Physiology Laboratory, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Shayma Radi
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Karin Strand
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Victoria Fröjd
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| | - Eric Hanse
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, Gothenburg University, Medicinaregatan 11, 405 30, Gothenburg, Sweden
| |
Collapse
|
13
|
Strzelecki D, Podgórski M, Kałużyńska O, Gawlik-Kotelnicka O, Stefańczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P. Supplementation of Antipsychotic Treatment with the Amino Acid Sarcosine Influences Proton Magnetic Resonance Spectroscopy Parameters in Left Frontal White Matter in Patients with Schizophrenia. Nutrients 2015; 7:8767-82. [PMID: 26506383 PMCID: PMC4632447 DOI: 10.3390/nu7105427] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/03/2015] [Accepted: 09/29/2015] [Indexed: 01/04/2023] Open
Abstract
Dysfunction of the glutamatergic system, the main stimulating system in the brain, has a major role in pathogenesis of schizophrenia. The frontal white matter (WM) is partially composed of axons from glutamatergic pyramidal neurons and glia with glutamatergic receptors. The natural amino acid sarcosine, a component of a normal diet, inhibits the glycine type 1 transporter, increasing the glycine level. Thus, it modulates glutamatergic transmission through the glutamatergic ionotropic NMDA (N-methyl-d-aspartate) receptor, which requires glycine as a co-agonist. To evaluate the concentrations of brain metabolites (NAA, N-acetylaspartate; Glx, complex of glutamate, glutamine, and γ-aminobutyric acid (GABA); mI, myo-inositol; Cr, creatine; Cho, choline) in the left frontal WM, Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy was used. Twenty-five patients randomly chosen from a group of fifty with stable schizophrenia (DSM-IV-TR) and dominant negative symptoms, who were receiving antipsychotic therapy, were administered 2 g of sarcosine daily for six months. The remaining 25 patients received placebo. Assignment was double blinded. 1H-NMR spectroscopy (1.5 T) was performed twice: before and after the intervention. NAA, Glx and mI were evaluated as Cr and Cho ratios. All patients were also assessed twice with the Positive and Negative Syndrome Scale (PANSS). Results were compared between groups and in two time points in each group. The sarcosine group demonstrated a significant decrease in WM Glx/Cr and Glx/Cho ratios compared to controls after six months of therapy. In the experimental group, the final NAA/Cr ratio significantly increased and Glx/Cr ratio significantly decreased compared to baseline values. Improvement in the PANSS scores was significant only in the sarcosine group. In patients with schizophrenia, sarcosine augmentation can reverse the negative effect of glutamatergic system overstimulation, with a simultaneous beneficial increase of NAA/Cr ratio in the WM of the left frontal lobe. Our results further support the glutamatergic hypothesis of schizophrenia.
Collapse
Affiliation(s)
- Dominik Strzelecki
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Michał Podgórski
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Olga Kałużyńska
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Oliwia Gawlik-Kotelnicka
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Ludomir Stefańczyk
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| | - Magdalena Kotlicka-Antczak
- Department of Affective and Psychotic Disorders, Medical University of Łódź, Central Clinical Hospital, ul. Pomorska 251, Łódź 92-213, Poland.
| | - Agnieszka Gmitrowicz
- Department of Adolescent Psychiatry, Medical University of Łódź, Łódź 92-213, Poland.
| | - Piotr Grzelak
- Department of Radiology-Diagnostic Imaging, Medical University of Łódź, Łódź 92-213, Poland.
| |
Collapse
|
14
|
The modulatory effect of CA1 GABAb receptors on ketamine-induced spatial and non-spatial novelty detection deficits with respect to Ca2+. Neuroscience 2015; 305:157-68. [DOI: 10.1016/j.neuroscience.2015.07.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
|
15
|
Heckers S, Konradi C. GABAergic mechanisms of hippocampal hyperactivity in schizophrenia. Schizophr Res 2015; 167:4-11. [PMID: 25449711 PMCID: PMC4402105 DOI: 10.1016/j.schres.2014.09.041] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Schizophrenia is associated with abnormalities of hippocampal structure and function. Neuroimaging studies have shown that the hippocampus is hyperactive in schizophrenia. Here we explore GABAergic mechanisms of this hippocampal hyperactivity. The initial evidence for GABAergic abnormalities of the hippocampus in schizophrenia came from post-mortem studies of interneuron number, protein expression, and gene expression. These studies revealed marked decreases in gene and protein expression of somatostatin-positive and parvalbumin-positive interneurons, and indicated reduced interneuron numbers. Animal studies of decreased parvalbumin and NMDA-receptor function have shown that selective abnormalities of hippocampal interneurons mimic some of the cognitive deficits and clinical features of schizophrenia. The post-mortem and animal studies are consistent with the neuroimaging finding of increased hippocampal activity in schizophrenia, which can explain some of the psychotic symptoms and cognitive deficits. Taken together, these findings may guide the development of biomarkers and the development of new treatments for psychosis.
Collapse
Affiliation(s)
- Stephan Heckers
- Department of Psychiatry, Vanderbilt University, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212, United States.
| | - Christine Konradi
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37212, USA
| |
Collapse
|
16
|
Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 2015; 167:98-107. [PMID: 25583246 PMCID: PMC4724170 DOI: 10.1016/j.schres.2014.12.026] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/25/2014] [Accepted: 12/18/2014] [Indexed: 02/07/2023]
Abstract
While the dopamine hypothesis has dominated schizophrenia research for several decades, more recent studies have highlighted the role of fast synaptic transmitters and their receptors in schizophrenia etiology. Here we review evidence that schizophrenia is associated with a reduction in N-methyl-d-aspartate receptor (NMDAR) function. By highlighting postmortem, neuroimaging and electrophysiological studies, we provide evidence for preferential disruption of GABAergic circuits in the context of NMDAR hypo-activity states. The functional relationship between NMDARs and GABAergic neurons is realized at the molecular, cellular, microcircuit and systems levels. A synthesis of findings across these levels explains how NMDA-mediated inhibitory dysfunction may lead to aberrant interactions among brain regions, accounting for key clinical features of schizophrenia. This synthesis of schizophrenia unifies observations from diverse fields and may help chart pathways for developing novel diagnostics and therapeutics.
Collapse
Affiliation(s)
- Samuel M. Cohen
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Richard W. Tsien
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
| | - Donald C. Goff
- Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA
| | - Michael M. Halassa
- NYU Neuroscience Institute and Department of Neuroscience and Physiology, NYU Langone Medical Center, New York, NY 10016, USA
,Department of Psychiatry, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA
,To whom correspondence should be addressed:
| |
Collapse
|
17
|
Tamminga CA, Zukin RS. Schizophrenia: Evidence implicating hippocampal GluN2B protein and REST epigenetics in psychosis pathophysiology. Neuroscience 2015. [PMID: 26211447 DOI: 10.1016/j.neuroscience.2015.07.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hippocampus is strongly implicated in the psychotic symptoms of schizophrenia. Functionally, basal hippocampal activity (perfusion) is elevated in schizophrenic psychosis, as measured with positron emission tomography (PET) and with magnetic resonance (MR) perfusion techniques, while hippocampal activation to memory tasks is reduced. Subfield-specific hippocampal molecular pathology exists in human psychosis tissue which could underlie this neuronal hyperactivity, including increased GluN2B-containing NMDA receptors in hippocampal CA3, along with increased postsynaptic density protein-95 (PSD-95) along with augmented dendritic spines on the pyramidal neuron apical dendrites. We interpret these observations to implicate a reduction in the influence of a ubiquitous gene repressor, repressor element-1 silencing transcription factor (REST) in psychosis; REST is involved in the age-related maturation of the NMDA receptor from GluN2B- to GluN2A-containing NMDA receptors through epigenetic remodeling. These CA3 changes in psychosis leave the hippocampus liable to pathological increases in neuronal activity, feedforward excitation and false memory formation, sometimes with psychotic content.
Collapse
Affiliation(s)
- C A Tamminga
- UT Southwestern Medical School, Dallas, TX, United States.
| | - R S Zukin
- Albert Einstein School of Medicine, New York, NY, United States
| |
Collapse
|
18
|
Ghoshal A, Conn PJ. The hippocampo-prefrontal pathway: a possible therapeutic target for negative and cognitive symptoms of schizophrenia. FUTURE NEUROLOGY 2015; 10:115-128. [PMID: 25825588 DOI: 10.2217/fnl.14.63] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hippocampo-prefrontal (H-PFC) pathway has been linked to cognitive and emotional disturbances in several psychiatric disorders including schizophrenia. Preclinical evidence from the NMDA receptor antagonism rodent model of schizophrenia shows severe pathology selective to the H-PFC pathway. It is speculated that there is an increased excitatory drive from the hippocampus to the prefrontal cortex due to dysfunctions in the H-PFC plasticity, which may serve as the basis for the behavioral consequences observed in this rodent model. Thus, the H-PFC pathway is currently emerging as a promising therapeutic target for the negative and cognitive symptom clusters of schizophrenia. Here, we have reviewed the physiological, pharmacological and functional characteristics of the H-PFC pathway and we propose that allosteric activation of glutamatergic and cholinergic neurotransmission can serve as a plausible therapeutic approach.
Collapse
Affiliation(s)
- Ayan Ghoshal
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 0697, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery, Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232 0697, USA
| |
Collapse
|
19
|
Anticevic A, Murray JD, Barch DM. Bridging Levels of Understanding in Schizophrenia Through Computational Modeling. Clin Psychol Sci 2015; 3:433-459. [PMID: 25960938 DOI: 10.1177/2167702614562041] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Schizophrenia is an illness with a remarkably complex symptom presentation that has thus far been out of reach of neuroscientific explanation. This presents a fundamental problem for developing better treatments that target specific symptoms or root causes. One promising path forward is the incorporation of computational neuroscience, which provides a way to formalize experimental observations and, in turn, make theoretical predictions for subsequent studies. We review three complementary approaches: (a) biophysically based models developed to test cellular-level and synaptic hypotheses, (b) connectionist models that give insight into large-scale neural-system-level disturbances in schizophrenia, and (c) models that provide a formalism for observations of complex behavioral deficits, such as negative symptoms. We argue that harnessing all of these modeling approaches represents a productive approach for better understanding schizophrenia. We discuss how blending these approaches can allow the field to progress toward a more comprehensive understanding of schizophrenia and its treatment.
Collapse
Affiliation(s)
- Alan Anticevic
- Department of Psychiatry, Yale University ; National Institute on Alcohol Abuse and Alcoholism Center for the Translational Neuroscience of Alcoholism, New Haven, Connecticut ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven
| | | | - Deanna M Barch
- Department of Psychology and Department of Psychiatry, Washington University in St. Louis
| |
Collapse
|
20
|
Walter M, Li S, Demenescu LR. Multistage drug effects of ketamine in the treatment of major depression. Eur Arch Psychiatry Clin Neurosci 2014; 264 Suppl 1:S55-65. [PMID: 25217177 DOI: 10.1007/s00406-014-0535-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023]
Abstract
A substantial number of patients diagnosed with major depression disorder show poor or no response to standard antidepressive drugs. Recent studies showed that ketamine promotes a rapid and sustained antidepressive effect in treatment-resistant depression. Importantly, after a single dose, such antidepressant action appears very fast, reaching maximum efficacy after 1-2 days before it slowly decays after 3-7 days. This temporal pattern is especially interesting since most effects are investigated following single, subanesthetic doses. This means that effects are observed at time points when the blood levels have long fallen below any active threshold. Mechanisms of action thus may be sought either in secondary or compensatory processes, which develop after acute systemic derangement or in molecular downstream mechanisms of action, which after initiation do not require the presence of active drug levels. We here review acute and delayed effects of subanesthetic ketamine infusion and discuss potential origins of antidepressant drug action. We will provide evidences that both acute effects on abnormal network configuration and delayed effects at the level of homeostatic synaptic plasticity may be necessary for antidepressant action. We further argue that such effects should be followed by a temporally well-defined exploitation of these transient changes by therapeutic processes, aiming at sustained changes of network configuration via psychotherapeutic or other methods.
Collapse
Affiliation(s)
- Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University, ZENIT, Leipziger Str. 44, 39120, Magdeburg, Germany,
| | | | | |
Collapse
|
21
|
A canonical circuit for generating phase-amplitude coupling. PLoS One 2014; 9:e102591. [PMID: 25136855 PMCID: PMC4138025 DOI: 10.1371/journal.pone.0102591] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 06/20/2014] [Indexed: 11/30/2022] Open
Abstract
‘Phase amplitude coupling’ (PAC) in oscillatory neural activity describes a phenomenon whereby the amplitude of higher frequency activity is modulated by the phase of lower frequency activity. Such coupled oscillatory activity – also referred to as ‘cross-frequency coupling’ or ‘nested rhythms’ – has been shown to occur in a number of brain regions and at behaviorally relevant time points during cognitive tasks; this suggests functional relevance, but the circuit mechanisms of PAC generation remain unclear. In this paper we present a model of a canonical circuit for generating PAC activity, showing how interconnected excitatory and inhibitory neural populations can be periodically shifted in to and out of oscillatory firing patterns by afferent drive, hence generating higher frequency oscillations phase-locked to a lower frequency, oscillating input signal. Since many brain regions contain mutually connected excitatory-inhibitory populations receiving oscillatory input, the simplicity of the mechanism generating PAC in such networks may explain the ubiquity of PAC across diverse neural systems and behaviors. Analytic treatment of this circuit as a nonlinear dynamical system demonstrates how connection strengths and inputs to the populations can be varied in order to change the extent and nature of PAC activity, importantly which phase of the lower frequency rhythm the higher frequency activity is locked to. Consequently, this model can inform attempts to associate distinct types of PAC with different network topologies and physiologies in real data.
Collapse
|
22
|
Involvement of the CA1 GABAA receptors in MK-801-induced anxiolytic-like effects. Behav Pharmacol 2014; 25:197-205. [DOI: 10.1097/fbp.0000000000000037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Rial D, Lara DR, Cunha RA. The Adenosine Neuromodulation System in Schizophrenia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 119:395-449. [DOI: 10.1016/b978-0-12-801022-8.00016-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Anticevic A, Cole MW, Repovs G, Savic A, Driesen NR, Yang G, Cho YT, Murray JD, Glahn DC, Wang XJ, Krystal JH. Connectivity, pharmacology, and computation: toward a mechanistic understanding of neural system dysfunction in schizophrenia. Front Psychiatry 2013; 4:169. [PMID: 24399974 PMCID: PMC3871997 DOI: 10.3389/fpsyt.2013.00169] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 12/04/2013] [Indexed: 12/30/2022] Open
Abstract
Neuropsychiatric diseases such as schizophrenia and bipolar illness alter the structure and function of distributed neural networks. Functional neuroimaging tools have evolved sufficiently to reliably detect system-level disturbances in neural networks. This review focuses on recent findings in schizophrenia and bipolar illness using resting-state neuroimaging, an advantageous approach for biomarker development given its ease of data collection and lack of task-based confounds. These benefits notwithstanding, neuroimaging does not yet allow the evaluation of individual neurons within local circuits, where pharmacological treatments ultimately exert their effects. This limitation constitutes an important obstacle in translating findings from animal research to humans and from healthy humans to patient populations. Integrating new neuroscientific tools may help to bridge some of these gaps. We specifically discuss two complementary approaches. The first is pharmacological manipulations in healthy volunteers, which transiently mimic some cardinal features of psychiatric conditions. We specifically focus on recent neuroimaging studies using the NMDA receptor antagonist, ketamine, to probe glutamate synaptic dysfunction associated with schizophrenia. Second, we discuss the combination of human pharmacological imaging with biophysically informed computational models developed to guide the interpretation of functional imaging studies and to inform the development of pathophysiologic hypotheses. To illustrate this approach, we review clinical investigations in addition to recent findings of how computational modeling has guided inferences drawn from our studies involving ketamine administration to healthy subjects. Thus, this review asserts that linking experimental studies in humans with computational models will advance to effort to bridge cellular, systems, and clinical neuroscience approaches to psychiatric disorders.
Collapse
Affiliation(s)
- Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; NIAAA Center for the Translational Neuroscience of Alcoholism , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Interdepartmental Neuroscience Program, Yale University , New Haven, CT , USA ; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital , Hartford, CT , USA ; Department of Psychology, Yale University , New Haven, CT , USA
| | - Michael W Cole
- Department of Psychology, Washington University in St. Louis , St. Louis, MO , USA
| | - Grega Repovs
- Department of Psychology, University of Ljubljana , Ljubljana , Slovenia
| | - Aleksandar Savic
- Department of Psychiatry, University of Zagreb School of Medicine , Zagreb , Croatia
| | - Naomi R Driesen
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Interdepartmental Neuroscience Program, Yale University , New Haven, CT , USA
| | - Youngsun T Cho
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA
| | - John D Murray
- Center for Neural Science, New York University , New York, NY , USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital , Hartford, CT , USA
| | - Xiao-Jing Wang
- Center for Neural Science, New York University , New York, NY , USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine , New Haven, CT , USA ; NIAAA Center for the Translational Neuroscience of Alcoholism , New Haven, CT , USA ; Abraham Ribicoff Research Facilities, Connecticut Mental Health Center , New Haven, CT , USA ; Department of Neurobiology, Yale University School of Medicine , New Haven, CT , USA
| |
Collapse
|
25
|
Pisansky MT, Wickham RJ, Su J, Fretham S, Yuan LL, Sun M, Gewirtz JC, Georgieff MK. Iron deficiency with or without anemia impairs prepulse inhibition of the startle reflex. Hippocampus 2013; 23:952-62. [PMID: 23733517 DOI: 10.1002/hipo.22151] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
Abstract
Iron deficiency (ID) during early life causes long-lasting detrimental cognitive sequelae, many of which are linked to alterations in hippocampus function, dopamine synthesis, and the modulation of dopaminergic circuitry by the hippocampus. These same features have been implicated in the origins of schizophrenia, a neuropsychiatric disorder with significant cognitive impairments. Deficits in sensorimotor gating represent a reliable endophenotype of schizophrenia that can be measured by prepulse inhibition (PPI) of the acoustic startle reflex. Using two rodent model systems, we investigated the influence of early-life ID on PPI in adulthood. To isolate the role of hippocampal iron in PPI, our mouse model utilized a timed (embryonic day 18.5), hippocampus-specific knockout of Slc11a2, a gene coding an important regulator of cellular iron uptake, the divalent metal transport type 1 protein (DMT-1). Our second model used a classic rat dietary-based global ID during gestation, a condition that closely mimics human gestational ID anemia (IDA). Both models exhibited impaired PPI in adulthood. Furthermore, our DMT-1 knockout model displayed reduced long-term potentiation (LTP) and elevated paired-pulse facilitation (PPF), electrophysiological results consistent with previous findings in the IDA rat model. These results, in combination with previous findings demonstrating impaired hippocampus functioning and altered dopaminergic and glutamatergic neurotransmission, suggest that iron availability within the hippocampus is critical for the neurodevelopmental processes underlying sensorimotor gating. Ultimately, evidence of reduced PPI in both of our models may offer insights into the roles of fetal ID and the hippocampus in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Marc T Pisansky
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jodo E. The role of the hippocampo-prefrontal cortex system in phencyclidine-induced psychosis: a model for schizophrenia. ACTA ACUST UNITED AC 2013; 107:434-40. [PMID: 23792022 DOI: 10.1016/j.jphysparis.2013.06.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022]
Abstract
Phencyclidine (PCP) is a psychotomimetic drug that induces schizophrenia-like symptoms in healthy individuals and exacerbates pre-existing symptoms in patients with schizophrenia. PCP also induces behavioral and cognitive abnormalities in non-human animals, and PCP-treated animals are considered a reliable pharmacological model of schizophrenia. However, the exact neural mechanisms by which PCP modulates behavior are not known. During the last decade several studies have indicated that disturbed activity of the prefrontal cortex (PFC) may be closely related to PCP-induced psychosis. Systemic administration of PCP produces long-lasting activation of medial PFC (mPFC) neurons in rats, almost in parallel with augmentation of locomotor activity and behavioral stereotypies. Later studies have showed that such PCP-induced behavioral abnormalities are ameliorated by prior administration of drugs that normalize or inhibit excess excitability of PFC neurons. Similar activation of mPFC neurons is not induced by systemic injection of a typical psychostimulant such as methamphetamine, even though behavioral hyperactivity is induced to almost the same level. This suggests that the neural circuits mediating PCP-induced psychosis are different to those mediating methamphetamine-induced psychosis. Locally applied PCP does not induce excitation of mPFC neurons, indicating that PCP-induced tonic excitation of mPFC neurons is mediated by inputs from regions outside the mPFC. This hypothesis is strongly supported by experimental results showing that local perfusion of PCP in the ventral hippocampus, which has dense fiber projections to the mPFC, induces tonic activation of mPFC neurons with accompanying augmentation of behavioral abnormalities. In this review we summarize current knowledge on the neural mechanisms underlying PCP-induced psychosis and highlight a possible involvement of the PFC and the hippocampus in PCP-induced psychosis.
Collapse
Affiliation(s)
- Eiichi Jodo
- Department of Neurophysiology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan.
| |
Collapse
|
27
|
Imaging patients with psychosis and a mouse model establishes a spreading pattern of hippocampal dysfunction and implicates glutamate as a driver. Neuron 2013; 78:81-93. [PMID: 23583108 DOI: 10.1016/j.neuron.2013.02.011] [Citation(s) in RCA: 394] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2013] [Indexed: 11/22/2022]
Abstract
VIDEO ABSTRACT The hippocampus in schizophrenia is characterized by both hypermetabolism and reduced size. It remains unknown whether these abnormalities are mechanistically linked. Here we addressed this question by using MRI tools that can map hippocampal metabolism and structure in patients and mouse models. In at-risk patients, hypermetabolism was found to begin in CA1 and spread to the subiculum after psychosis onset. CA1 hypermetabolism at baseline predicted hippocampal atrophy, which occurred during progression to psychosis, most prominently in similar regions. Next, we used ketamine to model conditions of acute psychosis in mice. Acute ketamine reproduced a similar regional pattern of hypermetabolism, while repeated exposure shifted the hippocampus to a hypermetabolic basal state with concurrent atrophy and pathology in parvalbumin-expressing interneurons. Parallel in vivo experiments using the glutamate-reducing drug LY379268 and direct measurements of extracellular glutamate showed that glutamate drives both neuroimaging abnormalities. These findings show that hippocampal hypermetabolism leads to atrophy in psychotic disorder and suggest glutamate as a pathogenic driver.
Collapse
|
28
|
Kotermanski SE, Johnson JW, Thiels E. Comparison of behavioral effects of the NMDA receptor channel blockers memantine and ketamine in rats. Pharmacol Biochem Behav 2013; 109:67-76. [PMID: 23665480 DOI: 10.1016/j.pbb.2013.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/07/2023]
Abstract
Memantine and ketamine block N-methyl-D-aspartate (NMDA) receptors with similar affinity and kinetics, yet their behavioral consequences differ: e.g., memantine is used to alleviate symptoms of Alzheimer's disease, whereas ketamine reproduces symptoms of schizophrenia. The two drugs exhibit different pharmacokinetics, which may play a principal role in their differential behavioral effects. To gain insight into the drugs' behavioral consequences, we treated adult male rats acutely with varying doses (0-40 mg/kg i.p.) of memantine or ketamine and assessed exploratory behavior and spatial working memory. To examine the importance of pharmacokinetics, we assessed behavior either 15 or 45 min after drug administration. Both drugs decreased ambulation, fine movements, and rearing at the beginning of the exploratory activity test; however, at the end of the test, high doses of only memantine increased ambulation and fine movements. High doses of both drugs disrupted spontaneous alternation, a measure of working memory, but high doses of only memantine elicited perseverative behavior. Surprisingly, ketamine's effects were influenced by the delay between drug administration and testing no more frequently than were memantine's. Our findings show that, regardless of test delay, memantine and ketamine evoke similar behavioral effects at lower doses, consistent with NMDA receptors being both drugs' principal site of action, but can have divergent effects at higher doses. Our results suggest that the divergence of memantine's and ketamine's behavioral consequences is likely to result from differences in mechanisms of NMDA receptor antagonism or actions at other targets.
Collapse
Affiliation(s)
- Shawn E Kotermanski
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
29
|
Taxini CL, Puga CCI, Dias MB, Bícego KC, Gargaglioni LH. Ionotropic but not metabotropic glutamatergic receptors in the locus coeruleus modulate the hypercapnic ventilatory response in unanaesthetized rats. Acta Physiol (Oxf) 2013; 208:125-35. [PMID: 23414221 DOI: 10.1111/apha.12082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 10/31/2012] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Abstract
AIM Central chemoreceptors are important to detect changes of CO2/H(+), and the Locus coeruleus (LC) is one of the many putative central chemoreceptor sites. Here, we studied the contribution of LC glutamatergic receptors on ventilatory, cardiovascular and thermal responses to hypercapnia. METHODS To this end, we determined pulmonary ventilation (V(E)), body temperatures (T(b)), mean arterial pressure (MAP) and heart rate (HR) of male Wistar rats before and after unilateral microinjection of kynurenic acid (KY, an ionotropic glutamate receptor antagonist, 10 nmol/0.1 μL) or α-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamate receptor antagonist, 10 nmol/0.1 μL) into the LC, followed by 60 min of air breathing or hypercapnia exposure (7% CO2). RESULTS Ventilatory response to hypercapnia was higher in animals treated with KY intra-LC (1918.7 ± 275.4) compared with the control group (1057.8 ± 213.9, P < 0.01). However, the MCPG treatment within the LC had no effect on the hypercapnia-induced hyperpnea. The cardiovascular and thermal controls were not affected by hypercapnia or by the injection of KY and MCPG in the LC. CONCLUSION These data suggest that glutamate acting on ionotropic, but not metabotropic, receptors in the LC exerts an inhibitory modulation of hypercapnia-induced hyperpnea.
Collapse
Affiliation(s)
- C. L. Taxini
- Department of Animal Morphology and Physiology; Sao Paulo State University-FCAV; Jaboticabal; SP; Brazil
| | - C. C. I. Puga
- Department of Biology; Sao Paulo State University-IBILCE; São José do Rio Pretol; SP; Brazil
| | - M. B. Dias
- Department of Physiology; Institute of Bioscience; Sao Paulo State University-UNESP; Botucatu; SP; Brazil
| | - K. C. Bícego
- Department of Animal Morphology and Physiology; Sao Paulo State University-FCAV; Jaboticabal; SP; Brazil
| | - L. H. Gargaglioni
- Department of Animal Morphology and Physiology; Sao Paulo State University-FCAV; Jaboticabal; SP; Brazil
| |
Collapse
|
30
|
Siekmeier PJ, vanMaanen DP. Development of antipsychotic medications with novel mechanisms of action based on computational modeling of hippocampal neuropathology. PLoS One 2013; 8:e58607. [PMID: 23526999 PMCID: PMC3602393 DOI: 10.1371/journal.pone.0058607] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 02/05/2013] [Indexed: 12/28/2022] Open
Abstract
A large number of cellular level abnormalities have been identified in the hippocampus of schizophrenic subjects. Nonetheless, it remains uncertain how these pathologies interact at a system level to create clinical symptoms, and this has hindered the development of more effective antipsychotic medications. Using a 72-processor supercomputer, we created a tissue level hippocampal simulation, featuring multicompartmental neuron models with multiple ion channel subtypes and synaptic channels with realistic temporal dynamics. As an index of the schizophrenic phenotype, we used the specific inability of the model to attune to 40 Hz (gamma band) stimulation, a well-characterized abnormality in schizophrenia. We examined several possible combinations of putatively schizophrenogenic cellular lesions by systematically varying model parameters representing NMDA channel function, dendritic spine density, and GABA system integrity, conducting 910 trials in total. Two discrete “clusters” of neuropathological changes were identified. The most robust was characterized by co-occurring modest reductions in NMDA system function (-30%) and dendritic spine density (-30%). Another set of lesions had greater NMDA hypofunction along with low level GABA system dysregulation. To the schizophrenic model, we applied the effects of 1,500 virtual medications, which were implemented by varying five model parameters, independently, in a graded manner; the effects of known drugs were also applied. The simulation accurately distinguished agents that are known to lack clinical efficacy, and identified novel mechanisms (e.g., decrease in AMPA conductance decay time constant, increase in projection strength of calretinin-positive interneurons) and combinations of mechanisms that could re-equilibrate model behavior. These findings shed light on the mechanistic links between schizophrenic neuropathology and the gamma band oscillatory abnormalities observed in the illness. As such, they generate specific falsifiable hypotheses, which can guide postmortem and other laboratory research. Significantly, this work also suggests specific non-obvious targets for potential pharmacologic agents.
Collapse
Affiliation(s)
- Peter J Siekmeier
- Laboratory for Computational Neuroscience, McLean Hospital, Belmont, Massachusetts, United States of America.
| | | |
Collapse
|
31
|
Murray JD, Anticevic A, Gancsos M, Ichinose M, Corlett PR, Krystal JH, Wang XJ. Linking microcircuit dysfunction to cognitive impairment: effects of disinhibition associated with schizophrenia in a cortical working memory model. Cereb Cortex 2012. [PMID: 23203979 DOI: 10.1093/cercor/bhs370] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Excitation-inhibition balance (E/I balance) is a fundamental property of cortical microcircuitry. Disruption of E/I balance in prefrontal cortex is hypothesized to underlie cognitive deficits observed in neuropsychiatric illnesses such as schizophrenia. To elucidate the link between these phenomena, we incorporated synaptic disinhibition, via N-methyl-D-aspartate receptor perturbation on interneurons, into a network model of spatial working memory (WM). At the neural level, disinhibition broadens the tuning of WM-related, stimulus-selective persistent activity patterns. The model predicts that this change at the neural level leads to 2 primary behavioral deficits: 1) increased behavioral variability that degrades the precision of stored information and 2) decreased ability to filter out distractors during WM maintenance. We specifically tested the main model prediction, broadened WM representation under disinhibition, using behavioral data from human subjects performing a spatial WM task combined with ketamine infusion, a pharmacological model of schizophrenia hypothesized to induce disinhibition. Ketamine increased errors in a pattern predicted by the model. Finally, as proof-of-principle, we demonstrate that WM deteriorations in the model can be ameliorated by compensations that restore E/I balance. Our findings identify specific ways by which cortical disinhibition affects WM, suggesting new experimental designs for probing the brain mechanisms of WM deficits in schizophrenia.
Collapse
Affiliation(s)
- John D Murray
- Department of Physics, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia. Proc Natl Acad Sci U S A 2012; 109:16720-5. [PMID: 23012427 DOI: 10.1073/pnas.1208494109] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) receptors is vital for the cortical computations underlying cognition and might be disrupted in severe neuropsychiatric illnesses such as schizophrenia. Studies on this topic have been limited to processes in local circuits; however, cognition involves large-scale brain systems with multiple interacting regions. A prominent feature of the human brain's global architecture is the anticorrelation of default-mode vs. task-positive systems. Here, we show that administration of an NMDA glutamate receptor antagonist, ketamine, disrupted the reciprocal relationship between these systems in terms of task-dependent activation and connectivity during performance of delayed working memory. Furthermore, the degree of this disruption predicted task performance and transiently evoked symptoms characteristic of schizophrenia. We offer a parsimonious hypothesis for this disruption via biophysically realistic computational modeling, namely cortical disinhibition. Together, the present findings establish links between glutamate's role in the organization of large-scale anticorrelated neural systems, cognition, and symptoms associated with schizophrenia in humans.
Collapse
|
33
|
Bifone A, Gozzi A. Neuromapping techniques in drug discovery: pharmacological MRI for the assessment of novel antipsychotics. Expert Opin Drug Discov 2012; 7:1071-82. [PMID: 22971143 DOI: 10.1517/17460441.2012.724057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Treatment of psychiatric and neurological diseases represents a substantial unmet medical need, but the development of novel, effective and safe drugs is proving difficult. While substantial improvement over existing pharmacological agents is expected from new molecular targets emerging in the genomic era, the validation and exploitation of novel mechanisms of action is a lengthy and costly process. The use of neuroimaging techniques, and more specifically of functional and pharmacological magnetic resonance imaging (MRI), has been advocated as a powerful approach to this problem, providing translational biomarkers for the objective assessment of drug activity on brain function, and possibly surrogate markers of clinical response. AREAS COVERED The authors review the recent application of functional and pharmacological MRI (phMRI) in the study of novel treatments of psychosis based on glutamatergic mechanisms. Furthermore, they review contribution of functional imaging in the target validation and early assessment of drugs exploiting glutamatergic mechanisms as an example of potentially impactful exploitation of neuroimaging methods in drug discovery. EXPERT OPINION While functional neuroimaging methods may provide useful markers of drug activity and response to treatment, their translational potential, that is, their use to bridge animal and human investigations is seldom exploited. The application of phMRI in the study of novel antipsychotics based on glutamatergic mechanisms represents an example of functional neuroimaging as a powerful means to link preclinical and clinical research, thus providing a paradigm that may help expedite progression into the clinical phase of novel mechanisms for the treatment of psychiatric and neurological diseases.
Collapse
Affiliation(s)
- Angelo Bifone
- Istituto Italiano di Tecnologia, Center for Nanotechnology Innovation @NEST, Pisa, Italy.
| | | |
Collapse
|
34
|
Lyon L, Saksida LM, Bussey TJ. Spontaneous object recognition and its relevance to schizophrenia: a review of findings from pharmacological, genetic, lesion and developmental rodent models. Psychopharmacology (Berl) 2012; 220:647-72. [PMID: 22068459 DOI: 10.1007/s00213-011-2536-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/06/2011] [Indexed: 12/12/2022]
Abstract
RATIONALE Spontaneous (novel) object recognition (SOR) is one of the most widely used rodent behavioural tests. The opportunity for rapid data collection has made SOR a popular choice in studies that explore cognitive impairment in rodent models of schizophrenia, and that test the efficacy of drugs intended to reverse these deficits. OBJECTIVES We provide an overview of the many recent studies that have used SOR to explore the mnemonic effects of manipulation of the key transmitter systems relevant to schizophrenia-the dopamine, glutamate, GABA, acetylcholine, serotonin and cannabinoid systems-alone or in combination. We also review the use of SOR in studying memory in genetically modified mouse models of schizophrenia, as well as in neurodevelopmental and lesion models. We end by discussing the construct and predictive validity, and translational relevance, of SOR with respect to cognitive impairment in schizophrenia. RESULTS Perturbation of the dopamine or glutamate systems can generate robust and reliable impairment in SOR. Impaired performance is also seen following antagonism of the muscarinic acetylcholine system, or exposure to cannabinoid agonists. Cognitive enhancement has been reported using alpha7-nicotinic acetylcholine receptor agonists and 5-HT(6) antagonists. Among non-pharmacological models, neonatal ventral hippocampal lesions and maternal immune activation can impair SOR, while mixed results have been obtained with mice carrying mutations in schizophrenia risk-associated genes, including neuregulin and COMT. CONCLUSIONS While SOR is not without its limitations, the task represents a useful method for studying manipulations with relevance to cognitive impairment in schizophrenia, as well as the interactions between them.
Collapse
Affiliation(s)
- L Lyon
- Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | | | | |
Collapse
|
35
|
Fitzgerald PJ. The NMDA receptor may participate in widespread suppression of circuit level neural activity, in addition to a similarly prominent role in circuit level activation. Behav Brain Res 2012; 230:291-8. [DOI: 10.1016/j.bbr.2012.01.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 12/23/2022]
|
36
|
Herwerth M, Jensen V, Novak M, Konopka W, Hvalby O, Köhr G. D4 dopamine receptors modulate NR2B NMDA receptors and LTP in stratum oriens of hippocampal CA1. Cereb Cortex 2011; 22:1786-98. [PMID: 21955919 DOI: 10.1093/cercor/bhr275] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dopamine plays an important role in synaptic plasticity and learning and is involved in the pathogenesis of various neurological and psychiatric disorders. Here, we reveal staining of dopaminergic fibers in stratum oriens of the mouse hippocampal CA1 region, a finding that is consistent with earlier reports. Furthermore, we examined the effect of dopamine agonists on NMDAR-dependent early long-term potentiation (LTP) (40 min) during γ-aminobutyric acid (GABA)(A)-mediated blockade. LTP of the AMPA component was strongly reduced in stratum oriens but barely affected in stratum radiatum. This layer-specific effect was caused by D4 receptor activation, which augmented the inactivation of synaptic NMDAR-mediated currents (NMDA EPSCs) during LTP induction through a Ca(2+)-dependent G-protein-independent mechanism. A similar dopaminergic modulation of both NMDA EPSCs and LTP was also observed in mice constitutively lacking NR2A but was absent in mice lacking NR2B in principal forebrain neurons. Together, these experiments strongly indicate that dopaminergic modulation of early LTP in stratum oriens occurs through NMDARs containing NR2B subunits via D4Rs. Thus, a dopamine hyperfunction in stratum oriens may result in NMDAR hypofunction that could affect both normal and pathological conditions.
Collapse
Affiliation(s)
- Marina Herwerth
- Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Timofeeva OA, Levin ED. Glutamate and nicotinic receptor interactions in working memory: importance for the cognitive impairment of schizophrenia. Neuroscience 2011; 195:21-36. [PMID: 21884762 DOI: 10.1016/j.neuroscience.2011.08.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/16/2011] [Accepted: 08/17/2011] [Indexed: 12/15/2022]
Abstract
This article reaches across disciplines to correlate results in molecular, cellular, behavioral, and clinical research to develop a more complete picture of how working memory (WM) functions. It identifies a new idea that deserves further investigation. NMDA glutamate receptors (NMDAR) are critical for memory function. NMDAR inhibition effectively reproduces principal manifestations of schizophrenia (SP), such as WM impairment and GABAergic deficit (mainly reduction of glutamic acid decarboxylase 67 (GAD67) and parvalbumin (PV) content). Nicotine and selective α7 nicotinic acetylcholine receptor (nAChR) agonists reduce WM impairments in patients with SP and reverse WM deficits in animals treated with NMDAR antagonists. The mechanism of this effect is unknown. Importantly, WM recovery occurs even before restoration of NMDAR blockade-induced molecular alterations, including reduced GAD67 in interneurons. Our insight into the cognitive-enhancing effect of α7 nAChR agonists, particularly in the animal models of SP, combines reviews of recent findings on glutamate and nicotinic receptor expression in the neuronal circuits involved in WM, the properties of these receptors, their implication in WM regulation, generation of rhythmic neuronal activity, resulting in a proposed hypothesis for further investigations. We suggest that (1) cortical/hippocampal interneurons, particularly PV positive, play a crucial role in WM and that impairment of these cells in SP could be behind the WM deficit; (2) activation of α7 nAChRs could restore calcium signaling and intrinsic properties of these interneurons, and associated with these events, computational capacity, gamma rhythmic activity, and WM would also be restored.
Collapse
Affiliation(s)
- O A Timofeeva
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Box 104790, Durham, NC 27710, USA.
| | | |
Collapse
|
38
|
Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW. Ketamine disrupts θ modulation of γ in a computer model of hippocampus. J Neurosci 2011; 31:11733-43. [PMID: 21832203 PMCID: PMC3177405 DOI: 10.1523/jneurosci.0501-11.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/21/2022] Open
Abstract
Abnormalities in oscillations have been suggested to play a role in schizophrenia. We studied theta-modulated gamma oscillations in a computer model of hippocampal CA3 in vivo with and without simulated application of ketamine, an NMDA receptor antagonist and psychotomimetic. Networks of 1200 multicompartment neurons [pyramidal, basket, and oriens-lacunosum moleculare (OLM) cells] generated theta and gamma oscillations from intrinsic network dynamics: basket cells primarily generated gamma and amplified theta, while OLM cells strongly contributed to theta. Extrinsic medial septal inputs paced theta and amplified both theta and gamma oscillations. Exploration of NMDA receptor reduction across all location combinations demonstrated that the experimentally observed ketamine effect occurred only with isolated reduction of NMDA receptors on OLMs. In the ketamine simulations, lower OLM activity reduced theta power and disinhibited pyramidal cells, resulting in increased basket cell activation and gamma power. Our simulations predict the following: (1) ketamine increases firing rates; (2) oscillations can be generated by intrinsic hippocampal circuits; (3) medial-septum inputs pace and augment oscillations; (4) pyramidal cells lead basket cells at the gamma peak but lag at trough; (5) basket cells amplify theta rhythms; (6) ketamine alters oscillations due to primary blockade at OLM NMDA receptors; (7) ketamine alters phase relationships of cell firing; (8) ketamine reduces network responsivity to the environment; (9) ketamine effect could be reversed by providing a continuous inward current to OLM cells. We suggest that this last prediction has implications for a possible novel treatment for cognitive deficits of schizophrenia by targeting OLM cells.
Collapse
Affiliation(s)
- Samuel A Neymotin
- State University of New York Downstate/New York University-Poly Joint Biomedical Engineering Program, Brooklyn, New York 11201, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Del Arco A, Ronzoni G, Mora F. Prefrontal stimulation of GABAA receptors counteracts the corticolimbic hyperactivity produced by NMDA antagonists in the prefrontal cortex of the rat. Psychopharmacology (Berl) 2011; 214:525-36. [PMID: 20981411 DOI: 10.1007/s00213-010-2055-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/13/2010] [Indexed: 12/31/2022]
Abstract
RATIONALE The hypofunction of NMDA receptors in the prefrontal cortex (PFC) has been suggested to produce corticolimbic hyperactivity through the reduction of cortical GABA transmission. OBJECTIVES The present study investigates the effects of injections of the NMDA antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP) into the PFC on (1) the release of dopamine and/or acetylcholine in the amygdala and hippocampus, (2) the levels of corticosterone in the hippocampus and (3) spontaneous motor activity. Also, the stimulation of GABA(A) receptors, by prefrontal injections of muscimol, on the effects produced by NMDA antagonists on these same neurochemical, hormonal and behavioural parameters was evaluated. METHODS Male Wistar rats were implanted with guide cannulae to perform bilateral microinjections into the PFC and microdialysis experiments in the amygdala and/or ventral hippocampus, simultaneously. Spontaneous motor activity was monitored in the open field. RESULTS Injections of CPP (1 μg/0.5 μl) into the PFC increased dialysate concentrations of dopamine and acetylcholine in the amygdala, acetylcholine and free corticosterone in the hippocampus and also motor activity. Simultaneous injections of muscimol (0.5 μg/0.5 μl) into the PFC counteracted the increases of dopamine and acetylcholine in the amygdala and hippocampus and also significantly reduced the peak increase of corticosterone in the hippocampus. Injections of muscimol (0.05 and 0.5 μg/0.5 μl) reduced the increases of motor activity produced by prefrontal NMDA antagonists. CONCLUSIONS These results suggest that the hypofunction of NMDA receptors in the PFC produces corticolimbic hyperactivity through the activation of prefrontal efferent projections to subcortical/limbic areas.
Collapse
Affiliation(s)
- Alberto Del Arco
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Avda. Complutense s/n, 28040, Madrid, Spain.
| | | | | |
Collapse
|
40
|
Nakazawa K, Zsiros V, Jiang Z, Nakao K, Kolata S, Zhang S, Belforte JE. GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology 2011; 62:1574-83. [PMID: 21277876 DOI: 10.1016/j.neuropharm.2011.01.022] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/11/2011] [Accepted: 01/13/2011] [Indexed: 12/16/2022]
Abstract
Hypofunction of N-methyl-d-aspartic acid-type glutamate receptors (NMDAR) induced by the systemic administration of NMDAR antagonists is well known to cause schizophrenia-like symptoms in otherwise healthy subjects. However, the brain areas or cell-types responsible for the emergence of these symptoms following NMDAR hypofunction remain largely unknown. One possibility, the so-called "GABAergic origin hypothesis," is that NMDAR hypofunction at GABAergic interneurons, in particular, is sufficient for schizophrenia-like effects. In one attempt to address this issue, transgenic mice were generated in which NMDARs were selectively deleted from cortical and hippocampal GABAergic interneurons, a majority of which were parvalbumin (PV)-positive. This manipulation triggered a constellation of phenotypes--from molecular and physiological to behavioral--resembling characteristics of human schizophrenia. Based on these results, and in conjunction with previous literature, we argue that during development, NMDAR hypofunction at cortical, PV-positive, fast-spiking interneurons produces schizophrenia-like effects. This review summarizes the data demonstrating that in schizophrenia, GABAergic (particularly PV-positive) interneurons are disrupted. PV-positive interneurons, many of which display a fast-spiking firing pattern, are critical not only for tight temporal control of cortical inhibition but also for the generation of synchronous membrane-potential gamma-band oscillations. We therefore suggest that in schizophrenia the specific ability of fast-spiking interneurons to control and synchronize disparate cortical circuits is disrupted and that this disruption may underlie many of the schizophrenia symptoms. We further argue that the high vulnerability of corticolimbic fast-spiking interneurons to genetic predispositions and to early environmental insults--including excitotoxicity and oxidative stress--might help to explain their significant contribution to the development of schizophrenia.
Collapse
Affiliation(s)
- Kazu Nakazawa
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kos T, Nikiforuk A, Rafa D, Popik P. The effects of NMDA receptor antagonists on attentional set-shifting task performance in mice. Psychopharmacology (Berl) 2011; 214:911-21. [PMID: 21161188 PMCID: PMC3063548 DOI: 10.1007/s00213-010-2102-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 11/11/2010] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Cognitive deficits, including an impaired ability to shift perceptual attentional set, belong to the core features of schizophrenia, are associated with prefrontal cortical dysfunctions, and may involve glutamate NMDA receptors. Although phencyclidine disturbs cognitive flexibility, little is known about the effects of ketamine and other NMDA antagonists that differ in receptor subunit selectivity, particularly in the mouse species. METHODS At different times following the administration of ketamine, the NMDA NR2B-subtype specific antagonist Ro 25-6981, or the atypical antipsychotic sertindole, male C57Bl/6J mice were investigated in a modified version of attentional set-shifting task (ASST). RESULTS Specific extra-dimensional shift (EDS) deficit was observed in all control mice. As revealed by the increased number of trials, time and errors to reach criterion, ketamine at 10 or 20 mg/kg given 50 min prior to sessions, but not at 10 mg/kg given 3 or 24 h prior to sessions, further worsened the EDS performance. Sertindole (2.5 mg/kg) prevented ketamine-induced cognitive inflexibility, although it did not affect ASST performance when given alone. In contrast to ketamine, Ro 25-6981 at 10 but not 3 mg/kg, reduced the number of trials and errors to criterion, suggesting a facilitation of cognitive flexibility. Finally, as revealed by the number of trials and time to criterion measures, Ro 25-6981 (10 mg/kg) administration to ketamine (10 mg/kg)-pretreated mice inhibited ketamine-induced cognitive inflexibility. CONCLUSION The present study provides an improved and reliable mouse ASST protocol and confirms and extends previous findings demonstrating that NR2B subunit-selective antagonists improve cognitive processes.
Collapse
Affiliation(s)
- Tomasz Kos
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Agnieszka Nikiforuk
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Dominik Rafa
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
| | - Piotr Popik
- Behavioral Neuroscience, Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland
- Faculty of Public Health, Collegium Medicum, Jagiellonian University, Kraków, Poland
| |
Collapse
|
42
|
Kuang H, Lin L, Tsien JZ. Temporal dynamics of distinct CA1 cell populations during unconscious state induced by ketamine. PLoS One 2010; 5:e15209. [PMID: 21165147 PMCID: PMC2999569 DOI: 10.1371/journal.pone.0015209] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/29/2010] [Indexed: 01/21/2023] Open
Abstract
Ketamine is a widely used dissociative anesthetic which can induce some psychotic-like symptoms and memory deficits in some patients during the post-operative period. To understand its effects on neural population dynamics in the brain, we employed large-scale in vivo ensemble recording techniques to monitor the activity patterns of simultaneously recorded hippocampal CA1 pyramidal cells and various interneurons during several conscious and unconscious states such as awake rest, running, slow wave sleep, and ketamine-induced anesthesia. Our analyses reveal that ketamine induces distinct oscillatory dynamics not only in pyramidal cells but also in at least seven different types of CA1 interneurons including putative basket cells, chandelier cells, bistratified cells, and O-LM cells. These emergent unique oscillatory dynamics may very well reflect the intrinsic temporal relationships within the CA1 circuit. It is conceivable that systematic characterization of network dynamics may eventually lead to better understanding of how ketamine induces unconsciousness and consequently alters the conscious mind.
Collapse
Affiliation(s)
- Hui Kuang
- Key Laboratories of MOE and STCSM, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
- School of Medicine, Brain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | - Longnian Lin
- Key Laboratories of MOE and STCSM, Shanghai Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
| | - Joe Z. Tsien
- School of Medicine, Brain and Behavior Discovery Institute, Georgia Health Sciences University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Coleman MJ, Titone D, Krastoshevsky O, Krause V, Huang Z, Mendell NR, Eichenbaum H, Levy DL. Reinforcement ambiguity and novelty do not account for transitive inference deficits in schizophrenia. Schizophr Bull 2010; 36:1187-200. [PMID: 19460878 PMCID: PMC2963057 DOI: 10.1093/schbul/sbp039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The capacity for transitive inference (TI), a form of relational memory organization, is impaired in schizophrenia patients. In order to disambiguate deficits in TI from the effects of ambiguous reinforcement history and novelty, 28 schizophrenia and 20 nonpsychiatric control subjects were tested on newly developed TI and non-TI tasks that were matched on these 2 variables. Schizophrenia patients performed significantly worse than controls on the TI task but were able to make equivalently difficult nontransitive judgments as well as controls. Neither novelty nor reinforcement ambiguity accounted for the selective deficit of the patients on the TI task. These findings implicate a disturbance in relational memory organization, likely subserved by hippocampal dysfunction, in the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
| | - Debra Titone
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | | | - Verena Krause
- Psychology Research Laboratory, McLean Hospital, Belmont, MA 02478
| | - Zhuying Huang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | - Nancy R. Mendell
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
| | | | - Deborah L. Levy
- Psychology Research Laboratory, McLean Hospital, Belmont, MA 02478,To whom correspondence should be addressed; tel: 617-855-2854, fax: 617-855-2778, e-mail:
| |
Collapse
|
44
|
Characterization of 7- and 19-month-old Tg2576 mice using multimodal in vivo imaging: limitations as a translatable model of Alzheimer's disease. Neurobiol Aging 2010; 33:933-44. [PMID: 20961663 DOI: 10.1016/j.neurobiolaging.2010.08.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 07/07/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022]
Abstract
With 90% of neuroscience clinical trials failing to see efficacy, there is a clear need for the development of disease biomarkers that can improve the ability to predict human Alzheimer's disease (AD) trial outcomes from animal studies. Several lines of evidence, including genetic susceptibility and disease studies, suggest the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) as a potential biomarker with congruency between humans and animal models. For example, early in AD, patients present with decreased glucose metabolism in the entorhinal cortex and several regions of the brain associated with disease pathology and cognitive decline. While several of the commonly used AD mouse models fail to show all the hallmarks of the disease or the limbic to cortical trajectory, there has not been a systematic evaluation of imaging-derived biomarkers across animal models of AD, contrary to what has been achieved in recent years in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Miller, 2009). If animal AD models were found to mimic endpoints that correlate with the disease onset, progression, and relapse, then the identification of such markers in animal models could afford the field a translational tool to help bridge the preclinical-clinical gap. Using a combination of FDG-PET and functional magnetic resonance imaging (fMRI), we examined the Tg2576 mouse for global and regional measures of brain glucose metabolism at 7 and 19 months of age. In experiment 1 we observed that at younger ages, when some plaque burden and cognitive deficits have been reported, Tg2576 mice showed hypermetabolism as assessed with FDG-PET. This hypermetabolism decreased with age to levels similar to wild type (WT) counterparts such that the 19-month-old transgenic (Tg) mice did not differ from age matched WTs. In experiment 2, using cerebral blood volume (CBV) fMRI, we demonstrated that the hypermetabolism observed in Tg mice at 7 months could not be explained by changes in hemodynamic parameters as no differences were observed when compared with WTs. Taken together, these data identify brain hypermetabolism in Tg2576 mice which cannot be accounted for by changes in vascular compliance. Instead, the hypermetabolism may reflect a neuronal compensatory mechanism. Our data are discussed in the context of disease biomarker identification and target validation, suggesting little or no utility for translational based studies using Tg2576 mice.
Collapse
|
45
|
Effects of neonatal MK-801 treatment on p70S6K-S6/eIF4B signal pathways and protein translation in the frontal cortex of the developing rat brain. Int J Neuropsychopharmacol 2010; 13:1233-46. [PMID: 20064280 DOI: 10.1017/s1461145709991192] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Systemic injections of MK-801, a selective NMDAR antagonist, into neonatal rats induces long-term neurochemical and behavioural changes. It has been suggested that these changes form the neurodevelopmental basis for schizophrenia-like behaviour in rats. In this study, 7-d-old rats were treated with MK-801, and their frontal cortices were examined to investigate the effects on p70S6K-S6 signal pathway and on protein translation, which play crucial roles in the neurodevelopmental process. MK-801, in doses of 0.5 and 1.0 mg/kg, induced a decrease in phosphorylation of p70S6K and its substrates, S6 and eIF4B, in the first 8 h, and no change at 24 and 48 h. These effects were more prominent after two injections of MK-801 than one. Decreased S6 phosphorylation by MK-801 was evident in the prefrontal, cingulate, and insular cortex. In two representative upstream p70S6K-S6 pathways related to ERK1/2 and Akt, changes in ERK1/2-p90RSK phosphorylation were accompanied by changes of p70S6K-S6. Although two MK-801 injections induced a dose-dependent decrease in phosphorylation of Akt and mTOR at 4 and 8 h, a single injection did not produce a significant effect. Protein synthesis rate, measured by [3H]leucine incorporation in frontal cortical tissue, was reduced until 24 h after two MK-801 (1.0 mg/kg) injections. In summary, this study found that neonatal MK-801 treatment induced dysregulation in the p70S6K-S6/eIF4B pathway and protein translation in the frontal cortex of the developing rat brain, which may suggest an important role of protein translation machinery in the MK-801 neurodevelopmental animal model of schizophrenia.
Collapse
|
46
|
Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62:405-96. [PMID: 20716669 PMCID: PMC2964903 DOI: 10.1124/pr.109.002451] [Citation(s) in RCA: 2641] [Impact Index Per Article: 176.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mammalian ionotropic glutamate receptor family encodes 18 gene products that coassemble to form ligand-gated ion channels containing an agonist recognition site, a transmembrane ion permeation pathway, and gating elements that couple agonist-induced conformational changes to the opening or closing of the permeation pore. Glutamate receptors mediate fast excitatory synaptic transmission in the central nervous system and are localized on neuronal and non-neuronal cells. These receptors regulate a broad spectrum of processes in the brain, spinal cord, retina, and peripheral nervous system. Glutamate receptors are postulated to play important roles in numerous neurological diseases and have attracted intense scrutiny. The description of glutamate receptor structure, including its transmembrane elements, reveals a complex assembly of multiple semiautonomous extracellular domains linked to a pore-forming element with striking resemblance to an inverted potassium channel. In this review we discuss International Union of Basic and Clinical Pharmacology glutamate receptor nomenclature, structure, assembly, accessory subunits, interacting proteins, gene expression and translation, post-translational modifications, agonist and antagonist pharmacology, allosteric modulation, mechanisms of gating and permeation, roles in normal physiological function, as well as the potential therapeutic use of pharmacological agents acting at glutamate receptors.
Collapse
Affiliation(s)
- Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA 30322-3090, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Dopamine in the thalamus: a hotbed for psychosis? Biol Psychiatry 2010; 68:3-4. [PMID: 20609835 PMCID: PMC2910427 DOI: 10.1016/j.biopsych.2010.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 05/14/2010] [Accepted: 05/14/2010] [Indexed: 11/23/2022]
|
48
|
Lazarewicz MT, Ehrlichman RS, Maxwell CR, Gandal MJ, Finkel LH, Siegel SJ. Ketamine Modulates Theta and Gamma Oscillations. J Cogn Neurosci 2010; 22:1452-64. [DOI: 10.1162/jocn.2009.21305] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Ketamine, an N-methyl-d-aspartate (NMDA) receptor glutamatergic antagonist, has been studied as a model of schizophrenia when applied in subanesthetic doses. In EEG studies, ketamine affects sensory gating and alters the oscillatory characteristics of neuronal signals in a complex manner. We investigated the effects of ketamine on in vivo recordings from the CA3 region of mouse hippocampus referenced to the ipsilateral frontal sinus using a paired-click auditory gating paradigm. One issue of particular interest was elucidating the effect of ketamine on background network activity, poststimulus evoked and induced activity. We find that ketamine attenuates the theta frequency band in both background activity and in poststimulus evoked activity. Ketamine also disrupts a late, poststimulus theta power reduction seen in control recordings. In the gamma frequency range, ketamine enhances both background and evoked power, but decreases relative induced power. These findings support a role for NMDA receptors in mediating the balance between theta and gamma responses to sensory stimuli, with possible implications for dysfunction in schizophrenia.
Collapse
|
49
|
Subchronic phencyclidine in rats: alterations in locomotor activity, maze performance, and GABA(A) receptor binding. Behav Pharmacol 2010; 21:1-10. [PMID: 19949321 DOI: 10.1097/fbp.0b013e3283347091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phencyclidine (PCP), an antagonist at the N-methyl-D-aspartate subtype of ionotropic glutamatergic receptors, decreases gamma-aminobutyric acid (GABA)ergic inhibition, suggesting that changes in GABAergic receptor function underlie behavioral and cognitive deficits resulting from repeated administration of PCP. To test this hypothesis, male Sprague-Dawley rats treated with PCP (4.5 mg/kg, intraperitoneal, twice a day for 7 consecutive days) or saline were tested in behavioral and cognitive tasks 7 days after injections. The PCP group showed increased amphetamine (1.5 mg/kg)-stimulated locomotor activity, and exhibited a greater number of errors in the double Y-maze memory task, when compared with controls. Subchronic PCP treatment increased [H]muscimol-binding sites and decreased affinity for [H]muscimol binding in frontal cortex, hippocampus, and striatum in comparison with controls. There were no changes in the expression of glutamic acid decarboxylase or the GABA membrane transporter protein. These data show that subchronic PCP administration induces an impaired performance of a previously learned task and an enhanced response to amphetamine in the rat. The observed changes in GABAA receptors in the rat brain are consistent with the notion that alterations in GABAergic receptor function contribute to the behavioral and cognitive impairments associated with repeated exposure to PCP.
Collapse
|
50
|
Gozzi A, Crestan V, Turrini G, Clemens M, Bifone A. Antagonism at serotonin 5-HT(2A) receptors modulates functional activity of frontohippocampal circuit. Psychopharmacology (Berl) 2010; 209:37-50. [PMID: 20111859 DOI: 10.1007/s00213-009-1772-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 12/20/2009] [Indexed: 12/22/2022]
Abstract
RATIONALE Several second-generation antipsychotics are characterised by a significant antagonistic effect at serotonin 5-HT(2A) receptors (5-HT(2A)R), a feature that has been associated with lower incidence of extra-pyramidal symptoms and a putative amelioration of positive and negative symptoms experienced by schizophrenic patients. However, the neurofunctional substrate of 5-HT(2A) antagonism and its exact contribution to the complex pharmacological profile of these drugs remain to be elucidated. OBJECTIVES Here, we used pharmacological magnetic resonance imaging to map the modulatory effects of the selective 5-HT(2A)R antagonist Ml00907 on the spatiotemporal patterns of brain activity elicited by acute phencyclidine (PCP) challenge in the rat. PCP is a non-competitive NMDA receptor antagonist that induces dysregulation of corticolimbic glutamatergic neurotransmission and produces cognitive impairment and psychotic-like symptoms reminiscent of those observed in schizophrenia. RESULTS Pre-administration of M100907 produced focal and region-dependent attenuation of PCP-induced response in frontoseptohippocampal areas. As early studies highlighted a permissive role of 5-HT(2A)R on frontal dopamine release, the role of post-synaptic dopamine D(1) receptors on PCP-induced response was examined by using the potent antagonist SCH23390. Interestingly, SCH23390 did not affect PCP's response in any of the regions examined. This finding rules out a significant contribution of dopamine in the functional changes mapped and, indirectly, the inhibitory effect of M100907, in favour of a glutamatergic origin. CONCLUSIONS Our data expand recent evidence suggesting a key role of 5-HT(2A)R in modulating glutamate-mediated cognitive performance in the prefrontal cortex and highlight the whole frontoseptohippocampal circuit as a key functional substrate of 5-HT(2A)R antagonism in normal and disease states.
Collapse
Affiliation(s)
- Alessandro Gozzi
- Biology, Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Verona, Italy
| | | | | | | | | |
Collapse
|