1
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- https://ror.org/049v75w11 Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
2
|
Kapri D, Pradhan A, Vuruputuri RM, Vaidya VA. Sex differences in the influence of adult-onset hypothyroidism on hippocampal progenitor survival and neuronal differentiation in mice. J Neuroendocrinol 2024:e13453. [PMID: 39360641 DOI: 10.1111/jne.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/29/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
The ongoing production of newborn neurons in the adult hippocampus is reported to be sensitive to perturbations of thyroid hormone signaling, in male rats and mice. Here, we examined whether the neurogenic changes evoked by adult-onset hypothyroidism exhibit sex differences, using male and female C57BL/6N mice. We assessed the impact of goitrogen-induced, adult-onset hypothyroidism on the postmitotic survival and differentiation of hippocampal progenitors in male and female mice. Adult-onset hypothyroidism evoked a significant decline in the postmitotic survival and neuronal differentiation of adult-born progenitors within the dentate gyrus hippocampal subfield of male, but not female, mice. We observed a significant decrease in the number of immature neurons within the hippocampi of adult-onset hypothyroid male mice, whereas adult-onset hypothyroidism evoked by goitrogens using the same treatment paradigms did not evoke any change in immature neuron number in female mice. Gene expression analysis within the hippocampi of euthyroid male and female mice revealed sex-dependent, differential expression of thyroid hormone receptor genes, as well as genes linked to thyroid hormone metabolism and transport. Collectively, our findings highlight sex differences in the influence of goitrogen-induced, adult-onset hypothyroidism on hippocampal neurogenesis, with male, but not female, mice exhibiting a decline in postmitotic hippocampal progenitor survival and neuronal differentiation. These findings underscore the importance of sex as a vital variable when considering the impact of thyroid hormone signaling on the adult hippocampal neurogenic niche.
Collapse
Affiliation(s)
- Darshana Kapri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Amartya Pradhan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Ratna Mahathi Vuruputuri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Trender W, Hellyer PJ, Killingley B, Kalinova M, Mann AJ, Catchpole AP, Menon D, Needham E, Thwaites R, Chiu C, Scott G, Hampshire A. Changes in memory and cognition during the SARS-CoV-2 human challenge study. EClinicalMedicine 2024; 76:102842. [PMID: 39364271 PMCID: PMC11447363 DOI: 10.1016/j.eclinm.2024.102842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
Background Patient-reported outcomes and cross-sectional evidence show an association between COVID-19 and persistent cognitive problems. The causal basis, longevity and domain specificity of this association is unclear due to population variability in baseline cognitive abilities, vulnerabilities, virus variants, vaccination status and treatment. Methods Thirty-four young, healthy, seronegative volunteers were inoculated with Wildtype SARS-CoV-2 under prospectively controlled conditions. Volunteers completed daily physiological measurements and computerised cognitive tasks during quarantine and follow-up at 30, 90, 180, 270, and 360 days. Linear modelling examined differences between 'infected' and 'inoculated but uninfected' individuals. The main cognitive endpoint was the baseline corrected global cognitive composite score across the battery of tasks administered to the volunteers. Exploratory cognitive endpoints included baseline corrected scores from individual tasks. The study was registered on ClinicalTrials.gov with the identifier NCT04865237 and took place between March 2021 and July 2022. Findings Eighteen volunteers developed infection by qPCR criteria of sustained viral load, one without symptoms and the remainder with mild illness. Infected volunteers showed statistically lower baseline-corrected global composite cognitive scores than uninfected volunteers, both acutely and during follow up (mean difference over all time points = -0.8631, 95% CI = -1.3613, -0.3766) with significant main effect of group in repeated measures ANOVA (F (1,34) = 7.58, p = 0.009). Sensitivity analysis replicated this cross-group difference after controlling for community upper respiratory tract infection, task-learning, remdesivir treatment, baseline reference and model structure. Memory and executive function tasks showed the largest between-group differences. No volunteers reported persistent subjective cognitive symptoms. Interpretation These results support larger cross sectional findings indicating that mild Wildtype SARS-CoV-2 infection can be followed by small changes in cognition and memory that persist for at least a year. The mechanistic basis and clinical implications of these small changes remain unclear. Funding This study was funded through the UK Vaccine Taskforce of the Department for Business, Energy and Industrial Strategy (BEIS) of Her Majesty's Government. WT was funded by the EPSRC through the CDT for Neurotechnology Imperial College London.
Collapse
Affiliation(s)
| | - Peter J Hellyer
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ben Killingley
- Department of Infectious Diseases, University College London Hospital, London, UK
| | | | | | | | - David Menon
- Cambridge University Hospitals National Health Service Foundation Trust, UK
| | - Edward Needham
- Cambridge University Hospitals National Health Service Foundation Trust, UK
| | - Ryan Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Gregory Scott
- Department of Brain Sciences, Imperial College London, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, UK
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
4
|
Arrabal-Gómez C, Beltran-Casanueva R, Hernández-García A, Bayolo-Guanche JV, Barbancho-Fernández MA, Serrano-Castro PJ, Narváez M. Enhancing Cognitive Functions and Neuronal Growth through NPY1R Agonist and Ketamine Co-Administration: Evidence for NPY1R-TrkB Heteroreceptor Complexes in Rats. Cells 2024; 13:669. [PMID: 38667284 PMCID: PMC11049095 DOI: 10.3390/cells13080669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
This study investigates the combined effects of the neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31-Pro34]NPY at a dose of 132 µg and Ketamine at 10 mg/Kg on cognitive functions and neuronal proliferation, against a backdrop where neurodegenerative diseases present an escalating challenge to global health systems. Utilizing male Sprague-Dawley rats in a physiological model, this research employed a single-dose administration of these compounds and assessed their impact 24 h after treatment on object-in-place memory tasks, alongside cellular proliferation within the dorsal hippocampus dentate gyrus. Methods such as the in situ proximity ligation assay and immunohistochemistry for proliferating a cell nuclear antigen (PCNA) and doublecortin (DCX) were utilized. The results demonstrated that co-administration significantly enhanced memory consolidation and increased neuronal proliferation, specifically neuroblasts, without affecting quiescent neural progenitors and astrocytes. These effects were mediated by the potential formation of NPY1R-TrkB heteroreceptor complexes, as suggested by receptor co-localization studies, although further investigation is required to conclusively prove this interaction. The findings also highlighted the pivotal role of brain-derived neurotrophic factor (BDNF) in mediating these effects. In conclusion, this study presents a promising avenue for enhancing cognitive functions and neuronal proliferation through the synergistic action of the NPY1R agonist and Ketamine, potentially via NPY1R-TrkB heteroreceptor complex formation, offering new insights into therapeutic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carlos Arrabal-Gómez
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Facultad de Psicología, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| | - Rasiel Beltran-Casanueva
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Aracelis Hernández-García
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Juan Vicente Bayolo-Guanche
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (R.B.-C.); (A.H.-G.); (J.V.B.-G.)
- Receptomics and Brain Disorders Lab, Edificio Lopez-Peñalver, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain
| | - Miguel Angel Barbancho-Fernández
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
| | - Pedro Jesús Serrano-Castro
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| | - Manuel Narváez
- NeuronLab, Facultad de Medicina, Instituto de Investigación Biomédica de Málaga, Universidad de Málaga, 29071 Málaga, Spain; (C.A.-G.); (M.A.B.-F.)
- Unit of Neurology, Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga, 29010 Málaga, Spain
- Vithas Málaga, Grupo Hospitalario Vithas, 29016 Málaga, Spain
| |
Collapse
|
5
|
Somelar-Duracz K, Jürgenson M, Viil J, Zharkovsky A, Jaako K. 'Unpredictable chronic mild stress does not exacerbate memory impairment or altered neuronal and glial plasticity in the hippocampus of middle-aged vitamin D deficient mice'. Eur J Neurosci 2024; 59:1696-1722. [PMID: 38269959 DOI: 10.1111/ejn.16256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Vitamin D deficiency is a worldwide health concern, especially in the elderly population. Much remains unknown about the relationship between vitamin D deficiency (VDD), stress-induced cognitive dysfunctions and depressive-like behaviour. In this study, 4-month-old male C57Bl/6J mice were fed with control or vitamin D free diet for 6 months, followed by unpredictable chronic stress (UCMS) for 8 weeks. VDD induced cognitive impairment and reduced grooming behaviour, but did not induce depressive-like behaviour. While UCMS in vitamin D sufficient mice induced expected depressive-like phenotype and impairments in the contextual fear memory, chronic stress did not manifest as an additional risk factor for memory impairments and depressive-like behaviour in VDD mice. In fact, UCMS restored self-care behaviour in VDD mice. At the histopathological level, VDD mice exhibited cell loss in the granule cell layer, reduced survival of newly generated cells, accompanied with an increased number of apoptotic cells and alterations in glial morphology in the hippocampus; however, these effects were not exacerbated by UCMS. Interestingly, UCMS reversed VDD induced loss of microglial cells. Moreover, tyrosine hydroxylase levels decreased in the striatum of VDD mice, but not in stressed VDD mice. These findings indicate that long-term VDD in adulthood impairs cognition but does not augment behavioural response to UCMS in middle-aged mice. While VDD caused cell loss and altered glial response in the DG of the hippocampus, these effects were not exacerbated by UCMS and could contribute to mechanisms regulating altered stress response.
Collapse
Affiliation(s)
- Kelli Somelar-Duracz
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Monika Jürgenson
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Janeli Viil
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Alexander Zharkovsky
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| | - Külli Jaako
- Institute of Biomedicine and Translational Medicine, Department of Pharmacology, University of Tartu, Tartu, Estonia
| |
Collapse
|
6
|
Ding Y, Li L, Wang S, Cao Y, Yang M, Dai Y, Lin H, Li J, Liu Y, Wang Z, Liu W, Tao J. Electroacupuncture promotes neurogenesis in the dentate gyrus and improves pattern separation in an early Alzheimer's disease mouse model. Biol Res 2023; 56:65. [PMID: 38041203 PMCID: PMC10693055 DOI: 10.1186/s40659-023-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aβ deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aβ plaques in the DG without any impact on Wnt5a. CONCLUSION EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.
Collapse
Affiliation(s)
- Yanyi Ding
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Long Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Sinuo Wang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yajun Cao
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Minguang Yang
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yaling Dai
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Huawei Lin
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jianhong Li
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Yulu Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Zhifu Wang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fuzhou, Fujian, 350122, China
- Fujian Key Laboratory of Cognitive Rehabilitation, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
- Fujian Key Laboratory of Rehabilitation Technology, Affiliated Rehabilitation Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, 350001, China.
- Provincial and Ministerial Co-founded Collaborative Innovation Center of Rehabilitation Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Borsini A, Giacobbe J, Mandal G, Boldrini M. Acute and long-term effects of adolescence stress exposure on rodent adult hippocampal neurogenesis, cognition, and behaviour. Mol Psychiatry 2023; 28:4124-4137. [PMID: 37612364 PMCID: PMC10827658 DOI: 10.1038/s41380-023-02229-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
Adolescence represents a critical period for brain and behavioural health and characterised by the onset of mood, psychotic and anxiety disorders. In rodents, neurogenesis is very active during adolescence, when is particularly vulnerable to stress. Whether stress-related neurogenesis changes influence adolescence onset of psychiatric symptoms remains largely unknown. A systematic review was conducted on studies investigating changes in hippocampal neurogenesis and neuroplasticity, hippocampal-dependent cognitive functions, and behaviour, occurring after adolescence stress exposure in mice both acutely (at post-natal days 21-65) and in adulthood. A total of 37 studies were identified in the literature. Seven studies showed reduced hippocampal cell proliferation, and out of those two reported increased depressive-like behaviours, in adolescent rodents exposed to stress. Three studies reported a reduction in the number of new-born neurons, which however were not associated with changes in cognition or behaviour. Sixteen studies showed acutely reduced hippocampal neuroplasticity, including pre- and post-synaptic plasticity markers, dendritic spine length and density, and long-term potentiation after stress exposure. Cognitive impairments and depressive-like behaviours were reported by 11 of the 16 studies. Among studies who looked at adolescence stress exposure effects into adulthood, seven showed that the negative effects of stress observed during adolescence on either cell proliferation or hippocampal neuroplasticity, cognitive deficits and depressive-like behaviour, had variable impact in adulthood. Treating adolescent mice with antidepressants, glutamate receptor inhibitors, glucocorticoid antagonists, or healthy diet enriched in omega-3 fatty acids and vitamin A, prevented or reversed those detrimental changes. Future research should investigate the translational value of these preclinical findings. Developing novel tools for measuring hippocampal neurogenesis in live humans, would allow assessing neurogenic changes following stress exposure, investigating relationships with psychiatric symptom onset, and identifying effects of therapeutic interventions.
Collapse
Affiliation(s)
- Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK.
| | - Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Gargi Mandal
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, London, UK
| | - Maura Boldrini
- Department of Psychiatry, Columbia University, Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| |
Collapse
|
8
|
Vauzour D, Scholey A, White DJ, Cohen NJ, Cassidy A, Gillings R, Irvine MA, Kay CD, Kim M, King R, Legido-Quigley C, Potter JF, Schwarb H, Minihane AM. A combined DHA-rich fish oil and cocoa flavanols intervention does not improve cognition or brain structure in older adults with memory complaints: results from the CANN randomized, controlled parallel-design study. Am J Clin Nutr 2023; 118:369-381. [PMID: 37315924 PMCID: PMC10447509 DOI: 10.1016/j.ajcnut.2023.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND There is evidence that both omega-3 long-chain polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) and cocoa flavanols can improve cognitive performance in both healthy individuals and in those with memory complaints. However, their combined effect is unknown. OBJECTIVES To investigate the combined effect of EPA/DHA and cocoa flavanols (OM3FLAV) on cognitive performance and brain structures in older adults with memory complaints. METHODS A randomized placebo-controlled trial of DHA-rich fish oil (providing 1.1 g/d DHA and 0.4 g/d EPA) and a flavanol-rich dark chocolate (providing 500 mg/d flavan-3-ols) was conducted in 259 older adults with either subjective cognitive impairment or mild cognitive impairment. Participants underwent assessment at baseline, 3 mo, and 12 mo. The primary outcome was the number of false-positives on a picture recognition task from the Cognitive Drug Research computerized assessment battery. Secondary outcomes included other cognition and mood outcomes, plasma lipids, brain-derived neurotrophic factor (BDNF), and glucose levels. A subset of 110 participants underwent structural neuroimaging at baseline and at 12 mo. RESULTS 197 participants completed the study. The combined intervention had no significant effect on any cognitive outcomes, with the exception of reaction time variability (P = 0.007), alertness (P < 0.001), and executive function (P < 0.001), with a decline in function observed in the OM3FLAV group (118.6 [SD 25.3] at baseline versus 113.3 [SD 25.4] at 12 mo for executive function) relative to the control, and an associated decrease in cortical volume (P = 0.039). Compared with the control group, OM3FLAV increased plasma HDL, total cholesterol ratio (P < 0.001), and glucose (P = 0.008) and reduced TG concentrations (P < 0.001) by 3 mo, which were sustained to 12 mo, with no effect on BDNF. Changes in plasma EPA and DHA and urinary flavonoid metabolite concentrations confirmed compliance to the intervention. CONCLUSIONS These results suggest that cosupplementation with ω-3 PUFAs and cocoa flavanols for 12 mo does not improve cognitive outcomes in those with cognitive impairment. This trial was registered at clinicaltrials.gov as NCT02525198.
Collapse
Affiliation(s)
- David Vauzour
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom.
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University, Australia.
| | - David J White
- Centre for Human Psychopharmacology, Swinburne University, Australia
| | - Neal J Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Aedín Cassidy
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom; Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Rachel Gillings
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom
| | - Michael A Irvine
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom
| | - Colin D Kay
- Plants for Human Health Institute, Food Bioprocessing and Nutrition Sciences Department, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Min Kim
- Translational and Clinical Chemistry, Kings College London, London, Norwich, United Kingdom
| | - Rebecca King
- Centre for Human Psychopharmacology, Swinburne University, Australia
| | | | - John F Potter
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom
| | - Hilary Schwarb
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Anne-Marie Minihane
- Norwich Medical School, University of East Anglia (UEA), Norwich, United Kingdom; Norwich Institute of Healthy Ageing (NIHA), UEA, Norwich, Norwich, United Kingdom
| |
Collapse
|
9
|
Kelley DP, Albrechet‐Souza L, Cruise S, Maiya R, Destouni A, Sakamuri SSVP, Duplooy A, Hibicke M, Nichols C, Katakam PVG, Gilpin NW, Francis J. Conditioned place avoidance is associated with a distinct hippocampal phenotype, partly preserved pattern separation, and reduced reactive oxygen species production after stress. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12840. [PMID: 36807494 PMCID: PMC10067435 DOI: 10.1111/gbb.12840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/20/2023]
Abstract
Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.
Collapse
Affiliation(s)
- D. Parker Kelley
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Lucas Albrechet‐Souza
- Department of Cell Biology & AnatomyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Shealan Cruise
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Rajani Maiya
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Aspasia Destouni
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | | | - Alexander Duplooy
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| | - Meghan Hibicke
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Charles Nichols
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
| | - Prasad V. G. Katakam
- Department of PharmacologyTulane University School of MedicineNew OrleansLouisianaUSA
| | - Nicholas W. Gilpin
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Alcohol & Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Neuroscience Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisianaUSA
- Southeast Louisiana VA Healthcare System (SLVHCS)New OrleansLouisianaUSA
| | - Joseph Francis
- Comparative Biomedical SciencesLouisiana State University School of Veterinary MedicineBaton RougeLouisianaUSA
| |
Collapse
|
10
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
11
|
Culig L, Chu X, Bohr VA. Neurogenesis in aging and age-related neurodegenerative diseases. Ageing Res Rev 2022; 78:101636. [PMID: 35490966 PMCID: PMC9168971 DOI: 10.1016/j.arr.2022.101636] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Adult neurogenesis, the process by which neurons are generated in certain areas of the adult brain, declines in an age-dependent manner and is one potential target for extending cognitive healthspan. Aging is a major risk factor for neurodegenerative diseases and, as lifespans are increasing, these health challenges are becoming more prevalent. An age-associated loss in neural stem cell number and/or activity could cause this decline in brain function, so interventions that reverse aging in stem cells might increase the human cognitive healthspan. In this review, we describe the involvement of adult neurogenesis in neurodegenerative diseases and address the molecular mechanistic aspects of neurogenesis that involve some of the key aggregation-prone proteins in the brain (i.e., tau, Aβ, α-synuclein, …). We summarize the research pertaining to interventions that increase neurogenesis and regulate known targets in aging research, such as mTOR and sirtuins. Lastly, we share our outlook on restoring the levels of neurogenesis to physiological levels in elderly individuals and those with neurodegeneration. We suggest that modulating neurogenesis represents a potential target for interventions that could help in the fight against neurodegeneration and cognitive decline.
Collapse
Affiliation(s)
- Luka Culig
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Xixia Chu
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
A Nuclear Belt Fastens on Neural Cell Fate. Cells 2022; 11:cells11111761. [PMID: 35681456 PMCID: PMC9179901 DOI: 10.3390/cells11111761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/22/2022] Open
Abstract
Successful embryonic and adult neurogenesis require proliferating neural stem and progenitor cells that are intrinsically and extrinsically guided into a neuronal fate. In turn, migration of new-born neurons underlies the complex cytoarchitecture of the brain. Proliferation and migration are therefore essential for brain development, homeostasis and function in adulthood. Among several tightly regulated processes involved in brain formation and function, recent evidence points to the nuclear envelope (NE) and NE-associated components as critical new contributors. Classically, the NE was thought to merely represent a barrier mediating selective exchange between the cytoplasm and nucleoplasm. However, research over the past two decades has highlighted more sophisticated and diverse roles for NE components in progenitor fate choice and migration of their progeny by tuning gene expression via interactions with chromatin, transcription factors and epigenetic factors. Defects in NE components lead to neurodevelopmental impairments, whereas age-related changes in NE components are proposed to influence neurodegenerative diseases. Thus, understanding the roles of NE components in brain development, maintenance and aging is likely to reveal new pathophysiological mechanisms for intervention. Here, we review recent findings for the previously underrepresented contribution of the NE in neuronal commitment and migration, and envision future avenues for investigation.
Collapse
|
13
|
Hodges TE, Lee GY, Noh SH, Galea LA. Sex and age differences in cognitive bias and neural activation in response to cognitive bias testing. Neurobiol Stress 2022; 18:100458. [PMID: 35586750 PMCID: PMC9109184 DOI: 10.1016/j.ynstr.2022.100458] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/28/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Cognitive symptoms of depression, including negative cognitive bias, are more severe in women than in men. Current treatments to reduce negative cognitive bias are not effective and sex differences in the neural activity underlying cognitive bias may play a role. Here we examined sex and age differences in cognitive bias and functional connectivity in a novel paradigm. Male and female rats underwent an 18-day cognitive bias procedure, in which they learned to discriminate between two contexts (shock paired context A, no-shock paired context B), during either adolescence (postnatal day (PD 40)), young adulthood (PD 100), or middle-age (PD 210). Cognitive bias was measured as freezing behaviour in response to an ambiguous context (context C), with freezing levels akin to the shock paired context coded as negative bias. All animals learned to discriminate between the two contexts, regardless of sex or age. However, adults (young adults, middle-aged) displayed a greater negative cognitive bias compared to adolescents, and middle-aged males had a greater negative cognitive bias than middle-aged females. Females had greater neural activation of the nucleus accumbens, amygdala, and hippocampal regions to the ambiguous context compared to males, and young rats (adolescent, young adults) had greater neural activation in these regions compared to middle-aged rats. Functional connectivity between regions involved in cognitive bias differed by age and sex, and only adult males had negative correlations between the frontal regions and hippocampal regions. These findings highlight the importance of examining age and sex when investigating the underpinnings of negative cognitive bias and lay the groundwork for determining what age- and sex-specific regions to target in future cognitive bias studies.
Collapse
Affiliation(s)
- Travis E. Hodges
- Department of Psychology, University of British Columbia, Canada
| | - Grace Y. Lee
- Department of Psychology, University of British Columbia, Canada
| | - Sophia H. Noh
- Department of Psychology, University of British Columbia, Canada
| | - Liisa A.M. Galea
- Department of Psychology, University of British Columbia, Canada
- Graduate Program in Neuroscience, University of British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Canada
| |
Collapse
|
14
|
Kempermann G. What Is Adult Hippocampal Neurogenesis Good for? Front Neurosci 2022; 16:852680. [PMID: 35495058 PMCID: PMC9051245 DOI: 10.3389/fnins.2022.852680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022] Open
Abstract
Adult hippocampal neurogenesis is a unique and exceptional process in the mammalian brain that in a lifelong and activity-dependent way generates new excitatory principal neurons. A comprehensive view on their function in greater contexts has now emerged, revealing to which extent the hippocampus (and hence brain and mind) depend on these neurons. Due to a postmitotic period of heightened synaptic plasticity they bias incoming excitation to the dentate gyrus to non-overlapping subnetworks, resulting in pattern separation and the avoidance of catastrophic interference. Temporally, this promotes the flexible integration of novel information into familiar contexts and contributes to episodic memory, which in humans would be critical for autobiographic memory. Together these local effects represent a unique strategy to solve the plasticity-stability dilemma that all learning neuronal networks are facing. Neurogenesis-dependent plasticity also improves memory consolidation. This relates to the surprising involvement of adult neurogenesis in forgetting, which is also hypothesized to be critically relevant for negative plasticity, for example in post-traumatic stress disorder. In addition, adult-born neurons also directly mediate stress-resilience and take part in affective behaviors. Finally, the activity- and experience-dependent plasticity that is contributed by adult neurogenesis is associated with an individualization of the hippocampal circuitry. While a solid and largely consensual understanding of how new neurons contribute to hippocampal function has been reached, an overarching unifying theory that embeds neurogenesis-dependent functionality and effects on connectomics is still missing. More sophisticated multi-electrode electrophysiology, advanced ethologically relevant behavioral tests, and next-generation computational modeling will let us take the next steps.
Collapse
Affiliation(s)
- Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Gerd Kempermann, ;
| |
Collapse
|
15
|
Iannucci J, Nizamutdinov D, Shapiro LA. Neurogenesis and chronic neurobehavioral outcomes are partially improved by vagus nerve stimulation in a mouse model of Gulf War Illness. Neurotoxicology 2022; 90:205-215. [DOI: 10.1016/j.neuro.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/22/2022]
|
16
|
van Hagen BTJ, van Goethem NP, Nelissen E, Paes D, Koymans K, van Hoof S, Schreiber R, Varney M, Newman-Tancredi A, Prickaerts J. Biased 5-HT 1A receptor agonists F13714 and NLX-101 differentially affect pattern separation and neuronal plasticity in rats after acute and chronic treatment. Mol Cell Neurosci 2022; 120:103719. [PMID: 35283305 DOI: 10.1016/j.mcn.2022.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022] Open
Abstract
Pattern separation is a hippocampal process in which highly similar stimuli are recognized as separate representations, and deficits could lead to memory impairments in neuropsychiatric disorders such as schizophrenia. The 5-HT1A receptor (5-HT1AR) is believed to be involved in these hippocampal pattern separation processes. However, in the dorsal raphe nucleus (DRN), the 5-HT1AR is expressed as a somatodendritic autoreceptor, negatively regulates serotonergic signaling, and could thereby counteract the effects of hippocampal postsynaptic 5-HT1A receptors. Therefore, this study aims to identify how pre- and post-synaptic 5-HT1AR activity affects pattern separation. Object pattern separation (OPS) performance was measured in male Wistar rats after both acute and chronic treatment (i.p.) with 5-HT1AR biased agonists F13714 (0.0025 mg/kg acutely, 0.02 mg/kg/day chronically) or NLX-101 (0.08 mg/kg acutely, 0.32 mg/kg/day chronically), which preferentially activate autoreceptors or postsynaptic receptors respectively, for 14 days. Body temperature - a functional correlate of hypothalamic 5-HT1AR stimulation - was measured daily. Additionally, 5-HT1AR density (DRN) and plasticity markers (hippocampus) were assessed. Acute treatment with F13714 impaired OPS performance, whereas chronic treatment normalized this, and a drop in body temperature was found from day 4 onwards. NLX-101 enhanced OPS performance acutely and chronically, and caused an acute drop in body temperature. Chronic NLX-101 treatment increased doublecortin positive neurons in the dorsal hippocampus, while chronic treatment with F13714 resulted in a downregulation of 5-HT1A autoreceptors, which likely reversed the acute impairment in OPS performance. Chronic treatment with NLX-101 appears to have therapeutic potential to improve brain plasticity and OPS performance.
Collapse
Affiliation(s)
- Britt T J van Hagen
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Nick P van Goethem
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Ellis Nelissen
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Dean Paes
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Karin Koymans
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands; Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - Scott van Hoof
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany
| | - Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, the Netherlands
| | - Mark Varney
- Neurolixis Inc., Dana Point, California, USA
| | | | - Jos Prickaerts
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
18
|
Li L, Li J, Dai Y, Yang M, Liang S, Wang Z, Liu W, Chen L, Tao J. Electro-Acupuncture Improve the Early Pattern Separation in Alzheimer’s Disease Mice via Basal Forebrain-Hippocampus Cholinergic Neural Circuit. Front Aging Neurosci 2022; 13:770948. [PMID: 35185516 PMCID: PMC8847781 DOI: 10.3389/fnagi.2021.770948] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 12/31/2021] [Indexed: 01/31/2023] Open
Abstract
Objectives To explore the effect of electro-acupuncture (EA) treatment on pattern separation and investigate the neural circuit mechanism involved in five familial mutations (5 × FAD) mice. Methods Five familial mutations mice were treated with EA at Baihui (DU20) and Shenting (DU24) acupoints for 30 min each, lasting for 4 weeks. Cognitive-behavioral tests were performed to evaluate the effects of EA treatment on cognitive functions. 1H-MRS, Nissl staining, immunohistochemistry, and immunofluorescence were performed to examine the cholinergic system alteration. Thioflavin S staining and 6E10 immunofluorescence were performed to detect the amyloid-β (Aβ). Furthermore, hM4Di designer receptors exclusively activated by designer drugs (DREADDs) virus and long-term clozapine-N-oxide injection were used to inhibit the medial septal and vertical limb of the diagonal band and dentate gyrus (MS/VDB-DG) cholinergic neural circuit. Cognitive-behavioral tests and immunofluorescence were performed to investigate the cholinergic neural circuit mechanism of EA treatment improving cognition in 5 × FAD mice. Results Electro-acupuncture treatment significantly improved spatial recognition memory and pattern separation impairment, regulated cholinergic system via reduction neuron loss, upregulation of choline/creatine, choline acetyltransferase, vesicular acetylcholine transporter, and downregulation of enzyme acetylcholinesterase in 5 × FAD mice. Aβ deposition was reduced after EA treatment. Subsequently, the monosynaptic hM4Di DREADDs virus tracing and inhibiting strategy showed that EA treatment activates the MS/VDB-DG cholinergic neural circuit to improve the early pattern separation. In addition, EA treatment activates this circuit to upregulating M1 receptors positive cells and promoting hippocampal neurogenesis in the dentate gyrus (DG). Conclusion Electro-acupuncture could improve the early pattern separation impairment by activating the MS/VDB-DG cholinergic neural circuit in 5 × FAD mice, which was related to the regulation of the cholinergic system and the promotion of neurogenesis by EA treatment.
Collapse
Affiliation(s)
- Long Li
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Jianhong Li
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yaling Dai
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Minguang Yang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- TCM Rehabilitation Research Center of SATCM, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhifu Wang
- College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lidian Chen
- Rehabilitation Medical Technology Joint National Local Engineering Research Center, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- *Correspondence: Jing Tao,
| |
Collapse
|
19
|
Abrous DN, Koehl M, Lemoine M. A Baldwin interpretation of adult hippocampal neurogenesis: from functional relevance to physiopathology. Mol Psychiatry 2022; 27:383-402. [PMID: 34103674 PMCID: PMC8960398 DOI: 10.1038/s41380-021-01172-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Hippocampal adult neurogenesis has been associated to many cognitive, emotional, and behavioral functions and dysfunctions, and its status as a selected effect or an "appendix of the brain" has been debated. In this review, we propose to understand hippocampal neurogenesis as the process underlying the "Baldwin effect", a particular situation in evolution where fitness does not rely on the natural selection of genetic traits, but on "ontogenetic adaptation" to a changing environment. This supports the view that a strong distinction between developmental and adult hippocampal neurogenesis is made. We propose that their functions are the constitution and the lifelong adaptation, respectively, of a basic repertoire of cognitive and emotional behaviors. This lifelong adaptation occurs through new forms of binding, i.e., association or dissociation of more basic elements. This distinction further suggests that a difference is made between developmental vulnerability (or resilience), stemming from dysfunctional (or highly functional) developmental hippocampal neurogenesis, and adult vulnerability (or resilience), stemming from dysfunctional (or highly functional) adult hippocampal neurogenesis. According to this hypothesis, developmental and adult vulnerability are distinct risk factors for various mental disorders in adults. This framework suggests new avenues for research on hippocampal neurogenesis and its implication in mental disorders.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000, Bordeaux, France.
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000 Bordeaux, France
| | - Maël Lemoine
- grid.412041.20000 0001 2106 639XUniversity Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
20
|
Blankers SA, Galea LA. Androgens and Adult Neurogenesis in the Hippocampus. ANDROGENS: CLINICAL RESEARCH AND THERAPEUTICS 2021; 2:203-215. [PMID: 35024692 PMCID: PMC8744005 DOI: 10.1089/andro.2021.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 11/12/2022]
Abstract
Adult neurogenesis in the hippocampus is modulated by steroid hormones, including androgens, in male rodents. In this review, we summarize research showing that chronic exposure to androgens, such as testosterone and dihydrotestosterone, enhances the survival of new neurons in the dentate gyrus of male, but not female, rodents, via the androgen receptor. However, the neurogenesis promoting the effect of androgens in the dentate gyrus may be limited to younger adulthood as it is not evident in middle-aged male rodents. Although direct exposure to androgens in adult or middle age does not significantly influence neurogenesis in female rodents, the aromatase inhibitor letrozole enhances neurogenesis in the hippocampus of middle-aged female mice. Unlike other androgens, androgenic anabolic steroids reduce neurogenesis in the hippocampus of male rodents. Collectively, the research indicates that the ability of androgens to enhance hippocampal neurogenesis in adult rodents is dependent on dose, androgen type, sex, duration, and age. We discuss these findings and how androgens may be influencing neuroprotection, via neurogenesis in the hippocampus, in the context of health and disease.
Collapse
Affiliation(s)
- Samantha A. Blankers
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Liisa A.M. Galea
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
- Department of Psychology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
21
|
Gillotin S, Sahni V, Lepko T, Hanspal MA, Swartz JE, Alexopoulou Z, Marshall FH. Targeting impaired adult hippocampal neurogenesis in ageing by leveraging intrinsic mechanisms regulating Neural Stem Cell activity. Ageing Res Rev 2021; 71:101447. [PMID: 34403830 DOI: 10.1016/j.arr.2021.101447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/14/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Deficits in adult neurogenesis may contribute to the aetiology of many neurodevelopmental, psychiatric and neurodegenerative diseases. Genetic ablation of neurogenesis provides proof of concept that adult neurogenesis is required to sustain complex and dynamic cognitive functions, such as learning and memory, mostly by providing a high degree of plasticity to neuronal circuits. In addition, adult neurogenesis is reactive to external stimuli and the environment making it particularly susceptible to impairment and consequently contributing to comorbidity. In the human brain, the dentate gyrus of the hippocampus is the main active source of neural stem cells that generate granule neurons throughout life. The regulation and preservation of the pool of neural stem cells is central to ensure continuous and healthy adult hippocampal neurogenesis (AHN). Recent advances in genetic and metabolic profiling alongside development of more predictive animal models have contributed to the development of new concepts and the emergence of molecular mechanisms that could pave the way to the implementation of new therapeutic strategies to treat neurological diseases. In this review, we discuss emerging molecular mechanisms underlying AHN that could be embraced in drug discovery to generate novel concepts and targets to treat diseases of ageing including neurodegeneration. To support this, we review cellular and molecular mechanisms that have recently been identified to assess how AHN is sustained throughout life and how AHN is associated with diseases. We also provide an outlook on strategies for developing correlated biomarkers that may accelerate the translation of pre-clinical and clinical data and review clinical trials for which modulation of AHN is part of the therapeutic strategy.
Collapse
|
22
|
Kodali M, Mishra V, Hattiangady B, Attaluri S, Gonzalez JJ, Shuai B, Shetty AK. Moderate, intermittent voluntary exercise in a model of Gulf War Illness improves cognitive and mood function with alleviation of activated microglia and astrocytes, and enhanced neurogenesis in the hippocampus. Brain Behav Immun 2021; 97:135-149. [PMID: 34245811 PMCID: PMC9885810 DOI: 10.1016/j.bbi.2021.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/01/2023] Open
Abstract
Persistent cognitive and mood impairments in Gulf War Illness (GWI) are associated with chronic neuroinflammation, typified by hypertrophied astrocytes, activated microglia, and increased proinflammatory mediators in the brain. Using a rat model, we investigated whether a simple lifestyle change such as moderate voluntary physical exercise would improve cognitive and mood function in GWI. Because veterans with GWI exhibit fatigue and post-exertional malaise, we employed an intermittent voluntary running exercise (RE) regimen, which prevented exercise-induced stress. The GWI rats were provided access to running wheels three days per week for 13 weeks, commencing ten weeks after the exposure to GWI-related chemicals and stress (GWI-RE group). Groups of age-matched sedentary GWI rats (GWI-SED group) and naïve rats were maintained parallelly. Interrogation of rats with behavioral tests after the 13-week RE regimen revealed improved hippocampus-dependent object location memory and pattern separation function and reduced anxiety-like behavior in the GWI-RE group compared to the GWI-SED group. Moreover, 13 weeks of RE in GWI rats significantly reversed activated microglia with short and less ramified processes into non-inflammatory/antiinflammatory microglia with highly ramified processes and reduced the hypertrophy of astrocytes. Moreover, the production of new neurons in the hippocampus was enhanced when examined eight weeks after the commencement of RE. Notably, increased neurogenesis continued even after the cessation of RE. Collectively, the results suggest that even a moderate, intermittent physical exercise has the promise to improve brain function in veterans with GWI in association with suppression of neuroinflammation and enhancement of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Vikas Mishra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jenny Jaimes Gonzalez
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, United States. (A.K. Shetty)
| |
Collapse
|
23
|
Lensu S, Waselius T, Mäkinen E, Kettunen H, Virtanen A, Tiirola M, Penttonen M, Pekkala S, Nokia MS. Irradiation of the head reduces adult hippocampal neurogenesis and impairs spatial memory, but leaves overall health intact in rats. Eur J Neurosci 2021; 53:1885-1904. [PMID: 33382141 DOI: 10.1111/ejn.15102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022]
Abstract
Treatment of brain cancer, glioma, can cause cognitive impairment as a side-effect, possibly because it disrupts the integrity of the hippocampus, a structure vital for normal memory. Radiotherapy is commonly used to treat glioma, but the effects of irradiation on the brain are still poorly understood, and other biological effects have not been extensively studied. Here, we exposed healthy adult male rats to moderate-dose irradiation of the head. We found no effect of irradiation on systemic inflammation, weight gain or gut microbiota diversity, although it increased the abundance of Bacteroidaceae family, namely Bacteroides genus in the gut microbiota. Irradiation had no effect on long-term potentiation in the CA3-CA1 synapse or endogenous hippocampal electrophysiology, but it did reduce adult hippocampal neurogenesis and impaired short-term spatial recognition memory. However, no overall cognitive impairment was observed. To summarize, our results suggest that in adult male rats head irradiation does not compromise health or cognition overall even though the number of new, adult-born hippocampal neurons is decreased. Thus, the sole effects of head irradiation on the body, brain and cognition might be less harmful than previously thought, and the cognitive decline experienced by cancer patients might originate from physiological and mental effects of the disease itself. Therefore, to increase the translational value of animal studies, the effects of irradiation should be studied together with cancer, in older animals, using varying irradiation protocols and doses.
Collapse
Affiliation(s)
- Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland.,Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Tomi Waselius
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Heikki Kettunen
- Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Ari Virtanen
- Department of Physics, University of Jyvaskyla, Jyvaskyla, Finland
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Markku Penttonen
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
| | - Miriam S Nokia
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
24
|
Usugi R, Nishimura M, Ishiuchi S. Analysis of human hippocampal volumetry in relation to pattern separation ability in healthy young subjects. Brain Behav 2020; 10:e01878. [PMID: 33094927 PMCID: PMC7749596 DOI: 10.1002/brb3.1878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Hippocampal dentate gyrus related to pattern separation has attracted attention as an area for neurogenesis. However, the associations between the pattern separation and the volumes of hippocampal subfields in humans remain unknown. METHODS 58 young adults were examined the memory task (pattern separation, pattern completion) and the hippocampal volumes. Subjects were asked to determine whether the visual image is a new stimulus, or a similar but different stimulus (pattern separation), or the same stimulus (pattern completion), compared to preceding stimuli, and response time and correct response were measured. The volumes of the whole brain, hippocampus 6 subfields and perihippocampus 5 subfields, were measured using FreeSurfer 6.0. RESULTS Negative associations between the pattern separation task and the volumes of whole brain areas were found in bilateral cerebellar cortex, fourth ventricle, left hippocampus, left thalamus, left ventral diencephalon, and brainstem. Simple linear regression analysis revealed a significant association with the left hippocampal-amygdaloid transition area only, while no significant associations were found in any of the subfield volumes when adjusted with covariates. CONCLUSIONS The principle "bigger is better"-an idea that the larger the volume the better the function-could not be applied to the relation between the pattern separation ability and the dentate gyrus.
Collapse
Affiliation(s)
- Ryoichi Usugi
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Masahiko Nishimura
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shogo Ishiuchi
- Department of Neurosurgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
25
|
Doublecortin-Like Is Implicated in Adult Hippocampal Neurogenesis and in Motivational Aspects to Escape from an Aversive Environment in Male Mice. eNeuro 2020; 7:ENEURO.0324-19.2020. [PMID: 32994174 PMCID: PMC7568604 DOI: 10.1523/eneuro.0324-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/02/2022] Open
Abstract
Doublecortin (DCX)-like (DCL) is a microtubule (MT)-associated protein (MAP) that is highly homologous to DCX and is crucially involved in embryonic neurogenesis. Here, we have investigated the in vivo role of DCL in adult hippocampal neurogenesis by generating transgenic mice producing inducible shRNA molecules that specifically target DCL but no other splice variants produced by the DCLK gene. DCL knock-down (DCL-KD) resulted in a significant increase in the number of proliferating BrdU+ cells in the subgranular zone (SGZ) 1 d after BrdU administration. However, the number of surviving newborn adult NeuN+/BrdU+ neurons are significantly decreased when inspected four weeks after BrdU administration suggesting a blockade of neuronal differentiation after DCL-KD. In line with this, we observed an increase in the number of proliferating cells, but a significant decrease in postmitotic DCX+ cells that are characterized by long dendrites spanning all dentate gyrus layers. Behavioral analysis showed that DCL-KD strongly extended the escape latency of mice on the circular hole board (CHB) but did not affect other aspects of this behavioral task. Together, our results indicate a function for DCL in adult neurogenesis and in the motivation to escape from an aversive environment. In contrast to DCX, its pivotal role in the maturation of postmitotic neuronal progenitor cells (NPCs) marks DCL as a genuine adult neurogenesis indicator in the hippocampus.
Collapse
|
26
|
Dohm-Hansen S, Johansson M. Mnemonic discrimination of object and context is differentially associated with mental health. Neurobiol Learn Mem 2020; 173:107268. [DOI: 10.1016/j.nlm.2020.107268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
|
27
|
Harvey AR. Links Between the Neurobiology of Oxytocin and Human Musicality. Front Hum Neurosci 2020; 14:350. [PMID: 33005139 PMCID: PMC7479205 DOI: 10.3389/fnhum.2020.00350] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/04/2020] [Indexed: 12/22/2022] Open
Abstract
The human species possesses two complementary, yet distinct, universal communication systems—language and music. Functional imaging studies have revealed that some core elements of these two systems are processed in closely related brain regions, but there are also clear differences in brain circuitry that likely underlie differences in functionality. Music affects many aspects of human behavior, especially in encouraging prosocial interactions and promoting trust and cooperation within groups of culturally compatible but not necessarily genetically related individuals. Music, presumably via its impact on the limbic system, is also rewarding and motivating, and music can facilitate aspects of learning and memory. In this review these special characteristics of music are considered in light of recent research on the neuroscience of the peptide oxytocin, a hormone that has both peripheral and central actions, that plays a role in many complex human behaviors, and whose expression has recently been reported to be affected by music-related activities. I will first briefly discuss what is currently known about the peptide’s physiological actions on neurons and its interactions with other neuromodulator systems, then summarize recent advances in our knowledge of the distribution of oxytocin and its receptor (OXTR) in the human brain. Next, the complex links between oxytocin and various social behaviors in humans are considered. First, how endogenous oxytocin levels relate to individual personality traits, and then how exogenous, intranasal application of oxytocin affects behaviors such as trust, empathy, reciprocity, group conformity, anxiety, and overall social decision making under different environmental conditions. It is argued that many of these characteristics of oxytocin biology closely mirror the diverse effects that music has on human cognition and emotion, providing a link to the important role music has played throughout human evolutionary history and helping to explain why music remains a special prosocial human asset. Finally, it is suggested that there is a potential synergy in combining oxytocin- and music-based strategies to improve general health and aid in the treatment of various neurological dysfunctions.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Human Sciences, The University of Western Australia, Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
28
|
Sex Differences in Maturation and Attrition of Adult Neurogenesis in the Hippocampus. eNeuro 2020; 7:ENEURO.0468-19.2020. [PMID: 32586842 PMCID: PMC7369314 DOI: 10.1523/eneuro.0468-19.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
Sex differences exist in the regulation of adult neurogenesis in the hippocampus in response to hormones and cognitive training. Here, we investigated the trajectory and maturation rate of adult-born neurons in the dentate gyrus (DG) of male and female rats. Sprague Dawley rats were perfused 2 h, 24 h, one week (1w), 2w, or 3w after bromodeoxyuridine (BrdU) injection, a DNA synthesis marker that labels dividing progenitor cells and their progeny. Adult-born neurons (BrdU/NeuN-ir) matured faster in males compared with females. Males had a greater density of neural stem cells (Sox2-ir) in the dorsal, but not in the ventral, DG and had higher levels of cell proliferation (Ki67-ir) than non-proestrous females. However, males showed a greater reduction in neurogenesis between 1week and 2weeks after mitosis, whereas females showed similar levels of neurogenesis throughout the weeks. The faster maturation and greater attrition of new neurons in males compared with females suggests greater potential for neurogenesis to respond to external stimuli in males and emphasizes the importance of studying sex on adult hippocampal neurogenesis.
Collapse
|
29
|
Curcumin alleviates neuroinflammation, enhances hippocampal neurogenesis, and improves spatial memory after traumatic brain injury. Brain Res Bull 2020; 162:84-93. [PMID: 32502596 DOI: 10.1016/j.brainresbull.2020.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
Cognitive decline is one of the most obvious symptoms of traumatic brain injury (TBI). Previous studies have demonstrated that cognitive decline is related to substantially increased neuroinflammation and decreased neurogenesis in the hippocampus in a rat model of TBI. Using this model, we explored the role of curcumin (Cur) in ameliorating TBI-impaired spatial memory because Cur has been shown to exhibit anti-chronic-neuroinflammatory, neurogenesis-promoting, and memory-improving properties. Animals received daily Cur or vehicle treatment for 28 days after TBI and also received 50-bromodeoxyuridine(BrdU) for the first 7 days of the treatment for assaying neurogenesis. An optimal Cur dose of 30 mg/kg, selected from a range of 10-50 mg/kg, was used for the present study. Neuroinflammation was evaluated by astrocyte hypertrophy, activated microglia, and inflammatory factors in the hippocampus. Behavioral water-maze studies were conducted for 5 days, starting at 35-day post-TBI. The tropomyosin receptor kinase B (Trkb) inhibitor, ANA-12, was used to test the role of the brain-derived neurotrophic factor (BDNF)/ TrkB/Phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in regulating inflammation and neurogenesis in the hippocampus. Treatment with Cur ameliorated the spatial memory of TBI rats, reduced TBI-induced chronic inflammation, typified by diminished astrocyte hypertrophy, reduction in activated microglia, declined inflammatory factors, and increased neurogenesis in the hippocampus. We also found that BDNF/Trkb/PI3K/Akt signaling was involved in the effects of Cur in TBI rats. Thus, Cur treatment can ameliorate the spatial memory in a murine model of TBI, which may be attributable to decreased chronic neuroinflammation, increased hippocampal neurogenesis, and/or BDNF/Trkb/PI3K/Akt signaling.
Collapse
|
30
|
Petkova SP, Pride M, Klocke C, Fenton TA, White J, Lein PJ, Ellegood J, Lerch JP, Silverman JL, Waldau B. Cyclin D2-knock-out mice with attenuated dentate gyrus neurogenesis have robust deficits in long-term memory formation. Sci Rep 2020; 10:8204. [PMID: 32424171 PMCID: PMC7235216 DOI: 10.1038/s41598-020-65090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/23/2020] [Indexed: 02/07/2023] Open
Abstract
Neurobehavioral studies have produced contradictory findings concerning the function of neurogenesis in the adult dentate gyrus. Previous studies have proved inconsistent across several behavioral endpoints thought to be dependent on dentate neurogenesis, including memory acquisition, short-term and long-term retention of memory, pattern separation, and reversal learning. We hypothesized that the main function of dentate neurogenesis is long-term memory formation because we assumed that a newly formed and integrated neuron would have a long-term impact on the local neural network. We used a cyclin D2-knock-out (cyclin D2−/−) mouse model of endogenously deficient dentate neurogenesis to test this hypothesis. We found that cyclin D2−/− mice had robust and sustained loss of long-term memory in two separate behavioral tasks, Morris water maze (MWM) and touchscreen intermediate pattern separation. Moreover, after adjusting for differences in brain volumes determined by magnetic resonance (MR) imaging, reduced dentate neurogenesis moderately correlated with deficits in memory retention after 24 hours. Importantly, cyclin D2−/− mice did not show deficits in learning acquisition in a touchscreen paradigm of intermediate pattern separation or MWM platform location, indicating intact short-term memory. Further evaluation of cyclin D2−/− mice is necessary to confirm that deficits are specifically linked to dentate gyrus neurogenesis since cyclin D2−/− mice also have a reduced size of the olfactory bulb, hippocampus, cerebellum and cortex besides reduced dentate gyrus neurogenesis.
Collapse
Affiliation(s)
- Stela P Petkova
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Michael Pride
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Carolyn Klocke
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, 95616, US
| | - Timothy A Fenton
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US
| | - Jeannine White
- Institute for Regenerative Cures, Sacramento, CA, 95817, US
| | - Pamela J Lein
- Department of Molecular Biosciences, UC Davis School of Veterinary Medicine, Davis, CA, 95616, US.,MIND Institute, UC Davis, Sacramento, CA, 95817, US
| | - Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, M5T 3H7, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience,The University of Oxford, Oxford, OX3 9DU, UK
| | - Jill L Silverman
- Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, 95817, US.,MIND Institute, UC Davis, Sacramento, CA, 95817, US
| | - Ben Waldau
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, 95817, US.
| |
Collapse
|
31
|
Bacigaluppi M, Sferruzza G, Butti E, Ottoboni L, Martino G. Endogenous neural precursor cells in health and disease. Brain Res 2019; 1730:146619. [PMID: 31874148 DOI: 10.1016/j.brainres.2019.146619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
Abstract
Neurogenesis persists in the adult brain of mammals in the subventricular zone (SVZ) of the lateral ventricles and in the subgranular zone (SGZ) of the dentate gyrus (DG). The complex interactions between intrinsic and extrinsic signals provided by cells in the niche but also from distant sources regulate the fate of neural stem/progenitor cells (NPCs) in these sites. This fine regulation is perturbed in aging and in pathological conditions leading to a different NPC behavior, tailored to the specific physio-pathological features. Indeed, NPCs exert in physiological and pathological conditions important neurogenic and non-neurogenic regulatory functions and participate in maintaining and protecting brain tissue homeostasis. In this review, we discuss intrinsic and extrinsic signals that regulate NPC activation and NPC functional role in various homeostatic and non-homeostatic conditions.
Collapse
Affiliation(s)
- Marco Bacigaluppi
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy.
| | - Giacomo Sferruzza
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Erica Butti
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Linda Ottoboni
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | - Gianvito Martino
- Neuroimmunology Unit and Department of Neurology, Institute of Experimental Neurology, San Raffaele Hospital and Università Vita- Salute San Raffaele, Via Olgettina 60, 20132 Milano, Italy
| |
Collapse
|
32
|
Shetty AK, Attaluri S, Kodali M, Shuai B, Shetty GA, Upadhya D, Hattiangady B, Madhu LN, Upadhya R, Bates A, Rao X. Monosodium luminol reinstates redox homeostasis, improves cognition, mood and neurogenesis, and alleviates neuro- and systemic inflammation in a model of Gulf War Illness. Redox Biol 2019; 28:101389. [PMID: 31778892 PMCID: PMC6888767 DOI: 10.1016/j.redox.2019.101389] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 11/15/2019] [Indexed: 12/15/2022] Open
Abstract
Enduring brain dysfunction is amid the highly manifested symptoms in veterans with Gulf War Illness (GWI). Animal studies have established that lasting brain dysfunction in GWI is concomitant with augmented oxidative stress, inflammation, and declined neurogenesis in the brain, and systemic inflammation. We hypothesize that drugs capable of restoring redox homeostasis in GWI will improve cognitive and mood function with modulation of neuroinflammation and neurogenesis. We examined the efficacy of monosodium luminol-GVT (MSL), a drug that promotes redox homeostasis, for improving cognitive and mood function in GWI rats. Young rats were exposed to GWI-related chemicals and moderate restraint stress for four weeks. Four months later, GWI rats received different doses of MSL or vehicle for eight weeks. Behavioral analyses in the last three weeks of treatment revealed that GWI rats receiving higher doses of MSL displayed better cognitive and mood function associated with reinstatement of redox homeostasis. Such restoration was evident from the normalized expression of multiple genes encoding proteins involved in combating oxidative stress in the brain and the return of several oxidative stress markers to control levels in the brain and the circulating blood. Sustained redox homeostasis by MSL also resulted in antiinflammatory and pro-neurogenic effects, which were apparent from reduced densities of hypertrophied astrocytes and activated microglia, and increased neurogenesis with augmented neural stem cell proliferation. Moreover, MSL treatment normalized the concentration of multiple proinflammatory markers in the circulating blood. Thus, MSL treatment reinstated redox homeostasis in an animal model of GWI, which resulted in alleviation of both brain and systemic inflammation, improved neurogenesis, and better cognitive and mood function. Brain dysfunction in an animal model of Gulf War Illness is linked with persistently elevated oxidative stress. Monosodium Luminol treatment reinstated redox homeostasis in a model of Gulf War Illness. Reinstatement of redox balance improved cognitive and mood function. Restoration of redox balance modulated reactive astrocytes and activated microglia in the brain. Return of redox homeostasis enhanced neurogenesis and suppressed systemic inflammation.
Collapse
Affiliation(s)
- Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Geetha A Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Dinesh Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| |
Collapse
|
33
|
França TFA. Isolating the key factors defining the magnitude of hippocampal neurogenesis' effects on anxiety, memory and pattern separation. Neurobiol Learn Mem 2019; 166:107102. [PMID: 31629786 DOI: 10.1016/j.nlm.2019.107102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/31/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
In this paper, I analyze the hypothesis that hippocampal neurogenesis (HN) exerts its effects on behavior via activation of inhibitory circuits in the hippocampus. Using a very simple mathematical model (half-borrowed from biochemistry) to aid the reasoning, I show that the key factors determining the magnitude of HN's effects on behavior are: the baseline levels of HN in the animal, the efficiency of the animal's inhibitory circuits, the strength/intensity of the stimulus presented to the animal and how much accuracy the behavioral task requires from the information contained in the hippocampal representations. Taken together, those factors can help explain patterns observed in the behavioral results for memory, pattern separation and anxiety. The conclusions of the analysis suggest that HN's effects on inhibitory circuits can explain the impact of neurogenesis on both emotion and cognition and provide a framework to interpret future studies about the effects of HN on different behaviors, with animals of different ages and of different species.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Av Itália, Km 8 s/n-Rio Grande, RS 96210-900, Brazil.
| |
Collapse
|
34
|
Kozareva DA, Cryan JF, Nolan YM. Born this way: Hippocampal neurogenesis across the lifespan. Aging Cell 2019; 18:e13007. [PMID: 31298475 PMCID: PMC6718573 DOI: 10.1111/acel.13007] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/31/2019] [Accepted: 06/30/2019] [Indexed: 12/30/2022] Open
Abstract
The capability of the mammalian brain to generate new neurons through the lifespan has gained much attention for the promise of new therapeutic possibilities especially for the aging brain. One of the brain regions that maintains a neurogenesis-permissive environment is the dentate gyrus of the hippocampus. Here, new neurons are generated from a pool of multipotent neural progenitor cells to become fully functional neurons that are integrated into the brain circuitry. A growing body of evidence points to the fact that neurogenesis in the adult hippocampus is necessary for certain memory processes, and in mood regulation, while alterations in hippocampal neurogenesis have been associated with a myriad of neurological and psychiatric disorders. More recently, evidence has come to light that new neurons may differ in their vulnerability to environmental and disease-related influences depending on the time during the life course at which they are exposed. Thus, it has been the topic of intense research in recent years. In this review, we will discuss the complex process and associated functional relevance of hippocampal neurogenesis during the embryonic/postnatal period and in adulthood. We consider the implications of hippocampal neurogenesis during the developmentally critical periods of adolescence and older age. We will further consider the literature surrounding hippocampal neurogenesis and its functional role during these critical periods with a view to providing insight into the potential of harnessing neurogenesis for health and therapeutic benefit.
Collapse
Affiliation(s)
- Danka A. Kozareva
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| | - John F. Cryan
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Yvonne M. Nolan
- Department of Anatomy & NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
35
|
Ngo CT, Lin Y, Newcombe NS, Olson IR. Building up and wearing down episodic memory: Mnemonic discrimination and relational binding. J Exp Psychol Gen 2019; 148:1463-1479. [PMID: 30896199 PMCID: PMC6715497 DOI: 10.1037/xge0000583] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Our capacity to form and retrieve episodic memories improves over childhood but declines in old age. Understanding these changes requires decomposing episodic memory into its components. Two such components are (a) mnemonic discrimination of similar people, objects, and contexts, and (b) relational binding of these elements. We designed novel memory tasks to assess these component processes using animations that are appropriate across the life span (ages 4-80 in our sample). In Experiment 1, we assessed mnemonic discrimination of objects as well as relational binding, in a common task format. Both components follow an inverted U-shaped curve across age but were positively correlated only in the aging group. In Experiment 2, we examined mnemonic discrimination of context and its effect on relational binding. Relational memory in low-similarity contexts showed robust gains between the ages of 4 and 6, whereas 6-year-olds performed similarly to adults. In contrast, relational memory in high-similarity contexts showed more protracted development, with 4- and 6-year-olds both performing worse than young adults and not differing from each other. Relational memory in both context conditions declined in aging. This multiprocess approach provides important theoretical insights into life span changes in episodic memory. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Collapse
Affiliation(s)
- Chi T. Ngo
- Department of Psychology, Temple University
| | - Ying Lin
- Brain and Cognitive Sciences, University of Rochester
| | | | | |
Collapse
|
36
|
Drew CJG, Postans M, Petralia C, McNamara R, Pallmann P, Gillespie D, Evans LH, Muhlert N, Winter M, Hamandi K, Gray WP. A protocol for a randomised controlled, double-blind feasibility trial investigating fluoxetine treatment in improving memory and learning impairments in patients with mesial temporal lobe epilepsy: Fluoxetine, Learning and Memory in Epilepsy (FLAME trial). Pilot Feasibility Stud 2019; 5:87. [PMID: 31321071 PMCID: PMC6612194 DOI: 10.1186/s40814-019-0474-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND People with temporal lobe epilepsy (TLE) report significant problems with learning and memory. There are no effective therapies for combatting these problems in people with TLE, resulting in an unmet therapeutic need. The lack of treatment is, in part, due to a poor understanding of the neurobiology underlying these memory deficits. We know that hippocampal neurogenesis, a process believed to be important in learning and memory formation, is permanently reduced in chronic TLE, and this may go some way to explain the learning and memory impairments seen in people with TLE.The common anti-depressant drug fluoxetine has been shown to stimulate neurogenesis both in the healthy brain and in neurological diseases where neurogenesis is impaired. In an animal model of TLE, administration of fluoxetine was found to restore neurogenesis and improve learning on a complex spatial navigational task. We now want to test this effect in humans by investigating whether administration of fluoxetine to people with TLE can improve learning and memory. METHODS This is a single-centre randomised controlled, double-blind feasibility trial. We plan to recruit 20 participants with a diagnosis of TLE and uni-lateral hippocampal sclerosis, confirmed by 3T MRI. Eligible participants will undergo baseline assessments of learning and memory prior to being randomised to either 20 mg/day fluoxetine or matching placebo for 60 days. Follow-up assessments will be conducted after 60 days of trial medication and then again at 60 days after cessation of trial medication. Feasibility will be assessed on measures of recruitment, retention and adherence against pre-determined criteria. DISCUSSION This trial is designed to determine the feasibility of conducting a double-blind randomised controlled trial of fluoxetine for the treatment of learning and memory impairments in people with TLE. Data collected in this trial will inform the design and utility of any future efficacy trial involving fluoxetine for the treatment of learning and memory in people with TLE. TRIAL REGISTRATION EudraCT 2014-005088-34, registered on May 18, 2015.
Collapse
Affiliation(s)
- Cheney J. G. Drew
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Mark Postans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
| | - Cateno Petralia
- Division of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff and Vale University Health Board, Heath Park, Cardiff, CF14 4XW UK
| | - Rachel McNamara
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Philip Pallmann
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Dave Gillespie
- Centre for Trials Research, Cardiff University, Heath Park, Cardiff, CF14 4YS UK
| | - Lisa H. Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
| | - Nils Muhlert
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
- Division of Neuroscience and Experimental Psychology, Manchester University, Manchester, UK
| | - Mia Winter
- School of Psychology, Cardiff University, Tower Building, 70 Park Place, Cardiff, CF10 3AT UK
- Department of Clinical Neuropsychology, University Hospital Wales, Cardiff, CF14 4XW UK
| | - Khalid Hamandi
- Cardiff University Brain Research Imaging Centre (CUBRIC), Maindy Road, Cardiff, CF24 4HQ UK
- The Alan Richens Welsh Epilepsy Centre, University Hospital Wales, Cardiff, CF144XW UK
| | - William P. Gray
- Division of Psychological Medicine and Clinical Neurosciences, University Hospital Wales, Cardiff and Vale University Health Board, Heath Park, Cardiff, CF14 4XW UK
- Neuroscience and Mental Health Research Institute, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ UK
| |
Collapse
|
37
|
The Counteracting Effects of Exercise on High-Fat Diet-Induced Memory Impairment: A Systematic Review. Brain Sci 2019; 9:brainsci9060145. [PMID: 31226771 PMCID: PMC6627483 DOI: 10.3390/brainsci9060145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
The objective of the present review was to evaluate whether exercise can counteract a potential high-fat diet-induced memory impairment effect. The evaluated databases included: Google Scholar, Sports Discus, Embase/PubMed, Web of Science, and PsychInfo. Studies were included if: (1) an experimental/intervention study was conducted, (2) the experiment/intervention included both a high-fat diet and exercise group, and evaluated whether exercise could counteract the negative effects of a high-fat diet on memory, and (3) evaluated memory function (any type) as the outcome measure. In total, 17 articles met the inclusionary criteria. All 17 studies (conducted in rodents) demonstrated that the high-fat diet protocol impaired memory function and all 17 studies demonstrated a counteracting effect with chronic exercise engagement. Mechanisms of these robust effects are discussed herein.
Collapse
|
38
|
Clemenson GD, Henningfield CM, Stark CEL. Improving Hippocampal Memory Through the Experience of a Rich Minecraft Environment. Front Behav Neurosci 2019; 13:57. [PMID: 30949036 PMCID: PMC6437107 DOI: 10.3389/fnbeh.2019.00057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022] Open
Abstract
It is well known that the brain changes in response to the surrounding environment. The hippocampus has been shown to be particularly susceptible to environmental enrichment, with effects ranging from the generation of new hippocampal neurons and synapses to an increased expression of neurotrophic factors. While many of these changes in the hippocampus are well documented in animals, our understanding of how environmental enrichment can apply to humans is more ambiguous. In animals, spatial exploration has been shown to be a clear way to elicit the effects of environmental enrichment and considering the role of the hippocampus in spatial navigation, which has been shown in both animal models and humans, it suggests a viable avenue for translation of environmental enrichment to humans. Here, we test the hypothesis that the spatial exploration of a virtual video game environment, can impact the hippocampus and lead to an improvement in hippocampal-dependent memory. Using the video game Minecraft, we tested four groups of participants, each playing on custom servers and focusing on different aspects of Minecraft to test the effects of both building and exploration over the course of 2 weeks. We found an improvement in hippocampus-associated memory from pre-test to post-test and that the degree of improvement was tied to both the amount of exploration of the Minecraft world and the complexity of the structures built within Minecraft. Thus, the number of enrichment participants engaged in while playing Minecraft was directly correlated with improvements in hippocampal-dependent memory outside of the game.
Collapse
Affiliation(s)
- Gregory D Clemenson
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Caden M Henningfield
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Craig E L Stark
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
39
|
The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry 2019; 24:67-87. [PMID: 29679070 PMCID: PMC6195869 DOI: 10.1038/s41380-018-0036-2] [Citation(s) in RCA: 396] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is highly regulated by a number of environmental and cell-intrinsic factors to adapt to environmental changes. Accumulating evidence suggests that adult-born neurons may play distinct physiological roles in hippocampus-dependent functions, such as memory encoding and mood regulation. In addition, several brain diseases, such as neurological diseases and mood disorders, have deleterious effects on adult hippocampal neurogenesis, and some symptoms of those diseases can be partially explained by the dysregulation of adult hippocampal neurogenesis. Here we review a possible link between the physiological functions of adult-born neurons and their roles in pathological conditions.
Collapse
|
40
|
França TFA. The evolutionary significance of hippocampal neurogenesis. Eur J Neurosci 2018; 48:2945-2947. [PMID: 30192992 DOI: 10.1111/ejn.14144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/21/2018] [Accepted: 08/28/2018] [Indexed: 01/20/2023]
Abstract
Hippocampal neurogenesis (HN) has been implicated in a variety of hippocampus-dependent behaviors in the laboratory but its evolutionary significance is still debated. Some authors have argued that HN is an adaptation while others argued it is an atavism. However, recent analyses lead to the conclusion that HN likely evolved concurrently with the dentate gyrus itself, both being dependent on a migration of neural stem and progenitor cells out of the periventricular zone that occurs during development. This may render the previous debates obsolete, as selective pressure was likely acting upon the mammalian dentate gyrus itself, with neurogenesis being a mere spandrel in dentate gyrus' evolution.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| |
Collapse
|
41
|
França TFA. Plasticity and redundancy in the integration of adult born neurons in the hippocampus. Neurobiol Learn Mem 2018; 155:136-142. [PMID: 30031119 DOI: 10.1016/j.nlm.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/05/2018] [Accepted: 07/17/2018] [Indexed: 01/05/2023]
Abstract
Hippocampal neurogenesis (HN) is an extreme form of plasticity that inevitably rewires the hippocampal circuit and this rewiring was put forward as a possible mechanism for neurogenesis' behavioral effects. Here, I critically evaluate multiple lines of evidence to argue that structural plasticity induced by HN is, to a large extent, functionally redundant and thus has limited impact on behavior. The associative plasticity rules along with properties of immature neurons should only allow the survival of new neurons whose pre and postsynaptic partners have correlated activity, leading to functional redundancy. Moreover, non-redundant rewiring, even with its computational benefits, would impair meaningful communication between the hippocampus and other brain regions. This implies that associative plasticity rules constrain structural plasticity induced by neurogenesis, allowing the brain to balance plasticity and stability to maintain proper functioning. It also implies that behavioral effects of HN are mediated by other mechanisms apart from circuit rewiring.
Collapse
Affiliation(s)
- Thiago F A França
- Programa de Pós-graduação em Ciências Fisiológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Curso de graduação em Ciências Biológicas, Universidade Federal do Rio Grande -FURG, Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| |
Collapse
|
42
|
Ray S, Corenblum MJ, Anandhan A, Reed A, Ortiz FO, Zhang DD, Barnes CA, Madhavan L. A Role for Nrf2 Expression in Defining the Aging of Hippocampal Neural Stem Cells. Cell Transplant 2018; 27:589-606. [PMID: 29871525 PMCID: PMC6041888 DOI: 10.1177/0963689718774030] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Redox mechanisms are emerging as essential to stem cell function given their capacity to
influence a number of important signaling pathways governing stem cell survival and
regenerative activity. In this context, our recent work identified the reduced expression
of nuclear factor (erythroid-derived 2)-like 2, or Nrf2, in mediating the decline in
subventricular zone neural stem progenitor cell (NSPC) regeneration during aging. Since
Nrf2 is a major transcription factor at the heart of cellular redox regulation and
homeostasis, the current study investigates the role that it may play in the aging of
NSPCs that reside within the other major mammalian germinal niche located in the
subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. Using rats from
multiple aging stages ranging from newborn to old age, and aging Nrf2 knockout mice, we
first determined that, in contrast with subventricular zone (SVZ) NSPCs, Nrf2 expression
does not significantly affect overall DG NSPC viability with age. However, DG NSPCs
resembled SVZ stem cells, in that Nrf2 expression controlled their proliferation and the
balance of neuronal versus glial differentiation particularly in relation to a specific
critical period during middle age. Also, importantly, this Nrf2-based control of NSPC
regeneration was found to impact functional neurogenesis-related hippocampal behaviors,
particularly in the Morris water maze and in pattern separation tasks. Furthermore, the
enrichment of the hippocampal environment via the transplantation of Nrf2-overexpressing
NSPCs was able to mitigate the age-related decline in DG stem cell regeneration during the
critical middle-age period, and significantly improved pattern separation abilities. In
summary, these results emphasize the importance of Nrf2 in DG NSPC regeneration, and
support Nrf2 upregulation as a potential approach to advantageously modulate DG NSPC
activity with age.
Collapse
Affiliation(s)
- S Ray
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,2 Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - M J Corenblum
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - A Anandhan
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA
| | - A Reed
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - F O Ortiz
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,3 Neuroscience and Cognitive Science Undergraduate Program, Tucson, AZ, USA
| | - D D Zhang
- 4 Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - C A Barnes
- 5 Departments of Psychology & Neuroscience, University of Arizona, Tucson, AZ, USA.,6 Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - L Madhavan
- 1 Department of Neurology, University of Arizona, Tucson, AZ, USA.,6 Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
43
|
Kodali M, Hattiangady B, Shetty G, Bates A, Shuai B, Shetty A. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav Immun 2018; 69:499-514. [PMID: 29454881 PMCID: PMC7023905 DOI: 10.1016/j.bbi.2018.01.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 01/10/2023] Open
Abstract
Diminished cognitive and mood function are among the most conspicuous symptoms of Gulf War Illness (GWI). Our previous studies in a rat model of GWI have demonstrated that persistent cognitive and mood impairments are associated with substantially declined neurogenesis, chronic low-grade inflammation, increased oxidative stress and mitochondrial dysfunction in the hippocampus. We tested the efficacy of curcumin (CUR) to maintain better cognitive and mood function in a rat model of GWI because of its neurogenic, antiinflammatory, antioxidant, and memory and mood enhancing properties. Male rats were exposed daily to low doses of GWI-related chemicals, pyridostigmine bromide, N,N-diethyl-m-toluamide (DEET) and permethrin, and 5-minutes of restraint stress for 28 days. Animals were next randomly assigned to two groups, which received daily CUR or vehicle treatment for 30 days. Animals also received 5'-bromodeoxyuridine during the last seven days of treatment for analysis of neurogenesis. Behavioral studies through object location, novel object recognition and novelty suppressed feeding tests performed sixty days after treatment revealed better cognitive and mood function in CUR treated GWI rats. These rats also displayed enhanced neurogenesis and diminished inflammation typified by reduced astrocyte hypertrophy and activated microglia in the hippocampus. Additional studies showed that CUR treatment to GWI rats enhanced the expression of antioxidant genes and normalized the expression of multiple genes related to mitochondrial respiration. Thus, CUR therapy is efficacious for maintaining better memory and mood function in a model of GWI. Enhanced neurogenesis, restrained inflammation and oxidative stress with normalized mitochondrial respiration may underlie better memory and mood function mediated by CUR treatment.
Collapse
Affiliation(s)
- M. Kodali
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Hattiangady
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - G.A. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A. Bates
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - B. Shuai
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA
| | - A.K. Shetty
- Olin E. Teague Veterans’ Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA,Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, Temple and College Station, TX, USA,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, USA. (A.K. Shetty)
| |
Collapse
|
44
|
Aldi GA, Lange I, Gigli C, Goossens L, Schruers KR, Cosci F. Validation of the Mnemonic Similarity Task - Context Version. ACTA ACUST UNITED AC 2018; 40:432-440. [PMID: 29412339 PMCID: PMC6899373 DOI: 10.1590/1516-4446-2017-2379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/25/2017] [Indexed: 12/25/2022]
Abstract
Objective: Pattern separation (PS) is the ability to represent similar experiences as separate, non-overlapping representations. It is usually assessed via the Mnemonic Similarity Task – Object Version (MST-O) which, however, assesses PS performance without taking behavioral context discrimination into account, since it is based on pictures of everyday simple objects on a white background. We here present a validation study for a new task, the Mnemonic Similarity Task – Context Version (MST-C), which is designed to measure PS while taking behavioral context discrimination into account by using real-life context photographs. Methods: Fifty healthy subjects underwent the two MST tasks to assess convergent evidence. Instruments assessing memory and attention were also administered to study discriminant evidence. The test-retest reliability of MST-C was analyzed. Results: Weak evidence supports convergent validity between the MST-C task and the MST-O as measures of PS (rs = 0.464; p < 0.01); PS performance assessed via the MST-C did not correlate with memory or attention; a moderate test-retest reliability was found (rs = 0.595; p < 0.01). Conclusion: The MST-C seems useful for assessing PS performance conceptualized as the ability to discriminate complex and realistic spatial contexts. Future studies are welcome to evaluate the validity of the MST-C task as a measure of PS in clinical populations.
Collapse
Affiliation(s)
- Giulia A Aldi
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | - Iris Lange
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Cristiana Gigli
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| | - Lies Goossens
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Koen R Schruers
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, The Netherlands
| | - Fiammetta Cosci
- Dipartimento di Scienze della Salute, Università di Firenze, Firenze, Italy
| |
Collapse
|
45
|
Vivar C, van Praag H. Running Changes the Brain: the Long and the Short of It. Physiology (Bethesda) 2017; 32:410-424. [PMID: 29021361 PMCID: PMC6148340 DOI: 10.1152/physiol.00017.2017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 11/22/2022] Open
Abstract
Exercise is a simple intervention that profoundly benefits cognition. In rodents, running increases neurogenesis in the hippocampus, a brain area important for memory. We describe the dynamic changes in new neuron number and afferent connections throughout their maturation. We highlight the effects of exercise on the neurotransmitter systems involved, with a focus on the role of glutamate and acetylcholine in the initial development of new neurons in the adult brain.
Collapse
Affiliation(s)
- Carmen Vivar
- Department of Physiology, Biophysics and Neuroscience, Centro de Investigacion y de Estudios Avanzados del IPN, Mexico; and
| | - Henriette van Praag
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
46
|
|