1
|
Giannakopoulos S, Pak J, Bakse J, Ward MA, Nerurkar VR, Tallquist MD, Verma S. SARS-CoV-2-induced cytokine storm drives prolonged testicular injury and functional impairment in mice that are mitigated by dexamethasone. PLoS Pathog 2025; 21:e1012804. [PMID: 39775442 PMCID: PMC11706467 DOI: 10.1371/journal.ppat.1012804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Compromised male reproductive health, including reduced testosterone and sperm count, is one of the long COVID symptoms in individuals recovering from mild-severe disease. COVID-19 patients display testicular injury in the acute stage and altered serum fertility markers in the recovery phase, however, long-term implications on the testis remain unknown. This study characterized the consequences of SARS-CoV-2 on testis function. The K18-hACE2 mice that survived SARS-CoV-2 infection were followed for one month after infection and the testicular injury and function markers were assessed at different stages of infection and recovery. The long-term impact of infection on key testes function-related hormones and male fertility was measured. The efficacy of inflammation-suppressing drug in preventing testicular injury was also evaluated. The morphological defects like sloughing of spermatids into the lumen and increased apoptotic cells sustained for 2-4 weeks after infection and correlated with testicular inflammation and immune cell infiltration. Transcriptomic analysis revealed dysregulation of inflammatory, cell death, and steroidogenic pathways. Furthermore, reduced testosterone levels associated with a transient reduction in sperm count and male fertility. Most testicular impairments resolved within one month of infection. Importantly, dexamethasone treatment attenuated testicular damage, inflammation, and immune infiltration. Our results implicate virus-induced cytokine storm as the major driver of testicular injury and functional impairments, timely prevention of which limits testis damage. These findings serve as a model for evaluating therapeutics in long COVID patients and may guide clinical strategies to improve male reproductive health outcomes post-SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Stefanos Giannakopoulos
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jin Pak
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jackson Bakse
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Monika A. Ward
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Vivek R. Nerurkar
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michelle D. Tallquist
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Saguna Verma
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
2
|
Padmaswari MH, Bulliard G, Agrawal S, Jia MS, Khadgi S, Murach KA, Nelson CE. Precision and efficacy of RNA-guided DNA integration in high-expressing muscle loci. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102320. [PMID: 39398225 PMCID: PMC11466678 DOI: 10.1016/j.omtn.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/30/2024] [Indexed: 10/15/2024]
Abstract
Gene replacement therapies primarily rely on adeno-associated virus (AAV) vectors for transgene expression. However, episomal expression can decline over time due to vector loss or epigenetic silencing. CRISPR-based integration methods offer promise for long-term transgene insertion. While the development of transgene integration methods has made substantial progress, identifying optimal insertion loci remains challenging. Skeletal muscle is a promising tissue for gene replacement owing to low invasiveness of intramuscular injections, relative proportion of body mass, the multinucleated nature of muscle, and the potential for reduced adverse effects. Leveraging endogenous promoters in skeletal muscle, we evaluated two highly expressing loci using homology-independent targeted integration (HITI) to integrate reporter or therapeutic genes in mouse myoblasts and skeletal muscle tissue. We hijacked the muscle creatine kinase (Ckm) and myoglobin (Mb) promoters by co-delivering CRISPR-Cas9 and a donor plasmid with promoterless constructs encoding green fluorescent protein (GFP) or human Factor IX (hFIX). Additionally, we deeply profiled our genome and transcriptome outcomes from targeted integration and evaluated the safety of the proposed sites. This study introduces a proof-of-concept technology for achieving high-level therapeutic gene expression in skeletal muscle, with potential applications in targeted integration-based medicine and synthetic biology.
Collapse
Affiliation(s)
- Made Harumi Padmaswari
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| | | | - Shilpi Agrawal
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Mary S. Jia
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Sabin Khadgi
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Kevin A. Murach
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E. Nelson
- Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
- Cellular and Molecular Biology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
3
|
Keane AJ, Sanz-Nogués C, Jayasooriya D, Creane M, Chen X, Lyons CJ, Sikri I, Goljanek-Whysall K, O'Brien T. miR-1, miR-133a, miR-29b and skeletal muscle fibrosis in chronic limb-threatening ischaemia. Sci Rep 2024; 14:29393. [PMID: 39592654 PMCID: PMC11599917 DOI: 10.1038/s41598-024-76415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Chronic limb-threatening ischaemia (CLTI), the most severe manifestation of peripheral arterial disease (PAD), is associated with a poor prognosis and high amputation rates. Despite novel therapeutic approaches being investigated, no significant clinical benefits have been observed yet. Understanding the molecular pathways of skeletal muscle dysfunction in CLTI is crucial for designing successful treatments. This study aimed to identify miRNAs dysregulated in muscle biopsies from PAD cohorts. Using MIcroRNA ENrichment TURned NETwork (MIENTURNET) on a publicly accessible RNA-sequencing dataset of PAD cohorts, we identified a list of miRNAs that were over-represented among the upregulated differentially expressed genes (DEGs) in CLTI. Next, we validated the altered expression of these miRNAs and their targets in mice with hindlimb ischaemia (HLI). Our results showed a significant downregulation of miR-1, miR-133a, and miR-29b levels in the ischaemic limbs versus the contralateral non-ischaemic limb. A miRNA target protein-protein interaction network identified extracellular matrix components, including collagen-1a1, -3a1, and -4a1, fibronectin-1, fibrin-1, matrix metalloproteinase-2 and -14, and Sparc, which were upregulated in the ischaemic muscle of mice. This is the first study to identify miR-1, miR-133a, and miR-29b as potential contributors to fibrosis and vascular pathology in CLTI muscle, which supports their potential as novel therapeutic agents for this condition.
Collapse
Affiliation(s)
- Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland.
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Dulan Jayasooriya
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Isha Sikri
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
| | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Biomedical Sciences 1st Floor South, Corrib Village, Dangan, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Garg A, Jansen S, Greenberg L, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. Proc Natl Acad Sci U S A 2024; 121:e2405020121. [PMID: 39503885 PMCID: PMC11572969 DOI: 10.1073/pnas.2405020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 09/17/2024] [Indexed: 11/13/2024] Open
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 variant, R256H. We previously identified this variant in a family with dilated cardiomyopathy, who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using cryoelectron microscopy, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human-induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric organization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO63110
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Sanz-Nogués C, Keane AJ, Creane M, Hynes SO, Chen X, Lyons CJ, Horan E, Elliman SJ, Goljanek-Whysall K, O’Brien T. Mesenchymal stromal cell transplantation ameliorates fibrosis and microRNA dysregulation in skeletal muscle ischemia. Stem Cells 2024; 42:976-991. [PMID: 39283740 PMCID: PMC11541228 DOI: 10.1093/stmcls/sxae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Peripheral arterial disease (PAD) is associated with lower-extremity muscle wasting. Hallmark features of PAD-associated skeletal muscle pathology include loss of skeletal muscle mass, reduced strength and physical performance, increased inflammation, fibrosis, and adipocyte infiltration. At the molecular level, skeletal muscle ischemia has also been associated with gene and microRNA (miRNA) dysregulation. Mesenchymal stromal cells (MSCs) have been shown to enhance muscle regeneration and improve muscle function in various skeletal muscle injuries. This study aimed to evaluate the effects of intramuscularly delivered human umbilical cord-derived MSCs (hUC-MSCs) on skeletal muscle ischemia. Herein, we report an hUC-MSC-mediated amelioration of ischemia-induced skeletal muscle atrophy and function via enhancement of myofiber regeneration, reduction of tissue inflammation, adipocyte accumulation, and tissue fibrosis. These changes were observed in the absence of cell-mediated enhancement of blood flow recovery as measured by laser Doppler imaging. Furthermore, reduced tissue fibrosis in the hUC-MSC-treated group was associated with upregulation of miR-1, miR-133a, and miR-29b and downregulation of targeted pro-fibrotic genes such as Col1a1 and Fn1. Our results support the use of hUC-MSCs as a novel approach to reduce fibrosis and promote skeletal muscle regeneration after ischemic injury in patients with PAD.
Collapse
Affiliation(s)
- Clara Sanz-Nogués
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| | - Alan J Keane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Michael Creane
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Sean O Hynes
- Discipline of Pathology, University of Galway, Galway, Ireland
- Division of Anatomic Pathology, University Hospital Galway, Galway, Ireland
| | - Xizhe Chen
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Caomhán J Lyons
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
| | - Emma Horan
- Orbsen Therapeutics Ltd., Galway, Ireland
| | | | - Katarzyna Goljanek-Whysall
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Timothy O’Brien
- Regenerative Medicine Institute (REMEDI), University of Galway, Galway, Ireland
- CÚRAM SFI Research Centre for Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Lopergolo D, Gallus GN, Pieraccini G, Boscaro F, Berti G, Serni G, Volpi N, Formichi P, Bianchi S, Cassandrini D, Sorrentino V, Rossi D, Santorelli FM, De Stefano N, Malandrini A. CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy. Cells 2024; 13:1504. [PMID: 39273074 PMCID: PMC11394131 DOI: 10.3390/cells13171504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. METHODS We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. RESULTS The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. CONCLUSIONS Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Gian Nicola Gallus
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giuseppe Pieraccini
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Francesca Boscaro
- CISM—Mass Spectrometry Centre, University of Florence, 50139 Florence, Italy
| | - Gianna Berti
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Giovanni Serni
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Nila Volpi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Patrizia Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Silvia Bianchi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Denise Cassandrini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- UOC Neurologia, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
7
|
Ben-Jemaa S, Boussaha M, Mandonnet N, Bardou P, Naves M. Uncovering structural variants in Creole cattle from Guadeloupe and their impact on environmental adaptation through whole genome sequencing. PLoS One 2024; 19:e0309411. [PMID: 39186744 PMCID: PMC11346954 DOI: 10.1371/journal.pone.0309411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Structural variants play an important role in evolutionary processes. Besides, they constitute a large source of inter individual genetic variation that might represent a major factor in the aetiology of complex, multifactorial traits. Their importance in adaptation is becoming increasingly evident in literature. Yet, the characterization of the genomic landscape of structural variants in local breeds remains scarce to date. Herein, we investigate patterns and gene annotation of structural variants in the Creole cattle from Guadeloupe breed using whole genome sequences from 23 bulls representative of the population. In total, we detected 32821 ascertained SV defining 15258 regions, representing ~ 17% of the Creole cattle genome. Among these, 6639 regions have not been previously reported in the Database of Genomic Variants archive. Average number of structural variants detected per individual in the studied population is in the same order of magnitude of that observed in indicine populations and higher than that reported in taurine breeds. We observe an important within-individual variability where approximately half of the detected structural variants have low frequency (MAF < 0.25). Most of the detected structural variants (55%) occurred in intergenic regions. Genic structural variants overlapped with 7793 genes and the predicted effect of most of them is ranked as "modifier". Among the structural variants that were predicted to have a high functional impact on the protein, a 5.5 Kb in length, highly frequent deletion on chromosome 2, affects ALPI, a gene associated with the interaction between gut microbiota and host immune system. The 6639 newly identified structural variants regions include three deletions and three duplications shared by more than 80% of individuals that are significantly enriched for genes related to tRNA threonylcarbamoyladenosine metabolic process, important for temperature adaptation in thermophilic organisms, therefore suggesting a potential role in the thermotolerance of Creole cattle from Guadeloupe cattle to tropical climate. Overall, highly frequent structural variants that are specific to the Creole cattle population encompass olfactory receptor and immunity genes as well as genes involved in muscle tone, muscle development and contraction. Beyond mapping and characterizing structural variants in the Creole cattle from Guadeloupe breed, this study provides valuable information for a better understanding of the potential role of chromosomal rearrangements in adaptive traits in cattle.
Collapse
Affiliation(s)
- Slim Ben-Jemaa
- INRAE, ASSET, 97170, Petit-Bourg, France
- Institut National de la Recherche Agronomique de Tunisie, Laboratoire des Productions Animales et Fourragères, Université de Carthage, 2049, Ariana, Tunisia
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRA, Ecole Nationale Vétérinaire de Toulouse (ENVT), 31320, Castanet-Tolosan, France
- Sigenae, INRAE, 31320, Castanet-Tolosan, France
| | | |
Collapse
|
8
|
Heissler SM, Chinthalapudi K. Structural and functional mechanisms of actin isoforms. FEBS J 2024. [PMID: 38779987 DOI: 10.1111/febs.17153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/01/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Actin is a highly conserved and fundamental protein in eukaryotes and participates in a broad spectrum of cellular functions. Cells maintain a conserved ratio of actin isoforms, with muscle and non-muscle actins representing the main actin isoforms in muscle and non-muscle cells, respectively. Actin isoforms have specific and redundant functional roles and display different biochemistries, cellular localization, and interactions with myosins and actin-binding proteins. Understanding the specific roles of actin isoforms from the structural and functional perspective is crucial for elucidating the intricacies of cytoskeletal dynamics and regulation and their implications in health and disease. Here, we review how the structure contributes to the functional mechanisms of actin isoforms with a special emphasis on the questions of how post-translational modifications and disease-linked mutations affect actin isoforms biochemistry, function, and interaction with actin-binding proteins and myosin motors.
Collapse
Affiliation(s)
- Sarah M Heissler
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Krishna Chinthalapudi
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Galli RA, Borsboom TC, Gineste C, Brocca L, Rossi M, Hwee DT, Malik FI, Bottinelli R, Gondin J, Pellegrino MA, de Winter JM, Ottenheijm CA. Tirasemtiv enhances submaximal muscle tension in an Acta1:p.Asp286Gly mouse model of nemaline myopathy. J Gen Physiol 2024; 156:e202313471. [PMID: 38376469 PMCID: PMC10876480 DOI: 10.1085/jgp.202313471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.
Collapse
Affiliation(s)
- Ricardo A. Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - Tamara C. Borsboom
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
| | | | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université Lyon, Lyon, France
| | | | - Josine M. de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Coen A.C. Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Atherosclerosis, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Sebastian WA, Inoue M, Shimizu N, Sato R, Oguri S, Itonaga T, Kishimoto S, Shiraishi H, Hanada T, Ihara K. Cardiac manifestations of human ACTA2 variants recapitulated in a zebrafish model. J Hum Genet 2024; 69:133-138. [PMID: 38316882 DOI: 10.1038/s10038-024-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The ACTA2 gene encodes actin α2, a major smooth muscle protein in vascular smooth muscle cells. Missense variants in the ACTA2 gene can cause inherited thoracic aortic diseases with characteristic symptoms, such as dysfunction of smooth muscle cells in the lungs, brain vessels, intestines, pupils, bladder, or heart. We identified a heterozygous missense variant of Gly148Arg (G148R) in a patient with a thoracic aortic aneurysm, dissection, and left ventricular non-compaction. We used zebrafish as an in vivo model to investigate whether or not the variants might cause functional or histopathological abnormalities in the heart. Following the fertilization of one-cell stage embryos, we injected in vitro synthesized ACTA2 mRNA of wild-type, novel variant G148R, or the previously known pathogenic variant Arg179His (R179H). The embryos were maintained and raised for 72 h post-fertilization for a heart analysis. Shortening fractions of heart were significantly reduced in both pathogenic variants. A histopathological evaluation showed that the myocardial wall of ACTA2 pathogenic variants was thinner than that of the wild type, and the total cell number within the myocardium was markedly decreased in all zebrafish with pathogenic variants mRNAs. Proliferating cell numbers were also significantly decreased in the endothelial and myocardial regions of zebrafish with ACTA2 variants compared to the wild type. These results demonstrate the effects of ACTA2 G148R and R179H on the development of left ventricle non-compaction and cardiac morphological abnormalities. Our study highlights the previously unknown significance of the ACTA2 gene in several aspects of cardiovascular development.
Collapse
Affiliation(s)
| | - Masanori Inoue
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology, Oita University, Faculty of Medicine, Oita, Japan
| | - Ryosuke Sato
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan
| | - Saori Oguri
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan
| | - Tomoyo Itonaga
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan
| | - Shintaro Kishimoto
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology, Oita University, Faculty of Medicine, Oita, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Oita University, Faculty of Medicine, Oita, Japan.
| | - Kenji Ihara
- Department of Pediatrics, Oita University, Faculty of Medicine, Oita, Japan.
| |
Collapse
|
11
|
Garg A, Jansen S, Zhang R, Lavine KJ, Greenberg MJ. Dilated cardiomyopathy-associated skeletal muscle actin (ACTA1) mutation R256H disrupts actin structure and function and causes cardiomyocyte hypocontractility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.583979. [PMID: 38559046 PMCID: PMC10979883 DOI: 10.1101/2024.03.10.583979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Skeletal muscle actin (ACTA1) mutations are a prevalent cause of skeletal myopathies consistent with ACTA1's high expression in skeletal muscle. Rare de novo mutations in ACTA1 associated with combined cardiac and skeletal myopathies have been reported, but ACTA1 represents only ~20% of the total actin pool in cardiomyocytes, making its role in cardiomyopathy controversial. Here we demonstrate how a mutation in an actin isoform expressed at low levels in cardiomyocytes can cause cardiomyopathy by focusing on a unique ACTA1 mutation, R256H. We previously identified this mutation in multiple family members with dilated cardiomyopathy (DCM), who had reduced systolic function without clinical skeletal myopathy. Using a battery of multiscale biophysical tools, we show that R256H has potent functional effects on ACTA1 function at the molecular scale and in human cardiomyocytes. Importantly, we demonstrate that R256H acts in a dominant manner, where the incorporation of small amounts of mutant protein into thin filaments is sufficient to disrupt molecular contractility, and that this effect is dependent on the presence of troponin and tropomyosin. To understand the structural basis of this change in regulation, we resolved a structure of R256H filaments using Cryo-EM, and we see alterations in actin's structure that have the potential to disrupt interactions with tropomyosin. Finally, we show that ACTA1R256H/+ human induced pluripotent stem cell cardiomyocytes demonstrate reduced contractility and sarcomeric disorganization. Taken together, we demonstrate that R256H has multiple effects on ACTA1 function that are sufficient to cause reduced contractility and establish a likely causative relationship between ACTA1 R256H and clinical cardiomyopathy.
Collapse
Affiliation(s)
- Ankit Garg
- Division of Cardiology, Department of Medicine Johns Hopkins University Baltimore MD USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
12
|
Greve JN, Marquardt A, Heiringhoff R, Reindl T, Thiel C, Di Donato N, Taft MH, Manstein DJ. The non-muscle actinopathy-associated mutation E334Q in cytoskeletal γ-actin perturbs interaction of actin filaments with myosin and ADF/cofilin family proteins. eLife 2024; 12:RP93013. [PMID: 38446501 PMCID: PMC10942649 DOI: 10.7554/elife.93013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Various heterozygous cytoskeletal γ-actin mutations have been shown to cause Baraitser-Winter cerebrofrontofacial syndrome, non-syndromic hearing loss, or isolated eye coloboma. Here, we report the biochemical characterization of human cytoskeletal γ-actin carrying mutation E334Q, a mutation that leads to a hitherto unspecified non-muscle actinopathy. Following expression, purification, and removal of linker and thymosin β4 tag sequences, the p.E334Q monomers show normal integration into linear and branched actin filaments. The mutation does not affect thermal stability, actin filament nucleation, elongation, and turnover. Model building and normal mode analysis predict significant differences in the interaction of p.E334Q filaments with myosin motors and members of the ADF/cofilin family of actin-binding proteins. Assays probing the interactions of p.E334Q filaments with human class 2 and class 5 myosin motor constructs show significant reductions in sliding velocity and actin affinity. E334Q differentially affects cofilin-mediated actin dynamics by increasing the rate of cofilin-mediated de novo nucleation of actin filaments and decreasing the efficiency of cofilin-mediated filament severing. Thus, it is likely that p.E334Q-mediated changes in myosin motor activity, as well as filament turnover, contribute to the observed disease phenotype.
Collapse
Affiliation(s)
- Johannes N Greve
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Anja Marquardt
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Robin Heiringhoff
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Theresia Reindl
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | | | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for MedicalHannoverGermany
- Division for Structural Biochemistry, Hannover Medical SchoolHannoverGermany
- RESiST, Cluster of Excellence 2155, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
13
|
Fan Y, Pavani KC, Smits K, Van Soom A, Peelman L. tRNA Glu-derived fragments from embryonic extracellular vesicles modulate bovine embryo hatching. J Anim Sci Biotechnol 2024; 15:23. [PMID: 38424649 PMCID: PMC10905895 DOI: 10.1186/s40104-024-00997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development. We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts. The majority of tsRNAs was identified as tRNA halves originating from the 5´ ends of tRNAs. Among the 148 differentially expressed tsRNAs, the 19 nt tRNA fragment (tRF) tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts. RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group (P < 0.05). Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching (P < 0.05). Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation. In summary, tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions, and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching, while influencing embryo implantation-related genes and pathways. These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
Collapse
Affiliation(s)
- Yuan Fan
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium
| | - Krishna Chaitanya Pavani
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Katrien Smits
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Luc Peelman
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Heidestraat 19, 9820, Merelbeke, Belgium.
| |
Collapse
|
14
|
Xu Z, Arkudas A, Munawar MA, Schubert DW, Fey T, Weisbach V, Mengen LM, Horch RE, Cai A. Schwann Cells Do Not Promote Myogenic Differentiation in the EPI Loop Model. Tissue Eng Part A 2024; 30:244-256. [PMID: 38063005 DOI: 10.1089/ten.tea.2023.0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
In skeletal muscle tissue engineering, innervation and vascularization play an essential role in the establishment of functional skeletal muscle. For adequate three-dimensional assembly, biocompatible aligned nanofibers are beneficial as matrices for cell seeding. The aim of this study was to analyze the impact of Schwann cells (SC) on myoblast (Mb) and adipogenic mesenchymal stromal cell (ADSC) cocultures on poly-ɛ-caprolactone (PCL)-collagen I-nanofibers in vivo. Human Mb/ADSC cocultures, as well as Mb/ADSC/SC cocultures, were seeded onto PCL-collagen I-nanofiber scaffolds and implanted into the innervated arteriovenous loop model (EPI loop model) of immunodeficient rats for 4 weeks. Histological staining and gene expression were used to compare their capacity for vascularization, immunological response, myogenic differentiation, and innervation. After 4 weeks, both Mb/ADSC and Mb/ADSC/SC coculture systems showed similar amounts and distribution of vascularization, as well as immunological activity. Myogenic differentiation could be observed in both groups through histological staining (desmin, myosin heavy chain) and gene expression (MYOD, MYH3, ACTA1) without significant difference between groups. Expression of CHRNB and LAMB2 also implied neuromuscular junction formation. Our study suggests that the addition of SC did not significantly impact myogenesis and innervation in this model. The implanted motor nerve branch may have played a more significant role than the presence of SC.
Collapse
Affiliation(s)
- Zhou Xu
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Andreas Arkudas
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Muhammad Azeem Munawar
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk W Schubert
- Department of Materials Science and Engineering, Institute of Polymer Materials, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Fey
- Department of Materials Science and Engineering, Institute of Glass and Ceramics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lilly M Mengen
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Raymund E Horch
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aijia Cai
- Laboratory for Tissue Engineering and Regenerative Medicine, Department of Plastic and Hand Surgery, University Hospital of Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
15
|
Sadat Kalaki N, Ahmadzadeh M, Najafi M, Mobasheri M, Ajdarkosh H, Karbalaie Niya MH. Systems biology approach to identify biomarkers and therapeutic targets for colorectal cancer. Biochem Biophys Rep 2024; 37:101633. [PMID: 38283191 PMCID: PMC10821538 DOI: 10.1016/j.bbrep.2023.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
Background Colorectal cancer (CRC), is the third most prevalent cancer across the globe, and is often detected at advanced stage. Late diagnosis of CRC, leave the chemotherapy and radiotherapy as the main options for the possible treatment of the disease which are associated with severe side effects. In the present study, we seek to explore CRC gene expression data using a systems biology framework to identify potential biomarkers and therapeutic targets for earlier diagnosis and treatment of the disease. Methods The expression data was retrieved from the gene expression omnibus (GEO). Differential gene expression analysis was conducted using R/Bioconductor package. The PPI network was reconstructed by the STRING. Cystoscope and Gephi software packages were used for visualization and centrality analysis of the PPI network. Clustering analysis of the PPI network was carried out using k-mean algorithm. Gene-set enrichment based on Gene Ontology (GO) and KEGG pathway databases was carried out to identify the biological functions and pathways associated with gene groups. Prognostic value of the selected identified hub genes was examined by survival analysis, using GEPIA. Results A total of 848 differentially expressed genes were identified. Centrality analysis of the PPI network resulted in identification of 99 hubs genes. Clustering analysis dissected the PPI network into seven interactive modules. While several DEGs and the central genes in each module have already reported to contribute to CRC progression, survival analysis confirmed high expression of central genes, CCNA2, CD44, and ACAN contribute to poor prognosis of CRC patients. In addition, high expression of TUBA8, AMPD3, TRPC1, ARHGAP6, JPH3, DYRK1A and ACTA1 was found to associate with decreased survival rate. Conclusion Our results identified several genes with high centrality in PPI network that contribute to progression of CRC. The fact that several of the identified genes have already been reported to be relevant to diagnosis and treatment of CRC, other highlighted genes with limited literature information may hold potential to be explored in the context of CRC biomarker and drug target discovery.
Collapse
Affiliation(s)
- Niloufar Sadat Kalaki
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Mozhgan Ahmadzadeh
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Mobasheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Islamic Azad University of Medical Sciences, Tehran, Iran
- International Institute of New Sciences (IINS), Tehran, Iran
| | - Hossein Ajdarkosh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Karbalaie Niya
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lehtokari VL, Sagath L, Davis M, Ho D, Kiiski K, Kettunen K, Demczko M, Stein R, Vatta M, Winder TL, Shohet A, Orenstein N, Krcho P, Bohuš P, Huovinen S, Udd B, Pelin K, Laing NG, Wallgren-Pettersson C. A recurrent ACTA1 amino acid change in mosaic form causes milder asymmetric myopathy. Neuromuscul Disord 2024; 34:32-40. [PMID: 38142473 DOI: 10.1016/j.nmd.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
We describe three patients with asymmetric congenital myopathy without definite nemaline bodies and one patient with severe nemaline myopathy. In all four patients, the phenotype had been caused by pathogenic missense variants in ACTA1 leading to the same amino acid change, p.(Gly247Arg). The three patients with milder myopathy were mosaic for their variants. In contrast, in the severely affected patient, the missense variant was present in a de novo, constitutional form. The grade of mosaicism in the three mosaic patients ranged between 20 % and 40 %. We speculate that the milder clinical and histological manifestations of the same ACTA1 variant in the patients with mosaicism reflect the lower abundance of mutant actin in their muscle tissue. Similarly, the asymmetry of body growth and muscle weakness may be a consequence of the affected cells being unevenly distributed. The partial improvement in muscle strength with age in patients with mosaicism might be due to an increased proportion over time of nuclei carrying and expressing two normal alleles.
Collapse
Affiliation(s)
- Vilma-Lotta Lehtokari
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland.
| | - Lydia Sagath
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland
| | - Mark Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA
| | - Desiree Ho
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA
| | - Kirsi Kiiski
- Folkhälsan Research Center, 00290 Helsinki, Finland; Laboratory of Genetics, Division of Genetics and Clinical Pharmacology, HUS Diagnostic Center, 00029 Helsinki University Hospital and 00014 University of Helsinki, Helsinki, Finland
| | - Kaisa Kettunen
- Laboratory of Genetics, Division of Genetics and Clinical Pharmacology, HUS Diagnostic Center, 00029 Helsinki University Hospital and 00014 University of Helsinki, Helsinki, Finland
| | - Matthew Demczko
- Division of Diagnostic Referral Services, Nemours Children's Hospital, Wilmington, DE 19803, United States
| | - Riki Stein
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel
| | - Matteo Vatta
- Invitae Corporation, San Francisco, CA 94103, United States
| | | | - Adi Shohet
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel
| | - Naama Orenstein
- Genetics Unit, Schneider Children's Medical Center, Petach Tikva 4920235, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peter Krcho
- Department of Neonatology, Pavol Jozef Safarik University, 041 80 Košice, Slovakia
| | - Peter Bohuš
- Department of Pathology, L. Pasteur University Hospital, 040 11 Košice, Slovakia
| | - Sanna Huovinen
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital, 33101 Tampere, Finland
| | - Bjarne Udd
- Folkhälsan Research Center, 00290 Helsinki, Finland; Neuromuscular Research Center, Department of Neurology, Tampere University and University Hospital, 33520 Tampere, Finland; Department of Neurology, Vaasa Central Hospital, 65130 Vaasa, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, 00290 Helsinki, Finland; Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Finland
| | - Nigel G Laing
- Department of Diagnostic Genomics, PathWest Laboratory Medicine WA, Nedlands WA 6009, SA; Harry Perkins Institute of Medical Research, and University of Western Australia Centre for Medical Research, Nedlands Western Australia 6009, Australia
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, 00290 Helsinki, Finland; Department of Medical and Clinical Genetics, Medicum, 00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Marghany F, Ayobahan SU, Salinas G, Schäfers C, Hollert H, Eilebrecht S. Transcriptomic and proteomic fingerprints induced by the fungicides difenoconazole and metalaxyl in zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 105:104348. [PMID: 38135202 DOI: 10.1016/j.etap.2023.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we applied OMICs analysis to identify substance-specific biomarker candidates, which may act as early indicators for specific ecotoxic modes of actions (MoA). Zebrafish embryos were exposed to two sublethal concentrations of difenoconazole and metalaxyl according to a modified protocol of the OECD test guideline No. 236. At the end of exposure, total RNA and protein were extracted, followed by transcriptomics and proteomics analysis. The analysis of significantly differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) revealed a positive exposure-response correlation in all test concentrations for both fungicides. Similarly, also a positive correlation between the obtained transcriptome and proteome data was observed, highlighting the robustness of our approach. From the detected DEGs, candidate biomarkers specific for difenoconazole (apoa1b, gatm, mylpfb and acta1b) and metalaxyl (lgals2b, abat, fabp1b.1 and myh9a) were selected, and their biological functions were discussed to assess the predictive potential.
Collapse
Affiliation(s)
- Fatma Marghany
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Steve U Ayobahan
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Gabriela Salinas
- NGS-Services for Integrative Genomics, University of Göttingen, Göttingen, Germany
| | - Christoph Schäfers
- Department Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt, Germany; Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany
| | - Sebastian Eilebrecht
- Department Ecotoxicogenomics, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schmallenberg, Germany.
| |
Collapse
|
18
|
Piñero-Pérez R, López-Cabrera A, Álvarez-Córdoba M, Cilleros-Holgado P, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de Pablos RM, Sánchez-Alcázar JA. Actin Polymerization Defects Induce Mitochondrial Dysfunction in Cellular Models of Nemaline Myopathies. Antioxidants (Basel) 2023; 12:2023. [PMID: 38136143 PMCID: PMC10740811 DOI: 10.3390/antiox12122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.
Collapse
Affiliation(s)
- Rocío Piñero-Pérez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra López-Cabrera
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Marta Talaverón-Rey
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra Suárez-Carrillo
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Manuel Munuera-Cabeza
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto of Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
19
|
Maehara H, Kokaji T, Hatano A, Suzuki Y, Matsumoto M, Nakayama KI, Egami R, Tsuchiya T, Ozaki H, Morita K, Shirai M, Li D, Terakawa A, Uematsu S, Hironaka KI, Ohno S, Kubota H, Araki H, Miura F, Ito T, Kuroda S. DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins in liver and skeletal muscle. Sci Rep 2023; 13:19118. [PMID: 37926704 PMCID: PMC10625943 DOI: 10.1038/s41598-023-46393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023] Open
Abstract
Each tissue has a dominant set of functional proteins required to mediate tissue-specific functions. Epigenetic modifications, transcription, and translational efficiency control tissue-dominant protein production. However, the coordination of these regulatory mechanisms to achieve such tissue-specific protein production remains unclear. Here, we analyzed the DNA methylome, transcriptome, and proteome in mouse liver and skeletal muscle. We found that DNA hypomethylation at promoter regions is globally associated with liver-dominant or skeletal muscle-dominant functional protein production within each tissue, as well as with genes encoding proteins involved in ubiquitous functions in both tissues. Thus, genes encoding liver-dominant proteins, such as those involved in glycolysis or gluconeogenesis, the urea cycle, complement and coagulation systems, enzymes of tryptophan metabolism, and cytochrome P450-related metabolism, were hypomethylated in the liver, whereas those encoding-skeletal muscle-dominant proteins, such as those involved in sarcomere organization, were hypomethylated in the skeletal muscle. Thus, DNA hypomethylation characterizes genes encoding tissue-dominant functional proteins.
Collapse
Affiliation(s)
- Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Data Science Center, Nara Institute of Science and Technology, 8916‑5 Takayama, Ikoma, Nara, Japan
| | - Atsushi Hatano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Masaki Matsumoto
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, 757 Ichibancho, Asahimachi-Dori, Chuo-Ku, Niigata City, Niigata, 951-8510, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Takaho Tsuchiya
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Haruka Ozaki
- Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Ibaraki, 305‑8575, Japan
- Center for Artificial Intelligence Research, University of Tsukuba, Ibaraki, 305‑8577, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masaki Shirai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Ken-Ichi Hironaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan
| | - Hiroyuki Kubota
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Hiromitsu Araki
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan
| | - Shinya Kuroda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan.
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan.
- Molecular Genetics Research Laboratory, Graduate School of Science, University of Tokyo, 7‑3‑1 Hongo, Bunkyo‑ku, Tokyo, 113‑0033, Japan.
| |
Collapse
|
20
|
Haghighi A, Alvandi Z, Nilipour Y, Haghighi A, Kornreich R, Nafissi S, Desnick RJ. Nemaline myopathy: reclassification of previously reported variants according to ACMG guidelines, and report of novel genetic variants. Eur J Hum Genet 2023; 31:1237-1250. [PMID: 37460656 PMCID: PMC10620380 DOI: 10.1038/s41431-023-01378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/11/2022] [Accepted: 04/26/2023] [Indexed: 11/03/2023] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous genetic neuromuscular disorder characterized by rod bodies in muscle fibers resulting in multiple complications due to muscle weakness. NM patients and their families could benefit from genetic analysis for early diagnosis, carrier and prenatal testing; however, clinical classification of variants is subject to change as further information becomes available. Reclassification can significantly alter the clinical management of patients and their families. We used the newly published data and ACMG/AMP guidelines to reassess NM-associated variants previously reported by clinical laboratories (ClinVar). Our analyses on rare variants that were not canonical loss-of-function (LOF) resulted in the downgrading of ~29% (28/97) of variants from pathogenic or likely-pathogenic (P/LP) to variants of uncertain significance (VUS). In addition, we analyzed the splicing effect of variants identified in NM patients by clinical laboratories or research, using an accurate in silico prediction tool that applies a deep-learning network. We identified 55 rare variants that may impact splicing (cryptic splicing). We also analyzed six new NM families and identified eight variants in NEB and ACTA1, including three novel variants: homozygous pathogenic c.164A > G (p.Tyr55Cys), and homozygous likely pathogenic c.980T > C (p.Met327Thr) in ACTA1, and heterozygous VUS c.18694-3T > G in NEB. This study demonstrates the importance of reclassifying variants to facilitate more definitive "calls" on causality or no causality in clinical genetic testing of patients with NM. Reclassification of ~150 variants is now available for improved clinical management, risk counseling and screening of NM patients.
Collapse
Affiliation(s)
- Alireza Haghighi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Zahra Alvandi
- Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
- Vascular Biology Program, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children's Health, and Mofid Children Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Haghighi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Ruth Kornreich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Al Amrani F, Alanay Y, Nieto Y, Gabriel MÁM, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. HGG ADVANCES 2023; 4:100213. [PMID: 37457373 PMCID: PMC10345160 DOI: 10.1016/j.xhgg.2023.100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7, TPM1, and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes such as MYH2, TPM2, and TNNI2 that encode parts of the skeletal muscle sarcomere cause muscle diseases affecting skeletal muscle, such as distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7) encoding sarcomeric proteins in which the same pathogenic variant affects skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain pathogenic variants that also cause cardiac abnormalities. We report five families with DA because of heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 (ACTC1). ACTC1 encodes a highly conserved actin that binds to myosin in cardiac and skeletal muscle. Pathogenic variants in ACTC1 have been found previously to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition because of variants in ACTC1 and suggests that some functions of ACTC1 are shared in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Jessica X. Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
| | - Matthew Carter Childers
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Colby T. Marvin
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Anthony J. Marcello
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Hernan Gonorazky
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lili-Naz Hazrati
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - James J. Dowling
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
| | - Fatema Al Amrani
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
| | - Yasemin Alanay
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
| | - Yolanda Nieto
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
| | - Miguel Á Marín Gabriel
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
| | - Arthur S. Aylsworth
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kati J. Buckingham
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kathryn M. Shively
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Olivia Sommers
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Kailyn Anderson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - University of Washington Center for Mendelian Genomics
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - University of Washington Center for Rare Disease Research
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Division of Neurology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Departments of Paediatrics and Molecular Genetics, University of Toronto, Toronto, ON M5G 0A4, Canada
- Division of Neurology, Department of Pediatrics, Sultan Qaboos University Hospital, Sultan Qaboos University, Muscat, Sultanate of Oman
- Division of Pediatric Genetics, Department of Pediatrics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34752 Istanbul, Turkey
- Department of Basic Bio-Medical Sciences, European University of Madrid, Madrid, Spain
- Department of Pediatrics, Puerta de Hierro-Majadahonda University Hospital, 28221 Madrid, Spain
- Departments of Pediatrics and Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman-Baty Institute, Seattle, WA 98195, USA
- University of Washington Center for Translational Muscle Research, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| |
Collapse
|
22
|
Mulvany-Robbins B, Putko B, Schmitt L, Oudit G, Phan C, Beecher G. Novel p.Asp27Glu ACTA1 variant features congenital myopathy with finger flexor weakness, cardiomyopathy, and cardiac conduction defects. Neuromuscul Disord 2023; 33:546-550. [PMID: 37315422 DOI: 10.1016/j.nmd.2023.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Pathogenic variants in the skeletal muscle α-actin 1 gene (ACTA1) cause a spectrum of myopathies with clinical and myopathological diversity. Clinical presentations occur from the prenatal period to adulthood, commonly with proximal-predominant weakness and rarely preferential distal weakness. Myopathological findings are wide-ranging, with nemaline rods being most frequent. Associated cardiomyopathy is rare and conduction defects are not reported. We describe a family with congenital myopathy with prominent finger flexor weakness and cardiomyopathy with cardiac conduction defects. The proband, a 48-year-old Caucasian male, his 73-year-old mother, 41-year-old sister, and 19-year-old nephew presented with prominent finger flexor weakness on a background of neonatal hypotonia and delayed motor milestones. All had progressive cardiomyopathy with systolic dysfunction and/or left ventricular dilation. The proband and sister had intraventricular conduction delay and left anterior fascicular block, respectively. The mother had atrial fibrillation. Muscle biopsy in the proband and sister demonstrated congenital fiber-type disproportion and rare nemaline rods in the proband. A novel dominant variant in ACTA1 (c.81C>A, p.Asp27Glu) segregated within the family. This family expands the genotypic and phenotypic spectrum of ACTA1-related myopathy, highlighting preferential finger flexor involvement with cardiomyopathy and conduction disease. We emphasize early and ongoing cardiac surveillance in ACTA1-related myopathy.
Collapse
Affiliation(s)
- Bridget Mulvany-Robbins
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Brendan Putko
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Laura Schmitt
- Section of Neuropathology, Department of Laboratory Medicine and Pathology, University of Alberta, 8440 112St NW, Edmonton, AB, Canada T6G 2B7
| | - Gavin Oudit
- Division of Cardiology, Department of Medicine, Mazankowski Alberta Health Institute, 11220 83 Ave NW, Edmonton, AB T6G 2B7
| | - Cecile Phan
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3
| | - Grayson Beecher
- Division of Neurology, Department of Medicine, University of Alberta, 7-125 Clinical Sciences Building 11350 83rd Avenue NW, Edmonton, AB, Canada T6G 2G3.
| |
Collapse
|
23
|
Reese F, Williams B, Balderrama-Gutierrez G, Wyman D, Çelik MH, Rebboah E, Rezaie N, Trout D, Razavi-Mohseni M, Jiang Y, Borsari B, Morabito S, Liang HY, McGill CJ, Rahmanian S, Sakr J, Jiang S, Zeng W, Carvalho K, Weimer AK, Dionne LA, McShane A, Bedi K, Elhajjajy SI, Upchurch S, Jou J, Youngworth I, Gabdank I, Sud P, Jolanki O, Strattan JS, Kagda MS, Snyder MP, Hitz BC, Moore JE, Weng Z, Bennett D, Reinholdt L, Ljungman M, Beer MA, Gerstein MB, Pachter L, Guigó R, Wold BJ, Mortazavi A. The ENCODE4 long-read RNA-seq collection reveals distinct classes of transcript structure diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540865. [PMID: 37292896 PMCID: PMC10245583 DOI: 10.1101/2023.05.15.540865] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The majority of mammalian genes encode multiple transcript isoforms that result from differential promoter use, changes in exonic splicing, and alternative 3' end choice. Detecting and quantifying transcript isoforms across tissues, cell types, and species has been extremely challenging because transcripts are much longer than the short reads normally used for RNA-seq. By contrast, long-read RNA-seq (LR-RNA-seq) gives the complete structure of most transcripts. We sequenced 264 LR-RNA-seq PacBio libraries totaling over 1 billion circular consensus reads (CCS) for 81 unique human and mouse samples. We detect at least one full-length transcript from 87.7% of annotated human protein coding genes and a total of 200,000 full-length transcripts, 40% of which have novel exon junction chains. To capture and compute on the three sources of transcript structure diversity, we introduce a gene and transcript annotation framework that uses triplets representing the transcript start site, exon junction chain, and transcript end site of each transcript. Using triplets in a simplex representation demonstrates how promoter selection, splice pattern, and 3' processing are deployed across human tissues, with nearly half of multi-transcript protein coding genes showing a clear bias toward one of the three diversity mechanisms. Evaluated across samples, the predominantly expressed transcript changes for 74% of protein coding genes. In evolution, the human and mouse transcriptomes are globally similar in types of transcript structure diversity, yet among individual orthologous gene pairs, more than half (57.8%) show substantial differences in mechanism of diversification in matching tissues. This initial large-scale survey of human and mouse long-read transcriptomes provides a foundation for further analyses of alternative transcript usage, and is complemented by short-read and microRNA data on the same samples and by epigenome data elsewhere in the ENCODE4 collection.
Collapse
Affiliation(s)
- Fairlie Reese
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Brian Williams
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Gabriela Balderrama-Gutierrez
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Dana Wyman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Muhammed Hasan Çelik
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Elisabeth Rebboah
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Narges Rezaie
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Diane Trout
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Milad Razavi-Mohseni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
| | - Beatrice Borsari
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Samuel Morabito
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Heidi Yahan Liang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Cassandra J McGill
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Sorena Rahmanian
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Jasmine Sakr
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, USA
| | - Shan Jiang
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Weihua Zeng
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Klebea Carvalho
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| | - Annika K Weimer
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Louise A Dionne
- The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, USA
| | - Ariel McShane
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, USA
- Department of Radiation Oncology, University of Michigan, Ann Arbor, USA
| | - Karan Bedi
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
- Center for RNA Biomedicine and Rogel Cancer Center, University of Michigan, Ann Arbor, USA
| | - Shaimae I Elhajjajy
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - Sean Upchurch
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Jennifer Jou
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ingrid Youngworth
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Idan Gabdank
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Paul Sud
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Otto Jolanki
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - J Seth Strattan
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Meenakshi S Kagda
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Ben C Hitz
- Department of Genetics, Stanford University School of Medicine, Palo Alto, USA
| | - Jill E Moore
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, USA
| | - David Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA
| | - Laura Reinholdt
- The Jackson Laboratory, The Jackson Laboratory, Bar Harbor, USA
| | - Mats Ljungman
- Center for RNA Biomedicine and Rogel Cancer Center, University of Michigan, Ann Arbor, USA
- Departments of Radiation Oncology and Environmental Health Sciences, University of Michigan, Ann Arbor, USA
| | - Michael A Beer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Section on Biomedical Informatics and Data Science, Yale University, New Haven, USA
- Department of Statistics and Data Science, Yale University, New Haven, USA
- Department of Computer Science, Yale University, New Haven, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, USA
| | - Roderic Guigó
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Barbara J Wold
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Ali Mortazavi
- Developmental and Cell Biology, University of California, Irvine, Irvine, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, USA
| |
Collapse
|
24
|
Boruch AE, Lindheimer JB, Ninneman JV, Wylie GR, Alexander T, Klein-Adams JC, Stegner AJ, Gretzon NP, Samy B, Falvo MJ, Cook DB. Exercise-induced changes in gene expression do not mediate post exertional malaise in Gulf War illness. Brain Behav Immun Health 2023; 29:100612. [PMID: 36950022 PMCID: PMC10027470 DOI: 10.1016/j.bbih.2023.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 03/08/2023] [Indexed: 03/13/2023] Open
Abstract
Background Post-exertional malaise (PEM) is considered a characteristic feature of chronic multi-symptom illnesses (CMI) like Gulf War illness (GWI); however, its pathophysiology remains understudied. Previous investigations in other CMI populations (i.e., Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) have reported associations between PEM and expression of genes coding for adrenergic, metabolic, and immune function. Objectives To investigate whether PEM is meditated by gene expression in Veterans with GWI. Methods Veterans with GWI (n = 37) and healthy control Gulf War Veterans (n = 25) provided blood samples before and after 30-min of cycling at 70% of age-predicted heart rate reserve. Relative quantification of gene expression, symptom measurements, and select cardiopulmonary parameters were compared between groups at pre-, 30 minpost-, and 24 hpost-exercise using a doubly multivariate repeated measures analysis of variance (RM-MANOVA). Mediation analyses were used to test indirect effects of changes in gene expression on symptom responses (i.e., PEM) to the standardized exercise challenge. Results Veterans with GWI experienced large symptom exacerbations following exercise compared to controls (Cohen's d: 1.65; p < 0.05). Expression of β -actin (ACTB), catechol-O-methyltransferase (COMT), and toll-like receptor 4 (TLR4) decreased in Veterans with GWI at 30 min (p < 0.05) and 24 h post-exercise (p < 0.05). Changes in gene expression did not mediate post-exercise symptom exacerbation in GWI (Indirect Effect Slope Coefficient: 0.06 - 0.02; 95% CI: 0.19, 0.12). Conclusion An acute bout of moderate intensity cycling reduced the expression of select structural, adrenergic, and immune genes in Veterans with GWI, but the pathophysiological relevance to PEM is unclear.
Collapse
Affiliation(s)
- Alexander E. Boruch
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob B. Lindheimer
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacob V. Ninneman
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Glenn R. Wylie
- War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
- Kessler Foundation, West Orange, NJ, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Thomas Alexander
- War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Jacquelyn C. Klein-Adams
- War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Aaron J. Stegner
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicholas P. Gretzon
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| | - Bishoy Samy
- War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Michael J. Falvo
- War Related Illness and Injury Study Center, Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Dane B. Cook
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
- Corresponding author. Medical Sciences Center, 1300 University Avenue, Room 335, Madison, WI, 53706, USA.
| |
Collapse
|
25
|
Chen J, Li G, Liu X, Chen K, Wang Y, Qin J, Yang F. Delivery of miR-130a-3p Through Adipose-Derived Stem Cell-Secreted EVs Protects Against Diabetic Peripheral Neuropathy via DNMT1/NRF2/HIF1α/ACTA1 Axis. Mol Neurobiol 2023; 60:3678-3694. [PMID: 36933145 DOI: 10.1007/s12035-023-03297-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 03/05/2023] [Indexed: 03/19/2023]
Abstract
Peripheral neuropathy is common in diabetic patients and can lead to amputations or foot ulcers. microRNAs (miRNAs) possess crucial roles in diabetic peripheral neuropathy (DPN). This study aims to investigate the role miR-130a-3p played in DPN and its underlying molecular mechanisms. miR-130a-3p expression in clinical tissue samples, established DPN rat models, and extracellular vesicles (EVs) derived from adipose-derived stem cells (ADSCs) were determined. Schwann cells (SCs) were co-cultured with ADSC-derived EVs and treated with high glucose. The direct relationship and functional significance of miR-130a-3p, DNMT1, nuclear factor E2-related factor 2 (NRF2), hypoxia-inducible factor-1α (HIF1α), and skeletal muscle actin alpha 1 (ACTA1) was identified. The in vitro and in vivo implication of ADSC-derived EVs carrying miR-130a-3p was assessed. miR-130a-3p was poorly expressed in DPN patients and rats but highly expressed in ADSC-derived EVs. miR-130a-3p could be delivered to SCs through ADSC-derived EVs to inhibit SC apoptosis and promote proliferation under a high-glucose environment. miR-130a-3p activated NRF2/HIF1α/ACTA1 axis through down-regulating DNMT1. In vivo injection of ADSC-derived EVs activated NRF2/HIF1α/ACTA11 axis to promote angiogenesis in DPN rat model. These data together supported that ADSC-derived EVs carrying miR-130a-3p could alleviate DPN by accelerating SC proliferation and inhibiting apoptosis, providing a potential treatment against DPN.
Collapse
Affiliation(s)
- Ji Chen
- Department of Endocrinology, The First People's Hospital of Huaihua, Huaihua, 418000, People's Republic of China
| | - Gengzhang Li
- Department of Anesthesiology, The First Affiliated Hospital, Shaoyang College, Shaoyang, 422001, People's Republic of China
| | - Xinxin Liu
- Department of Anesthesiology, The First People's Hospital of Huaihua, No. 144, Jinxi South Road, Huaihua, 418000, Hunan Province, People's Republic of China
| | - Kemin Chen
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuxia Wang
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Jie Qin
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China
| | - Fengrui Yang
- Department of Anesthesiology, The First People's Hospital of Huaihua, No. 144, Jinxi South Road, Huaihua, 418000, Hunan Province, People's Republic of China.
- Department of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
26
|
Chong JX, Childers MC, Marvin CT, Marcello AJ, Gonorazky H, Hazrati LN, Dowling JJ, Amrani FA, Alanay Y, Nieto Y, Marín Gabriel MÁ, Aylsworth AS, Buckingham KJ, Shively KM, Sommers O, Anderson K, Regnier M, Bamshad MJ. Variants in ACTC1 underlie distal arthrogryposis accompanied by congenital heart defects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023. [PMID: 36945405 PMCID: PMC10029015 DOI: 10.1101/2023.03.07.23286862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Contraction of the human sarcomere is the result of interactions between myosin cross-bridges and actin filaments. Pathogenic variants in genes such as MYH7 , TPM1 , and TNNI3 that encode parts of the cardiac sarcomere cause muscle diseases that affect the heart, such as dilated cardiomyopathy and hypertrophic cardiomyopathy. In contrast, pathogenic variants in homologous genes MYH2 , TPM2 , and TNNI2 , that encode parts of the skeletal muscle sarcomere, cause muscle diseases affecting skeletal muscle, such as the distal arthrogryposis (DA) syndromes and skeletal myopathies. To date, there have been few reports of genes (e.g., MYH7 ) encoding sarcomeric proteins in which the same pathogenic variant affects both skeletal and cardiac muscle. Moreover, none of the known genes underlying DA have been found to contain mutations that also cause cardiac abnormalities. We report five families with DA due to heterozygous missense variants in the gene actin, alpha, cardiac muscle 1 ( ACTC1 ). ACTC1 encodes a highly conserved actin that binds to myosin in both cardiac and skeletal muscle. Mutations in ACTC1 have previously been found to underlie atrial septal defect, dilated cardiomyopathy, hypertrophic cardiomyopathy, and left ventricular noncompaction. Our discovery delineates a new DA condition due to mutations in ACTC1 and suggests that some functions of actin, alpha, cardiac muscle 1 are shared in cardiac and skeletal muscle.
Collapse
|
27
|
A review of major causative genes in congenital myopathies. J Hum Genet 2023; 68:215-225. [PMID: 35668205 DOI: 10.1038/s10038-022-01045-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 02/07/2023]
Abstract
In this review, we focus on congenital myopathies, which are a genetically heterogeneous group of hereditary muscle diseases with slow or minimal progression. They are mainly defined and classified according to pathological features, with the major subtypes being core myopathy (central core disease), nemaline myopathy, myotubular/centronuclear myopathy, and congenital fiber-type disproportion myopathy. Recent advances in molecular genetics, especially next-generation sequencing technology, have rapidly increased the number of known causative genes for congenital myopathies; however, most of the diseases related to the novel causative genes are extremely rare. There remains no cure for congenital myopathies. However, there have been recent promising findings that could inform the development of therapy for several types of congenital myopathies, including myotubular myopathy, which indicates the importance of prompt and correct diagnosis. This review discusses the major causative genes (NEB, ACTA1, ADSSL1, RYR1, SELENON, MTM1, DNM2, and TPM3) for each subtype of congenital myopathies and the relevant latest findings.
Collapse
|
28
|
Rajan S, Terman JR, Reisler E. MICAL-mediated oxidation of actin and its effects on cytoskeletal and cellular dynamics. Front Cell Dev Biol 2023; 11:1124202. [PMID: 36875759 PMCID: PMC9982024 DOI: 10.3389/fcell.2023.1124202] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Actin and its dynamic structural remodelings are involved in multiple cellular functions, including maintaining cell shape and integrity, cytokinesis, motility, navigation, and muscle contraction. Many actin-binding proteins regulate the cytoskeleton to facilitate these functions. Recently, actin's post-translational modifications (PTMs) and their importance to actin functions have gained increasing recognition. The MICAL family of proteins has emerged as important actin regulatory oxidation-reduction (Redox) enzymes, influencing actin's properties both in vitro and in vivo. MICALs specifically bind to actin filaments and selectively oxidize actin's methionine residues 44 and 47, which perturbs filaments' structure and leads to their disassembly. This review provides an overview of the MICALs and the impact of MICAL-mediated oxidation on actin's properties, including its assembly and disassembly, effects on other actin-binding proteins, and on cells and tissue systems.
Collapse
Affiliation(s)
- Sudeepa Rajan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jonathan R. Terman
- Departments of Neuroscience and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
29
|
Kuntawala DH, Martins F, Vitorino R, Rebelo S. Automatic Text-Mining Approach to Identify Molecular Target Candidates Associated with Metabolic Processes for Myotonic Dystrophy Type 1. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2283. [PMID: 36767649 PMCID: PMC9915907 DOI: 10.3390/ijerph20032283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary disease caused by abnormal expansion of unstable CTG repeats in the 3' untranslated region of the myotonic dystrophy protein kinase (DMPK) gene. This disease mainly affects skeletal muscle, resulting in myotonia, progressive distal muscle weakness, and atrophy, but also affects other tissues and systems, such as the heart and central nervous system. Despite some studies reporting therapeutic strategies for DM1, many issues remain unsolved, such as the contribution of metabolic and mitochondrial dysfunctions to DM1 pathogenesis. Therefore, it is crucial to identify molecular target candidates associated with metabolic processes for DM1. In this study, resorting to a bibliometric analysis, articles combining DM1, and metabolic/metabolism terms were identified and further analyzed using an unbiased strategy of automatic text mining with VOSviewer software. A list of candidate molecular targets for DM1 associated with metabolic/metabolism was generated and compared with genes previously associated with DM1 in the DisGeNET database. Furthermore, g:Profiler was used to perform a functional enrichment analysis using the Gene Ontology (GO) and REAC databases. Enriched signaling pathways were identified using integrated bioinformatics enrichment analyses. The results revealed that only 15 of the genes identified in the bibliometric analysis were previously associated with DM1 in the DisGeNET database. Of note, we identified 71 genes not previously associated with DM1, which are of particular interest and should be further explored. The functional enrichment analysis of these genes revealed that regulation of cellular metabolic and metabolic processes were the most associated biological processes. Additionally, a number of signaling pathways were found to be enriched, e.g., signaling by receptor tyrosine kinases, signaling by NRTK1 (TRKA), TRKA activation by NGF, PI3K-AKT activation, prolonged ERK activation events, and axon guidance. Overall, several valuable target candidates related to metabolic processes for DM1 were identified, such as NGF, NTRK1, RhoA, ROCK1, ROCK2, DAG, ACTA, ID1, ID2 MYOD, and MYOG. Therefore, our study strengthens the hypothesis that metabolic dysfunctions contribute to DM1 pathogenesis, and the exploitation of metabolic dysfunction targets is crucial for the development of future therapeutic interventions for DM1.
Collapse
|
30
|
Glyakina AV, Galzitskaya OV. Structural and functional analysis of actin point mutations leading to nemaline myopathy to elucidate their role in actin function. Biophys Rev 2022; 14:1527-1538. [PMID: 36659996 PMCID: PMC9842827 DOI: 10.1007/s12551-022-01027-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
In this work, we analyzed 78 mutations in the actin protein that cause the disease nemaline myopathy. We analyzed how these mutations are distributed in important regions of the actin molecule (folding nucleus, core of the filament, amyloidogenic regions, disordered regions, regions involved in interaction with other proteins). It was found that 54 mutations (43 residues) fall into the folding nucleus (Ф ≥ 0.5), 11 mutations (10 residues) into the filament core, 14 mutations into the amyloidogenic regions (11 residues), 14 mutations (9 residues) in the unstructured regions, and 24 mutations (22 residues) in regions involved in interaction with other proteins. It was also found that the occurrence of single mutations G44V, V45F, T68I, P72R, K338I and S350L leads to the appearance of new amyloidogenic regions that are not present in native actin. The largest number of mutations (54 out of 78) occurs in the folding nucleus; these mutations are important for folding and therefore can affect the protein folding rate. We have shown that almost all of the considered mutations are associated with the structural characteristics of the actin molecule, and some of the residues we have considered have several important characteristics.
Collapse
Affiliation(s)
- Anna V. Glyakina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Mathematical Problems of Biology RAS, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia ,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
31
|
Zhu X, Gao Z, Wang Y, Huang W, Li Q, Jiao Z, Liu N, Kong X. Utility of trio-based prenatal exome sequencing incorporating splice-site and mitochondrial genome assessment in pregnancies with fetal ultrasound anomalies: prospective cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2022; 60:780-792. [PMID: 35726512 DOI: 10.1002/uog.24974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To evaluate the utility of trio-based prenatal exome sequencing (pES), incorporating splice-site and mitochondrial genome assessment, in the prenatal diagnosis of fetuses with ultrasound anomalies and normal copy-number variant sequencing (CNV-seq) results. METHODS This was a prospective study of 90 ongoing pregnancies with ultrasound anomalies that underwent trio-based pES after receiving normal CNV-seq results, from September 2020 to November 2021, in a single center in China. By using pES with a panel encompassing exome coding and splicing regions as well as mitochondrial genome for fetuses and parents, we identified the underlying genetic causes of fetal anomalies, incidental fetal findings and parental carrier status. Information on pregnancy outcome and the impact of pES findings on parental decision-making was collected. RESULTS Of the 90 pregnancies included, 28 (31.1%) received a diagnostic result that could explain the fetal ultrasound anomalies. The highest diagnostic yield was noted for brain abnormalities (3/6 (50.0%)), followed by hydrops (4/9 (44.4%)) and skeletal abnormalities (13/34 (38.2%)). Collectively, 34 variants of 20 genes were detected in the 28 diagnosed cases, with 55.9% (19/34) occurring de novo. Variants of uncertain significance (VUS) associated with fetal phenotypes were detected in six (6.7%) fetuses. Interestingly, fetal (n = 4) and parental (n = 3) incidental findings (IFs) were detected in seven (7.8%) cases. These included two fetuses carrying a de-novo likely pathogenic (LP) variant of the CIC and FBXO11 genes, respectively, associated with neurodevelopmental disorders, and one fetus with a LP variant in a mitochondrial gene. The remaining fetus presented with unilateral renal dysplasia and was incidentally found to carry a pathogenic PKD1 gene variant resulting in adult-onset polycystic kidney, which was later confirmed to be inherited from the mother. In addition, parental heterozygous variants associated with autosomal recessive diseases were detected in three families, including one with additional fetal diagnostic findings. Diagnostic results or fetal IFs contributed to parental decision-making about termination of the pregnancy in 26 families (26/72 (36.1%)), while negative pES results or identification of VUS encouraged 40 families (40/72 (55.6%)) to continue their pregnancy, which ended in a live birth in all cases. CONCLUSION Trio-based pES can provide additional genetic information for pregnancies with fetal ultrasound anomalies without a CNV-seq diagnosis. The incidental findings and parental carrier status reported by trio-based pES with splice-site and mitochondrial genome analysis extend its clinical application, but careful genetic counseling is warranted. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- X Zhu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Gao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - W Huang
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Q Li
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Z Jiao
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - N Liu
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Kong
- Genetics and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Nagaya M, Yamaoka R, Kanada F, Sawa T, Takashima M, Takamura Y, Inatani M, Oki M. Histone acetyltransferase inhibition reverses opacity in rat galactose-induced cataract. PLoS One 2022; 17:e0273868. [PMID: 36417410 PMCID: PMC9683626 DOI: 10.1371/journal.pone.0273868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022] Open
Abstract
Cataract, a disease that causes opacity of the lens, is the leading cause of blindness worldwide. Cataracts secondary to diabetes are common, even in young patients, so they are of significant clinical importance. Here, we used an ex vivo model of galactose-induced cataracts in the rat lens to investigate the therapeutic effects of histone acetyltransferase (HAT) inhibitors. Among the tested HAT inhibitors, TH1834 was the only one that could reverse most of the opacity once it had formed in the lens. Combination treatment with C646/CPTH2 and CBP30/CPTH2 also had therapeutic effects. In lens cross-sections, vacuoles were present in the tissue of the cortical equatorial region of untreated cataract samples. In treated cataract samples, lens tissue regenerated to fill the vacuoles. To identify the genes regulated by HAT inhibitors, qRT-PCR was performed on treated and untreated cataract samples to determine candidate genes. Expression of Acta1 and Stmn4, both of which are involved in the cytoskeleton, were altered significantly in C646+CPTH2 samples. Expression of Emd, a nuclear membrane protein, and Prtfdc1, which is involved in cancer cell proliferation, were altered significantly in CBP30+CPTH2 samples. Acta1, Acta2, Arrdc3, Hebp2, Hist2h2ab, Pmf1, Ppdpf, Rbm3, RGD1561694, Slc16a6, Slfn13, Tagln, Tgfb1i1, and Tuba1c in TH1834 samples were significantly altered. These genes were primarily related to regulation of cell proliferation, the cytoskeleton, and cell differentiation. Expression levels increased with the onset of cataracts and was suppressed in samples treated with HAT inhibitors.
Collapse
Affiliation(s)
- Masaya Nagaya
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Risa Yamaoka
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Fumito Kanada
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Tamotsu Sawa
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Masaru Takashima
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Yoshihiro Takamura
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaru Inatani
- Department of Ophthalmology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masaya Oki
- Department of Industrial Creation Engineering, Graduate School of Engineering, University of Fukui, Fukui, Japan
- Life Science Innovation Center, University of Fukui, Fukui, Japan
- * E-mail:
| |
Collapse
|
33
|
Transcriptome analysis of breast muscle and liver in full-sibling hybrid broilers at different ages. Gene 2022; 842:146801. [PMID: 35961440 DOI: 10.1016/j.gene.2022.146801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
In China, the production mode of hybrid broilers with meat-type chicken as male parent and egg-type chicken as female parent is common, but few studies pay attention to the economic characteristics of hybrid broilers. In this experiment, we constructed a full-sib F1 population (n = 57) from male Recursive White broiler and female Lohmann Pink layer. Total 6, 6 and 7 hybrid broilers at days 1, 28 and 56 were selected randomly to collect breast muscle and liver tissues, respectively. After performing strand-specific RNA-Seq on these samples, we obtained 252.12 Gb sequencing data. Principal component analysis presented that the effects of different factors on gene expression were as below: tissue difference > age difference > sex difference. The ten genes with the highest expression in breast muscle were GAPDH, ACTA1, ATP2B3, COII, ATP6, COX3, COX1, MYL1, TNNI2 and ENSGALG00000042024. Through the analysis of differentially expressed transcripts (DETs) between different ages, we found that the number of DETs decreased progressively with the prolongation of ages in breast muscle. The same results were also observed in liver. GO enrichment analysis of DETs demonstrated that total 11 BP terms closely related to growth and development of breast muscle were annotated, such as cardiac muscle contract, muscle contract, cell division and so on. KEGG annotation presented that total 5 pathways related to growth and development were determined in breast muscle, including Cell cycle, Insulin signaling pathway, FoxO signaling pathway, Focal adhesion and Adrenergic signaling in cardiomyocytes. Our results may provide theoretical foundation for hybrid broiler production.
Collapse
|
34
|
Uthailak N, Adisakwattana P, Thiangtrongjit T, Limpanont Y, Chusongsang P, Chusongsang Y, Tanasarnprasert K, Reamtong O. Discovery of Schistosoma mekongi circulating proteins and antigens in infected mouse sera. PLoS One 2022; 17:e0275992. [PMID: 36227939 PMCID: PMC9562170 DOI: 10.1371/journal.pone.0275992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by an infection of the parasitic flatworms schistosomes. Schistosoma mekongi is a restricted Schistosoma species found near the Mekong River, mainly in southern Laos and northern Cambodia. Because there is no vaccine or effective early diagnosis available for S. mekongi, additional biomarkers are required. In this study, serum biomarkers associated with S. mekongi-infected mice were identified at 14-, 28-, 42-, and 56-days post-infection. Circulating proteins and antigens of S. mekongi in mouse sera were analyzed using mass spectrometry-based proteomics. Serine protease inhibitors and macrophage erythroblast attacher were down-regulated in mouse sera at all infection timepoints. In addition, 54 circulating proteins and 55 antigens of S. mekongi were identified. Notable circulating proteins included kyphoscoliosis peptidase and putative tuberin, and antigens were detected at all four infection timepoints, particularly in the early stages (12 days). The putative tuberin sequence of S. mekongi was highly similar to homologs found in other members of the genus Schistosoma and less similar to human and murine sequences. Our study provided the identity of promising diagnostic biomarkers that could be applicable in early schistosomiasis diagnosis and vaccine development.
Collapse
Affiliation(s)
- Naphatsamon Uthailak
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kanthi Tanasarnprasert
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
35
|
Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022; 23:ijms231911995. [PMID: 36233295 PMCID: PMC9569467 DOI: 10.3390/ijms231911995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.
Collapse
|
36
|
Cerri F, Gentile F, Clarelli F, Santoro S, Falzone YM, Dina G, Romano A, Domi T, Pozzi L, Fazio R, Podini P, Sorosina M, Carrera P, Esposito F, Riva N, Briani C, Cavallaro T, Filippi M, Quattrini A. Clinical and pathological findings in neurolymphomatosis: Preliminary association with gene expression profiles in sural nerves. Front Oncol 2022; 12:974751. [PMID: 36226068 PMCID: PMC9549065 DOI: 10.3389/fonc.2022.974751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Although inflammation appears to play a role in neurolymphomatosis (NL), the mechanisms leading to degeneration in the peripheral nervous system are poorly understood. The purpose of this exploratory study was to identify molecular pathways underlying NL pathogenesis, combining clinical and neuropathological investigation with gene expression (GE) studies. We characterized the clinical and pathological features of eight patients with NL. We further analysed GE changes in sural nerve biopsies obtained from a subgroup of NL patients (n=3) and thirteen patients with inflammatory neuropathies as neuropathic controls. Based on the neuropathic symptoms and signs, NL patients were classified into three forms of neuropathy: chronic symmetrical sensorimotor polyneuropathy (SMPN, n=3), multiple mononeuropathy (MN, n=4) and acute motor-sensory axonal neuropathy (AMSAN, n=1). Predominantly diffuse malignant cells infiltration of epineurium was present in chronic SMPN, whereas endoneurial perivascular cells invasion was observed in MN. In contrast, diffuse endoneurium malignant cells localization occurred in AMSAN. We identified alterations in the expression of 1266 genes, with 115 up-regulated and 1151 down-regulated genes, which were mainly associated with ribosomal proteins (RP) and olfactory receptors (OR) signaling pathways, respectively. Among the top up-regulated genes were actin alpha 1 skeletal muscle (ACTA1) and desmin (DES). Similarly, in NL nerves ACTA1, DES and several RPs were highly expressed, associated with endothelial cells and pericytes abnormalities. Peripheral nerve involvement may be due to conversion towards a more aggressive phenotype, potentially explaining the poor prognosis. The candidate genes reported in this study may be a source of clinical biomarkers for NL.
Collapse
Affiliation(s)
- Federica Cerri
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Gentile
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Giorgia Dina
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Romano
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Teuta Domi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Fazio
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Podini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Paola Carrera
- Division of Genetics and Cell Biology and Laboratory of Clinical Molecular Biology and Cytogenetics, Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| | - Chiara Briani
- Department of Neuroscience , University of Padova, Padova, Italy
| | - Tiziana Cavallaro
- Department of Neurology, Azienda Ospedaliera Universitaria Integrata, University Hospital G.B. Rossi, Verona, Italy
| | - Massimo Filippi
- Department of Neurology, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Nilo Riva, ; Angelo Quattrini,
| |
Collapse
|
37
|
Rossi D, Catallo MR, Pierantozzi E, Sorrentino V. Mutations in proteins involved in E-C coupling and SOCE and congenital myopathies. J Gen Physiol 2022; 154:e202213115. [PMID: 35980353 PMCID: PMC9391951 DOI: 10.1085/jgp.202213115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022] Open
Abstract
In skeletal muscle, Ca2+ necessary for muscle contraction is stored and released from the sarcoplasmic reticulum (SR), a specialized form of endoplasmic reticulum through the mechanism known as excitation-contraction (E-C) coupling. Following activation of skeletal muscle contraction by the E-C coupling mechanism, replenishment of intracellular stores requires reuptake of cytosolic Ca2+ into the SR by the activity of SR Ca2+-ATPases, but also Ca2+ entry from the extracellular space, through a mechanism called store-operated calcium entry (SOCE). The fine orchestration of these processes requires several proteins, including Ca2+ channels, Ca2+ sensors, and Ca2+ buffers, as well as the active involvement of mitochondria. Mutations in genes coding for proteins participating in E-C coupling and SOCE are causative of several myopathies characterized by a wide spectrum of clinical phenotypes, a variety of histological features, and alterations in intracellular Ca2+ balance. This review summarizes current knowledge on these myopathies and discusses available knowledge on the pathogenic mechanisms of disease.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maria Rosaria Catallo
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Interdepartmental Program of Molecular Diagnosis and Pathogenetic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| |
Collapse
|
38
|
Wang J, Fan Y, Mittal B, Sanger JM, Sanger JW. Comparison of incorporation of wild type and mutated actins into sarcomeres in skeletal muscle cells: A fluorescence recovery after photobleaching study. Cytoskeleton (Hoboken) 2022; 79:105-115. [PMID: 36085566 DOI: 10.1002/cm.21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/30/2023]
Abstract
The α-actin mutation G15R in the nucleotide-binding pocket of skeletal muscle, causes severe actin myopathy in human skeletal muscles. Expressed in cultured embryonic quail skeletal myotubes, YFP-G15R-α-actin incorporates in sarcomeres in a pattern indistinguishable from wildtype YFP-α-actin. However, patches of YFP-G15R-α-actin form, resembling those in patients. Analyses with FRAP of incorporation of YFP-G15R-α-actin showed major differences between fast-exchanging plus ends of overlapping actin filaments in Z-bands, versus slow exchanging ends of overlapping thin filaments in the middle of sarcomeres. Wildtype skeletal muscle YFP-α-actin shows a faster rate of incorporation at plus ends of F-actin than at their minus ends. Incorporation of YFP-G15R-α-actin molecules is reduced at plus ends, increased at minus ends. The same relationship of wildtype YFP-α-actin incorporation is seen in myofibrils treated with cytochalasin-D: decreased dynamics at plus ends, increased dynamics at minus ends, and F-actin aggregates. Speculation: imbalance of normal polarized assembly of F-actin creates excess monomers that form F-actin aggregates. Two other severe skeletal muscle YFP-α-actin mutations (H40Y and V163L) not in the nucleotide pocket do not affect actin dynamics, and lack F-actin aggregates. These results indicate that normal α-actin plus and minus end dynamics are needed to maintain actin filament stability, and avoid F-actin patches.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Balraj Mittal
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
39
|
Labasse C, Brochier G, Taratuto AL, Cadot B, Rendu J, Monges S, Biancalana V, Quijano-Roy S, Bui MT, Chanut A, Madelaine A, Lacène E, Beuvin M, Amthor H, Servais L, de Feraudy Y, Erro M, Saccoliti M, Neto OA, Fauré J, Lannes B, Laugel V, Coppens S, Lubieniecki F, Bello AB, Laing N, Evangelista T, Laporte J, Böhm J, Romero NB. Severe ACTA1-related nemaline myopathy: intranuclear rods, cytoplasmic bodies, and enlarged perinuclear space as characteristic pathological features on muscle biopsies. Acta Neuropathol Commun 2022; 10:101. [PMID: 35810298 PMCID: PMC9271256 DOI: 10.1186/s40478-022-01400-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 11/10/2022] Open
Abstract
Nemaline myopathy (NM) is a muscle disorder with broad clinical and genetic heterogeneity. The clinical presentation of affected individuals ranges from severe perinatal muscle weakness to milder childhood-onset forms, and the disease course and prognosis depends on the gene and mutation type. To date, 14 causative genes have been identified, and ACTA1 accounts for more than half of the severe NM cases. ACTA1 encodes α-actin, one of the principal components of the contractile units in skeletal muscle. We established a homogenous cohort of ten unreported families with severe NM, and we provide clinical, genetic, histological, and ultrastructural data. The patients manifested antenatal or neonatal muscle weakness requiring permanent respiratory assistance, and most deceased within the first months of life. DNA sequencing identified known or novel ACTA1 mutations in all. Morphological analyses of the muscle biopsy specimens showed characteristic features of NM histopathology including cytoplasmic and intranuclear rods, cytoplasmic bodies, and major myofibrillar disorganization. We also detected structural anomalies of the perinuclear space, emphasizing a physiological contribution of skeletal muscle α-actin to nuclear shape. In-depth investigations of the nuclei confirmed an abnormal localization of lamin A/C, Nesprin-1, and Nesprin-2, forming the main constituents of the nuclear lamina and the LINC complex and ensuring nuclear envelope integrity. To validate the relevance of our findings, we examined muscle samples from three previously reported ACTA1 cases, and we identified the same set of structural aberrations. Moreover, we measured an increased expression of cardiac α-actin in the muscle samples from the patients with longer lifespan, indicating a potential compensatory effect. Overall, this study expands the genetic and morphological spectrum of severe ACTA1-related nemaline myopathy, improves molecular diagnosis, highlights the enlargement of the perinuclear space as an ultrastructural hallmark, and indicates a potential genotype/phenotype correlation.
Collapse
Affiliation(s)
- Clémence Labasse
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Ana-Lia Taratuto
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Bruno Cadot
- Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - John Rendu
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Soledad Monges
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Valérie Biancalana
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Laboratoire de Diagnostic Génétique, Faculté de Médecine, CHRU, Strasbourg, France
| | - Susana Quijano-Roy
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Mai Thao Bui
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Anaïs Chanut
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Angéline Madelaine
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Emmanuelle Lacène
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France
| | - Maud Beuvin
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Helge Amthor
- APHP Université Paris-Saclay, Pediatric Neuromuscular Unit, Hôpital Universitaire Raymond-Poincaré, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| | - Laurent Servais
- Centre de Références Des Maladies Neuromusculaires, Department of Paediatrics, University Hospital Liège & University of Liège, Liège, Belgium.,Department of Paediatrics, MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yvan de Feraudy
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France.,Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Marcela Erro
- Gutierrez Pediatric Hospital, Buenos Aires, Argentina
| | - Maria Saccoliti
- Neuropathology and Neuromuscular Diseases Laboratory, Buenos Aires, Argentina
| | - Osorio Abath Neto
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Julien Fauré
- Laboratoire de Biochimie Et Génétique Moléculaire, Pôle de Biologie, CHU Grenoble Alpes, Grenoble, France.,Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Béatrice Lannes
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Vincent Laugel
- Department of Neuropediatrics, Strasbourg University Hospital, Strasbourg, France
| | - Sandra Coppens
- Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabiana Lubieniecki
- Servucio de Neurología Et Neuropatología, Hospital de Pediatría J.P. Garrahan, Buenos Aires, Argentina
| | - Ana Buj Bello
- Université Paris-Saclay, Integrare Research Unit UMR S951, Inserm, Evry, France.,Généthon, Université Evry, Evry, France
| | - Nigel Laing
- Centre for Medical Research, University of Western Australia, Harry Perkins Institute of Medical Research, Perth, Australia
| | - Teresinha Evangelista
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Johann Böhm
- Institut de Génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), Inserm U 1258, CNRS UMR 7104, Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- Myology Institute, Neuromuscular Morphology Unit, Reference Center of Neuromuscular Diseases Nord-Est-IDF, GHU Pitié-Salpêtrière, Paris, France. .,Sorbonne Université, INSERM, Center for Research in Myology, Myology Institute, APHP, GHU Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
40
|
Matsumoto A, Tsuda H, Furui S, Kawada-Nagashima M, Anzai T, Seki M, Watanabe K, Muramatsu K, Osaka H, Iwamoto S, Nishino I, Yamagata T. A case of congenital fiber-type disproportion syndrome presenting dilated cardiomyopathy with ACTA1 mutation. Mol Genet Genomic Med 2022; 10:e2008. [PMID: 35757965 PMCID: PMC9482392 DOI: 10.1002/mgg3.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/03/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background Actin, alpha, skeletal muscle 1 (ACTA1) is one of the causative genes of nemaline myopathy (NM) and congenital fiber‐type disproportion (CFTD). CFTD is characterized by type 1 fiber atrophy and distinguished from NM in the absence of rods. Eight patients with CFTD, including one patient with dilated cardiomyopathy (DCM), have previously been reported. Herein, we report the case of a 10‐year‐old boy presenting with CFTD and DCM. Methods We performed exome sequencing and analyzed the effect of Met327Lys mutations on cultured C2C12 muscle cells compared with that seen in the wild type (WT, ACTA1) and previously identified Asp294Val mutations associated with a severe phenotype of CFTD without cardiomyopathy. Results Exome sequencing revealed a de novo mutation, c.980 T > A, p.(Met327Lys), in ACTA1 (NM_001100.4). C2C12 cells transfected with the WT plasmid expressed ACTA1 in the nucleus and cytoplasm. Cells with the Asp294Val mutant showed needle‐like structures in the cytoplasm, whereas the expression of the Met327Lys mutant resulted in few aggregations but many apoptotic cells. Conclusion Apoptosis induced in Met327Lys‐transfected muscle cells supports the pathogenicity of the mutation and can be implicated as one of the histopathological features associated with CFTD, as in NM.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan.,Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hidetoshi Tsuda
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Sadahiro Furui
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | | | - Tatsuya Anzai
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Mitsuru Seki
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Kazuhisa Watanabe
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Tochigi, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | | |
Collapse
|
41
|
Generation of an induced pluripotent stem cell line from a 3-month-old nemaline myopathy patient with a heterozygous dominant c.515C>A (p.Ala172Glu) variant in the ACTA1 gene. Stem Cell Res 2022; 63:102829. [DOI: 10.1016/j.scr.2022.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/23/2022] Open
|
42
|
Suleski IS, Smith R, Vo C, Scriba CK, Saker S, Larmonier T, Malfatti E, Romero NB, Houweling PJ, Nowak KJ, Laing NG, Taylor RL, Clayton JS. Generation of two isogenic induced pluripotent stem cell lines from a 1-month-old nemaline myopathy patient harbouring a homozygous recessive c.121C>T (p.Arg39Ter) variant in the ACTA1 gene. Stem Cell Res 2022; 63:102830. [DOI: 10.1016/j.scr.2022.102830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022] Open
|
43
|
Zhao W, Xu D, Zhang L, Meng H, Zheng Q, Wang J. Anti-inflammation of torachrysone-8-O-β-ᴅ-glucoside by hurdling over morphological changes of macrophages. Int Immunopharmacol 2022; 105:108548. [DOI: 10.1016/j.intimp.2022.108548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/02/2022] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
|
44
|
Riederer I, Mendes-da-Cruz DA, da Fonseca GC, González MN, Brustolini O, Rocha C, Loss G, de Carvalho JB, Menezes MT, Raphael LMS, Gerber A, Bonaldo MC, Butler-Browne G, Mouly V, Cotta-de-Almeida V, Savino W, Ribeiro de Vasconcelos AT. Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Negl Trop Dis 2022; 16:e0010166. [PMID: 35171909 PMCID: PMC8923442 DOI: 10.1371/journal.pntd.0010166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 03/15/2022] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
The tropism of Zika virus (ZIKV) has been described in the nervous system, blood, placenta, thymus, and skeletal muscle. We investigated the mechanisms of skeletal muscle susceptibility to ZIKV using an in vitro model of human skeletal muscle myogenesis, in which myoblasts differentiate into myotubes. Myoblasts were permissive to ZIKV infection, generating productive viral particles, while myotubes controlled ZIKV replication. To investigate the underlying mechanisms, we used gene expression profiling. First, we assessed gene changes in myotubes compared with myoblasts in the model without infection. As expected, we observed an increase in genes and pathways related to the contractile muscle system in the myotubes, a reduction in processes linked to proliferation, migration and cytokine production, among others, confirming the myogenic capacity of our system in vitro. A comparison between non-infected and infected myoblasts revealed more than 500 differentially expressed genes (DEGs). In contrast, infected myotubes showed almost 2,000 DEGs, among which we detected genes and pathways highly or exclusively expressed in myotubes, including those related to antiviral and innate immune responses. Such gene modulation could explain our findings showing that ZIKV also invades myotubes but does not replicate in these differentiated cells. In conclusion, we showed that ZIKV largely (but differentially) disrupts gene expression in human myoblasts and myotubes. Identifying genes involved in myotube resistance can shed light on potential antiviral mechanisms against ZIKV infection.
Collapse
Affiliation(s)
- Ingo Riederer
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, England, United Kingdom
| | | | - Mariela Natacha González
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otavio Brustolini
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Cássia Rocha
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Guilherme Loss
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Joseane Biso de Carvalho
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Mariane Talon Menezes
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidiane Menezes Souza Raphael
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Alexandra Gerber
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petropolis, Rio de Janeiro, Brazil
| | - Myrna Cristina Bonaldo
- Laboratory of Molecular Biology of Flavivirus, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gillian Butler-Browne
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM); Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
45
|
Molecular and cellular basis of genetically inherited skeletal muscle disorders. Nat Rev Mol Cell Biol 2021; 22:713-732. [PMID: 34257452 PMCID: PMC9686310 DOI: 10.1038/s41580-021-00389-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Neuromuscular disorders comprise a diverse group of human inborn diseases that arise from defects in the structure and/or function of the muscle tissue - encompassing the muscle cells (myofibres) themselves and their extracellular matrix - or muscle fibre innervation. Since the identification in 1987 of the first genetic lesion associated with a neuromuscular disorder - mutations in dystrophin as an underlying cause of Duchenne muscular dystrophy - the field has made tremendous progress in understanding the genetic basis of these diseases, with pathogenic variants in more than 500 genes now identified as underlying causes of neuromuscular disorders. The subset of neuromuscular disorders that affect skeletal muscle are referred to as myopathies or muscular dystrophies, and are due to variants in genes encoding muscle proteins. Many of these proteins provide structural stability to the myofibres or function in regulating sarcolemmal integrity, whereas others are involved in protein turnover, intracellular trafficking, calcium handling and electrical excitability - processes that ensure myofibre resistance to stress and their primary activity in muscle contraction. In this Review, we discuss how defects in muscle proteins give rise to muscle dysfunction, and ultimately to disease, with a focus on pathologies that are most common, best understood and that provide the most insight into muscle biology.
Collapse
|
46
|
De La Vega FM, Chowdhury S, Moore B, Frise E, McCarthy J, Hernandez EJ, Wong T, James K, Guidugli L, Agrawal PB, Genetti CA, Brownstein CA, Beggs AH, Löscher BS, Franke A, Boone B, Levy SE, Õunap K, Pajusalu S, Huentelman M, Ramsey K, Naymik M, Narayanan V, Veeraraghavan N, Billings P, Reese MG, Yandell M, Kingsmore SF. Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Med 2021; 13:153. [PMID: 34645491 PMCID: PMC8515723 DOI: 10.1186/s13073-021-00965-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/27/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Clinical interpretation of genetic variants in the context of the patient's phenotype is becoming the largest component of cost and time expenditure for genome-based diagnosis of rare genetic diseases. Artificial intelligence (AI) holds promise to greatly simplify and speed genome interpretation by integrating predictive methods with the growing knowledge of genetic disease. Here we assess the diagnostic performance of Fabric GEM, a new, AI-based, clinical decision support tool for expediting genome interpretation. METHODS We benchmarked GEM in a retrospective cohort of 119 probands, mostly NICU infants, diagnosed with rare genetic diseases, who received whole-genome or whole-exome sequencing (WGS, WES). We replicated our analyses in a separate cohort of 60 cases collected from five academic medical centers. For comparison, we also analyzed these cases with current state-of-the-art variant prioritization tools. Included in the comparisons were trio, duo, and singleton cases. Variants underpinning diagnoses spanned diverse modes of inheritance and types, including structural variants (SVs). Patient phenotypes were extracted from clinical notes by two means: manually and using an automated clinical natural language processing (CNLP) tool. Finally, 14 previously unsolved cases were reanalyzed. RESULTS GEM ranked over 90% of the causal genes among the top or second candidate and prioritized for review a median of 3 candidate genes per case, using either manually curated or CNLP-derived phenotype descriptions. Ranking of trios and duos was unchanged when analyzed as singletons. In 17 of 20 cases with diagnostic SVs, GEM identified the causal SVs as the top candidate and in 19/20 within the top five, irrespective of whether SV calls were provided or inferred ab initio by GEM using its own internal SV detection algorithm. GEM showed similar performance in absence of parental genotypes. Analysis of 14 previously unsolved cases resulted in a novel finding for one case, candidates ultimately not advanced upon manual review for 3 cases, and no new findings for 10 cases. CONCLUSIONS GEM enabled diagnostic interpretation inclusive of all variant types through automated nomination of a very short list of candidate genes and disorders for final review and reporting. In combination with deep phenotyping by CNLP, GEM enables substantial automation of genetic disease diagnosis, potentially decreasing cost and expediting case review.
Collapse
Affiliation(s)
- Francisco M. De La Vega
- Fabric Genomics Inc., Oakland, CA USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA USA
- Current Address: Tempus Labs Inc., Redwood City, CA 94065 USA
| | - Shimul Chowdhury
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | | | | - Edgar Javier Hernandez
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | - Terence Wong
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Kiely James
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Lucia Guidugli
- Rady Children’s Institute for Genomic Medicine, San Diego, CA USA
| | - Pankaj B. Agrawal
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA USA
| | - Casie A. Genetti
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Catherine A. Brownstein
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Alan H. Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel & University Hospital Schleswig-Holstein, Kiel, Germany
| | - Braden Boone
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Shawn E. Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Matt Huentelman
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Marcus Naymik
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ USA
| | | | | | | | - Mark Yandell
- Fabric Genomics Inc., Oakland, CA USA
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT USA
| | | |
Collapse
|
47
|
Yang L, Mu X, Shen Q, Zhang D, Xu Y. Novel deletion in the ACTA1 gene associated with milder phenotype of nemaline myopathy in Chinese patient: a case report. Neurol Sci 2021; 42:5401-5405. [PMID: 34596777 DOI: 10.1007/s10072-021-05625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Li Yang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Xin Mu
- Department of Neurology, Chengdu First People's Hospital, NO. 18 Wanxiang North Road, Chengdu, 610041, China
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Dan Zhang
- Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041, China.
| |
Collapse
|
48
|
Mubaraki AA. Nemaline Myopathy: A Case Report. Case Rep Neurol 2021; 13:499-503. [PMID: 34413753 PMCID: PMC8339453 DOI: 10.1159/000517898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Generalized weakness in the pediatric and adolescent population is caused by many disorders that affect the neuromuscular axis. As next-generation sequencing (NGS) is becoming of high yield in replacing more invasive procedures, that is, muscle and nerve biopsy, more previously undiagnosed diseases of the muscles are now labeled with specific pathogenicity. A 16-year-old-girl diagnosed with nemaline myopathy but previously was misdiagnosed with congenital myasthenia and put-on unnecessary medications. Clinicians should be aware of congenital diseases that affect the muscles and know the importance of the NGS in reaching the correct diagnosis more so when there is a history of consanguinity.
Collapse
Affiliation(s)
- Adnan A Mubaraki
- Department of Medicine, Taif University, College of Medicine, Taif, Saudi Arabia
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW There has been an explosion of advancement in the field of genetic therapies. The first gene-based treatments are now in clinical practice, with several additional therapeutic programs in various stages of development. Novel technologies are being developed that will further advance the breadth and success of genetic medicine.Congenital myopathies are an important group of neuromuscular disorders defined by structural changes in the muscle and characterized by severe clinical symptoms caused by muscle weakness. At present, there are no approved drug therapies for any subtype of congenital myopathy.In this review, we present an overview of genetic therapies and discuss their application to congenital myopathies. RECENT FINDINGS Several candidate therapeutics for congenital myopathies are in the development pipeline, including ones in clinical trial. These include genetic medicines such as gene replacement therapy and antisense oligonucleotide-based gene knockdown. We highlight the programs related to genetic medicine, and also discuss congenital myopathy subtypes where genetic therapy could be applied. SUMMARY Genetic therapies are ushering in an era of precision medicine for neurological diseases. Congenital myopathies are conditions ideally suited for genetic medicine approaches, and the first such therapies will hopefully soon be reaching congenital myopathy patients.
Collapse
|
50
|
Latypova X, Creadore SG, Dahan-Oliel N, Gustafson AG, Wei-Hung Hwang S, Bedard T, Shazand K, van Bosse HJP, Giampietro PF, Dieterich K. A Genomic Approach to Delineating the Occurrence of Scoliosis in Arthrogryposis Multiplex Congenita. Genes (Basel) 2021; 12:genes12071052. [PMID: 34356068 PMCID: PMC8305424 DOI: 10.3390/genes12071052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) describes a group of conditions characterized by the presence of non-progressive congenital contractures in multiple body areas. Scoliosis, defined as a coronal plane spine curvature of ≥10 degrees as measured radiographically, has been reported to occur in approximately 20% of children with AMC. To identify genes that are associated with both scoliosis as a clinical outcome and AMC, we first queried the DECIPHER database for copy number variations (CNVs). Upon query, we identified only two patients with both AMC and scoliosis (AMC-SC). The first patient contained CNVs in three genes (FBN2, MGF10, and PITX1), while the second case had a CNV in ZC4H2. Looking into small variants, using a combination of Human Phenotype Ontogeny and literature searching, 908 genes linked with scoliosis and 444 genes linked with AMC were identified. From these lists, 227 genes were associated with AMC-SC. Ingenuity Pathway Analysis (IPA) was performed on the final gene list to gain insight into the functional interactions of genes and various categories. To summarize, this group of genes encompasses a diverse group of cellular functions including transcription regulation, transmembrane receptor, growth factor, and ion channels. These results provide a focal point for further research using genomics and animal models to facilitate the identification of prognostic factors and therapeutic targets for AMC.
Collapse
Affiliation(s)
- Xenia Latypova
- Grenoble Institut Neurosciences, Université Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, 38000 Grenoble, France;
| | | | - Noémi Dahan-Oliel
- Shriners Hospitals for Children, Montreal, QC H4A 0A9, Canada;
- School of Physical & Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| | | | - Steven Wei-Hung Hwang
- Shriners Hospitals for Children, Philadelphia, PA 19140, USA; (S.W.-H.H.); (H.J.P.v.B.)
| | - Tanya Bedard
- Alberta Congenital Anomalies Surveillance System, Alberta Health Services, Edmonton, AB T5J 3E4, Canada;
| | - Kamran Shazand
- Shriners Hospitals for Children Headquarters, Tampa, FL 33607, USA; (S.G.C.); (A.G.G.); (K.S.)
| | | | - Philip F. Giampietro
- Department of Pediatrics, University of Illinois-Chicago, Chicago, IL 60607, USA
- Correspondence: (P.F.G.); (K.D.)
| | - Klaus Dieterich
- Institut of Advanced Biosciences, Université Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, 38000 Grenoble, France
- Correspondence: (P.F.G.); (K.D.)
| |
Collapse
|