1
|
McDonough GA, Cheng Y, Morillo KS, Doan RN, Zhou Z, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically directed profiling of PRNP somatic and germline variants in sporadic human prion disease. Acta Neuropathol 2024; 148:10. [PMID: 39048735 PMCID: PMC11328154 DOI: 10.1007/s00401-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, < 1% were transmitted by misfolded PrP, ~ 15% are inherited, and ~ 85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate localized initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of > 5000× across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a localized presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine S Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Ryan N Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zinan Zhou
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Connor J Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Michael B Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang SS, Meng ZL, Zhang YW, Yan YS, Li LB. Prion protein E219K polymorphism: from the discovery of the KANNO blood group to interventions for human prion disease. Front Neurol 2024; 15:1392984. [PMID: 39050130 PMCID: PMC11266091 DOI: 10.3389/fneur.2024.1392984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
KANNO is a new human blood group that was recently discovered. The KANNO antigen shares the PRNP gene with the prion protein and the prion protein E219K polymorphism determines the presence or absence of the KANNO antigen and the development of anti-KANNO alloantibodies. These alloantibodies specifically react with prion proteins, which serve as substrates for conversion into pathological isoforms in some prion diseases and may serve as effective targets for resisting prion infection. These findings establish a potential link between the KANNO blood group and human prion disease via the prion protein E219K polymorphism. We reviewed the interesting correlation between the human PRNP gene's E219K polymorphism and the prion proteins it expresses, as well as human red blood cell antigens. Based on the immune serological principles of human blood cells, the prion protein E219K polymorphism may serve as a foundation for earlier molecular diagnosis and future drug development for prion diseases.
Collapse
Affiliation(s)
- Si-Si Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Li Meng
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Wen Zhang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yi-Shuang Yan
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Ling-Bo Li
- Aikang MedTech Co., Ltd., Shenzhen, China
| |
Collapse
|
3
|
McDonough GA, Cheng Y, Morillo K, Doan RN, Kenny CJ, Foutz A, Kim C, Cohen ML, Appleby BS, Walsh CA, Safar JG, Huang AY, Miller MB. Neuropathologically-directed profiling of PRNP somatic and germline variants in sporadic human prion disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600668. [PMID: 38979287 PMCID: PMC11230391 DOI: 10.1101/2024.06.25.600668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Creutzfeldt-Jakob Disease (CJD), the most common human prion disease, is associated with pathologic misfolding of the prion protein (PrP), encoded by the PRNP gene. Of human prion disease cases, ~1% were transmitted by misfolded PrP, ~15% are inherited, and ~85% are sporadic (sCJD). While familial cases are inherited through germline mutations in PRNP, the cause of sCJD is unknown. Somatic mutations have been hypothesized as a cause of sCJD, and recent studies have revealed that somatic mutations accumulate in neurons during aging. To investigate the hypothesis that somatic mutations in PRNP may underlie sCJD, we performed deep DNA sequencing of PRNP in 205 sCJD cases and 170 age-matched non-disease controls. We included 5 cases of Heidenhain variant sporadic CJD (H-sCJD), where visual symptomatology and neuropathology implicate focal initiation of prion formation, and examined multiple regions across the brain including in the affected occipital cortex. We employed Multiple Independent Primer PCR Sequencing (MIPP-Seq) with a median depth of >5,000X across the PRNP coding region and analyzed for variants using MosaicHunter. An allele mixing experiment showed positive detection of variants in bulk DNA at a variant allele fraction (VAF) as low as 0.2%. We observed multiple polymorphic germline variants among individuals in our cohort. However, we did not identify bona fide somatic variants in sCJD, including across multiple affected regions in H-sCJD, nor in control individuals. Beyond our stringent variant-identification pipeline, we also analyzed VAFs from raw sequencing data, and observed no evidence of prion disease enrichment for the known germline pathogenic variants P102L, D178N, and E200K. The lack of PRNP pathogenic somatic mutations in H-sCJD or the broader cohort of sCJD suggests that clonal somatic mutations may not play a major role in sporadic prion disease. With H-sCJD representing a focal presentation of neurodegeneration, this serves as a test of the potential role of clonal somatic mutations in genes known to cause familial neurodegeneration.
Collapse
Affiliation(s)
- Gannon A. McDonough
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Yuchen Cheng
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Katherine Morillo
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Ryan N. Doan
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Connor J. Kenny
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Aaron Foutz
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Chae Kim
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mark L. Cohen
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian S. Appleby
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Jiri G. Safar
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - August Yue Huang
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Michael B. Miller
- Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Prion agents (1st section). Transfusion 2024; 64 Suppl 1:S4-S18. [PMID: 38394039 DOI: 10.1111/trf.17627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/25/2024]
|
5
|
L P Hosszu L, Sangar D, Batchelor M, Risse E, Hounslow AM, Collinge J, Waltho JP, Bieschke J. Loss of residues 119 - 136, including the first β-strand of human prion protein, generates an aggregation-competent partially "open" form. J Mol Biol 2023:168158. [PMID: 37244570 DOI: 10.1016/j.jmb.2023.168158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
In prion replication, the cellular form of prion protein (PrPC) must undergo a full conformational transition to its disease-associated fibrillar form. Transmembrane forms of PrP have been implicated in this structural conversion. The cooperative unfolding of a structural core in PrPC presents a substantial energy barrier to prion formation, with membrane insertion and detachment of parts of PrP presenting a plausible route to its reduction. Here, we examined the removal of residues 119 - 136 of PrP, a region which includes the first β-strand and a substantial portion of the conserved hydrophobic region of PrP, a region which associates with the ER membrane, on the structure, stability and self-association of the folded domain of PrPC. We see an "open" native-like conformer with increased solvent exposure which fibrilises more readily than the native state. These data suggest a stepwise folding transition, which is initiated by the conformational switch to this "open" form of PrPC.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Emmanuel Risse
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
6
|
Nafe R, Arendt CT, Hattingen E. Human prion diseases and the prion protein - what is the current state of knowledge? Transl Neurosci 2023; 14:20220315. [PMID: 37854584 PMCID: PMC10579786 DOI: 10.1515/tnsci-2022-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/20/2023] Open
Abstract
Prion diseases and the prion protein are only partially understood so far in many aspects. This explains the continued research on this topic, calling for an overview on the current state of knowledge. The main objective of the present review article is to provide a comprehensive up-to-date presentation of all major features of human prion diseases bridging the gap between basic research and clinical aspects. Starting with the prion protein, current insights concerning its physiological functions and the process of pathological conversion will be highlighted. Diagnostic, molecular, and clinical aspects of all human prion diseases will be discussed, including information concerning rare diseases like prion-associated amyloidoses and Huntington disease-like 1, as well as the question about a potential human threat due to the transmission of prions from prion diseases of other species such as chronic wasting disease. Finally, recent attempts to develop future therapeutic strategies will be addressed.
Collapse
Affiliation(s)
- Reinhold Nafe
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Christophe T. Arendt
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| | - Elke Hattingen
- Department of Neuroradiology, Clinics of Johann Wolfgang-Goethe University, Schleusenweg 2-16, 60528Frankfurt am Main, Germany
| |
Collapse
|
7
|
Kim DY, Shim KH, Bagyinszky E, An SSA. Prion Mutations in Republic of Republic of Korea, China, and Japan. Int J Mol Sci 2022; 24:ijms24010625. [PMID: 36614069 PMCID: PMC9820783 DOI: 10.3390/ijms24010625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt-Jakob Disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.
Collapse
Affiliation(s)
- Dan Yeong Kim
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kyu Hwan Shim
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (E.B.); (S.S.A.A.)
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Correspondence: (E.B.); (S.S.A.A.)
| |
Collapse
|
8
|
Corbie R, Campbell T, Darwent L, Rudge P, Collinge J, Mead S. Estimation of the number of inherited prion disease mutation carriers in the UK. Eur J Hum Genet 2022; 30:1167-1170. [PMID: 35754056 PMCID: PMC9553982 DOI: 10.1038/s41431-022-01132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/26/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
Inherited prion diseases (IPD) are a set of rare neurodegenerative diseases that are always caused by mutation of the prion protein gene (PRNP). These are highly heterogeneous in clinical presentation and best described by the specific gene mutation, but traditionally include the canonical syndromes familial Creutzfeldt-Jakob disease, Gerstamann-Straussler-Scheinker syndrome, and fatal familial insomnia. In the UK, care of IPD patients and clinical PRNP sequencing have been carried out almost exclusively by the National Prion Clinic and affiliated laboratories since the disease gene was discovered in 1989. Using data obtained over 30 years (1990-2019), this study aimed to provide a greater understanding of the genetic prevalence of IPD using multiple complementary methods. A key source of bias in rare disorders is ascertainment, so we included an analysis based on capture-recapture techniques that may help to minimise ascertainment bias. 225 patients, with 21 different IPD mutations were identified, varying in frequency (with 8/21 mutations comprising over 90% observed cases), derived from 116 kindreds and 151 3-generation families. We estimated a total of 303 UK families (95% CI = 222, 384) segregate IPD mutations, 1091 (95% CI = 720, 1461) UK mutation carriers and a lifetime risk of approximately 1 in 60,000. Simpler methods of measuring prevalence based on extrapolation from the annual incidence of disease, and large scale genomic studies, result in similar estimates of prevalence. These estimates may be of value for planning preventive trials of therapeutics in IPD mutation carriers, prevention of prion disease transmission and provision of specialist services.
Collapse
Affiliation(s)
- Rosie Corbie
- grid.52996.310000 0000 8937 2257National Prion Clinic, University College London (UCL) Hospitals NHS Foundation Trust, London, UK
| | - Tracy Campbell
- grid.421964.c0000 0004 0606 3301MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF UK
| | - Lee Darwent
- grid.421964.c0000 0004 0606 3301MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF UK
| | - Peter Rudge
- grid.52996.310000 0000 8937 2257National Prion Clinic, University College London (UCL) Hospitals NHS Foundation Trust, London, UK ,grid.421964.c0000 0004 0606 3301MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF UK
| | - John Collinge
- grid.52996.310000 0000 8937 2257National Prion Clinic, University College London (UCL) Hospitals NHS Foundation Trust, London, UK ,grid.421964.c0000 0004 0606 3301MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF UK
| | - Simon Mead
- National Prion Clinic, University College London (UCL) Hospitals NHS Foundation Trust, London, UK. .,MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
9
|
Cencini F, Catania M, Di Fede G, Rossi G, Khouri Chalouhi K, Manfredi C, Giaccone G, Tiraboschi P, Bersano A, Groppo E, Rosci C, Tancredi L, Campiglio L, De Grado A, Priori A, Scelzo E. SORL1 gene mutation and octapeptide repeat insertion in PRNP gene in a case presenting with rapidly progressive dementia and cerebral amyloid angiopathy. Eur J Neurol 2022; 29:3139-3146. [PMID: 35789031 DOI: 10.1111/ene.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cerebral amyloid angiopathy (CAA) has been associated with a variety of neurodegenerative disorders, included prion diseases (PrDs) and Alzheimer's disease (AD); its pathophysiology is still largely unknown. We report the case of an 80-year-old man with a rapidly progressive dementia and neuroimaging features consistent with CAA carrying two genetic defects in the PRNP and SORL1 genes. METHODS Neurological examination, brain Magnetic Resonance Imaging (MRI), electroencephalogram-electromyography (EEG-EMG) polygraphy and analysis of 14-3-3 and tau proteins, Aβ40 and Aβ42 in the cerebrospinal fluid (CSF) were performed. The patient underwent a detailed genetic study by next generation sequencing analysis. RESULTS The patient presented with progressive cognitive dysfunction, generalized myoclonus and ataxia. About 9 months after symptom onset, he was bed-bound, almost mute and akinetic. Brain MRI was consistent with CAA. CSF analysis showed high levels of t-tau and p-tau, decreased Aβ42, decreased Aβ42/Aβ40 ratio, while 14.3.3 protein was not detected. EEG-EMG polygraphy demonstrated diffuse slowing, frontal theta activity and generalized spikes-waves related to upper limb myoclonus induced by intermittent photic stimulation. Genetic tests revealed the presence of the E270K variant in the SORL1 gene and the presence of a single octapeptide repeat insertion (OPRI) in the coding region of the PRNP gene. CONCLUSIONS The specific pathogenic contribution of the two DNA variations is difficult to determine without neuropathology; among the possible explanations, we discuss the possibility of their link with CAA. Vascular and degenerative pathways actually interact in a synergistic way, and genetic studies may lead to more insight into pathophysiological mechanisms.
Collapse
Affiliation(s)
- Federica Cencini
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Marcella Catania
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giacomina Rossi
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Chiara Manfredi
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giorgio Giaccone
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Neurology 5 / Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Bersano
- Cerebrovascular Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisabetta Groppo
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Chiara Rosci
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Lucia Tancredi
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Laura Campiglio
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Amedeo De Grado
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Alberto Priori
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Emma Scelzo
- III Clinical Neurology Unit, Department of Health Sciences, "Aldo Ravelli" Research Center, University of Milan, Polo Universitario Ospedale San Paolo, ASST Santi Paolo e Carlo, Milan, Italy
| |
Collapse
|
10
|
Kroll F, Dimitriadis A, Campbell T, Darwent L, Collinge J, Mead S, Vire E. Prion protein gene mutation detection using long-read Nanopore sequencing. Sci Rep 2022; 12:8284. [PMID: 35585119 PMCID: PMC9117325 DOI: 10.1038/s41598-022-12130-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/05/2022] [Indexed: 01/04/2023] Open
Abstract
Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations.
Collapse
Affiliation(s)
- François Kroll
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Athanasios Dimitriadis
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Tracy Campbell
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Lee Darwent
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - John Collinge
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF, UK.
| | - Emmanuelle Vire
- grid.83440.3b0000000121901201MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, UCL, London, W1W 7FF UK
| |
Collapse
|
11
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Schmitz M, Villar-Piqué A, Hermann P, Escaramís G, Calero M, Chen C, Kruse N, Cramm M, Golanska E, Sikorska B, Liberski PP, Pocchiari M, Lange P, Stehmann C, Sarros S, Martí E, Baldeiras I, Santana I, Žáková D, Mitrová E, Dong XP, Collins S, Poleggi A, Ladogana A, Mollenhauer B, Kovacs GG, Geschwind MD, Sánchez-Valle R, Zerr I, Llorens F. Diagnostic accuracy of cerebrospinal fluid biomarkers in genetic prion diseases. Brain 2022; 145:700-712. [PMID: 35288744 PMCID: PMC9014756 DOI: 10.1093/brain/awab350] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic prion diseases are a rare and diverse group of fatal neurodegenerative disorders caused by pathogenic sequence variations in the prion protein gene, PRNP. Data on CSF biomarkers in patients with genetic prion diseases are limited and conflicting results have been reported for unclear reasons. Here, we aimed to analyse the diagnostic accuracy of CSF biomarkers currently used in prion clinical diagnosis in 302 symptomatic genetic prion disease cases from 11 prion diagnostic centres, encompassing a total of 36 different pathogenic sequence variations within the open reading frame of PRNP. CSF samples were assessed for the surrogate markers of neurodegeneration, 14-3-3 protein (14-3-3), total-tau protein (t-tau) and α-synuclein and for prion seeding activity through the real-time quaking-induced conversion assay. Biomarker results were compared with those obtained in healthy and neurological controls. For the most prevalent PRNP pathogenic sequence variations, biomarker accuracy and associations between biomarkers, demographic and genetic determinants were assessed. Additionally, the prognostic value of biomarkers for predicting total disease duration from symptom onset to death was investigated. High sensitivity of the four biomarkers was detected for genetic Creutzfeldt–Jakob disease associated with the E200K and V210I mutations, but low sensitivity was observed for mutations associated with Gerstmann–Sträussler–Scheinker syndrome and fatal familial insomnia. All biomarkers showed good to excellent specificity using the standard cut-offs often used for sporadic Creutzfeldt–Jakob disease. In genetic prion diseases related to octapeptide repeat insertions, the biomarker sensitivity correlated with the number of repeats. New genetic prion disease-specific cut-offs for 14-3-3, t-tau and α-synuclein were calculated. Disease duration in genetic Creutzfeldt–Jakob disease-E200K, Gerstmann–Sträussler–Scheinker-P102L and fatal familial insomnia was highly dependent on PRNP codon 129 MV polymorphism and was significantly associated with biomarker levels. In a large cohort of genetic prion diseases, the simultaneous analysis of CSF prion disease biomarkers allowed the determination of new mutation-specific cut-offs improving the discrimination of genetic prion disease cases and unveiled genetic prion disease-specific associations with disease duration.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Anna Villar-Piqué
- Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III (ISCIII), L'Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Peter Hermann
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Geòrgia Escaramís
- CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain.,Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Miguel Calero
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center Madrid, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Madrid, Spain
| | - Cao Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Niels Kruse
- Institute for Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Ewa Golanska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz, Poland
| | - Beata Sikorska
- Department of Molecular Pathology and Neuropathology Medical University of Lodz, Poland
| | - Pawel P Liberski
- Department of Molecular Pathology and Neuropathology Medical University of Lodz, Poland
| | | | - Peter Lange
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Eulàlia Martí
- CIBER in Epidemiology and Public Health (CIBERESP), Barcelona, Spain.,Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Inês Baldeiras
- Laboratory of Neurochemistry, Coimbra University Hospital, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Isabel Santana
- Laboratory of Neurochemistry, Coimbra University Hospital, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Portugal
| | - Dana Žáková
- Department of Prion Diseases, Slovak Medical University Bratislava, Bratislava, Slovakia
| | - Eva Mitrová
- Department of Prion Diseases, Slovak Medical University Bratislava, Bratislava, Slovakia
| | - Xiao-Ping Dong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Steven Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| | - Anna Poleggi
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Paracelsus-Elena Klinik, Center for Parkinsonism and Movement Disorders, Kassel, Germany
| | - Gabor G Kovacs
- Neuropathology and Prion Disease Reference Center, Department of Forensic and Insurance Medicine, Semmelweis University, Budapest, Hungary.,Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.,Tanz Centre for Research in Neurodegenerative Disease (CRND) and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III (ISCIII), L'Hospitalet de Llobregat, Spain.,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Spain
| |
Collapse
|
13
|
Ximelis T, Marín-Moreno A, Espinosa JC, Eraña H, Charco JM, Hernández I, Riveira C, Alcolea D, González-Roca E, Aldecoa I, Molina-Porcel L, Parchi P, Rossi M, Castilla J, Ruiz-García R, Gelpi E, Torres JM, Sánchez-Valle R. Homozygous R136S mutation in PRNP gene causes inherited early onset prion disease. Alzheimers Res Ther 2021; 13:176. [PMID: 34663460 PMCID: PMC8524886 DOI: 10.1186/s13195-021-00912-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/03/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND More than 40 pathogenic heterozygous PRNP mutations causing inherited prion diseases have been identified to date. Recessive inherited prion disease has not been described to date. METHODS We describe the clinical and neuropathological data of inherited early-onset prion disease caused by the rare PRNP homozygous mutation R136S. In vitro PrPSc propagation studies were performed using recombinant-adapted protein misfolding cyclic amplification technique. Brain material from two R136S homozygous patients was intracranially inoculated in TgMet129 and TgVal129 transgenic mice to assess the transmissibility of this rare inherited form of prion disease. RESULTS The index case presented symptoms of early-onset dementia beginning at the age of 49 and died at the age of 53. Neuropathological evaluation of the proband revealed abundant multicentric PrP plaques and Western blotting revealed a ~ 8 kDa protease-resistant, unglycosylated PrPSc fragment, consistent with a Gerstmann-Sträussler-Scheinker phenotype. Her youngest sibling suffered from progressive cognitive decline, motor impairment, and myoclonus with onset in her late 30s and died at the age of 48. Genetic analysis revealed the presence of the R136S mutation in homozygosis in the two affected subjects linked to homozygous methionine at codon 129. One sibling carrying the heterozygous R136S mutation, linked to homozygous methionine at codon 129, is still asymptomatic at the age of 74. The inoculation of human brain homogenates from our index case and an independent case from a Portuguese family with the same mutation in transgenic mice expressing human PrP and in vitro propagation of PrPSc studies failed to show disease transmissibility. CONCLUSION In conclusion, biallelic R136S substitution is a rare variant that produces inherited early-onset human prion disease with a Gerstmann-Sträussler-Scheinker neuropathological and molecular signature. Even if the R136S variant is predicted to be "probably damaging", heterozygous carriers are protected, at least from an early onset providing evidence for a potentially recessive pattern of inheritance in human prion diseases.
Collapse
Affiliation(s)
- Teresa Ximelis
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Alba Marín-Moreno
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Juan Carlos Espinosa
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), 28130 Valdeolmos, Madrid, Spain
| | - Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
| | - Isabel Hernández
- Fundació ACE, Barcelona Alzheimer Treatment and Research Center, 08028, Barcelona, Spain
| | | | - Daniel Alcolea
- Memory Unit, Hospital de la Santa Creu i Sant Pau, 08041, Barcelona, Spain
| | - Eva González-Roca
- Immunology department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
| | - Iban Aldecoa
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Pathology Department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, University of Barcelona, 08036, Barcelona, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Villarroel, 170 08036, Barcelona, Spain
| | - Piero Parchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138, Bologna, Italy
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto delle Scienze Neurologiche di Bologna, 40139, Bologna, Italy
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160, Derio, Spain
- IKERBasque Basque Foundation for Science, 48009, Bilbao, Spain
| | - Raquel Ruiz-García
- Immunology department, Biomedical Diagnostic Center, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Villarroel, 170 08036, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Juan María Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), 28130 Valdeolmos, Madrid, Spain.
| | - Raquel Sánchez-Valle
- Neurological Tissue Bank of the Biobanc-Hospital Clinic-Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Villarroel, 170 08036, Barcelona, Spain.
| |
Collapse
|
14
|
Areškevičiūtė A, Lund EL, Capellari S, Parchi P, Pinkowsky CT. The First Sporadic Creutzfeldt-Jakob Disease Case with a Rare Molecular Subtype VV1 and 1-Octapeptide Repeat Deletion in PRNP. Viruses 2021; 13:v13102061. [PMID: 34696491 PMCID: PMC8540765 DOI: 10.3390/v13102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022] Open
Abstract
In the present manuscript, we report the clinical presentation and challenging diagnostic work-up of a sporadic Creutzfeldt–Jakob disease patient with confirmed VV1 subtype and heterozygous 1-octapeptide repeat deletion in the prion protein gene. The described patient was a 58-year-old woman. Interestingly, most of the reported patients with the VV1 subtype to date are men with an average age of 44 years at disease onset. The patient was observed clinically from symptoms onset until her death 22 months later. This report describes the patient’s insidious clinical evolution and the paraclinical examinations and pathology reports gathered at different time points of disease progression. Unfortunately, the absence of typical clinical and paraclinical features of classic sporadic Creutzfeldt–Jakob disease made the brain biopsy surgery necessary. This case report illustrates the diagnostic difficulties posed by the phenotypic heterogeneity of sporadic Creutzfeldt–Jakob disease and urges clinicians to consider this diagnosis even in patients who do not fulfil the typical clinical disease criteria. Furthermore, it highlights the need for real-time quaking-induced conversion method adaptation for detection of rare sporadic Creutzfeldt–Jakob disease subtypes with certain prion protein gene variants.
Collapse
Affiliation(s)
- Aušrinė Areškevičiūtė
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (A.A.); (E.L.L.)
| | - Eva Løbner Lund
- Department of Pathology, Danish Reference Center for Prion Diseases, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (A.A.); (E.L.L.)
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40123 Bologna, Italy; (S.C.); (P.P.)
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, 40123 Bologna, Italy; (S.C.); (P.P.)
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
15
|
Zhang Q, Zhang H, Zheng F, Liu R, Liao X, Guo C, Lin D. 1H, 13C, 15N backbone and side-chain resonance assignments of the pathogenic G131V mutant of human prion protein (91-231). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:311-316. [PMID: 33871829 DOI: 10.1007/s12104-021-10022-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Human prion disease, also known as transmissible spongiform encephalopathy (TSEs), is caused by the conformational conversion of the normal cellular prion protein (PrPC) into the scrapie form (PrPSc). Pathogenic point mutations of prion proteins typically facilitate conformational conversion and lead to inherited prion diseases. A previous study has demonstrated that the pathogenic G131V mutation of human prion protein (HuPrP) brings in Gerstmann-Sträussler-Scheinker syndrome. However, the three-dimensional structure and dynamic features of the HuPrP(G131V) mutant remain unclear. It is expected that the determination of these structural bases will be beneficial to the pathogenic mechanistic understanding of G131V-related prion diseases. Here, we performed 1H, 15N, 13C backbone and side-chain resonance assignments of the G131V mutant of HuPrP(91-231) by using heteronuclear multi-dimensional NMR spectroscopy, and predicted the secondary structural elements and order parameters of the protein based on the assigned backbone chemical shifts. Our work lays the necessary foundation for further structural determination, dynamics characterization, and intermolecular interaction assay for the G131V mutant.
Collapse
Affiliation(s)
- Qiaodong Zhang
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haoran Zhang
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Fengyu Zheng
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Rong Liu
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xinli Liao
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chenyun Guo
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Donghai Lin
- High-field NMR center, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
16
|
Swallowing Function Evaluation in a Patient with Gerstmann-Sträussler-Scheinker Disease with Pro105Leu: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189734. [PMID: 34574659 PMCID: PMC8466103 DOI: 10.3390/ijerph18189734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Gerstmann-Sträussler-Scheinker disease (GSS) is a genetic prion disease. Swallowing function evaluation in patients with GSS remains unclear. Here, we describe a case of videofluoroscopic examination of swallowing (VF) to facilitate continued oral ingestion in a patient with P105L GSS. A 67-year-old woman developed gait disturbance and Parkinsonism symptoms at the age of 54 years. Since her family wanted her to continue oral ingestion, we performed VF, which revealed impairment and preservation of the oral and pharyngeal phases, respectively. Moreover, the impairment of the oral phase was improved by adjusting the patient's posture and food consistency. A swallowing function evaluation based on the condition of a patient with GSS may facilitate continued oral ingestion.
Collapse
|
17
|
Brennecke N, Cali I, Mok TH, Speedy H, Hosszu LLP, Stehmann C, Cracco L, Puoti G, Prior TW, Cohen ML, Collins SJ, Mead S, Appleby BS. Characterization of Prion Disease Associated with a Two-Octapeptide Repeat Insertion. Viruses 2021; 13:1794. [PMID: 34578375 PMCID: PMC8473248 DOI: 10.3390/v13091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 12/03/2022] Open
Abstract
Genetic prion disease accounts for 10-15% of prion disease. While insertion of four or more octapeptide repeats are clearly pathogenic, smaller repeat insertions have an unclear pathogenicity. The goal of this case series was to provide an insight into the characteristics of the 2-octapeptide repeat genetic variant and to provide insight into the risk for Creutzfeldt-Jakob disease in asymptomatic carriers. 2-octapeptide repeat insertion prion disease cases were collected from the National Prion Disease Pathology Surveillance Center (US), the National Prion Clinic (UK), and the National Creutzfeldt-Jakob Disease Registry (Australia). Three largescale population genetic databases were queried for the 2-octapeptide repeat insertion allele. Eight cases of 2-octapeptide repeat insertion were identified. The cases were indistinguishable from the sporadic Creutzfeldt-Jakob cases of the same molecular subtype. Western blot characterization of the prion protein in the absence of enzymatic digestion with proteinase K revealed that 2-octapeptide repeat insertion and sporadic Creutzfeldt-Jakob disease have distinct prion protein profiles. Interrogation of large-scale population datasets suggested the variant is of very low penetrance. The 2-octapeptide repeat insertion is at most a low-risk genetic variant. Predictive genetic testing for asymptomatic blood relatives is not likely to be justified given the low risk.
Collapse
Affiliation(s)
- Nicholas Brennecke
- Department of Neurology, Case Western Reserve University & University Hospitals Cleveland Medical, Cleveland, OH 44106, USA; (N.B.); (M.L.C.)
| | - Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH 44106, USA
| | - Tze How Mok
- MRC Prion Unit at University College London, Institute of Prion Diseases, London W1W 7FF, UK; (T.H.M.); (H.S.); (L.L.P.H.); (S.M.)
| | - Helen Speedy
- MRC Prion Unit at University College London, Institute of Prion Diseases, London W1W 7FF, UK; (T.H.M.); (H.S.); (L.L.P.H.); (S.M.)
| | | | - Laszlo L. P. Hosszu
- MRC Prion Unit at University College London, Institute of Prion Diseases, London W1W 7FF, UK; (T.H.M.); (H.S.); (L.L.P.H.); (S.M.)
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute, The University of Melbourne, Melbourne, VIC 3010, Australia; (C.S.); (S.J.C.)
| | - Laura Cracco
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN 46202, USA;
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- Prion Disease Diagnosis and Surveillance Center (PDDSC), University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Thomas W. Prior
- Center for Human Genetics Laboratory, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA;
| | - Mark L. Cohen
- Department of Neurology, Case Western Reserve University & University Hospitals Cleveland Medical, Cleveland, OH 44106, USA; (N.B.); (M.L.C.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH 44106, USA
| | - Steven J. Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The Florey Institute, The University of Melbourne, Melbourne, VIC 3010, Australia; (C.S.); (S.J.C.)
| | - Simon Mead
- MRC Prion Unit at University College London, Institute of Prion Diseases, London W1W 7FF, UK; (T.H.M.); (H.S.); (L.L.P.H.); (S.M.)
| | - Brian S. Appleby
- Department of Neurology, Case Western Reserve University & University Hospitals Cleveland Medical, Cleveland, OH 44106, USA; (N.B.); (M.L.C.)
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University & University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Case report of homozygous E200D mutation of PRNP in apparently sporadic Creutzfeldt-Jakob disease. BMC Neurol 2021; 21:248. [PMID: 34182938 PMCID: PMC8237416 DOI: 10.1186/s12883-021-02274-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background Inherited prion diseases are rare autosomal dominant disorders associated with diverse clinical presentations. All are associated with mutation of the gene that encodes prion protein (PRNP). Homozygous mutations with atypical clinical phenotypes have been described but are extremely rare. Case presentation A Chinese patient presented with a rapidly progressive cognitive and motor disorder in the clinical spectrum of sCJD. Investigations strongly suggested a diagnosis of CJD. He was found to carry a homozygous mutation at PRNP codon 200 (E200D), but there was no known family history of the disorder. The estimated allele frequency of E200D in East Asian populations is incompatible with it being a highly penetrant mutation in the heterozygous state. Conclusion In our view the homozygous PRNP E200D genotype is likely to be causal of CJD in this patient. Homotypic PrP interactions are well known to favour the development of prion disease. The case is compatible with recessively inherited prion disease.
Collapse
|
19
|
Yu KH, Huang MY, Lee YR, Lin YK, Chen HR, Lee CI. The Effect of Octapeptide Repeats on Prion Folding and Misfolding. Int J Mol Sci 2021; 22:ijms22041800. [PMID: 33670336 PMCID: PMC7918816 DOI: 10.3390/ijms22041800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
Misfolding of prion protein (PrP) into amyloid aggregates is the central feature of prion diseases. PrP has an amyloidogenic C-terminal domain with three α-helices and a flexible tail in the N-terminal domain in which multiple octapeptide repeats are present in most mammals. The role of the octapeptides in prion diseases has previously been underestimated because the octapeptides are not located in the amyloidogenic domain. Correlation between the number of octapeptide repeats and age of onset suggests the critical role of octapeptide repeats in prion diseases. In this study, we have investigated four PrP variants without any octapeptides and with 1, 5 and 8 octapeptide repeats. From the comparison of the protein structure and the thermal stability of these proteins, as well as the characterization of amyloids converted from these PrP variants, we found that octapeptide repeats affect both folding and misfolding of PrP creating amyloid fibrils with distinct structures. Deletion of octapeptides forms fewer twisted fibrils and weakens the cytotoxicity. Insertion of octapeptides enhances the formation of typical silk-like fibrils but it does not increase the cytotoxicity. There might be some threshold effect and increasing the number of peptides beyond a certain limit has no further effect on the cell viability, though the reasons are unclear at this stage. Overall, the results of this study elucidate the molecular mechanism of octapeptides at the onset of prion diseases.
Collapse
|
20
|
Hosszu LLP, Conners R, Sangar D, Batchelor M, Sawyer EB, Fisher S, Cliff MJ, Hounslow AM, McAuley K, Leo Brady R, Jackson GS, Bieschke J, Waltho JP, Collinge J. Structural effects of the highly protective V127 polymorphism on human prion protein. Commun Biol 2020; 3:402. [PMID: 32728168 PMCID: PMC7391680 DOI: 10.1038/s42003-020-01126-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
Prion diseases, a group of incurable, lethal neurodegenerative disorders of mammals including humans, are caused by prions, assemblies of misfolded host prion protein (PrP). A single point mutation (G127V) in human PrP prevents prion disease, however the structural basis for its protective effect remains unknown. Here we show that the mutation alters and constrains the PrP backbone conformation preceding the PrP β-sheet, stabilising PrP dimer interactions by increasing intermolecular hydrogen bonding. It also markedly changes the solution dynamics of the β2-α2 loop, a region of PrP structure implicated in prion transmission and cross-species susceptibility. Both of these structural changes may affect access to protein conformers susceptible to prion formation and explain its profound effect on prion disease.
Collapse
Affiliation(s)
- Laszlo L P Hosszu
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Rebecca Conners
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Daljit Sangar
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Mark Batchelor
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Elizabeth B Sawyer
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
- London School of Hygiene & Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stuart Fisher
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
- ESRF, 71, Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Katherine McAuley
- Diamond Light Source, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - R Leo Brady
- University of Bristol, School of Biochemistry, Biomedical Sciences Building, University Walk, Clifton, BS8 1TD, UK
| | - Graham S Jackson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jan Bieschke
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | - Jonathan P Waltho
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK.
| |
Collapse
|
21
|
Jones E, Mead S. Genetic risk factors for Creutzfeldt-Jakob disease. Neurobiol Dis 2020; 142:104973. [PMID: 32565065 DOI: 10.1016/j.nbd.2020.104973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/18/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022] Open
Abstract
Prion diseases are a group of fatal neurodegenerative disorders of mammals that share a central role for prion protein (PrP, gene PRNP) in their pathogenesis. Prions are infectious agents that account for the observed transmission of prion diseases between humans and animals in certain circumstances. The prion mechanism invokes a misfolded and multimeric assembly of PrP (a prion) that grows by templating of the normal protein and propagates by fission. Aside from the medical and public health notoriety of acquired prion diseases, the conditions have attracted interest as it has been realized that common neurodegenerative disorders share so-called prion-like mechanisms. In this article we will expand on recent evidence for new genetic loci that alter the risk of human prion disease. The most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD), is characterized by the seemingly spontaneous appearance of prions in the brain. Genetic variation within PRNP is associated with all types of prion diseases, in particular, heterozygous genotypes at codons 129 and 219 have long been known to be strong protective factors against sCJD. A large number of rare mutations have been described in PRNP that cause autosomal dominant inherited prion diseases. Two loci recently identified by genome-wide association study increase sCJD risk, including variants in or near to STX6 and GAL3ST1. STX6 encodes syntaxin-6, a component of SNARE complexes with cellular roles that include the fusion of intracellular vesicles with target membranes. GAL3ST1 encodes cerebroside sulfotransferase, the only enzyme that sulfates sphingolipids to make sulfatides, a major lipid component of myelin. We discuss how these roles may modify the pathogenesis of prion diseases and their relevance for other neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Jones
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom
| | - Simon Mead
- MRC Prion Unit at University College London (UCL), UCL Institute of Prion Diseases, 33 Cleveland Street, W1W 7FF, United Kingdom.
| |
Collapse
|
22
|
Areškevičiūtė A, Høgh P, Bartoletti-Stella A, Melchior LC, Nielsen PR, Parchi P, Capellari S, Broholm H, Scheie D, Lund EL. A Novel Eight Octapeptide Repeat Insertion in PRNP Causing Prion Disease in a Danish Family. J Neuropathol Exp Neurol 2020; 78:595-604. [PMID: 31107536 DOI: 10.1093/jnen/nlz037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Octapeptide repeat insertions (OPRI) found in the prion protein gene (PRNP) constitute a subgroup of pathogenic mutations linked to inherited prion diseases, a hallmark of which is a misfolded prion protein. The number of repeats in OPRI has been associated with different disease phenotypes. However, due to the rarity of the cases and heterogenous disease manifestations, the recognition and classification of these variants has been difficult. Here, we report the first Danish family, the fifth worldwide, carrying a novel 8-OPRI with a unique sequence of the additional 8 inserts: R1-R2-R2-R3-R2-R2-R2a-R2-R3g-R2-R2-R3-R4. The mutation was found on the allele coding for methionine at codon 129 in the PRNP gene. The clinical exome sequencing revealed that no other dementia-associated genes harbored pathogenic alterations. Mutation carriers had onset of symptoms in their early thirties, but disease duration varied from 5 to 11 years. Progressive dementia with psychiatric and motor symptoms were the most prominent clinical features. Clinical, pathological, and genetic characteristics of other 4 reported families with 8-OPRI were reviewed and compared with the findings in the Danish family.
Collapse
Affiliation(s)
- Aušrinė Areškevičiūtė
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anna Bartoletti-Stella
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italia
| | - Linea Cecilie Melchior
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Pia Rude Nielsen
- Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italia.,Department of Experimental, Diagnostic, and Specialty Medicine (DIMES)
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italia.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Helle Broholm
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - David Scheie
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Eva Løbner Lund
- Danish Reference Center for Prion Diseases, Department of Pathology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
23
|
Asante EA, Linehan JM, Tomlinson A, Jakubcova T, Hamdan S, Grimshaw A, Smidak M, Jeelani A, Nihat A, Mead S, Brandner S, Wadsworth JDF, Collinge J. Spontaneous generation of prions and transmissible PrP amyloid in a humanised transgenic mouse model of A117V GSS. PLoS Biol 2020; 18:e3000725. [PMID: 32516343 PMCID: PMC7282622 DOI: 10.1371/journal.pbio.3000725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 05/06/2020] [Indexed: 12/02/2022] Open
Abstract
Inherited prion diseases are caused by autosomal dominant coding mutations in the human prion protein (PrP) gene (PRNP) and account for about 15% of human prion disease cases worldwide. The proposed mechanism is that the mutation predisposes to conformational change in the expressed protein, leading to the generation of disease-related multichain PrP assemblies that propagate by seeded protein misfolding. Despite considerable experimental support for this hypothesis, to-date spontaneous formation of disease-relevant, transmissible PrP assemblies in transgenic models expressing only mutant human PrP has not been demonstrated. Here, we report findings from transgenic mice that express human PrP 117V on a mouse PrP null background (117VV Tg30 mice), which model the PRNP A117V mutation causing inherited prion disease (IPD) including Gerstmann-Sträussler-Scheinker (GSS) disease phenotypes in humans. By studying brain samples from uninoculated groups of mice, we discovered that some mice (≥475 days old) spontaneously generated abnormal PrP assemblies, which after inoculation into further groups of 117VV Tg30 mice, produced a molecular and neuropathological phenotype congruent with that seen after transmission of brain isolates from IPD A117V patients to the same mice. To the best of our knowledge, the 117VV Tg30 mouse line is the first transgenic model expressing only mutant human PrP to show spontaneous generation of transmissible PrP assemblies that directly mirror those generated in an inherited prion disease in humans. Transgenic mice expressing the human prion protein containing a mutation linked to the inherited prion disease Gerstmann-Sträussler-Scheinker disease develop spontaneous neuropathology. This represents the first human prion protein transgenic model to show spontaneous generation of transmissible prion assemblies that directly mirror those generated in humans.
Collapse
Affiliation(s)
- Emmanuel A. Asante
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | | | - Andrew Tomlinson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Tatiana Jakubcova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Shyma Hamdan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Andrew Grimshaw
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Michelle Smidak
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Asif Jeelani
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Akin Nihat
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, the National Hospital For Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, London United Kingdom
| | - Jonathan D. F. Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, London, United Kingdom
- * E-mail: (EAA); (JDFW); (JC)
| |
Collapse
|
24
|
Monaco A, Fraldi A. Protein Aggregation and Dysfunction of Autophagy-Lysosomal Pathway: A Vicious Cycle in Lysosomal Storage Diseases. Front Mol Neurosci 2020; 13:37. [PMID: 32218723 PMCID: PMC7079699 DOI: 10.3389/fnmol.2020.00037] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative conditions are characterized by the deposition of protein aggregates (mainly amyloid-like) in the central nervous system (CNS). In post-mitotic CNS cells protein aggregation causes cytotoxicity by interfering with various cellular functions. Mutations in different genes may directly cause protein aggregation. However, genetic factors together with aging may contribute to the onset of protein aggregation also by affecting cellular degradative functions, in particular the autophagy-lysosomal pathway (ALP). Increasing body of evidence show that ALP dysfunction and protein aggregation are functionally interconnected and induce each other during neurodegenerative processes. We will summarize the findings supporting these concepts by focusing on lysosomal storage diseases (LSDs), a class of metabolic inherited conditions characterized by global lysosomal dysfunction and often associated to a severe neurodegenerative course. We propose a model by which the inherited lysosomal defects initiate aggregate-prone protein deposition, which, in turns, worsen ALP degradation function, thus generating a vicious cycle, which boost neurodegenerative cascades.
Collapse
Affiliation(s)
- Antonio Monaco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medicine, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
25
|
Piazza M, Prior TW, Khalsa PS, Appleby B. A case report of genetic prion disease with two different PRNP variants. Mol Genet Genomic Med 2020; 8:e1134. [PMID: 31953922 PMCID: PMC7057106 DOI: 10.1002/mgg3.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Prion diseases are a group of lethal neurodegenerative conditions that occur when the normal, cellular form of the prion protein (PrPC) is converted into an abnormal, scrapie, form of the protein (PrPSc). Disease may be caused by genetic, infectious, or sporadic etiologies. The genetic form of prion disease comprises~10%–15% of all cases. Prion disease is typically inherited in an autosomal dominant manner. The low incidence of disease makes it highly unlikely that a patient would have two different pathogenic variants. However, we recently identified a case in which the patient did have two pathogenic PRNP variants and presented with an atypical phenotype. Methods The patient was evaluated at the Washington Hospital Healthcare System in Fremont, CA. The clinical information for this case report was obtained retrospectively. Variants in the PRNP were identified by polymerase chain reaction (PCR) amplification of exon two of the gene followed by bi‐directional sequence analysis. To determine the phase of the identified variants, a restriction enzyme digestion was utilized, followed by sequence analysis of the products. Cerebral spinal fluid (CSF) was analyzed for surrogate markers of prion disease, 14–3–3 and Tau proteins. CSF real‐time quaking‐induced conversion (RT‐QuIC) assays were also performed. Results The patient was a compound heterozygote for the well‐characterized c.628G>A (p.Val210Ile) variant and the rare octapeptide deletion of two repeats [c.202_249del48 (p.P68_Q83del)]. Clinically, the patient presented with an early onset demyelinating peripheral neuropathy, followed by later onset cognitive symptoms. Conclusion This presentation is reminiscent of prion protein knockout mice whose predominate symptom, due to complete loss of PrP, was late‐onset peripheral neuropathy. To our knowledge this is the first case reported of a patient with prion disease who had two different pathogenic variants in PRNP.
Collapse
Affiliation(s)
- Megan Piazza
- Center for Human Genetics Laboratory, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Thomas W Prior
- Center for Human Genetics Laboratory, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Prabhjot S Khalsa
- Fremont Neurology Medical Associates, Fremont, CA, USA.,Washington Hospital Healthcare System, Fremont, CA, USA.,University of California Davis, Davis, CA, USA
| | - Brian Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Zhang M, Zhang H, Yao H, Guo C, Lin D. Biophysical characterization of oligomerization and fibrillization of the G131V pathogenic mutant of human prion protein. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1223-1232. [PMID: 31735962 DOI: 10.1093/abbs/gmz124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 11/14/2022] Open
Abstract
The pathogenesis of fatal neurodegenerative prion diseases is closely associated with the conversion of α-helix-rich cellular prion protein into β-sheet-rich scrapie form. Pathogenic point mutations of prion proteins usually promote the conformational conversion and trigger inherited prion diseases. The G131V mutation of human prion protein (HuPrP) was identified to be involved in Gerstmann-Sträussler-Scheinker syndrome. Few studies have been carried out to address the pathogenesis of the G131V mutant. Here, we addressed the effects of the G131V mutation on oligomerization and fibrillization of the full-length HuPrP(23-231) and truncated HuPrP(91-231) proteins. The G131V mutation promotes the oligomerization but alleviates the fibrillization of HuPrP, implying that the oligomerization might play a crucial role in the pathogenic mechanisms of the G131V mutant. Moreover, the flexible N-terminal fragment in either the wild-type or the G131V mutant HuPrP increases the oligomerization tendencies but decreases the fibrillization tendencies. Furthermore, this mutation significantly alters the tertiary structure of human PrPC and might distinctly change the conformational conversion tendency. Interestingly, both guanidine hydrochloride denaturation and thermal denaturation experiments showed that the G131V mutation does not significantly change the thermodynamic stabilities of the HuPrP proteins. This work may be of benefit to a mechanistic understanding of the conformational conversion of prion proteins and also provide clues for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Zhang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
27
|
Zerr I, Villar-Piqué A, Schmitz VE, Poleggi A, Pocchiari M, Sánchez-Valle R, Calero M, Calero O, Baldeiras I, Santana I, Kovacs GG, Llorens F, Schmitz M. Evaluation of Human Cerebrospinal Fluid Malate Dehydrogenase 1 as a Marker in Genetic Prion Disease Patients. Biomolecules 2019; 9:biom9120800. [PMID: 31795176 PMCID: PMC6995564 DOI: 10.3390/biom9120800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
The exploration of accurate diagnostic markers for differential diagnosis of neurodegenerative diseases is an ongoing topic. A previous study on cerebrospinal fluid (CSF)-mitochondrial malate dehydrogenase 1 (MDH1) in sporadic Creutzfeldt–Jakob disease (sCJD) patients revealed a highly significant upregulation of MDH1. Here, we measured the CSF levels of MDH1 via enzyme-linked immunosorbent assay in a cohort of rare genetic prion disease cases, such as genetic CJD (gCJD) cases, exhibiting the E200K, V210I, P102L (Gerstmann–Sträussler–Scheinker syndrome (GSS)), or D178N (fatal familial insomnia (FFI)) mutations in the PRNP. Interestingly, we observed enhanced levels of CSF-MDH1 in all genetic prion disease patients compared to neurological controls (without neurodegeneration). While E200K and V210I carriers showed highest levels of MDH1 with diagnostic discrimination from controls of 0.87 and 0.85 area under the curve (AUC), FFI and GSS patients exhibited only moderately higher CSF-MDH1 levels than controls. An impact of the PRNP codon 129 methionine/valine (MV) genotype on the amount of MDH1 could be excluded. A correlation study of MDH1 levels with other neurodegenerative marker proteins revealed a significant positive correlation between CSF-MDH1 concentration with total tau (tau) but not with 14-3-3 in E200K, as well as in V210I patients. In conclusion, our study indicated the potential use of MDH1 as marker for gCJD patients which may complement the current panel of diagnostic biomarkers.
Collapse
Affiliation(s)
- Inga Zerr
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE)—Göttingen campus, 37075 Göttingen, Germany
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Anna Villar-Piqué
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Vanda Edit Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (M.P.)
| | - Maurizio Pocchiari
- Department of Neurosciences, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.P.); (M.P.)
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, IDIBAPS, 08036 Barcelona, Spain;
| | - Miguel Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Research Program on Digital Health, Chronicity and Healthcare Services (CROSADIS-UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Olga Calero
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal; (I.B.); (I.S.)
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Isabel Santana
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal; (I.B.); (I.S.)
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Gabor G. Kovacs
- Institute of Neurology, Medical University of Vienna, 1090 Vienna, Austria;
- University of Toronto, Tanz Centre for Research in Neurodegenerative Disease, Toronto, ON M5S 3H2, Canada
| | - Franc Llorens
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
- Network Center for Biomedical Research in Neurodegenerative Diseases, (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain; (M.C.); (O.C.)
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| | - Matthias Schmitz
- Department of Neurology, National Reference Center for CJD Surveillance University Medical Center Göttingen, 37075 Göttingen, Germany;
- German Center for Neurodegenerative Diseases (DZNE)—Göttingen campus, 37075 Göttingen, Germany
- Correspondence: (I.Z.); (A.V.-P.); (F.L.); (M.S.)
| |
Collapse
|
28
|
Abstract
Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene (PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non-PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.
Collapse
Affiliation(s)
- Simon Mead
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - Sarah Lloyd
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| | - John Collinge
- Medical Research Council Prion Unit at UCL, Institute of Prion Diseases, University College London, London W1W 7FF, United Kingdom;
| |
Collapse
|
29
|
Mok TH, Koriath C, Jaunmuktane Z, Campbell T, Joiner S, Wadsworth JDF, Hosszu LLP, Brandner S, Parvez A, Truelsen TC, Lund EL, Saha R, Collinge J, Mead S. Evaluating the causality of novel sequence variants in the prion protein gene by example. Neurobiol Aging 2018; 71:265.e1-265.e7. [PMID: 29861043 PMCID: PMC6175539 DOI: 10.1016/j.neurobiolaging.2018.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/22/2018] [Accepted: 05/06/2018] [Indexed: 11/13/2022]
Abstract
The estimation of pathogenicity and penetrance of novel prion protein gene (PRNP) variants presents significant challenges, particularly in the absence of family history, which precludes the application of Mendelian segregation. Moreover, the ambiguities of prion disease pathophysiology renders conventional in silico predictions inconclusive. Here, we describe 2 patients with rapid cognitive decline progressing to akinetic mutism and death within 10 weeks of symptom onset, both of whom possessed the novel T201S variant in PRNP. Clinically, both satisfied diagnostic criteria for probable sporadic Creutzfeldt-Jakob disease and in one, the diagnosis was confirmed by neuropathology. While computational analyses predicted that T201S was possibly deleterious, molecular strain typing, prion protein structural considerations, and calculations leveraging large-scale population data (gnomAD) indicate that T201S is at best either of low penetrance or nonpathogenic. Thus, we illustrate the utility of harnessing multiple lines of prion disease-specific evidence in the evaluation of the T201S variant, which may be similarly applied to assess other novel variants in PRNP.
Collapse
Affiliation(s)
- Tze How Mok
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Carolin Koriath
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Tracy Campbell
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | - Susan Joiner
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK
| | | | | | - Sebastian Brandner
- Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK; Division of Neuropathology, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Ambereen Parvez
- Department of Neurology, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Romi Saha
- Hurstwood Park Neurological Centre, Sussex, UK
| | - John Collinge
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK
| | - Simon Mead
- MRC Prion Unit, UCL Institute of Prion Diseases, London, UK; National Prion Clinic, National Hospital for Neurology and Neurosurgery, UCLH NHS Foundation Trust, London, UK.
| |
Collapse
|
30
|
Zheng Z, Zhang M, Wang Y, Ma R, Guo C, Feng L, Wu J, Yao H, Lin D. Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep 2018; 8:13211. [PMID: 30181558 PMCID: PMC6123418 DOI: 10.1038/s41598-018-31394-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/08/2018] [Indexed: 12/20/2022] Open
Abstract
Prion diseases are caused by the propagation of misfolded cellular prion proteins (PrPs). A completely prion disease-resistant genotype, V127M129, has been identified in Papua New Guinea and verified in transgenic mice. To disclose the structural basis of the disease-resistant effect of the G127V mutant, we determined and compared the structural and dynamic features of the G127V-mutated human PrP (residues 91-231) and the wild-type PrP in solution. HuPrP(G127V) contains α1, α2 and α3 helices and a stretch-strand (SS) pattern comprising residues Tyr128-Gly131 (SS1) and Val161-Arg164 (SS2), with extending atomic distances between the SS1 and SS2 strands, and a structural rearrangement of the Tyr128 side chain due to steric hindrance of the larger hydrophobic side chain of Val127. The extended α1 helix gets closer to the α2 and α3 helices. NMR dynamics analysis revealed that Tyr128, Gly131 and Tyr163 underwent significant conformational exchanges. Molecular dynamics simulations suggest that HuPrP(G127V) prevents the formation of stable β-sheets and dimers. Unique structural and dynamic features potentially inhibit the conformational conversion of the G127V mutant. This work is beneficial for understanding the molecular mechanisms underlying the complete resistance of the G127V mutant to prion disease and for developing new therapeutics for prion disease.
Collapse
Affiliation(s)
- Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Meilan Zhang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yongheng Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongsheng Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Feng
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jihui Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Hongwei Yao
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
31
|
Perrone F, Cacace R, Van Mossevelde S, Van den Bossche T, De Deyn PP, Cras P, Engelborghs S, van der Zee J, Van Broeckhoven C. Genetic screening in early-onset dementia patients with unclear phenotype: relevance for clinical diagnosis. Neurobiol Aging 2018; 69:292.e7-292.e14. [DOI: 10.1016/j.neurobiolaging.2018.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/08/2018] [Accepted: 04/27/2018] [Indexed: 12/12/2022]
|
32
|
Villar-Piqué A, Schmitz M, Lachmann I, Karch A, Calero O, Stehmann C, Sarros S, Ladogana A, Poleggi A, Santana I, Ferrer I, Mitrova E, Žáková D, Pocchiari M, Baldeiras I, Calero M, Collins SJ, Geschwind MD, Sánchez-Valle R, Zerr I, Llorens F. Cerebrospinal Fluid Total Prion Protein in the Spectrum of Prion Diseases. Mol Neurobiol 2018; 56:2811-2821. [PMID: 30062673 DOI: 10.1007/s12035-018-1251-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/16/2018] [Indexed: 12/11/2022]
Abstract
Cerebrospinal fluid (CSF) total prion protein (t-PrP) is decreased in sporadic Creutzfeldt-Jakob disease (sCJD). However, data on the comparative signatures of t-PrP across the spectrum of prion diseases, longitudinal changes during disease progression, and levels in pre-clinical cases are scarce. T-PrP was quantified in neurological diseases (ND, n = 147) and in prion diseases from different aetiologies including sporadic (sCJD, n = 193), iatrogenic (iCJD, n = 12) and genetic (n = 209) forms. T-PrP was also measured in serial lumbar punctures obtained from sCJD cases at different symptomatic disease stages, and in asymptomatic prion protein gene (PRNP) mutation carriers. Compared to ND, t-PrP concentrations were significantly decreased in sCJD, iCJD and in genetic prion diseases associated with the three most common mutations E200K, V210I (associated with genetic CJD) and D178N-129M (associated with fatal familial insomnia). In contrast, t-PrP concentrations in P102L mutants (associated with the Gerstmann-Sträussler-Scheinker syndrome) remained unaltered. In serial lumbar punctures obtained at different disease stages of sCJD patients, t-PrP concentrations inversely correlated with disease progression. Decreased mean t-PrP values were detected in asymptomatic D178-129M mutant carriers, but not in E200K and P102L carriers. The presence of low CSF t-PrP is common to all types of prion diseases regardless of their aetiology albeit with mutation-specific exceptions in a minority of genetic cases. In some genetic prion disease, decreased levels are already detected at pre-clinical stages and diminish in parallel with disease progression. Our data indicate that CSF t-PrP concentrations may have a role as a pre-clinical or early symptomatic diagnostic biomarker in prion diseases as well as in the evaluation of therapeutic interventions.
Collapse
Affiliation(s)
- Anna Villar-Piqué
- Department of Neurology, University Medical School, Göttingen, Germany.
| | - Matthias Schmitz
- Department of Neurology, University Medical School, Göttingen, Germany. .,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| | | | - André Karch
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Olga Calero
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Christiane Stehmann
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne, Australia
| | - Shannon Sarros
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne, Australia
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Isabel Santana
- Neurology Department, CHUC - Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Isidre Ferrer
- Bellvitge University Hospital-IDIBELL, Department of Pathology and Experimental Therapeutics, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Eva Mitrova
- Department of Prion Diseases, Slovak Medical University, Bratislava, Slovakia
| | - Dana Žáková
- Department of Prion Diseases, Slovak Medical University, Bratislava, Slovakia
| | | | - Inês Baldeiras
- Neurology Department, CHUC - Centro Hospitalar e Universitário de Coimbra, CNC- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Calero
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Chronic Disease Programme Carlos III Institute of Health, Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Steven J Collins
- Australian National Creutzfeldt-Jakob Disease Registry, Florey Institute, The University of Melbourne, Melbourne, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, Australia
| | - Michael D Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical School, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical School, Göttingen, Germany. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain. .,Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
33
|
Abstract
Genetic prion diseases (gPrDs) caused by mutations in the prion protein gene (PRNP) have been classified as genetic Creutzfeldt-Jakob disease, Gerstmann-Sträussler-Scheinker disease, or fatal familial insomnia. Mutations in PRNP can be missense, nonsense, and/or octapeptide repeat insertions or, possibly, deletions. These mutations can produce diverse clinical features. They may also show varying ancillary testing results and neuropathological findings. Although the majority of gPrDs have a rapid progression with a short survival time of a few months, many also present as ataxic or parkinsonian disorders, which have a slower decline over a few to several years. A few very rare mutations manifest as neuropsychiatric disorders, with systemic symptoms that include gastrointestinal disorders and neuropathy; these forms can progress over years to decades. In this review, we classify gPrDs as rapid, slow, or mixed types based on their typical rate of progression and duration, and we review the broad spectrum of phenotypes manifested by these diseases.
Collapse
Affiliation(s)
- Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Leonel T Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, 05403-900, Brazil
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Sven A Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| | - Michael D Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
34
|
Abstract
Genetic Creutzfeldt-Jakob disease (CJD) is associated with mutations in the human PrP gene (PRNP) on chromosome 20p12-pter. Pathogenic mutations have been identified in 10-15% of all CJD patients, who often have a family history of autosomal-dominant pattern of inheritance and variable penetrance. However, the use of genetic tests implemented by surveillance networks all over the world increasingly identifies unexpectedly PRNP mutations in persons apparently presenting with a sporadic form of CJD. A high phenotypic variability was reported in genetic prion diseases, which partly overlap with the features of sporadic CJD. Here we review recent advances on the epidemiologic, clinical, and neuropathologic features of cases that phenotypically resemble CJD linked to point and insert mutations of the PRNP gene. Multidisciplinary studies are still required to understand the phenotypic spectrum, penetrance, and significance of PRNP mutations.
Collapse
|
35
|
Bagyinszky E, Giau VV, Youn YC, An SSA, Kim S. Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat 2018; 14:2067-2085. [PMID: 30147320 PMCID: PMC6097508 DOI: 10.2147/ndt.s165445] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abnormal prion proteins are responsible for several fatal neurodegenerative diseases in humans and in animals, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease, and fatal familial insomnia. Genetics is important in prion diseases, but in the most cases, cause of diseases remained unknown. Several mutations were found to be causative for prion disorders, and the effect of mutations may be heterogeneous. In addition, different prion mutations were suggested to play a possible role in additional phenotypes, such as Alzheimer's type pathology, spongiform encephalopathy, or frontotemporal dementia. Pathogenic nature of several prion mutations remained unclear, such as M129V and E219K. These two polymorphic sites were suggested as either risk factors for different disorders, such as Alzheimer's disease (AD), variant CJD, or protease-sensitive prionopathy, and they can also be disease-modifying factors. Pathological overlap may also be possible with AD or progressive dementia, and several patients with prion mutations were initially diagnosed with AD. This review also introduces briefly the diagnosis of prion diseases and the issues with their diagnosis. Since prion diseases have quite heterogeneous phenotypes, a complex analysis, a combination of genetic screening, cerebrospinal fluid biomarker analysis and imaging technologies could improve the early disease diagnosis.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Gyeonggi-do, South Korea,
| | - Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Gyeonggi-do, South Korea,
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Gyeonggi-do, South Korea,
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
36
|
Takada LT, Kim MO, Metcalf S, Gala II, Geschwind MD. Prion disease. HANDBOOK OF CLINICAL NEUROLOGY 2018; 148:441-464. [DOI: 10.1016/b978-0-444-64076-5.00029-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Keuss SE, Ironside JW, O’Riordan J. Gerstmann-Sträussler-Scheinker disease with atypical presentation. BMJ Case Rep 2017; 2017:bcr-2017-220907. [PMID: 29092967 PMCID: PMC5695393 DOI: 10.1136/bcr-2017-220907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 11/04/2022] Open
Abstract
We describe a 37-year-old woman who presented with progressive deafness, visual loss and ataxia. She latterly developed neuropsychiatric problems, including cognitive impairment, paranoid delusions and episodes of altered consciousness. She was found to be heterozygous for the Q212P mutation in the prion protein gene. She died over a decade after initial presentation and a diagnosis of prion disease was confirmed at postmortem.
Collapse
Affiliation(s)
- Sarah E Keuss
- Department of Neurology, Ninewells Hospital, Dundee, Tayside, UK
| | - James W Ironside
- Department of Clinical Brain Sciences, National Creutzfeldt-Jakob Disease Research and Surveillance Unit, Edinburgh, UK
| | | |
Collapse
|
38
|
Copper- and Zinc-Promoted Interdomain Structure in the Prion Protein: A Mechanism for Autoinhibition of the Neurotoxic N-Terminus. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:35-56. [PMID: 28838668 DOI: 10.1016/bs.pmbts.2017.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The function of the cellular prion protein (PrPC), while still poorly understood, is increasingly linked to its ability to bind physiological metal ions at the cell surface. PrPC binds divalent forms of both copper and zinc through its unstructured N-terminal domain, modulating interactions between PrPC and various receptors at the cell surface and ultimately tuning downstream cellular processes. In this chapter, we briefly discuss the molecular features of copper and zinc uptake by PrPC and summarize evidence implicating these metal ions in PrP-mediated physiology. We then focus our review on recent biophysical evidence revealing a physical interaction between the flexible N-terminal and globular C-terminal domains of PrPC. This interdomain cis interaction is electrostatic in nature and is promoted by the binding of Cu2+ and Zn2+ to the N-terminal octarepeat domain. These findings, along with recent cellular studies, suggest a mechanism whereby NC interactions serve to regulate the activity and/or toxicity of the PrPC N-terminus. We discuss this potential mechanism in relation to familial prion disease mutations, lethal deletions of the PrPC central region, and neurotoxicity induced by certain globular domain ligands, including bona fide prions and toxic amyloid-β oligomers.
Collapse
|
39
|
Brandner S, Jaunmuktane Z. Prion disease: experimental models and reality. Acta Neuropathol 2017; 133:197-222. [PMID: 28084518 PMCID: PMC5250673 DOI: 10.1007/s00401-017-1670-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 01/04/2023]
Abstract
The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology.
Collapse
Affiliation(s)
- Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| | - Zane Jaunmuktane
- Department of Neurodegenerative Disease, UCL Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, Queen Square, London, WC1N 3BG UK
| |
Collapse
|
40
|
Wadsworth JDF, Adamson G, Joiner S, Brock L, Powell C, Linehan JM, Beck JA, Brandner S, Mead S, Collinge J. Methods for Molecular Diagnosis of Human Prion Disease. Methods Mol Biol 2017; 1658:311-346. [PMID: 28861799 DOI: 10.1007/978-1-4939-7244-9_22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human prion diseases are associated with a range of clinical presentations, and they are classified by both clinicopathological syndrome and etiology, with subclassification according to molecular criteria. Here, we describe updated procedures that are currently used within the MRC Prion Unit at UCL to determine a molecular diagnosis of human prion disease. Sequencing of the PRNP open reading frame to establish the presence of pathogenic mutations is described, together with detailed methods for immunoblot or immunohistochemical determination of the presence of abnormal prion protein in the brain or peripheral tissues.
Collapse
Affiliation(s)
- Jonathan D F Wadsworth
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK.
| | - Gary Adamson
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Lara Brock
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Caroline Powell
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Jonathan A Beck
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
41
|
Takada LT, Kim MO, Cleveland RW, Wong K, Forner SA, Gala II, Fong JC, Geschwind MD. Genetic prion disease: Experience of a rapidly progressive dementia center in the United States and a review of the literature. Am J Med Genet B Neuropsychiatr Genet 2017; 174:36-69. [PMID: 27943639 PMCID: PMC7207989 DOI: 10.1002/ajmg.b.32505] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/21/2022]
Abstract
Although prion diseases are generally thought to present as rapidly progressive dementias with survival of only a few months, the phenotypic spectrum for genetic prion diseases (gPrDs) is much broader. The majority have a rapid decline with short survival, but many patients with gPrDs present as slowly progressive ataxic or parkinsonian disorders with progression over a few to several years. A few very rare mutations even present as neuropsychiatric disorders, sometimes with systemic symptoms such as gastrointestinal disorders and neuropathy, progressing over years to decades. gPrDs are caused by mutations in the prion protein gene (PRNP), and have been historically classified based on their clinicopathological features as genetic Jakob-Creutzfeldt disease (gJCD), Gerstmann-Sträussler-Scheinker (GSS), or Fatal Familial Insomnia (FFI). Mutations in PRNP can be missense, nonsense, and octapeptide repeat insertions or a deletion, and present with diverse clinical features, sensitivities of ancillary testing, and neuropathological findings. We present the UCSF gPrD cohort, including 129 symptomatic patients referred to and/or seen at UCSF between 2001 and 2016, and compare the clinical features of the gPrDs from 22 mutations identified in our cohort with data from the literature, as well as perform a literature review on most other mutations not represented in our cohort. E200K is the most common mutation worldwide, is associated with gJCD, and was the most common in the UCSF cohort. Among the GSS-associated mutations, P102L is the most commonly reported and was also the most common at UCSF. We also had several octapeptide repeat insertions (OPRI), a rare nonsense mutation (Q160X), and three novel mutations (K194E, E200G, and A224V) in our UCSF cohort. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Leonel T. Takada
- Cognitive and Behavioral Neurology Unit, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Mee-Ohk Kim
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ross W. Cleveland
- Department of Pediatrics, The University of Vermont Children’s Hospital, University of Vermont, Burlington, VT 05401
| | - Katherine Wong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Sven A. Forner
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Ignacio Illán Gala
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Jamie C. Fong
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| | - Michael D. Geschwind
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94107
| |
Collapse
|
42
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
43
|
Yu Y, Yu Z, Zheng Z, Wang H, Wu X, Guo C, Lin D. Distinct effects of mutations on biophysical properties of human prion protein monomers and oligomers. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1016-1025. [PMID: 27649893 DOI: 10.1093/abbs/gmw094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/15/2016] [Indexed: 02/05/2023] Open
Abstract
Prion diseases are a group of fatal neurodegenerative illnesses, resulting from the conformational conversion of the cellular prion protein (PrPC) into a misfolded form (PrPSc). The formation of neurotoxic soluble prion protein oligomer (PrPO) is regarded as a key step in the development of prion diseases. About 10%-15% of human prion diseases are caused by mutations in the prion protein gene; however, the underlying molecular mechanisms remain unclear. In the present work, we compared the biophysical properties of wild-type (WT) human prion protein 91-231 (WT HuPrP91-231) and its disease-associated variants (P105L, D178N, V203I, and Q212P) using several biophysical techniques. In comparison with WT HuPrPC, the Q212P and D178N variants possessed greatly increased conversion propensities of PrPC into PrPO, while the V203I variant had dramatically decreased conversion propensity. The P105L variant displayed a similar conversion propensity to WT HuPrPC Guanidine hydrochloride-induced unfolding experiments ranked the thermodynamic stabilities of these proteins as Q212P < D178N < WT ≈ P105L < V203I. It was thus suggested that the conversion propensities of the prion proteins are closely associated with their thermodynamic stabilities. Furthermore, structural comparison illustrated that Q212P, D178N, and V203I variants underwent larger structural changes compared with WT HuPrPC, while the P105L variant adopted a similar structure to the WT HuPrPC The mutation-induced structural perturbations might change the thermodynamic stabilities of the HuPrPC variants, and correspondingly alter the conversion propensities for these prion proteins. Our results extend the mechanistic understanding of prion pathogenesis, and lay the basis for the prevention and treatment of prion diseases.
Collapse
Affiliation(s)
- Yuanhui Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ziyao Yu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhen Zheng
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xueji Wu
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chenyun Guo
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
44
|
Minikel EV, Vallabh SM, Lek M, Estrada K, Samocha KE, Sathirapongsasuti JF, McLean CY, Tung JY, Yu LPC, Gambetti P, Blevins J, Zhang S, Cohen Y, Chen W, Yamada M, Hamaguchi T, Sanjo N, Mizusawa H, Nakamura Y, Kitamoto T, Collins SJ, Boyd A, Will RG, Knight R, Ponto C, Zerr I, Kraus TFJ, Eigenbrod S, Giese A, Calero M, de Pedro-Cuesta J, Haïk S, Laplanche JL, Bouaziz-Amar E, Brandel JP, Capellari S, Parchi P, Poleggi A, Ladogana A, O'Donnell-Luria AH, Karczewski KJ, Marshall JL, Boehnke M, Laakso M, Mohlke KL, Kähler A, Chambert K, McCarroll S, Sullivan PF, Hultman CM, Purcell SM, Sklar P, van der Lee SJ, Rozemuller A, Jansen C, Hofman A, Kraaij R, van Rooij JGJ, Ikram MA, Uitterlinden AG, van Duijn CM, Daly MJ, MacArthur DG. Quantifying prion disease penetrance using large population control cohorts. Sci Transl Med 2016; 8:322ra9. [PMID: 26791950 DOI: 10.1126/scitranslmed.aad5169] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
More than 100,000 genetic variants are reported to cause Mendelian disease in humans, but the penetrance-the probability that a carrier of the purported disease-causing genotype will indeed develop the disease-is generally unknown. We assess the impact of variants in the prion protein gene (PRNP) on the risk of prion disease by analyzing 16,025 prion disease cases, 60,706 population control exomes, and 531,575 individuals genotyped by 23andMe Inc. We show that missense variants in PRNP previously reported to be pathogenic are at least 30 times more common in the population than expected on the basis of genetic prion disease prevalence. Although some of this excess can be attributed to benign variants falsely assigned as pathogenic, other variants have genuine effects on disease susceptibility but confer lifetime risks ranging from <0.1 to ~100%. We also show that truncating variants in PRNP have position-dependent effects, with true loss-of-function alleles found in healthy older individuals, a finding that supports the safety of therapeutic suppression of prion protein expression.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA. Prion Alliance, Cambridge, MA 02139, USA.
| | - Sonia M Vallabh
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA. Prion Alliance, Cambridge, MA 02139, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Karol Estrada
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kaitlin E Samocha
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | | | - Cory Y McLean
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Joyce Y Tung
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Linda P C Yu
- Research, 23andMe Inc., Mountain View, CA 94041, USA
| | - Pierluigi Gambetti
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Janis Blevins
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Shulin Zhang
- University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Yvonne Cohen
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Wei Chen
- National Prion Disease Pathology Surveillance Center, Cleveland, OH 44106, USA
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Nobuo Sanjo
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Center of Neurology and Psychiatry, Tokyo 187-8551, Japan
| | - Yosikazu Nakamura
- Department of Public Health, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Tetsuyuki Kitamoto
- Department of Neurological Science, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Steven J Collins
- Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alison Boyd
- Australian National Creutzfeldt-Jakob Disease Registry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Robert G Will
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Richard Knight
- National Creutzfeldt-Jakob Disease Research & Surveillance Unit, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Claudia Ponto
- National Reference Center for the Surveillance of Human Transmissible Spongiform Encephalopathies, Georg-August-University, Goettingen 37073, Germany
| | - Inga Zerr
- National Reference Center for the Surveillance of Human Transmissible Spongiform Encephalopathies, Georg-August-University, Goettingen 37073, Germany
| | - Theo F J Kraus
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Sabina Eigenbrod
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Armin Giese
- Center for Neuropathology and Prion Research (ZNP), Ludwig-Maximilians-University, Munich 81377, Germany
| | - Miguel Calero
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Jesús de Pedro-Cuesta
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, Madrid 28031, Spain
| | - Stéphane Haïk
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Pierre and Marie Curie University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France. Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| | - Jean-Louis Laplanche
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75010 Paris, France
| | - Elodie Bouaziz-Amar
- AP-HP, Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, 75010 Paris, France
| | - Jean-Philippe Brandel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, Pierre and Marie Curie University Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, 75013 Paris, France. Assistance Publique-Hôpitaux de Paris (AP-HP), Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, Groupe Hospitalier Pitié-Salpêtrière, F-75013 Paris, France
| | - Sabina Capellari
- Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna 40123, Italy. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Piero Parchi
- Istituto di Ricovero e Cura a Carattere Scientifico, Institute of Neurological Sciences, Bologna 40123, Italy. Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna 40126, Italy
| | - Anna Poleggi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Anna Ladogana
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Anne H O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA. Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Konrad J Karczewski
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jamie L Marshall
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio 70210, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Anna Kähler
- Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kimberly Chambert
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA. Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | - Shaun M Purcell
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pamela Sklar
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sven J van der Lee
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - Annemieke Rozemuller
- Dutch Surveillance Centre for Prion Diseases, Department of Pathology, University Medical Center, Utrecht 3584 CX, Netherlands
| | - Casper Jansen
- Dutch Surveillance Centre for Prion Diseases, Department of Pathology, University Medical Center, Utrecht 3584 CX, Netherlands
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC, Rotterdam 3000 CA, Netherlands
| | | | - M Arfan Ikram
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands. Department of Internal Medicine, Erasmus MC, Rotterdam 3000 CA, Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus Medical Center (MC), Rotterdam 3000 CA, Netherlands
| | | | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA 02142, USA. Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
45
|
Schmitz M, Dittmar K, Llorens F, Gelpi E, Ferrer I, Schulz-Schaeffer WJ, Zerr I. Hereditary Human Prion Diseases: an Update. Mol Neurobiol 2016; 54:4138-4149. [PMID: 27324792 DOI: 10.1007/s12035-016-9918-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/03/2016] [Indexed: 01/19/2023]
Abstract
Prion diseases in humans are neurodegenerative diseases which are caused by an accumulation of abnormal, misfolded cellular prion protein known as scrapie prion protein (PrPSc). Genetic, acquired, or spontaneous (sporadic) forms are known. Pathogenic mutations in the human prion protein gene (PRNP) have been identified in 10-15 % of CJD patients. These mutations may be single point mutations, STOP codon mutations, or insertions or deletions of octa-peptide repeats. Some non-coding mutations and new mutations in the PrP gene have been identified without clear evidence for their pathogenic significance. In the present review, we provide an updated overview of PRNP mutations, which have been documented in the literature until now, describe the change in the DNA, the family history, the pathogenicity, and the number of described cases, which has not been published in this complexity before. We also provide a description of each genetic prion disease type, present characteristic histopathological features, and the PrPSc isoform expression pattern of various familial/genetic prion diseases.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany. .,Department of Neuropathology, Georg-August University, Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Kathrin Dittmar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Ellen Gelpi
- Neurological Tissue Bank, Biobanc-Hospital Clinic-IDIBAPS, Barcelona, Spain
| | - Isidre Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, CIBERNED, Hospitalet de Llobregat, University of Barcelona, Barcelona, Spain
| | - Walter J Schulz-Schaeffer
- Department of Neuropathology, Georg-August University, Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
46
|
Evans EGB, Pushie MJ, Markham KA, Lee HW, Millhauser GL. Interaction between Prion Protein's Copper-Bound Octarepeat Domain and a Charged C-Terminal Pocket Suggests a Mechanism for N-Terminal Regulation. Structure 2016; 24:1057-67. [PMID: 27265848 DOI: 10.1016/j.str.2016.04.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 11/29/2022]
Abstract
Copper plays a critical role in prion protein (PrP) physiology. Cu(2+) binds with high affinity to the PrP N-terminal octarepeat (OR) domain, and intracellular copper promotes PrP expression. The molecular details of copper coordination within the OR are now well characterized. Here we examine how Cu(2+) influences the interaction between the PrP N-terminal domain and the C-terminal globular domain. Using nuclear magnetic resonance and copper-nitroxide pulsed double electron-electron resonance, with molecular dynamics refinement, we localize the position of Cu(2+) in its high-affinity OR-bound state. Our results reveal an interdomain cis interaction that is stabilized by a conserved, negatively charged pocket of the globular domain. Interestingly, this interaction surface overlaps an epitope recognized by the POM1 antibody, the binding of which drives rapid cerebellar degeneration mediated by the PrP N terminus. The resulting structure suggests that the globular domain regulates the N-terminal domain by binding the Cu(2+)-occupied OR within a complementary pocket.
Collapse
Affiliation(s)
- Eric G B Evans
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - M Jake Pushie
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Kate A Markham
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Hsiau-Wei Lee
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
47
|
Maheshwari A, Fischer M, Gambetti P, Parker A, Ram A, Soto C, Concha-Marambio L, Cohen Y, Belay ED, Maddox RA, Mead S, Goodman C, Kass JS, Schonberger LB, Hussein HM. Recent US Case of Variant Creutzfeldt-Jakob Disease-Global Implications. Emerg Infect Dis 2016; 21:750-9. [PMID: 25897712 PMCID: PMC4412247 DOI: 10.3201/eid2105.142017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A recently diagnosed case highlights the need for continued global surveillance. Variant Creutzfeldt-Jakob disease (vCJD) is a rare, fatal prion disease resulting from transmission to humans of the infectious agent of bovine spongiform encephalopathy. We describe the clinical presentation of a recent case of vCJD in the United States and provide an update on diagnostic testing. The location of this patient’s exposure is less clear than those in the 3 previously reported US cases, but strong evidence indicates that exposure to contaminated beef occurred outside the United States more than a decade before illness onset. This case exemplifies the persistent risk for vCJD acquired in unsuspected geographic locations and highlights the need for continued global surveillance and awareness to prevent further dissemination of vCJD.
Collapse
|
48
|
Mano KK, Matsukawa T, Mitsui J, Ishiura H, Tokushige SI, Takahashi Y, Sato NS, Nakamoto FK, Ichikawa Y, Nagashima Y, Terao Y, Shimizu J, Hamada M, Uesaka Y, Oyama G, Ogawa G, Yoshimura J, Doi K, Morishita S, Tsuji S, Goto J. Atypical parkinsonism caused by Pro105Leu mutation of prion protein: A broad clinical spectrum. NEUROLOGY-GENETICS 2016; 2:e48. [PMID: 27066585 PMCID: PMC4817902 DOI: 10.1212/nxg.0000000000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/23/2015] [Indexed: 11/17/2022]
Abstract
Objective: To delineate molecular and clinical characteristics of 3 families with PRNP P105L mutation, a variant of Gerstmann-Sträussler-Scheinker syndrome whose main motor symptoms were parkinsonism and/or involuntary movements. Methods: The causative mutation was first determined in the affected patients of family 1 using whole-exome sequencing, and then mutational analysis was extended to families 2 and 3. The clinical features of the patients of these 3 families were summarized. Haplotype analysis was performed using high-density single nucleotide polymorphism array. Results: The whole-exome sequencing revealed that the heterozygous mutation c.314C>T (p.P105L) in PRNP was the only known pathogenic mutation shared by the 3 patients of the family with autosomal dominant parkinsonism. We further identified the same mutation in patients of the other 2 families with autosomal dominant parkinsonism and/or involuntary movements. The clinical features of our patients with PRNP P105L mutation included various motor symptoms such as parkinsonism and involuntary movements in addition to progressive dementia. The clinical features in part overlapped with those of other forms of inherited prion diseases, such as fatal familial insomnia and Huntington disease-like type 1. The patients with PRNP P105L mutation shared a haplotype spanning 7.1 Mb around PRNP, raising the possibility that the mutations in the patients originated from a common founder. Conclusion: Most of the patients presented with parkinsonism in addition to progressive dementia. Although spastic paraparesis has been emphasized as the main clinical feature, the clinical spectrum of patients with PRNP P105L is broader than expected.
Collapse
Affiliation(s)
- Kagari Koshi Mano
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Takashi Matsukawa
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Jun Mitsui
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Hiroyuki Ishiura
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Shin-Ichi Tokushige
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Yuji Takahashi
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Naoko Saito Sato
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Fumiko Kusunoki Nakamoto
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Yaeko Ichikawa
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Yu Nagashima
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Yasuo Terao
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Jun Shimizu
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Masashi Hamada
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Yoshikazu Uesaka
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Genko Oyama
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Go Ogawa
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Jun Yoshimura
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Koichiro Doi
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Shinichi Morishita
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Shoji Tsuji
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| | - Jun Goto
- Department of Neurology (K.K.M., T.M., J.M., H.I., S.-i.T., Y. Takahashi, N.S.S., F.K.N., Y.I., Y.N., Y. Terao, J.S., M.H., S.T., J.G.), Graduate School of Medicine, The University of Tokyo; Shonai Amarume Hospital (Y. Takahashi); Department of Neurology (Y.U.), Toranomon Hospital; Department of Neurology (G. Oyama), Juntendo University; Department of Neurology (G. Ogawa), Teikyo University; and Department of Computational Biology and Medical Sciences (J.Y., K.D., S.M.), Graduate School of Frontier Sciences, The University of Tokyo. Y. Takahashi is currently affiliated with the Department of Neurology, National Center of Psychiatry and Neurology. Y.I. is currently affiliated with the Department of Neurology, Kyorin University
| |
Collapse
|
49
|
Li B. The pathogenesis of soluble PrP fragments containing Aβ binding sites. Virus Res 2015; 211:194-8. [PMID: 26528810 DOI: 10.1016/j.virusres.2015.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 12/28/2022]
Abstract
Prion protein (PrP) has proven to bind amyloid beta (Aβ) oligomers with high affinity, changing our understanding of both prion diseases (PD) and Alzheimer's disease (AD) at the molecular and phenotypic levels, although the latter currently lacks sufficient attentions. Transgenic mice expressing anchorless PrP developed unusual diseases reminiscent of AD with tremendous amyloid plaque formation. In this review, we described two interesting observations at the phenotypic level. First, common pathogenic mutations of the PRNP gene in Gerstmann-Sträussler-Scheinker (GSS) syndrome were clustered at PrP95-105. Meanwhile, all nonsense PRNP mutations that generated soluble PrP 95-105 exhibited phenotypes with abundant amyloid formations. We speculate that PrP-Aβ oligomers binding might be the underlying mechanism of the predominant amyloid phenotypes. Second, soluble PrP-Aβ oligomer complexes might exist in the extracellular space at the beginning of both PD and AD and subserve an initial neuroprotective function. Thus, the diseases would only present after long-term accumulation. This might be the central common pathogenic event of both PD and AD.
Collapse
Affiliation(s)
- Baiya Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| |
Collapse
|
50
|
Watts JC, Giles K, Serban A, Patel S, Oehler A, Bhardwaj S, Guan S, Greicius MD, Miller BL, DeArmond SJ, Geschwind MD, Prusiner SB. Modulation of Creutzfeldt-Jakob disease prion propagation by the A224V mutation. Ann Neurol 2015; 78:540-53. [PMID: 26094969 DOI: 10.1002/ana.24463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/17/2015] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Mutations in the gene encoding the prion protein (PrP) are responsible for approximately 10 to 15% of cases of prion disease in humans, including Creutzfeldt-Jakob disease (CJD). Here, we report on the discovery of a previously unreported C-terminal PrP mutation (A224V) in a CJD patient exhibiting a disease similar to the rare VV1 subtype of sporadic (s) CJD and investigate the role of this mutation in prion replication and transmission. METHODS We generated transgenic (Tg) mice expressing human PrP with the V129 polymorphism and A224V mutation, denoted Tg(HuPrP,V129,A224V) mice, and inoculated them with different subtypes of sCJD prions. RESULTS Transmission of sCJD VV2 or MV2 prions was accelerated in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice, with incubation periods of ∼110 and ∼210 days, respectively. In contrast, sCJD MM1 prions resulted in longer incubation periods in Tg(HuPrP,V129,A224V) mice, compared to Tg(HuPrP,V129) mice (∼320 vs. ∼210 days). Prion strain fidelity was maintained in Tg(HuPrP,V129,A224V) mice inoculated with sCJD VV2 or MM1 prions, despite the altered replication kinetics. INTERPRETATION Our results suggest that A224V is a risk factor for prion disease and modulates the transmission behavior of CJD prions in a strain-specific manner, arguing that residues near the C-terminus of PrP are important for controlling the kinetics of prion replication.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases.,Departments of Neurology
| | - Kurt Giles
- Institute for Neurodegenerative Diseases.,Departments of Neurology
| | - Ana Serban
- Institute for Neurodegenerative Diseases
| | | | | | | | - Shenheng Guan
- Institute for Neurodegenerative Diseases.,Pharmaceutical Chemistry
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA
| | | | | | | | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases.,Departments of Neurology.,Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| |
Collapse
|